OO/𖣠⚪∣❁∣✤✻ᕭᕮᗩߦറ⚪𔗢⚪🞋⚪𔗢⚪റߦᗩᕭᕮ✻✤∣.../𖣠⚪ИNⓄꖴ✤ᑐᑕИNᑎꗳ𖡗ᔓᔕᑎꖴ⚭ᗩꗳ⚪𔗢⚪🞋⚪𔗢.../𖣠⚪ᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕ⚪𔗢⚪🞋⚪𔗢⚪ᑐᑕᑎᴥᗯᗩ✤.../𖣠⚪ᔓᔕᴥᗱᗴИNᴥⓄᑐᑕ𖣓✤옷ᕤᕦꖴᗩᴥ✤ᔓᔕ⚪𔗢⚪.../YP.⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᗩ⚪ᙏ⚪ꖴ⚪ꕤ⚪Ⓞ⚪ᴥ⚪ߦ⚪...

35 lines
1.2 KiB
Plaintext
Raw Normal View History

import plotly.graph_objects as go
import numpy as np
# Define the curvature function
def kappa(x):
return (1-((-((-1)**np.floor(x/np.pi*2)*(np.exp(-1/((x/np.pi*2)-np.floor((x/np.pi*2))))
/(np.exp(-1/((x/np.pi*2)-np.floor((x/np.pi*2))))+np.exp(-1/(1-(x/np.pi*2)+np.floor((x/np.pi*2))))))) +
((-1)**np.floor((x/np.pi*2)/1)*(np.exp(-1/(1-(x/np.pi*2)+np.floor((x/np.pi*2))))/(np.exp(-1/((x/np.pi*2)-
np.floor((x/np.pi*2))))+np.exp(-1/(1-(x/np.pi*2)+np.floor((x/np.pi*2))))))))/2 + .5))
# Generate x values
x_vals = np.linspace(0, 4*np.pi, 1000)
# Compute kappa values
kappa_vals = kappa(x_vals)
# Integrate kappa values to get theta values (angles)
theta_vals = np.cumsum(kappa_vals) * (x_vals[1]-x_vals[0])
# Compute x and y coordinates of the curve
x_coords = np.cumsum(np.cos(theta_vals)) * (x_vals[1]-x_vals[0])
y_coords = np.cumsum(np.sin(theta_vals)) * (x_vals[1]-x_vals[0])
# Create a plot using plotly
fig = go.Figure()
# Add line to the figure for the curve
fig.add_trace(go.Scatter(x=x_coords, y=y_coords, mode='lines', name='Curve'))
# Update layout
fig.update_layout(
autosize=True,
xaxis=dict(scaleanchor='y', scaleratio=1) # this line sets the aspect ratio
)
fig.show()