From 188dae87ee0a5bb8c0bdfb7cad39cb63d0576088 Mon Sep 17 00:00:00 2001 From: O Date: Fri, 23 Aug 2024 02:54:58 +0000 Subject: [PATCH] =?UTF-8?q?=E2=A0=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../{ᗺИ...𖣠⚪ИNⓄᔓᔕⵙᴥᗩߦᙏⓄᑐᑕ🜋ИNⓄⵙ✤ᗩᙏⵙꕤⓄᴥߦᗩ⁜ИNⓄⵙ✤ᑐᑕИNᑎꗳ𖡗ᔓᔕᑎⵙ⚭ᗩꗳ⚪𔗢⚪🞋⚪𔗢⚪ꗳᗩ⚭ⵙᑎᔓᔕ𖡗ꗳᑎИNᑐᑕ✤ⵙⓄИN⁜ᗩߦᴥⓄꕤⵙᙏᗩ✤ⵙⓄИN🜋ᑐᑕⓄᙏߦᗩᴥⵙᔓᔕⓄИN⚪𖣠...NB => ᗺИ...𖣠⚪ИNⓄᔓᔕⵙᴥᗩߦᙏⓄᑐᑕ🜋ИNⓄⵙ✣ᗩᙏⵙꕤⓄᴥߦᗩ⁜ИNⓄⵙ✣ᑐᑕИNᑎꗳ𖡹ᔓᔕᑎⵙ⚭ᗩꗳ𖡗⚪𔗢⚪🞋⚪𔗢⚪𖡗ꗳᗩ⚭ⵙᑎᔓᔕ𖡹ꗳᑎИNᑐᑕ✣ⵙⓄИN⁜ᗩߦᴥⓄꕤⵙᙏᗩ✣ⵙⓄИN🜋ᑐᑕⓄᙏߦᗩᴥⵙᔓᔕⓄИN⚪𖣠...NB} | 5406 ++++++++--------- 1 file changed, 2703 insertions(+), 2703 deletions(-) rename 𖣠⚪∣❁∣✤✻ᕭᕮᗩߦറ⚪𔗢⚪🞋⚪𔗢⚪റߦᗩᕭᕮ✻✤∣❁∣⚪𖣠/𖣠⚪ИNⓄꖴ✤ᑐᑕИNᑎꗳ𖡗ᔓᔕᑎꖴ⚭ᗩꗳ⚪𔗢⚪🞋⚪𔗢⚪ꗳᗩ⚭ꖴᑎᔓᔕ𖡗ꗳᑎИNᑐᑕ✤ꖴⓄИN⚪𖣠/𖣠⚪ИNⓄⵙ✤ᗩᙏⵙꕤⓄᴥߦᗩ⁜⚪𔗢⚪🞋⚪𔗢⚪⁜ᗩߦᴥⓄꕤⵙᙏᗩ✤ⵙⓄИN⚪𖣠/{ᗺИ...𖣠⚪ИNⓄᔓᔕⵙᴥᗩߦᙏⓄᑐᑕ🜋ИNⓄⵙ✤ᗩᙏⵙꕤⓄᴥߦᗩ⁜ИNⓄⵙ✤ᑐᑕИNᑎꗳ𖡗ᔓᔕᑎⵙ⚭ᗩꗳ⚪𔗢⚪🞋⚪𔗢⚪ꗳᗩ⚭ⵙᑎᔓᔕ𖡗ꗳᑎИNᑐᑕ✤ⵙⓄИN⁜ᗩߦᴥⓄꕤⵙᙏᗩ✤ⵙⓄИN🜋ᑐᑕⓄᙏߦᗩᴥⵙᔓᔕⓄИN⚪𖣠...NB => ᗺИ...𖣠⚪ИNⓄᔓᔕⵙᴥᗩߦᙏⓄᑐᑕ🜋ИNⓄⵙ✣ᗩᙏⵙꕤⓄᴥߦᗩ⁜ИNⓄⵙ✣ᑐᑕИNᑎꗳ𖡹ᔓᔕᑎⵙ⚭ᗩꗳ𖡗⚪𔗢⚪🞋⚪𔗢⚪𖡗ꗳᗩ⚭ⵙᑎᔓᔕ𖡹ꗳᑎИNᑐᑕ✣ⵙⓄИN⁜ᗩߦᴥⓄꕤⵙᙏᗩ✣ⵙⓄИN🜋ᑐᑕⓄᙏߦᗩᴥⵙᔓᔕⓄИN⚪𖣠...NB} (97%) diff --git a/𖣠⚪∣❁∣✤✻ᕭᕮᗩߦറ⚪𔗢⚪🞋⚪𔗢⚪റߦᗩᕭᕮ✻✤∣❁∣⚪𖣠/𖣠⚪ИNⓄꖴ✤ᑐᑕИNᑎꗳ𖡗ᔓᔕᑎꖴ⚭ᗩꗳ⚪𔗢⚪🞋⚪𔗢⚪ꗳᗩ⚭ꖴᑎᔓᔕ𖡗ꗳᑎИNᑐᑕ✤ꖴⓄИN⚪𖣠/𖣠⚪ИNⓄⵙ✤ᗩᙏⵙꕤⓄᴥߦᗩ⁜⚪𔗢⚪🞋⚪𔗢⚪⁜ᗩߦᴥⓄꕤⵙᙏᗩ✤ⵙⓄИN⚪𖣠/ᗺИ...𖣠⚪ИNⓄᔓᔕⵙᴥᗩߦᙏⓄᑐᑕ🜋ИNⓄⵙ✤ᗩᙏⵙꕤⓄᴥߦᗩ⁜ИNⓄⵙ✤ᑐᑕИNᑎꗳ𖡗ᔓᔕᑎⵙ⚭ᗩꗳ⚪𔗢⚪🞋⚪𔗢⚪ꗳᗩ⚭ⵙᑎᔓᔕ𖡗ꗳᑎИNᑐᑕ✤ⵙⓄИN⁜ᗩߦᴥⓄꕤⵙᙏᗩ✤ⵙⓄИN🜋ᑐᑕⓄᙏߦᗩᴥⵙᔓᔕⓄИN⚪𖣠...NB b/𖣠⚪∣❁∣✤✻ᕭᕮᗩߦറ⚪𔗢⚪🞋⚪𔗢⚪റߦᗩᕭᕮ✻✤∣❁∣⚪𖣠/𖣠⚪ИNⓄꖴ✤ᑐᑕИNᑎꗳ𖡗ᔓᔕᑎꖴ⚭ᗩꗳ⚪𔗢⚪🞋⚪𔗢⚪ꗳᗩ⚭ꖴᑎᔓᔕ𖡗ꗳᑎИNᑐᑕ✤ꖴⓄИN⚪𖣠/𖣠⚪ИNⓄⵙ✤ᗩᙏⵙꕤⓄᴥߦᗩ⁜⚪𔗢⚪🞋⚪𔗢⚪⁜ᗩߦᴥⓄꕤⵙᙏᗩ✤ⵙⓄИN⚪𖣠/ᗺИ...𖣠⚪ИNⓄᔓᔕⵙᴥᗩߦᙏⓄᑐᑕ🜋ИNⓄⵙ✣ᗩᙏⵙꕤⓄᴥߦᗩ⁜ИNⓄⵙ✣ᑐᑕИNᑎꗳ𖡹ᔓᔕᑎⵙ⚭ᗩꗳ𖡗⚪𔗢⚪🞋⚪𔗢⚪𖡗ꗳᗩ⚭ⵙᑎᔓᔕ𖡹ꗳᑎИNᑐᑕ✣ⵙⓄИN⁜ᗩߦᴥⓄꕤⵙᙏᗩ✣ⵙⓄИN🜋ᑐᑕⓄᙏߦᗩᴥⵙᔓᔕⓄИN⚪𖣠...NB similarity index 97% rename from 𖣠⚪∣❁∣✤✻ᕭᕮᗩߦറ⚪𔗢⚪🞋⚪𔗢⚪റߦᗩᕭᕮ✻✤∣❁∣⚪𖣠/𖣠⚪ИNⓄꖴ✤ᑐᑕИNᑎꗳ𖡗ᔓᔕᑎꖴ⚭ᗩꗳ⚪𔗢⚪🞋⚪𔗢⚪ꗳᗩ⚭ꖴᑎᔓᔕ𖡗ꗳᑎИNᑐᑕ✤ꖴⓄИN⚪𖣠/𖣠⚪ИNⓄⵙ✤ᗩᙏⵙꕤⓄᴥߦᗩ⁜⚪𔗢⚪🞋⚪𔗢⚪⁜ᗩߦᴥⓄꕤⵙᙏᗩ✤ⵙⓄИN⚪𖣠/ᗺИ...𖣠⚪ИNⓄᔓᔕⵙᴥᗩߦᙏⓄᑐᑕ🜋ИNⓄⵙ✤ᗩᙏⵙꕤⓄᴥߦᗩ⁜ИNⓄⵙ✤ᑐᑕИNᑎꗳ𖡗ᔓᔕᑎⵙ⚭ᗩꗳ⚪𔗢⚪🞋⚪𔗢⚪ꗳᗩ⚭ⵙᑎᔓᔕ𖡗ꗳᑎИNᑐᑕ✤ⵙⓄИN⁜ᗩߦᴥⓄꕤⵙᙏᗩ✤ⵙⓄИN🜋ᑐᑕⓄᙏߦᗩᴥⵙᔓᔕⓄИN⚪𖣠...NB rename to 𖣠⚪∣❁∣✤✻ᕭᕮᗩߦറ⚪𔗢⚪🞋⚪𔗢⚪റߦᗩᕭᕮ✻✤∣❁∣⚪𖣠/𖣠⚪ИNⓄꖴ✤ᑐᑕИNᑎꗳ𖡗ᔓᔕᑎꖴ⚭ᗩꗳ⚪𔗢⚪🞋⚪𔗢⚪ꗳᗩ⚭ꖴᑎᔓᔕ𖡗ꗳᑎИNᑐᑕ✤ꖴⓄИN⚪𖣠/𖣠⚪ИNⓄⵙ✤ᗩᙏⵙꕤⓄᴥߦᗩ⁜⚪𔗢⚪🞋⚪𔗢⚪⁜ᗩߦᴥⓄꕤⵙᙏᗩ✤ⵙⓄИN⚪𖣠/ᗺИ...𖣠⚪ИNⓄᔓᔕⵙᴥᗩߦᙏⓄᑐᑕ🜋ИNⓄⵙ✣ᗩᙏⵙꕤⓄᴥߦᗩ⁜ИNⓄⵙ✣ᑐᑕИNᑎꗳ𖡹ᔓᔕᑎⵙ⚭ᗩꗳ𖡗⚪𔗢⚪🞋⚪𔗢⚪𖡗ꗳᗩ⚭ⵙᑎᔓᔕ𖡹ꗳᑎИNᑐᑕ✣ⵙⓄИN⁜ᗩߦᴥⓄꕤⵙᙏᗩ✣ⵙⓄИN🜋ᑐᑕⓄᙏߦᗩᴥⵙᔓᔕⓄИN⚪𖣠...NB index 362ee265..3c381788 100644 --- a/𖣠⚪∣❁∣✤✻ᕭᕮᗩߦറ⚪𔗢⚪🞋⚪𔗢⚪റߦᗩᕭᕮ✻✤∣❁∣⚪𖣠/𖣠⚪ИNⓄꖴ✤ᑐᑕИNᑎꗳ𖡗ᔓᔕᑎꖴ⚭ᗩꗳ⚪𔗢⚪🞋⚪𔗢⚪ꗳᗩ⚭ꖴᑎᔓᔕ𖡗ꗳᑎИNᑐᑕ✤ꖴⓄИN⚪𖣠/𖣠⚪ИNⓄⵙ✤ᗩᙏⵙꕤⓄᴥߦᗩ⁜⚪𔗢⚪🞋⚪𔗢⚪⁜ᗩߦᴥⓄꕤⵙᙏᗩ✤ⵙⓄИN⚪𖣠/ᗺИ...𖣠⚪ИNⓄᔓᔕⵙᴥᗩߦᙏⓄᑐᑕ🜋ИNⓄⵙ✤ᗩᙏⵙꕤⓄᴥߦᗩ⁜ИNⓄⵙ✤ᑐᑕИNᑎꗳ𖡗ᔓᔕᑎⵙ⚭ᗩꗳ⚪𔗢⚪🞋⚪𔗢⚪ꗳᗩ⚭ⵙᑎᔓᔕ𖡗ꗳᑎИNᑐᑕ✤ⵙⓄИN⁜ᗩߦᴥⓄꕤⵙᙏᗩ✤ⵙⓄИN🜋ᑐᑕⓄᙏߦᗩᴥⵙᔓᔕⓄИN⚪𖣠...NB +++ b/𖣠⚪∣❁∣✤✻ᕭᕮᗩߦറ⚪𔗢⚪🞋⚪𔗢⚪റߦᗩᕭᕮ✻✤∣❁∣⚪𖣠/𖣠⚪ИNⓄꖴ✤ᑐᑕИNᑎꗳ𖡗ᔓᔕᑎꖴ⚭ᗩꗳ⚪𔗢⚪🞋⚪𔗢⚪ꗳᗩ⚭ꖴᑎᔓᔕ𖡗ꗳᑎИNᑐᑕ✤ꖴⓄИN⚪𖣠/𖣠⚪ИNⓄⵙ✤ᗩᙏⵙꕤⓄᴥߦᗩ⁜⚪𔗢⚪🞋⚪𔗢⚪⁜ᗩߦᴥⓄꕤⵙᙏᗩ✤ⵙⓄИN⚪𖣠/ᗺИ...𖣠⚪ИNⓄᔓᔕⵙᴥᗩߦᙏⓄᑐᑕ🜋ИNⓄⵙ✣ᗩᙏⵙꕤⓄᴥߦᗩ⁜ИNⓄⵙ✣ᑐᑕИNᑎꗳ𖡹ᔓᔕᑎⵙ⚭ᗩꗳ𖡗⚪𔗢⚪🞋⚪𔗢⚪𖡗ꗳᗩ⚭ⵙᑎᔓᔕ𖡹ꗳᑎИNᑐᑕ✣ⵙⓄИN⁜ᗩߦᴥⓄꕤⵙᙏᗩ✣ⵙⓄИN🜋ᑐᑕⓄᙏߦᗩᴥⵙᔓᔕⓄИN⚪𖣠...NB @@ -1,2703 +1,2703 @@ -(* Content-type: application/vnd.wolfram.mathematica *) - -(*** Wolfram Notebook File ***) -(* http://www.wolfram.com/nb *) - -(* CreatedBy='Mathematica 12.2' *) - -(*CacheID: 234*) -(* Internal cache information: -NotebookFileLineBreakTest -NotebookFileLineBreakTest -NotebookDataPosition[ 158, 7] -NotebookDataLength[ 126843, 2695] -NotebookOptionsPosition[ 125442, 2662] -NotebookOutlinePosition[ 126319, 2688] -CellTagsIndexPosition[ 126276, 2685] -WindowFrame->Normal*) - -(* Beginning of Notebook Content *) -Notebook[{ -Cell[BoxData[{ - RowBox[{ - RowBox[{ - RowBox[{"ariasD", "[", "0", "]"}], " ", "=", " ", "1"}], ";"}], "\n", - RowBox[{ - RowBox[{ - RowBox[{"ariasD", "[", - RowBox[{"n_Integer", "?", "Positive"}], "]"}], " ", ":=", " ", - RowBox[{ - RowBox[{"ariasD", "[", "n", "]"}], " ", "=", " ", - RowBox[{ - RowBox[{"Sum", "[", - RowBox[{ - RowBox[{ - RowBox[{"2", "^", - RowBox[{"(", - RowBox[{ - RowBox[{"(", - RowBox[{ - RowBox[{"k", " ", - RowBox[{"(", - RowBox[{"k", " ", "-", " ", "1"}], ")"}]}], " ", "-", " ", - RowBox[{"n", " ", - RowBox[{"(", - RowBox[{"n", " ", "-", " ", "1"}], ")"}]}]}], ")"}], "/", - "2"}], ")"}]}], " ", - RowBox[{ - RowBox[{"ariasD", "[", "k", "]"}], "/", - RowBox[{ - RowBox[{"(", - RowBox[{"n", " ", "-", " ", "k", " ", "+", " ", "1"}], ")"}], - "!"}]}]}], ",", " ", - RowBox[{"{", - RowBox[{"k", ",", " ", "0", ",", " ", - RowBox[{"n", " ", "-", " ", "1"}]}], "}"}]}], "]"}], "/", - RowBox[{"(", - RowBox[{ - RowBox[{"2", "^", "n"}], " ", "-", " ", "1"}], ")"}]}]}]}], - ";"}], "\n", - RowBox[{ - RowBox[{"iFabiusF", "[", "x_", "]"}], " ", ":=", " ", - RowBox[{"Module", "[", - RowBox[{ - RowBox[{"{", - RowBox[{ - RowBox[{"prec", " ", "=", " ", - RowBox[{"Precision", "[", "x", "]"}]}], ",", " ", "n", ",", " ", "p", - ",", " ", "q", ",", " ", "s", ",", " ", "tol", ",", " ", "w", ",", " ", - "y", ",", " ", "z"}], "}"}], ",", "\n", " ", - RowBox[{ - RowBox[{"If", "[", - RowBox[{ - RowBox[{"x", " ", "<", " ", "0"}], ",", " ", - RowBox[{"Return", "[", - RowBox[{"0", ",", " ", "Module"}], "]"}]}], "]"}], ";", " ", - RowBox[{"tol", " ", "=", " ", - RowBox[{"10", "^", - RowBox[{"(", - RowBox[{"-", "prec"}], ")"}]}]}], ";", "\n", " ", - RowBox[{"z", " ", "=", " ", - RowBox[{"SetPrecision", "[", - RowBox[{"x", ",", " ", "Infinity"}], "]"}]}], ";", " ", - RowBox[{"s", " ", "=", " ", "1"}], ";", " ", - RowBox[{"y", " ", "=", " ", "0"}], ";", "\n", " ", - RowBox[{"z", " ", "=", " ", - RowBox[{"If", "[", - RowBox[{ - RowBox[{"0", " ", "<=", " ", "z", " ", "<=", " ", "2"}], ",", " ", - RowBox[{"1", " ", "-", " ", - RowBox[{"Abs", "[", - RowBox[{"1", " ", "-", " ", "z"}], "]"}]}], ",", "\n", " ", - RowBox[{ - RowBox[{"q", " ", "=", " ", - RowBox[{"Quotient", "[", - RowBox[{"z", ",", " ", "2"}], "]"}]}], ";", "\n", " ", - RowBox[{"If", "[", - RowBox[{ - RowBox[{ - RowBox[{"ThueMorse", "[", "q", "]"}], " ", "==", " ", "1"}], ",", - " ", - RowBox[{"s", " ", "=", " ", - RowBox[{"-", "1"}]}]}], "]"}], ";", "\n", " ", - RowBox[{"1", " ", "-", " ", - RowBox[{"Abs", "[", - RowBox[{"1", " ", "-", " ", "z", " ", "+", " ", - RowBox[{"2", " ", "q"}]}], "]"}]}]}]}], "]"}]}], ";", "\n", " ", - RowBox[{"While", "[", - RowBox[{ - RowBox[{"z", " ", ">", " ", "0"}], ",", "\n", " ", - RowBox[{ - RowBox[{"n", " ", "=", " ", - RowBox[{"-", - RowBox[{"Floor", "[", - RowBox[{"RealExponent", "[", - RowBox[{"z", ",", " ", "2"}], "]"}], "]"}]}]}], ";", " ", - RowBox[{"p", " ", "=", " ", - RowBox[{"2", "^", "n"}]}], ";", "\n", " ", - RowBox[{"z", " ", "-=", " ", - RowBox[{"1", "/", "p"}]}], ";", " ", - RowBox[{"w", " ", "=", " ", "1"}], ";", "\n", " ", - RowBox[{"Do", "[", - RowBox[{ - RowBox[{ - RowBox[{"w", " ", "=", " ", - RowBox[{ - RowBox[{"ariasD", "[", "m", "]"}], " ", "+", " ", - RowBox[{"p", " ", "z", " ", - RowBox[{"w", "/", - RowBox[{"(", - RowBox[{"n", " ", "-", " ", "m", " ", "+", " ", "1"}], - ")"}]}]}]}]}], ";", " ", - RowBox[{"p", " ", "/=", " ", "2"}]}], ",", " ", - RowBox[{"{", - RowBox[{"m", ",", " ", "n"}], "}"}]}], "]"}], ";", "\n", " ", - RowBox[{"y", " ", "=", " ", - RowBox[{"w", " ", "-", " ", "y"}]}], ";", "\n", " ", - RowBox[{"If", "[", - RowBox[{ - RowBox[{ - RowBox[{"Abs", "[", "w", "]"}], " ", "<", " ", - RowBox[{ - RowBox[{"Abs", "[", "y", "]"}], " ", "tol"}]}], ",", " ", - RowBox[{"Break", "[", "]"}]}], "]"}]}]}], "]"}], ";", "\n", " ", - RowBox[{"SetPrecision", "[", - RowBox[{ - RowBox[{"s", " ", - RowBox[{"Abs", "[", "y", "]"}]}], ",", " ", "prec"}], "]"}]}]}], - "]"}]}], "\n", - RowBox[{ - RowBox[{ - RowBox[{"FabiusF", "[", "Infinity", "]"}], " ", "=", " ", - RowBox[{"Interval", "[", - RowBox[{"{", - RowBox[{ - RowBox[{"-", "1"}], ",", " ", "1"}], "}"}], "]"}]}], ";"}], "\n", - RowBox[{ - RowBox[{ - RowBox[{"FabiusF", "[", - RowBox[{"x_", "?", "NumberQ"}], "]"}], " ", "/;", " ", - RowBox[{"If", "[", - RowBox[{ - RowBox[{ - RowBox[{"Im", "[", "x", "]"}], " ", "==", " ", "0"}], ",", " ", - RowBox[{"TrueQ", "[", - RowBox[{ - RowBox[{ - RowBox[{"Composition", "[", - RowBox[{ - RowBox[{ - RowBox[{"BitAnd", "[", - RowBox[{"#", ",", " ", - RowBox[{"#", " ", "-", " ", "1"}]}], "]"}], " ", "&"}], ",", " ", - "Denominator"}], "]"}], "[", "x", "]"}], " ", "==", " ", "0"}], - "]"}], ",", " ", "False"}], "]"}]}], " ", ":=", " ", - RowBox[{"iFabiusF", "[", "x", "]"}]}], "\n", - RowBox[{ - RowBox[{ - RowBox[{"Derivative", "[", "n_Integer", "]"}], "[", "FabiusF", "]"}], " ", - ":=", " ", - RowBox[{ - RowBox[{ - RowBox[{"2", "^", - RowBox[{"(", - RowBox[{"n", " ", - RowBox[{ - RowBox[{"(", - RowBox[{"n", " ", "+", " ", "1"}], ")"}], "/", "2"}]}], ")"}]}], " ", - RowBox[{"FabiusF", "[", - RowBox[{ - RowBox[{"2", "^", "n"}], " ", "#"}], "]"}]}], " ", "&"}]}], "\n", - RowBox[{ - RowBox[{"SetAttributes", "[", - RowBox[{"FabiusF", ",", " ", - RowBox[{"{", - RowBox[{"NumericFunction", ",", " ", "Listable"}], "}"}]}], "]"}], - ";"}]}], "Input", - FontFamily->"Segoe UI Symbol", - FontSize->12, - FontWeight->"Normal", - CellLabel-> - "8/1/24 03:23:15 \ -In[329]:=",ExpressionUUID->"a4addeb7-2708-41df-8367-f56fd1c4c60d"], - -Cell[CellGroupData[{ - -Cell[BoxData[{ - RowBox[{ - RowBox[{"T", "=", "8"}], ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A0", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"(", - RowBox[{ - RowBox[{"Max", "[", - RowBox[{"x", ",", "0"}], "]"}], "^", "T"}], ")"}], "/", - RowBox[{"T", "!"}]}]}], ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A1", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A0", "[", "x", "]"}], "-", - RowBox[{"A0", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "1"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A2", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "2"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A1", "[", "x", "]"}], "-", - RowBox[{"A1", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "2"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A3", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "3"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A2", "[", "x", "]"}], "-", - RowBox[{"A2", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "3"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A4", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "4"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A3", "[", "x", "]"}], "-", - RowBox[{"A3", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "4"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A5", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "5"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A4", "[", "x", "]"}], "-", - RowBox[{"A4", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "5"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A6", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "6"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A5", "[", "x", "]"}], "-", - RowBox[{"A5", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "6"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A7", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "7"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A6", "[", "x", "]"}], "-", - RowBox[{"A6", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "7"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A8", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "8"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A7", "[", "x", "]"}], "-", - RowBox[{"A7", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "8"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A9", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "9"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A8", "[", "x", "]"}], "-", - RowBox[{"A8", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "9"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A10", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "10"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A9", "[", "x", "]"}], "-", - RowBox[{"A9", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "10"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A11", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "11"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A10", "[", "x", "]"}], "-", - RowBox[{"A10", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "11"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A12", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "12"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A11", "[", "x", "]"}], "-", - RowBox[{"A11", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "12"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A13", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "13"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A12", "[", "x", "]"}], "-", - RowBox[{"A12", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "13"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A14", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "14"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A13", "[", "x", "]"}], "-", - RowBox[{"A13", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "14"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A15", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "15"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A14", "[", "x", "]"}], "-", - RowBox[{"A14", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "15"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A16", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "16"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A15", "[", "x", "]"}], "-", - RowBox[{"A15", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "16"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A17", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "17"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A16", "[", "x", "]"}], "-", - RowBox[{"A16", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "17"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A18", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "18"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A17", "[", "x", "]"}], "-", - RowBox[{"A17", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "18"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A19", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "19"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A18", "[", "x", "]"}], "-", - RowBox[{"A18", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "19"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A20", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "20"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A19", "[", "x", "]"}], "-", - RowBox[{"A19", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "20"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A21", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "21"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A20", "[", "x", "]"}], "-", - RowBox[{"A20", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "21"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A22", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "22"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A21", "[", "x", "]"}], "-", - RowBox[{"A21", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "22"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A23", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "23"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A22", "[", "x", "]"}], "-", - RowBox[{"A22", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "23"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A24", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "24"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A23", "[", "x", "]"}], "-", - RowBox[{"A23", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "24"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A25", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "25"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A24", "[", "x", "]"}], "-", - RowBox[{"A24", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "25"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A26", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "26"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A25", "[", "x", "]"}], "-", - RowBox[{"A25", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "26"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A27", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "27"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A26", "[", "x", "]"}], "-", - RowBox[{"A26", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "27"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A28", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "28"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A27", "[", "x", "]"}], "-", - RowBox[{"A27", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "28"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A29", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "29"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A28", "[", "x", "]"}], "-", - RowBox[{"A28", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "29"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A30", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "30"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A29", "[", "x", "]"}], "-", - RowBox[{"A29", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "30"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A31", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "31"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A30", "[", "x", "]"}], "-", - RowBox[{"A30", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "31"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"A32", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"2", "^", "32"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"A31", "[", "x", "]"}], "-", - RowBox[{"A31", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", "32"}]}]}], ")"}], "]"}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"R", "[", "x_", "]"}], ":=", - RowBox[{"A8", "[", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "/", - RowBox[{"2", "^", - RowBox[{"(", - RowBox[{"T", "+", "1"}], ")"}]}]}]}], ")"}], "]"}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{"\:01a7S", "=", "1"}], ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"RC", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], "^", - RowBox[{"Floor", "[", - RowBox[{"x", "*", "\:01a7S"}], "]"}]}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"R", "[", - RowBox[{"Mod", "[", - RowBox[{ - RowBox[{"x", "*", "\:01a7S"}], ",", "1"}], "]"}], "]"}], "-", - "0.5"}], ")"}]}], "+", "0.5"}]}], ";"}], "\[IndentingNewLine]", - RowBox[{"(*", - RowBox[{"ToUpperCase", "[", - RowBox[{"StringReplace", "[", - RowBox[{ - RowBox[{"StringReplace", "[", - RowBox[{ - RowBox[{"StringReplace", "[", - RowBox[{ - RowBox[{"ToString", "[", - RowBox[{ - RowBox[{"R", "[", "x", "]"}], ",", "InputForm"}], "]"}], ",", - RowBox[{"\"\<[\>\"", "\[Rule]", "\"\<(\>\""}]}], "]"}], ",", - RowBox[{"\"\<]\>\"", "\[Rule]", "\"\<)\>\""}]}], "]"}], ",", - RowBox[{"\"\< \>\"", "\[Rule]", " ", "\"\<\>\""}]}], "]"}], "]"}], - "*)"}], "\[IndentingNewLine]", - RowBox[{"(*", - RowBox[{"ToUpperCase", "[", - RowBox[{"StringReplace", "[", - RowBox[{ - RowBox[{"StringReplace", "[", - RowBox[{ - RowBox[{"StringReplace", "[", - RowBox[{ - RowBox[{"ToString", "[", - RowBox[{ - RowBox[{"Simplify", "[", - RowBox[{"R", "[", "x", "]"}], "]"}], ",", "InputForm"}], "]"}], - ",", - RowBox[{"\"\<[\>\"", "\[Rule]", "\"\<(\>\""}]}], "]"}], ",", - RowBox[{"\"\<]\>\"", "\[Rule]", "\"\<)\>\""}]}], "]"}], ",", - RowBox[{"\"\< \>\"", "\[Rule]", " ", "\"\<\>\""}]}], "]"}], "]"}], - "*)"}]}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"OO", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"(", - RowBox[{"1", "/", "32"}], ")"}], "*", - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"1", "-", - RowBox[{"8", "*", - RowBox[{"(", - RowBox[{"x", "-", "1"}], ")"}]}]}], ")"}], "*", - RowBox[{"Abs", "[", - RowBox[{"1", "-", - RowBox[{"8", "*", - RowBox[{"(", - RowBox[{"x", "-", "1"}], ")"}]}]}], "]"}]}], "+", - RowBox[{ - RowBox[{"(", - RowBox[{ - RowBox[{"8", "*", - RowBox[{"(", - RowBox[{"x", "-", "1"}], ")"}]}], "+", "7"}], ")"}], "*", - RowBox[{"Abs", "[", - RowBox[{ - RowBox[{"8", "*", - RowBox[{"(", - RowBox[{"x", "-", "1"}], ")"}]}], "+", "7"}], "]"}]}], "-", - RowBox[{ - RowBox[{"(", - RowBox[{ - RowBox[{"8", "*", - RowBox[{"(", - RowBox[{"x", "-", "1"}], ")"}]}], "+", "5"}], ")"}], "*", - RowBox[{"Abs", "[", - RowBox[{ - RowBox[{"8", "*", - RowBox[{"(", - RowBox[{"x", "-", "1"}], ")"}]}], "+", "5"}], "]"}]}], "-", - RowBox[{ - RowBox[{"(", - RowBox[{ - RowBox[{"8", "*", - RowBox[{"(", - RowBox[{"x", "-", "1"}], ")"}]}], "+", "3"}], ")"}], "*", - RowBox[{"Abs", "[", - RowBox[{ - RowBox[{"8", "*", - RowBox[{"(", - RowBox[{"x", "-", "1"}], ")"}]}], "+", "3"}], "]"}]}], "+", - RowBox[{ - RowBox[{"(", - RowBox[{ - RowBox[{"8", "*", - RowBox[{"(", - RowBox[{"x", "-", "1"}], ")"}]}], "+", "1"}], ")"}], "*", - RowBox[{"Abs", "[", - RowBox[{ - RowBox[{"8", "*", - RowBox[{"(", - RowBox[{"x", "-", "1"}], ")"}]}], "+", "1"}], "]"}]}], "-", - RowBox[{ - RowBox[{"(", - RowBox[{"3", "-", - RowBox[{"8", "*", - RowBox[{"(", - RowBox[{"x", "-", "1"}], ")"}]}]}], ")"}], "*", - RowBox[{"Abs", "[", - RowBox[{"3", "-", - RowBox[{"8", "*", - RowBox[{"(", - RowBox[{"x", "-", "1"}], ")"}]}]}], "]"}]}], "-", - RowBox[{ - RowBox[{"(", - RowBox[{"5", "-", - RowBox[{"8", "*", - RowBox[{"(", - RowBox[{"x", "-", "1"}], ")"}]}]}], ")"}], "*", - RowBox[{"Abs", "[", - RowBox[{"5", "-", - RowBox[{"8", "*", - RowBox[{"(", - RowBox[{"x", "-", "1"}], ")"}]}]}], "]"}]}], "+", - RowBox[{ - RowBox[{"(", - RowBox[{"7", "-", - RowBox[{"8", "*", - RowBox[{"(", - RowBox[{"x", "-", "1"}], ")"}]}]}], ")"}], "*", - RowBox[{"Abs", "[", - RowBox[{"7", "-", - RowBox[{"8", "*", - RowBox[{"(", - RowBox[{"x", "-", "1"}], ")"}]}]}], "]"}]}]}], ")"}]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"OOOO", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"-", - RowBox[{"(", - RowBox[{ - RowBox[{"(", - RowBox[{"0", "-", - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], "^", - RowBox[{"Floor", "[", - RowBox[{ - RowBox[{"x", "/", "1"}], "+", "0."}], "]"}]}], "*", - RowBox[{"(", - RowBox[{ - RowBox[{"Exp", "[", - RowBox[{"-", - RowBox[{"(", - RowBox[{"1", "/", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "*", - RowBox[{"Floor", "[", - RowBox[{"x", "/", "1"}], "]"}]}]}], ")"}]}], ")"}]}], - "]"}], "/", - RowBox[{"(", - RowBox[{ - RowBox[{"Exp", "[", - RowBox[{"-", - RowBox[{"(", - RowBox[{"1", "/", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "*", - RowBox[{"Floor", "[", - RowBox[{"x", "/", "1"}], "]"}]}]}], ")"}]}], ")"}]}], - "]"}], "+", - RowBox[{"Exp", "[", - RowBox[{"-", - RowBox[{"(", - RowBox[{"1", "/", - RowBox[{"(", - RowBox[{"1", "-", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "*", - RowBox[{"Floor", "[", - RowBox[{"x", "/", "1"}], "]"}]}]}], ")"}]}], ")"}]}], - ")"}]}], "]"}]}], ")"}]}], ")"}]}], "+", - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], "^", - RowBox[{"Floor", "[", - RowBox[{ - RowBox[{"x", "/", "1"}], "+", "0."}], "]"}]}], "*", - RowBox[{"(", - RowBox[{ - RowBox[{"Exp", "[", - RowBox[{"-", - RowBox[{"(", - RowBox[{"1", "/", - RowBox[{"(", - RowBox[{"1", "-", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "*", - RowBox[{"Floor", "[", - RowBox[{"x", "/", "1"}], "]"}]}]}], ")"}]}], ")"}]}], - ")"}]}], "]"}], "/", - RowBox[{"(", - RowBox[{ - RowBox[{"Exp", "[", - RowBox[{"-", - RowBox[{"(", - RowBox[{"1", "/", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "*", - RowBox[{"Floor", "[", - RowBox[{"x", "/", "1"}], "]"}]}]}], ")"}]}], ")"}]}], - "]"}], "+", - RowBox[{"Exp", "[", - RowBox[{"-", - RowBox[{"(", - RowBox[{"1", "/", - RowBox[{"(", - RowBox[{"1", "-", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"1", "*", - RowBox[{"Floor", "[", - RowBox[{"x", "/", "1"}], "]"}]}]}], ")"}]}], ")"}]}], - ")"}]}], "]"}]}], ")"}]}], ")"}]}]}], ")"}], "/", "2"}], - ")"}]}], "+", "0.5"}]}], ";"}], - "\[IndentingNewLine]"}], "\[IndentingNewLine]", - RowBox[{"Column", "[", - RowBox[{ - RowBox[{"{", "\[IndentingNewLine]", - RowBox[{ - RowBox[{"TableForm", "[", - RowBox[{"{", "\[IndentingNewLine]", - RowBox[{ - RowBox[{"{", - RowBox[{"\"\\"", " ", ",", - RowBox[{"{", - RowBox[{ - RowBox[{"OO", "[", - RowBox[{"3", "/", "4"}], "]"}], ",", - RowBox[{"N", "[", - RowBox[{"OO", "[", - RowBox[{"3", "/", "4"}], "]"}], "]"}]}], "}"}]}], "}"}], ",", - "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{"\"\\"", " ", ",", - RowBox[{"{", - RowBox[{ - RowBox[{"OOOO", "[", - RowBox[{"3", "/", "4"}], "]"}], ",", - RowBox[{"N", "[", - RowBox[{"OOOO", "[", - RowBox[{"3", "/", "4"}], "]"}], "]"}]}], "}"}]}], "}"}], ",", - "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{"\"\\"", " ", ",", - RowBox[{"{", - RowBox[{ - RowBox[{"R", "[", - RowBox[{"3", "/", "4"}], "]"}], ",", - RowBox[{"N", "[", - RowBox[{"R", "[", - RowBox[{"3", "/", "4"}], "]"}], "]"}]}], "}"}]}], "}"}], ",", - "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{"\"\\"", " ", ",", - RowBox[{"{", - RowBox[{ - RowBox[{"FabiusF", "[", - RowBox[{"3", "/", "4"}], "]"}], ",", - RowBox[{"N", "[", - RowBox[{"FabiusF", "[", - RowBox[{"3", "/", "4"}], "]"}], "]"}]}], "}"}]}], "}"}]}], - "\[IndentingNewLine]", "}"}], "]"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"{", - RowBox[{ - RowBox[{"OO", "[", "x", "]"}], ",", - RowBox[{"OOOO", "[", "x", "]"}], ",", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], "^", - RowBox[{"Floor", "[", - RowBox[{"x", "*", "\:01a7S"}], "]"}]}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"R", "[", - RowBox[{"Mod", "[", - RowBox[{ - RowBox[{"x", "*", "\:01a7S"}], ",", "1"}], "]"}], "]"}], "-", - "0.5"}], ")"}]}], "+", "0.5"}], ",", - RowBox[{"Abs", "[", - RowBox[{"FabiusF", "[", "x", "]"}], "]"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"x", ",", ".75", ",", ".875"}], "}"}], ",", - RowBox[{"AspectRatio", "\[Rule]", - RowBox[{"1", "/", "2"}]}], ",", - RowBox[{"ImageSize", "\[Rule]", "Full"}], ",", - RowBox[{"Axes", "\[Rule]", "False"}], ",", - RowBox[{"MaxRecursion", "\[Rule]", "0"}], ",", - RowBox[{"PlotPoints", "\[Rule]", - RowBox[{"1", "+", - SuperscriptBox["2", "8"]}]}], ",", - RowBox[{"PlotStyle", "\[Rule]", - RowBox[{"{", - RowBox[{"Dashed", ",", "Normal"}], "}"}]}], ",", - RowBox[{"PlotLegends", "\[Rule]", " ", - RowBox[{"Placed", "[", - RowBox[{"\"\\"", ",", - RowBox[{"{", - RowBox[{"Center", ",", "Top"}], "}"}]}], "]"}]}], ",", - RowBox[{"PlotRangePadding", "\[Rule]", "0"}]}], "]"}], "}"}]}], "}"}], - ",", "Center"}], "]"}], "\[IndentingNewLine]", - RowBox[{"ToUpperCase", "[", - RowBox[{"StringReplace", "[", - RowBox[{ - RowBox[{"ToString", "[", "\[IndentingNewLine]", - RowBox[{ - RowBox[{"Simplify", "[", - RowBox[{"ExpandAll", "[", "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], "^", - RowBox[{"Floor", "[", "x", "]"}]}], "*", - RowBox[{"(", - RowBox[{ - RowBox[{"R", "[", - RowBox[{"Mod", "[", - RowBox[{"x", ",", "1"}], "]"}], "]"}], "-", "0.5"}], ")"}]}], - "+", "0.5"}], "\[IndentingNewLine]", "]"}], "]"}], - "\[IndentingNewLine]", ",", "InputForm"}], "]"}], ",", - RowBox[{"{", - RowBox[{ - RowBox[{"\"\< \>\"", "\[Rule]", " ", "\"\<\>\""}], ",", - RowBox[{"\"\<*^\>\"", "\[Rule]", " ", "\"\<*10^\>\""}], ",", - RowBox[{"\"\<[\>\"", "->", "\"\<(\>\""}], ",", - RowBox[{"\"\<]\>\"", "->", "\"\<)\>\""}]}], " ", "}"}]}], "]"}], - "]"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{"(*", - RowBox[{"Simplify", "[", - RowBox[{"R", "[", "x", "]"}], "]"}], "*)"}]}]}], "Input", - FontFamily->"Segoe UI Symbol", - FontSize->12, - FontWeight->"Normal", - CellLabel-> - "8/1/24 03:23:15 \ -In[336]:=",ExpressionUUID->"4b599907-b90e-4af8-8102-af55e168ea88"], - -Cell[BoxData[ - TagBox[GridBox[{ - { - InterpretationBox[GridBox[{ - {"\<\"OO[3/4]=\"\>", GridBox[{ - { - FractionBox["15", "16"]}, - {"0.9375`"} - }, - GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, - GridBoxSpacings->{"Columns" -> { - Offset[0.27999999999999997`], { - Offset[0.7]}, - Offset[0.27999999999999997`]}, "Rows" -> { - Offset[0.2], { - Offset[0.1]}, - Offset[0.2]}}]}, - {"\<\"OOOO[3/4]=\"\>", GridBox[{ - {"0.935030830871336`"}, - {"0.935030830871336`"} - }, - GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, - GridBoxSpacings->{"Columns" -> { - Offset[0.27999999999999997`], { - Offset[0.7]}, - Offset[0.27999999999999997`]}, "Rows" -> { - Offset[0.2], { - Offset[0.1]}, - Offset[0.2]}}]}, - {"\<\"R[3/4]=\"\>", GridBox[{ - { - FractionBox["60985", "65536"]}, - {"0.9305572509765625`"} - }, - GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, - GridBoxSpacings->{"Columns" -> { - Offset[0.27999999999999997`], { - Offset[0.7]}, - Offset[0.27999999999999997`]}, "Rows" -> { - Offset[0.2], { - Offset[0.1]}, - Offset[0.2]}}]}, - {"\<\"FabiusF[3/4]=\"\>", GridBox[{ - { - FractionBox["67", "72"]}, - {"0.9305555555555556`"} - }, - GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, - GridBoxSpacings->{"Columns" -> { - Offset[0.27999999999999997`], { - Offset[0.7]}, - Offset[0.27999999999999997`]}, "Rows" -> { - Offset[0.2], { - Offset[0.1]}, - Offset[0.2]}}]} - }, - GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, - GridBoxSpacings->{"Columns" -> { - Offset[0.27999999999999997`], { - Offset[2.0999999999999996`]}, - Offset[0.27999999999999997`]}, "Rows" -> { - Offset[0.2], { - Offset[0.4]}, - Offset[0.2]}}], - TableForm[{{"OO[3/4]=", { - Rational[15, 16], 0.9375}}, { - "OOOO[3/4]=", {0.935030830871336, 0.935030830871336}}, {"R[3/4]=", { - Rational[60985, 65536], 0.9305572509765625}}, {"FabiusF[3/4]=", { - Rational[67, 72], 0.9305555555555556}}}]]}, - { - RowBox[{"{", - TagBox[ - GraphicsBox[{{{{}, {}, - TagBox[ - {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], - Opacity[1.], Dashing[{Small, Small}], LineBox[CompressedData[" -1:eJwdmHlYTuv3xtOgiROFSAepKJ1UnNDAXcKJpEGEOkmDcqIiQoPx0Ekc0aCU -4RhLUhS9Ks0JSSkpDSoN9sB+SlRK3t/z/f3z7utz7X2tZ611r3Xvfb0aHgGO -3pISEhJjxkhI/O/aNt2K/jJo+v+rgJWJFp2NUgzEMy/LN0gJKDfTvCwtx2Bk -TVfsD1kBZTscLrCKDPwy1zY1KAoI3vhzTJ4Sg8Nbr6skKwlY7hu9ok2FwfnU -rI/pKgL+lfEvz1dl8DAkYWOwqoD+CsMZn6cz8O8wvBY1XYDi6j2M/CwGLrtn -J0bOFHB9g7i3TZNBSKfMRGgK2BCx+7WcDoOirSYHLeYKOLnCoJfTo+c/v9nw -fZ4AvyK/I48NGLza870yeb6AHdvOME0LGTiYKr84tUDAxzPD/z5czEBCd+9l -o0UCDrWtHd9pxiDvsnrhbFMBz8ivoz/A4D9hjf7oUgHno0z1aqwYaN1b6nzO -kta31txo4A9av1xuh/9KAU0JkfvqbRis1ROSx64W4KyQf07WnsGvho7DPWsF -RJjumjnHicG9RM2fmfYCFg/s4EedGUTaz5+2yEmARIPNWR1XBg88L7OSmwSs -tjq4e5w7jXeqZFWUC+2/v3Z5iyfV47/Vxj/dBLgUPOoV+zDomb/iS46HgL7E -mC0tfgyYhT7q87cLuHpxQ7JiIH3eU8+Z2yFAcku83dy9DArmvG6K3iWg68Zs -yx/7GVx7c+j+10ABbZNiFbTCGEyoSL17aa+ALRMclGWOMECOVKD0AQH/vDgd -VXuc9mfrme0bQwXUpKa3fIlg0CqzOunTIQEJk9R2voxi4DUic8DymICDN/zq -hs4y2KZ8p/7dCdqfQrmD72MYlH8ftTeKFCAkakVnXqD6eN5x3ntagHqi9uH6 -JAai8d2D388KeK65527WFQZ/qKbEI0ZAdN31+13Xqd4edRMq4gUoLHfSkUyh -+TU9rDK5KEDa3L61MY3BXDuvgF2XBKi6GP0lmcmgRqtX3HFVwB0ZN+PuLAbH -yq9xqjcE9PrL78nOYfCnfomk6W0B9qOJJ9/m0fOyx2km3xFgoBr87n4hg9hj -2eFF6QJ0Ni6Wbi9l4N3OzNa6L+DN+v1XhysYxOxQTw/Kpvq1Soa+qmRgUr7O -+WQO1SsqSP9bNYNhf133hlyab7nBjPo6BnYyCj/5JwJYzdc9so10XpdMM19W -LCDUsm/W3BYGGQozRGFlAs5wroniNgYzztdkHK4QIBKls/O6GNg0FW4pfCHA -U3nNASWGgZI7P1BaJaB4nveBdp7BmHjd/Ic1Apb4ettL9zIwt4+y7ayj9Rjd -397Rz0CXlGa+fSvAYuYHp4lDDHZU68+WaaL9e3kuW/8Hg/BK9b2zWgVYS59x -lJJgMbSNCZdsF3Bz265netIsUkYTU2d0Cji2JjFsvByLMjlPSckeAcpfrK41 -K7J4/W7OnDpGQF5B3ZUfSiy8VdxOtPJ03qZkNL9VYfHW/mZfhiBgbmwAkZrK -Qmn2t+bcPgFccqglN51FkKnq6n+/CnD3GivzZCYLm5d+7+wGBRD74KsfNFnk -5VpLrB4W8POZUUjxXBa/lQycUhwVMGd7rV6/Hossg4+fpSUIxpT0rZtoyKIt -0lXvkySBa6prJrOQhU/ruKxLMgSvH95llZewWOZuO+eEHMFTW+ttA2Ys3HYu -3rxYkcD/hseap2Ah/H3coXE8gcEsD0XWisVW45Pr7k0gCJybrlD+BwvT+Wd5 -OxWCF+tbO/ptaD8WRVdrTyFoXHZ6npI9i+cHDxpyUwm8H56837meRXOtoWro -dIJxDtsnKG5iceHGm02YQbDwwLl03oXe990WVzOLYLybWb5oK4tLs8aZOGgS -SOx4ca3Rk8X+zYEO0nMIgsQ3Ku77sJhjdGDFCR16P8+rrNWPhXagJFmsR+NL -BopLAlgUJNSyIn2CStnhtNgg2o8/2q/rGhLcWLDD8PF+Fr+/NJhfuYBglNHs -jw9l0aN5kjUzJggoKz1TcZjF1MnjcloWE8S6fUjsOk77U2I8stOUwOTvtV25 -ESx8zc5vrDInGHqVNLYrioV+flqDKwgW3Vzk8/QsC+Wrq7rzLQl0TO1N4mJY -5PvPdhq/gtb7dV3nowss3jtqSJ5eRVBgklh5LomFxu4i9RZrAo8bz6IKr7A4 -1TAo2mxD8Lgq+Mm76yzUpin4V9gSRB8L1E+/zcIlZNU+WXuCo652++rSWHQY -2SnvdST4Unxw5EEGC6nPYcFZTgRhayM3d2excFea+GCGM40Xp6orLWJxaPWu -rSGbCYL/6lvUksfC/s6h3FQXgrVemeqyRSyqu9UlpN0IrrG5FnwpC9uLX3wX -uBOk6a94m1fBQqwQN9/Rg+BV/AOrtkoWG3eUDiZ5EeyO2knyqllsWn63LHc7 -gf5NxSC+joXJP8sbJHcQJIfr+so20nqPzfxp5kcQ1XE+qaWZhYzszV9sdhHE -/NVxS7qdxa/jbh44FkAw/XBob3cnvW8WZhm9m2CjY2xa1kcWV10G5aKDaD5r -zi97w7PQyThvlbOP4MirZqV7hO7T9J78h/vpPO9XeNzUz2J1iuSnpoMELWl/ -Xy0aZPFzy5nqhlCq/+Xw7+dHWOSGcvIV4QRLclzmicQsDOpTlFsO035uOZEY -L8WBO5Kf+fwo3RfN2PYKWQ6mRmK3luMEtmkaid2KHBrX+U/vOEHgVDB8Nl+J -g+j73+sLIwj2DojcelQ45BcbZhRHEkzKLfF7rsohJ7Bn5FIUgY+5DZcwnYO7 -xRnLXWcI3nSKLPJmcljYLVu29SxB0ZQ99fGaHG6deq2qf46e7z9heflc+jzK -OPUYgsMn9Ge163FgXxn7i2MJRHPjzbMNOGyOuJXyJJ5AgXQaNi/ksE/WNvhS -Aq3fMtwzbzGHjI1jAjdfJHj2eGSXYMZh7EnvZYuSaT69Q+x4C8qPVkwZe5ng -xAPLGz1WNL4aI5F1heBJYsAiZWsOd8JN6w7/R7BvHDt20IZDs+5H/XnXCdqX -dlg/s+PwVmwa/uwGgVdsgcen9Rx+Rk+uOnGLwDf4Y+5zZw4fM/pPaKQQnAz/ -xn134ZA1YcvR5lQCZ6tjp6e4c2Bc63Ui0whSYrfs/OTJ4V2k78wp6QTKilO1 -JvtysH6ku7PoHsGPcRpqg34czmutDF+TSZBYlXK0PIBDksWw1vP7BHZZk4t7 -gjjoP3Yx98qi9Wi9Wla8n4PFzRlDbdkE9bl+sUIoh74PU7bvf0T9S+kfF7kj -HF6sWTNbSkTg0kvcm49zWL7dwTfwMcHgN/NlY/6hehs27R3KJVCJqN/cHsXh -mav2EY98Auul622VoznMUbwa0/OEwPCB3QPDWA7KrMm6rYUECQ8ubJBLoP29 -9YuQW0Sg1lhWsyCZzlOKQ6pBCYF65NJTU65yCLu5sjCilPr10O8Pe65z8FBY -6VNfRnDlzESRfAqHlikvrMyeEnxON/nencYhO8TP5UQFnb/+VcqTMznkVVSw -Pc+onw3WJhtmc3CUuF+89AWBfMQdbxkRB+2R07kHK6meZj5j9fOpfpbyy16+ -JOgLDegeX8TBLeuis/Qr2o+QAePmUg7XO0ZvLKimfNnDbaSCg5xbYXxwDcGm -dWrlbyrpfK/b+vPqa7ovs3OkxtRwCFyqZtteS6B4/MqRnjoOm/b/GTH2DUHD -f2MDRA0clmRdsNWsp+d3Oxq3NnN45HRJxektgeZDziSvjYPrs+GbOxuo/6T6 -TPnUyaHeQCYkoZHuh6unlzzDIU7L91zuOzo/SXd623gOmkf/dClvInAUv3WS -7+Xwl8mhkA/NBJeEdYN8P4dvYRHFTAv1n+SVinmDHEpj4xb1tBJkB2gMtozQ -fVSao/btPfW/V9YaIjGHuadeyght1B8cNmj2SPGw8nK7NthOsC22PV5CjkfD -plNaQx0EKz1yrN8o8sit9ort/EBgtSGodliJh/Q9u+fvOwmK60IuNqnwEB3i -3cu7aL/2+5iOn8rj7DltcW43re9drc1v6jwupH9qvt1DsLMiMkl6Fo9VYVKS -Rz/S+W3SLjXQ4mE3XG3pyxA8ODBed5IOD3f5YAtzlu5vfZBEtx4P+/f5vnIc -fR85F2bIGfKwCUgt7aCc4r3xUvdCHgsNxxSk8NSfE2o9Ji/hYTygoh/2ic5P -ZFWikTmPymrz8D8+E7BjJynJWvCoOlnlOEYg+JkCV4MVPPrtGjKfUo55++jj -BGseoRqH5UMJQXPJ3a73Njx2uabq6/QSLH0T8Vhsx2Pixs7+Nsozd997+W49 -D72uO7ERfXTeF+bmjN1E62FmqJl8IYg7MrHjkwsPU7X3pIly6emPoYVbeRD6 -0bCvn/pXwTWhy5NHgrG4bdpXug8hqVdKfXjcOsTLZlB+4Bqn882P1tf9yn/t -N4JVo+LZKoE8SpcUZH6gvEX3kQsXxGPAxU7Bb4AgIsRh56QDNP69+Y+GKf/u -vCRvMJTH1pxpJGyQvu+/XAqtOMzD50DX5yHKv2QxKtxxHiNq+ptChwhkxYe4 -8giqv269QR9ltcDhhK9R9PwZKx7u/E7978pXkVI07W/zdFEH5TkupqpdMTy+ -PJ/4i80w9R8zb1vFBKqP/Uvtx5S9bjcX80k8ikzzZNRHCAZe19wWXeFx2RG2 -Bylf00jzbrzOI3W9W2AT5aofNdvu3+bR6+ppZvSD+uFos3FrGo+k4jqtKMoN -/yywLsngMb+6Qq+Zsl2d7MuYLB6/Td31RXuU5re8ZK4oh0dc0KrePZT7lj4r -jsujem52+fSIsrpb1sKnhVSPa4nbflAeNv9VtbOUR8/SL7bmP+n83q5d8riC -xnNKnbGXcvWiXQs+VPJ4/PessLuUnzqs/6usmsfvv1osbKUcqCdSianjIdc5 -fq28mH7/zJOMy27g8W2aoqIx5eDsC05nm+n8RzyV2kK5zlP5U34bD3Xt+d3h -lDtfK35728nDq6S9LZlyUKW9+Z2PPMqCar8/pKzOhbjU8DxwN31CFeWVsb2i -DMIjZUFB3nvKEZ42Qkc/zad1883PlMP6tOIkhuh+Yt6YIcp9CmtCGkd43JbP -aRilrNGVLxaLefzvvwAJiV78H/9ik1Y= - "]]}, - Annotation[#, "Charting`Private`Tag$12753#1"]& ], - TagBox[ - {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], - Opacity[1.], LineBox[CompressedData[" -1:eJwVlnlYSOkXx9tLMW2IGCSUJSVD0fJFMaYoVEKNpU0bRWQJkSUkmvYUmSRL -yNK0a1NKUakoFa3qLnXfok2i3/v7597n89znOec953vO971qDl5bnMVERERE -RUVE/v9unmZCnwwunlhaUsz3YG3MqvZ6cQaxf/iZ8aQHxQbqNyVkGPSu8TZ1 -7u9BkdvmKFaOgV8KKbw63APfrb9Es+UZ6MtoqsSP9mCNa4hpszKD1NLBSjFR -AVcl9xfnqDA498lRTkVSwLcSnRk90xgkhOiWnRwnQO6vg8y4WQy6jrwVLZ8g -4LbNWG+zOoMy3Z8FrxUF2AQeeCejySBk8A9+6mQBF0y1e7mFDHbobpg9XVWA -R77H6UxtBotTc5okZwhw2xPMNCyl8cMqeMwW0BU8cvU/PQZmFi6yWvMEnGre -MKHdgIHD9QvX3RYIKCW//xwFg8AFapuDFwsIDVq5sMqEwSuzvFnOugJ8Nxgu -GfyTAbvi2Nqg5QIaoi8dfm/OQOnMdlmXlQJsZXP+kd7EoLm7yPiqsYDAlftm -zrNmsNo57PuNNQL0Bt34n7YMxDQS9ziuEyBSZ35N057Bhs/C1MNmAv4yOXZg -/G4GX5VPyxhZCFi7f25xkyOtZ8Xhaz2bBdjlpvWO7WXwpfL+RtZGQF9M2I4m -DwZvFN3N4rYLuHXdJk7Om4Hn6uiomL8FiO2ItNQ4xGD51nmz/PcI6EicvXr0 -CIMn7SZD050FNE8Ml51zgsHTy8a/xN0E7FDYrCR5moFur/Xn254CLpZdCao+ -y0CzrOk3LW8BVfcfNX0NZLBy4VqbXz4Coieqer4JYhD08Lr/pSMCjiV61Axf -YyC0adXb+dH+5Mkc+xxG+1vddYs5JUCImRPyJIrBzbmWM3cFCJgeM9f/fSzV -92dpyrQLAl6rH3z4PJ6B8Wvj3LBLAkJqbj/tuM3gd4U9A5uCBciusdYUu8dA -QjTh/FCIAAnDTZ/qkxn4Gpjd3xEuQMVuibvYEwYWJk7VotECHkjuXPblOYPz -oebTXWIF9O4fdzA1ncHxQyoNqTcFbPoZc+FDNgP36wpn1iUI0Fbx/fg0j4FM -+6ltkXcEaG7Vk2h5Sc8TnKCteV9ArdWRWyMlDKLTJs9MfEj1+yTmV1HOoHit -6tbmFKpXkI/WQCWDzU2f3Oye0/MWa894X0Pjp5+2ikoTwKq/65SuZ+C2ep62 -cpYAv9V9szSaGKxNmhl87IWAYM4+ZqyZQb93eMOtfAEZGY/YBR0MWrsLBqSK -BDgqmR2VZxjI/vNbyOISAQULnI+28AzSQvvKV5cJ0Hd13iTRy0AuJSYj9C2t -Z8lTl9ZvDH6G/6uXVCVg1cw2a8Vhul8fDpwcrKH9e/NPqtYog3S5UlndOgHr -JYK3iIuwcGjrNl3SIODOnn2lCyVY1Ba0zfb8JCDALObEBBkWu84UG3m0CFD6 -apLQKMci45BL/tZ2Adm5NfGj8iy6nbzKT3TSeZuc0vhBmcVTqckarqwAjXAv -Ij6FBWPvNTu4WwAX57eam8bilUPo2BEiYLeTlOSLmSxcZe4+tfwqgGzyvdWm -zsL0cWDXrgEBv0qXHC/QYCF1Jn6i3rCAeS7VC78tZHFu1/6mtT8EiBb2WSjq -0PwpVmqrfwmwv2//hFlK46ulHZMQJXj330NWSZ9F/v575r/ECV5tXL9n0IDF -kxKTwnwpgv2JDmavwOLrUbN673EE2rMc5FgTFpHOtyy2jifw1ngkW/wnzSd5 -+ZSkPEGZ1afWb+YsLHZ/1mAVCeqNryyQ38Ri9qJy1ayJBM7/XXjabsWic7iy -zUaFYPxmFwW5bSwCXI2k5qoSLD36zyPejvb7eey1vOkEE3Ya5GTsYqEza825 -9TMJRNzKEuodWVzQd8kVn03gM5ZY8nQvi1zb1QeD5tDv2U5FnzxYrHT1DTTV -oPHFvMcKvVhc7yy/WzafoFx6JDnch56nq/E2FhEk6rrpZB5hccZAubtjMcFP -Rv1bpB+LBdu/Wm1bQuBV9DK4xJ+FU6TPnB9LCcJ3tsV0nKX9nLb81JXlBCvO -bejICmTBSVgq9egTDFfESnUEsVB9833Az4Bg+Z3le19dY2GmcSGxwYhAc+Wm -FRFhLPpT3H5qrqL19lu0p0WxCGKXRCSuIchdEVP+TyyLeWKLZftMCRwSS4Py -4lmUlZp8dvuTIPOt74uPt1n8Otg1vvovgpAAb61Hd6k+m1id8RsIzthbHq5J -ZlGYJ3PrgAXB14JjP56lUH0e1Ifd30RwYsOl7V+es4h+91e/nBWNF6EyXyKD -xSKfUfWdNgS+7n3Lm7JZnLrj3HvWlmCD05Pp0vksjJd4qtRsJ0hgs1bxL1lM -rT7mPmhHkKxl+iG7hMUyDY9k2Z0EFZHPTJrLWVRdiTX6czfBgSBPkl1J+7Wl -WXa7A4HWHTkfvobFYNq/lqFOBHEn57tK19P6esT1clwIglpDY5saWbAPK/bl -uBKEubcmSbSwsHvgrtDuTjDN36/3SzuLWP2eay2eBFu3hCc/72LRMDLhbeV+ -eh6zUONanoW1/WSfDm+C0xWN8o8Ji0NfJUTfHaTzfEQ2s+Eb7a+lh3rbIYKm -5HO38odYpB2uyyr3pfrfPPk99AeLo5PDAu4eJdBPt1uQMcZiz8HMz0nHaT93 -nI+JFOegr1iR6X+C7ot6eEuJNIeh14a2fqcINiarxXyR45B1gPnseprAOnfk -Wo48h5Geif06AQSHBjN2dipzeGFtVqZ6jmBiVqHHaxUOW3Y/zmg+T7DX0JyL -nsZBbl5KUlQgQW17xqrsmRyOz9/2t/clgvzJB99HqnP4Y0WDztwgmn+/wppi -DZpvwER05AqB/3mtWS0LOVi5dF4tuEqQoRFpmKrNQc3Fco1LCIEsaddpXMph -/43o7/NDaf2rTzpm63F4I3J2Z3kYQWnmj32CAYd8j7u/LkfQ8/QOsxNWcZgR -0ffOKIrg/LPViZ0mHAbdbm6vjCZ4EeO1XGk9h4nmaRqnrhMcHs9KDZlzMJsh -umR8HEGLUev6UksO2vZT/K7eIHAKz3XotuJQPuXjTK14AlffrqzXthwanKaP -Jt8iuHBygPtux6Gz9eGBdQkEtiYBVybv5uBW28jX3ia4F77Ds9uRQ/Tv7jdM -7xAoyU2ZM8mVQ+qkr6MVSQSj49VUhzw4rBxYomJwjyDm7b0zxV4ccl+XGsbd -J7B8Pqmg04dDxvxJi1WSaT1zKowLjnCYc9yo8tBDgvdZHuGCH9WjMyiAf0T9 -S/6incxpDosc5o+zTSGw6yW7G89yWMe16SU9IRgaMDQWvcihcm9g1IRnBMqB -77e3BHFQvPh6xvbnBOuNrDYqhXCoXxmslpNKoPPM8plOOIfXMw08JqYRRD+L -spGJ5ug9bPluczqBan1RlW4c1Xvqwro7GQTTLxldnnyLwz7rlUeaM6lfD//x -X+dtDmmH6rbLZxPEBytmjLvHYVV38DibHIKeRyu+f0nmoDNvitGZF3T+vq1T -mvSEQ1nAaEhhLvWzoeo4nVQOFXH2g9/zCMYFPnCWzOCg2x9YPqWA6mmwV0or -hwNje6jXvJCgz8/ry4R8DtXWAb9cXtJ+HB9c1viSg/++lwrHiijfdNj5o4SD -odyc5JvFBNssVItryznMNjOVf/SK7svsdHHRKlpPQZ1tRQmB3Nn40501HB57 -HGitLyWo+1fKK6OOzpupdEPDa5r/y5Zlnxo5HBY/NyCUEaj/x63Ibqbx7awW -95RT/7m/d3J3O40fYs+PvqH7Ye/oNI7h0FR5rUe8gs5P7IPeZp5DTmEvN0B5 -y9gH63G9HL2/5R8PVxLcECyG+G8cotrCP3dWUf+JWyuXPcQhm+Trv31HkOql -NtT0g85X1c+El9XU/yrWq2WMcbAeV78hqYb6w2Yb9U5xHvYWtQeiawn2hLdE -isjwMNqnFRvwnmCtQ/r6WjkeDZJUoA8EJjY+1SPyPE7vymtCHUFBzfHrDco8 -jMeq9yjX034d2btywhQey8vOzxqgnPCx2nzRdB5vVHwsKj8SeJZcipWYxaMq -bnxZVAOd34a5L7Xn8Ggx3li7r5Hg2dEJ8ydq8vhw0T5St4nu73sfkS8LeTyt -+B7bS3nYNi9FRofHufSq4OxPdH+ct974spTHrYCL3w9/pv4cXe0wSZ/H4bM2 -bwyb6fxcehuzxJDHHq+PRaOUWamJ8tKreEgtSvj+sIXg1z3Ya5vyuGJ4aMi1 -lfrzh7QuhfU8ojUqIya1ETQWPuz4bM6ju+Do7BzKRrWBmWOWPNIz3dv2tRPM -PPD4zUcrHq+uHfuu0EHnfWlWutQ2HoFvFF7nUo44rdjabcfjRK/c5p1fCF5e -6fLL28XjwVTVucOUZXMThA5HHp7Ry9TjOuk+HL8f/3IvD7O1Gy/rdtF+2Edo -DnjwkJC9m1RNed3PsdnK3jzWiJ0d9mQIdsxPs+N8eOSOBTqOUA48vtlz4lEe -cSq7RkJYgj9s9bOH/HhkudtLTuPoff/1hl+JP49fWV0/4in/9pxR5s7y2KaY -EqfFE0iPneKKA3kUuUtuTaGs6j0S3R/EY+qxvy1XdFP/i+/PkA/hkebYrpZL -eZ7dSpWOMB6GC0Ke6PVQ/zFw3igXzWPe9W9imZSd7jYW8LE8LvRLu2gLBIPv -qu5mxPPIP+Nt/i/lBLVk5/rbPEqTCv1VCcHb0ao9T+/yUD1ZZH+JstLPxmWf -knmUPRA0xyjXXdRdX5jCo6+ICO69dH5qpN+EPedhPTXhUjXlljWFGhnpPHao -T0la1Uf33ai0ICKbx9aOwo13KE/f+XzpqzweBqtO/a7wlWDE8HeV9pc8tlxW -TfOlvO1utX5mCY+LkXVutZQrl+/TbSvnMeNB+ye9b/R+2mzlXlTJY9GOi+mh -lL0XZiiH1fCoVVMkLOWlC8QiUutovlypC+v66f9HapT1tUYe3j360rGUaxyV -unOaebhpOUT3U25/JzfwoZ1H2AkNf7MB+v9XvsnwQRed56QJNdGUp3PH7ap4 -qmdiaiNPeW14b0YK4aGYbxyhN0j1djQXWr/xqAhXyAqkfKJvToTIMA/3yhUB -tZT7ZM2O1//gYZo+5qs6RKDWkTM2NsYjKK/MzIny/wCx2KQg - "]]}, - Annotation[#, "Charting`Private`Tag$12753#2"]& ], - TagBox[ - {RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6], - Opacity[1.], Dashing[{Small, Small}], LineBox[CompressedData[" -1:eJwl1nk4lGsbAHBbyHLIkpLK0olylKJS1J2oFIWQwlGRkD1F0aJVJVpMIlun -FNFirSkiyRIqW8iSPaF5HlEpwvfe7/fPzPW7Zq55nnt9R8XJZ5uLAB8fHz8/ -Hx++t80yYl6/AB/fej7lUh6sj1nb1SiIDp86Us6DYn21BCFRdAdH6T0PXrtb -3ugTRy9qGqnhQcD2Cf5cKXSObF49D9a5XTFuk0Xn9b5t4kHEFO/iPAX08+1R -n3gwXKo9hzcLveF2WicPxDcd+DJVGb0g5v5nHtyxmRxsU0P/lN7VzwObUL9q -UQ30qiO7CQ/OGS8e7NdEX2+YOcQDj5ceIc8Wo4Uq837wwH1P+JcmHfTM8tTf -POgNH43IWYG+nGA5zoPjbWaSXfrs5wXr+AmU0dnjfwBtojV7CoFrYas0q4zQ -jrYZogQCzAyW/NyIftARIUGgKfrCoQ+maOn4+dIEbMXyropYoA+NCssRCF3l -NXe+NVp3okqBwIqf7gPjtmiNmdtnEeBrML2s4YC+26c6l8AmoyN+ErvR+RvS -VAms9/67uMUZvW/ZnPkE7POfDE66om2GGhYQ+BYTadfigb6ptFWLwK2bNnHi -vuhgW7ElBATsoszVD6KXNafrEuhOUjX8E4j+lSGnR6BNjiM27yja8+ELfQJ2 -0pYyU0LQU/zmAYHz5ZfCak6ju1wD1hGouv+wZSgULRcvsYFAtJyiZ2UYWj1o -zyYCR5I8an9dRic2/jZj8lMgeuRTJPqJtaUFARIz70r6DbSKA8eKgFLM3yc+ -xKIzx2faEnijduBBViL6Y/wuOwJXau9kdN9h6zuz918CYuusNQRS0F6NO/cQ -EDKwaG1MY+tzNHwvAQX7JfsF0tFpUgJuBFKnOC7ryUK7jK/wIDDoPfVA9lO0 -3kw7bwIW4zHn6nPRAmvy/AgsVgj4mFGADohvP0hAY/sKofYi9EUT48ME6qwC -b42Wohs/RgYz9WsVCH5XgRYOu3ecqVeYv9aP9+hvcSMnmfsWL57zoRZ9zFji -LIE+terPIo1o3wjH8wSCDb8pq7egQxXiwwiE9zvETLax8zT7VgQBLvdh38Ju -dFtj21UCzjKbD0t9QZ88180hULjQ5XD7AHrervobBPTcXCyEBtFcEaFYJp4l -Gfs6htHLT4/EE1g7t9N62i/022nz/2PyV3k1W+sPuvS0YRIBE6HwbYJ8fYz9 -HqklE7i7x6tMUwi9ln9tKoFTm2OOSoqinU+pPSQgM2R0u1kcXVz9/TGB3Pza -xD9S6Jy9k5lMv01/3Fwvi66cUpNDQJ3jQwVnoK8sauUS6I8LNuyfhd7ZnJ5L -YPde4Skv5qKnph/IJ0AtAm51qqHl1T0LCUyULQkqVEebCC5+TWD+vhrNYU20 -QIlGKQH+V9+2TtNGv3CXLifgcN8h/YsOe78dryoJVOc86JPRQ58zTn1PoGSL -yZ6f+mivbw41BLyTnDaXAPqH+0Qdkz9lJ/E+I/Tkn7oGAr7qD8WKN6K3agc2 -ESi3au0YNkUvL9rSSqBxzaWFUhZo5VaZdgIuOecyuqzQLkeTOglIWO6TFt+B -1uS49xDQOXz14YA9ese9sV4Cko76edxd6IAFx/qZ/nIvv93ojD5pvIRHwH8y -qTTDFX1GL4syn+fufd3qgeaTcB1ifl/Ad/KVD7pFq+87gQqR0TSOP7pH0X6E -QNJSd+1ngeinwhO/CYx/URuOCkYbKvv+IeDzuii89AQ6PkRmkgDHsTOm+zT6 -gFsSP4WVZ8y6n4ei052EhSj8ehcr3B2G3l9wQ5jC8rvLXUsuox/d/i1KQWOV -xcrrkeiMn6biFHS+b+16cgO9papSkkL+ypiKq7HoWMm50hScksrCChLREYqJ -MhSevQ148fEOmz9bKXkKV075aj1MZuP7aKlA4aSD+aHaNHSTaeFMCkOFR8Yy -H6ONAwWVKBw1u7CzJwvt1uo3h/m96woLhLjopPdVyhQC9n9b3pKLfv6voBoF -s73pSiIv0W0b9vxN4Xbf87UDRejPEKlOIU3LuD63lM3HgycLKLyLyjRqq0CX -xgr9Q8EvzJPmvkfrHVJfREHrrrj/QC1bv7kHtSnEHVvgJtLI1nsiYymFsI5r -sS3NbL+kFOtSiNzfcU+oHT17o8AKCrNOBA/2dKH7VeVXUti+jZOW1cvGO0NR -n7nP5mtr6gbQJYs2rqYQ8q5Z6hFF19uZAgXvQLFnTcNo7q8AQwotaWduvRxB -35sTZERhPOHY72tjbP8+81lPQe+p/ULuJPrncNhGJp92Z2OiBPvx+R0esolC -iRqnvVQEbaIYa0phS5pKTI84Wrc9eQsF6/zRy3lSaOnOcHMKB39yHT/LosX4 -YywpyD1/5fFGAS1cecyKgquBaX/0LLRQpo0Nhbou7trcueitXyxtKbycfuBD -lBpaNEFjJ3O+t/S6YnW025iqPYUTZ7WU2zVZr5L+lwJXPcogezE6pbrRkYIY -7dJu1kGHrH29m4nf8Jhz7gq0d0CYE4WyZ2NeRJ+9f+vBvcx9Bn/1Sa5F152y -3EfhbKZh0mcjtFyJmBuFFzE+y2VM0De9etwpHJLoEx4xZfOjHO9BoX11h0mZ -OfoSMfGisJeT7/TVCq1qL+9DwS2g9/kbW3T/fwW+FM4d+9H/2x5d033hAAVb -o1OXpu9GW0iaHKSQwrHz/OqMju7sPkRBRnzGPHk3dBLvViCFPxIqiiMe6Cpp -gyMUYt6mnCz2QQd9qwiiYJ4lX/jZHx2xMegoE8+8d2sKA9HXQkSPU/jw3IND -gtEzrmafoNAodd5eNIStj5bNSQr2g3R382n0/CP1pyiM/DBYw38endly8AwF -2dAPO9vD0AJ2389SMFlttUXmCvt96yuhFLQzzTO1Oeh9uioXKERn3rARjUYr -j0ZepKDY+LpqaRyaHFe9REHpwuqL02+h6y0jwylU/9LN+XwHXd78O4JCYvg0 -7tQU9IR38BUKvIcrf/ekoX1l2q8y/Te8QUY+Hd2+YFckBZ+RmjjtbLbe5bUc -ClNDU12mcNGLDP+JYuqp7yqslYeOOpRwg8K3YJ8eyZfo7p7v0Uw+gn4uay5C -m6Ua3mSc4OQ4Vsr2/9HkWAo7tioW11Ww9TUZimPmRfWpIH8V27/XbBIoiJ9O -DPlci/ZclZBIoeE/YR9uA+tLrbeY83u2LWttRh9M171NQS2nf2VuG9qR53eH -2T/3Xad/7UI7+JYkMfPh4Lx36he2Hw5Mu8f0T2zqYNsAW/9NRskUtk3WW08d -ZPOdF5ZCIZ5sHRkYZvvbJfc+s3/i1ovnjqAHt3amUsj2URlpGWP7bfHcB8z+ -e2eiwp1E/zVm9JDZD5Y2ap8FBxgrLT/+iMIeTnsUnyh66OLjxxTWOz01qRNH -Hw95k07ByMa/ZlQKfWDdrwwKhbVBN5tk0V8FpLOYfAW6rpKcga4TN8hm4vtY -Y/qPElrizK4cCp6lF2KFlNEBjzyfMP3b9HfR4nnoPyHhTylkHpZcIKeBTtkT -zWXm94M/X48muso99hnzPLIteCyqjfY9mfGcmR+X7fE9Oui/LDNzmf0cXeMk -r4d+l1Wcx/TPhbcxSwzQworVLyj0CctJiaxF63WX5lOYSAGHxcZo7ftVBcx+ -rn/SK22CXrSw+CWF5lcPuj+ZsvHsyiyksLou9NmkObplIv0Vhbl+jyo/WqEX -jscWMf2u8/yp8A72fN6N1xSuh0zr+GqPFuKEFFMoutQbXLALnW7gVMLsr/zb -pNsZrbzJupSZh6D7iUWu6Ig0nTImHw7XNX54oC9NqL6hsGF8UlXWF/1ER7yc -gt2CJ/b9/uz5uzsYhwZZesodRr8eLKmgoGurlzsSjDaruFlJgTMUH1x6Al2i -5faWwl9ZX2T7T6PPeBu/oyAyeby/OBS94arUeyYe39Ho72Hoynl9jNsTv3Ol -rqAt1PKqKMy3X6XQHcnWP+54NbN/9F22iEez5wua1zD7Mbm5cCAWna8rVUvh -Z3VVMjcRTbzeML6tkubSeActLX+1jsLbP1V7MpLRCTM2fWD24XjzstY0NEfl -r3pmvs4vNXn1GO1UW8TYvFakMjIL/anWv4G537pX6tyn/8+HdiMz76vLCq/n -ouNUPzFWcszSKSlAT0hEf6QwajBboasIvf0fsyamf5Nr9J6Vosukhhi/X+61 -tLOCrfftO83M88nSav/r9+judRtbKPhqcmUja9l+vd/DWGehwPXsBnY+tlxu -Zf5/ZN+wvtyMNj6j+YlCrbPM17w2tGpMDeOuavEf9V3oNbsOtlHwr7AwSO1F -862Z2s7ctz/IvmqAnZ+LKYzXcwa5jynabZl+B1NvZ1PSMYzeMdzA+Oi3edf5 -frHzfNenk4lfbHNQ4xibP70xxirdeZOTk2z+Jy93UfgfqDuErg== - "]]}, - Annotation[#, "Charting`Private`Tag$12753#3"]& ], - TagBox[ - {RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6], - Opacity[1.], LineBox[CompressedData[" -1:eJwVVnlYTWsfbS6lG+VmlmRKumXWwIoMqaSBDGUICZVUJGWekkRxmoRCFIlU -dJKL5og0CE23ufbg7DdKJdL3fv+c/aznfZ53r9/6rbX20d7uZe8qIyUlJS0t -JfX/Z8NYc/rLwH6hss+4IgmWx5i1fJFl4GHqGtj1VoICE52bckoMXN2SFUZ/ -kCB/j10Uq8Kg4Z2GdXeFBH6Of6Sz1Rh0Bu49K/4kwdLdYcsaNBgoFAZsfFsj -wSX5fQUvRjKYGrW1+Mp/EnQVGU6QjGXQMdCrkdQsgcoqH2bIRAZtoazyvXYJ -7qwb7GzQYWAs9f6UEyfBuiDvcqXpDMYcleKdBQnOLTPo5PQY2DEeqzS/S+D+ -2v1ElgGD0RGvF2X9kGCPSyhTM4fB4Z3VJok/JegI7b/0dAHl52IyzGZAgmMN -1qotJgy0eloMIS2gmIwf+A0GP46ox42WF3AlxFivzJyBkUj+TYqSAD9r01k9 -KxkMCT3lEDJUQE108MEqKwby1zP/0hkmYL3yi3BFWwbOs8d7yI4QEGTsqTV1 -LYMVvzq93o8UsKBnDz+wnsHJnj8X7McKkPpsdXm6M4OWmQectLQErDI/7D10 -G4Nt0+LEiZMELN83paBuB4PWwwaJY6YKcHr5rHPQjcHKggU7P+oK+BZzdVOd -O4ONUz0uWeoLiL+27rrKfgYu51a9UZglQGZT5JppBxhMNh62OmWugNaESUt+ -H2IQUNemM3yhgIYRIuXJRxhsfmSh9dxEwKZhduryJxhkLmlrnggB599eDKk4 -zaCw8HW1z1IBZfdT6r4HUf0S+L+GrBAQPWKMx7sQBrIRul83rxJwOMG9su8y -gwmeAZY91lSfV0qH/7tK3+coKlxtK0CImRyWGsWgdK9eaZiDgHExU45XxTJw -fBvjpblewBsdn4fpcQwm6T5Tc94kIKzyzpPWOwy6Am6FtGwWoLx07XSZJAYP -rK9YOroIkDO1rf+SzOB+wRkheKeAkU6z9sqkMtjV2H3yj5uAB/Jb5rWlMzie -V+41111A574hPhmZDO7MuxDiuE+A7UDMuU/ZDBJ2OqeKvQUYjPSrfvKKgUFl -h1r9AQHTHRfINeYxqFMyyjbzF/DR4VB8fxGDXOuN1mGBdH/1MoGlJQwkhpKB -28fovkJ89X98oPs4xKh1n6R8CwwmVFUyGOp7OFPprABWp7xd8QsDVU8faafz -AgKXfJs4rY7BrJWvLsSECAjlnGMGG+h++13Drl8SIBansDNaGRTvd7SuCxew -Q93SX41hYLvCrr9RJCBnhqt/I8/g2TWpyoooAQt3u9rKdTLgrNsCpWLpPLOe -7GrqonlLPt/bdUOAmVbz2uF91N9HN56bdIvq9y48Q/831XPe9r5FCQIs5ELt -ZaVYqB9cojMxUcBdF89iPTkWL4zP+pk+EHDKMuaIqhKLGdWDvVopAtS/m9+u -VWERedxn5bfHArJfVsb9VmPxand8za806jfNx7WfNFiM5AYCS58KmCbyIrKj -WMgqLb5bLRbAXQ9cwo1l4Rp11T4lW8C2nQry/2qxuHHLaprXSwHE1i++WYfF -BKnqm7tzBPwpnhWQM43F1XjnQL18AVN3Veh16bE4GRe+eEqRAOncbzbDDVk8 -35DdPPStAOf7zqnMHBa7XeQrXr4TUP70Iau+kEVRwu2X9z4IKFxt4dJjwmLF -yDr3jRUC9iVstywEi6lXpNv6P1L9Jm5XYc1ZLCvb5V/+WcD+aSnKBStZaJlZ -PvStEfDWob6py4qFyEaAZb2AL4svzlCzZWHWhE1qjQJcn5570uLAItdTuz++ -WcBQu13DVDawOJCWpL6rTcAc//AU3omFzZrMKX0dAlS3mLwQb2Vh2OZy/zBH -/bXn7e0vO1gscR/I15cI8B1MKHrixuLixsKsx4SeZ+/Mr3dnEeLSF7rjO71f -Zv9grheLyokPU9u6BZQo9ieLfFmMs/K9ub5XQMLsPYZZh1hUzzYN6f8pYIDR -6YoMZMHnp9/1+C3AKz8vtOg4i0vDeQW1QQGiLc0xradZdOh/I/HSBEZnrFuf -B9Hz8mJORo6grzRWoTWExf3GoxYiBYL5d+e7FV5mIdaPmtmjRDDd2NYo4irV -91vCSQsVgjndNi3PoljUeSxxfqNK8NIopiQ8lsWwhkfXxg4j2J5QHPIqjkVf -YG9SrDpB1nu/f6vvsDBWvdeu8jdB2Kn9+imJLEIzNu21GUlw0nnNwcpk6scH -h+v/HU3wPefwr7THLDz3QFlqHMER6+CNbeksPnzy9N43gd4XMVJXTsyiX17d -9f1EAr+93+bXZbPYXBjdPTiJwHpn6jjF1yyGi2c0bJ5CcJt9bsbnsfBTsKm+ -PI0gWX/Zp+wiFhV5y1em6xKURqaZN5SwWLTl7gLpmQTeIR4k+wML5cg89cn/ -EOjfVfHlK1ncjfV5ud+Q4PpR3d2KX1hcOzc37tFsgpCmK7F1tSx+j3awzJ1L -cHVv0z25RhZbTaq5P/MJxh4P7GxrYTFWdkLxcCMCR3tRcnoHi0wvk1eaJpSP -5ZXFH3kWP1e5fDZfRHCitFbtEWFRUhEnZwGCfYeUs2q6WCTNuZLgu4SgLvlM -/OteFruiqkr8zAkGbh79eeUXi+YRq3d7LCdYmOk0QzxI73dPTzi/kuq56WxM -pCyHpQnGZkdXERTqiBqLFDloFKeWRlkRrE7WjmlT4RAdXBKZsJpg7cv+yy/U -OHg7tsdcWENwoEe8pV2Dnv+zIjvCjmDE81z3NyM55MycfT7AgcDN1IqLHsuB -aar3sl9H8LFFbJatxeFym0KSzXqC15o+VZE6HI7ekNk2ZSN9/75hSwumcbC2 -inyl5URw/Kz+xEY9DscuPZRS3UwgnhZpmmHAYYRsSkzVFgJl0mJYO4fDpYd9 -yjnb6PxLju7IXsAhf0vV0vPbCYqzfnkKJhxm99Yne++kfDr7WFUzDkbTyxxs -dhGcTVuS0G7OIabAOEZxN8G/MV7z1S04+B7+vrR5D8HBoaxCrxWHtMtGfTHu -BI2LmiyK13BoNbhevNyTYKfo5favDhxGxW5doO5FsNuv4/mb9Rzul6adeLGf -4NzRH9xPJ8rHp7/gnA/BevNTFzW3cbjHd3cuO0CQJNrk8XUHh6DXTcVNBwnU -VUZN/ns3hwXTB6puHCL4PVR7TK87h6lOtb8WHiaIeZ90ssCLQ/zA8IbiAII1 -6X/ntPtyCDZKWHDoCJ1ncuninEMc9E9b+cofI6h67i4SAjnIKLade3Kc4Iva -eSelExxcx/81xf4kgVMn2VZ7msOHG899K08R9P4wXSx9noNhuEqN9xkCjaCq -jY0hHL6eNdj07SyBxSKH1ephHKSYXsfQIALDtDVphiIOEsko4wnBBNFpUeuU -ojnY7zspE36BYMyX/LLZ1zmk3z94QesiwbjgRRc04znMvai0LSyUoLxv7tP2 -Oxw+7U362nOJIC50uHhIEp03LfGUfxiBJMXoZ1syhxvlO3Xrw6n/ulao/53K -4aez/DLnqwRevRXXDTOo/4bO7CgTEQwJeuAqL+bgtq9sm24k3aeJm4L+Cw77 -1q+Ojo0i+Bbo1ab6mkOKTpbK92iqR0DPvNo8DmdWiSoWX6P45vYtv4o4LJJo -JiXEEmywGVPwsYRD29gqP3Kd5mVSpqx0GQd/Xf98+5sEKqfjTrRXUr94R3jF -xhF8vqXgJf7MwdZpaH5NPH1/m/28+loOn9dn8LNuE+g85YyyGzgUqt/W87pD -++e+m+bXFg63pGuf5CXQfDjv2DmE4RBZOTfzr3vUP7EPOht4DreXFYSbJRLY -D35aO6STw+JRIsXgJIIbgk0v38VhjL8oXXyf9s/15SrZvRzG56THNzwgyPDS -7q37xWHlYOaZcQ9p/5VaaIsHOdQlmjssSaH9YLdOp12Wx6GvH8MDHxG4iBoj -pZR4nJnexz58TLB8e6bFRxUew0dXNxemEpiv863oV+Ph4G6Z9OMJQU5lwLUa -DR4vjst5qKZTvQ65GauO4mE+7qK/UQadr7rCauY4HqpuLt3OTwk8ioJj5Sby -qDG9or33GfVvzZQ8g8k8xgeP7ruQSZDmr6o7YjqPW2O7aiPENL9VvlJtejx+ -6Q3viM6i36P1rx4rGfLoDrwg8/g5zY+r4422OTxu7MmpepxN+zm6YvvfC3lE -yxaY5L2g/gl+HzPLlEfqhwd3S/8lYBVGqCma8ZD/R8+34CXBnyQ4GyzjwVTl -mpS+ov386VnHMAseDSomr3NfE9TmPmz9z4qHyEnv5+McgkUfg7IG1/CYtack -9lEugZb3o3fVDjywOexGTB71+5znmQobePSOfxgekU8QcWJ401cnHpt2HDc5 -VkCQd7Ej8NVWHo0Pf7dvLaT99fK20LqDxzkZ5167IpqHgPtxeW48vPiNm2cV -Uz2cI6b/cOchM3N8xsQ3BCsGBidp7OchREyQKL0l2KT7zInz5REu+3RcA8VB -AXYeI/x5jHI1eJJfQjB3/cLs3kDK9/WPS9HvCETfbwQWHefxs82n2/U9wV/p -jAZ3mscws56FS0sJFAePcQVBPMqDlm9V/UDn2d8f3R3Co32SuKed4sa4brFa -GI8NbGlfVhmhvWQ8svUqjy3Kw/yOlNP+MXFdrRLNw0/TqtG6gvZjYm0OH0v9 -MOPMCNVKgp7yskRxHA/LbA27Iopvaye7frnDQz/V/PeljwTvf5e5PEnkYRN2 -RmZlFe3Dgdp59ck8qsSP1IZ+ovk6P9si9zEPBY+O/ByK11QqvruazkNzYlyx -92fKb2nuNHEmj7m32A3/fKF5X1ScE5HN493l3Al1FI/bkj6n8BWPyU65QyOr -CfpNx49syeOx+FS7gWUN9W9ixcKsIqrXivuanRR/mO85u7mER6b5vJRbtfT7 -ZOewN/8Dj0czvG2X1xHs1xNrXK3kcXDe4PMWiufMkInI+Myjz/Ho9tB6+v8j -I2rt5Voeo+0yruv+R1C5Q/3riwYe8yyjnpZR3FKu8uNTC81fYOoxnwYC3xJb -0wcdNE+BXdsUGylfLsCpjOcxf+rkJ/coXi7qFD8mdP7TD7YaNdF977ASmrp4 -TP1tqv2J4iPfJkdI9fH4YDPis2cznV/ZMuDLL8r/aIPnT4q1W18MDg7y0Dat -WXipheB/k3qOBQ== - "]]}, - Annotation[#, "Charting`Private`Tag$12753#4"]& ]}, {}}, InsetBox[ - TemplateBox[{ - RowBox[{"OO", "(", - TagBox["x", HoldForm], ")"}], - RowBox[{"OOOO", "(", - TagBox["x", HoldForm], ")"}], - RowBox[{ - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], - TemplateBox[{ - RowBox[{ - TagBox["x", HoldForm], " ", "\:01a7S"}]}, "Floor"]], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"R", "(", - TemplateBox[{ - RowBox[{"(", - RowBox[{ - TagBox["x", HoldForm], " ", "\:01a7S"}], ")"}], "1"}, - "Mod"], ")"}], "-", "0.5`"}], ")"}]}], "+", "0.5`"}], - TemplateBox[{ - RowBox[{"FabiusF", "(", - TagBox["x", HoldForm], ")"}]}, "Abs"]}, - "LineLegend", - DisplayFunction->(FormBox[ - StyleBox[ - StyleBox[ - PaneBox[ - TagBox[ - GridBox[{{ - TagBox[ - GridBox[{{ - GraphicsBox[{{ - Directive[ - EdgeForm[ - Directive[ - Opacity[0.3], - GrayLevel[0]]], - PointSize[0.5], - Opacity[1.], - RGBColor[0.368417, 0.506779, 0.709798], - AbsoluteThickness[1.6], - Dashing[{Small, Small}]], { - LineBox[{{0, 10}, {40, 10}}]}}, { - Directive[ - EdgeForm[ - Directive[ - Opacity[0.3], - GrayLevel[0]]], - PointSize[0.5], - Opacity[1.], - RGBColor[0.368417, 0.506779, 0.709798], - AbsoluteThickness[1.6], - Dashing[{Small, Small}]], {}}}, AspectRatio -> Full, - ImageSize -> {40, 10}, PlotRangePadding -> None, - ImagePadding -> Automatic, - BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { - GraphicsBox[{{ - Directive[ - EdgeForm[ - Directive[ - Opacity[0.3], - GrayLevel[0]]], - PointSize[0.5], - Opacity[1.], - RGBColor[0.880722, 0.611041, 0.142051], - AbsoluteThickness[1.6]], { - LineBox[{{0, 10}, {40, 10}}]}}, { - Directive[ - EdgeForm[ - Directive[ - Opacity[0.3], - GrayLevel[0]]], - PointSize[0.5], - Opacity[1.], - RGBColor[0.880722, 0.611041, 0.142051], - AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, - ImageSize -> {40, 10}, PlotRangePadding -> None, - ImagePadding -> Automatic, - BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, { - GraphicsBox[{{ - Directive[ - EdgeForm[ - Directive[ - Opacity[0.3], - GrayLevel[0]]], - PointSize[0.5], - Opacity[1.], - RGBColor[0.560181, 0.691569, 0.194885], - AbsoluteThickness[1.6], - Dashing[{Small, Small}]], { - LineBox[{{0, 10}, {40, 10}}]}}, { - Directive[ - EdgeForm[ - Directive[ - Opacity[0.3], - GrayLevel[0]]], - PointSize[0.5], - Opacity[1.], - RGBColor[0.560181, 0.691569, 0.194885], - AbsoluteThickness[1.6], - Dashing[{Small, Small}]], {}}}, AspectRatio -> Full, - ImageSize -> {40, 10}, PlotRangePadding -> None, - ImagePadding -> Automatic, - BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, { - GraphicsBox[{{ - Directive[ - EdgeForm[ - Directive[ - Opacity[0.3], - GrayLevel[0]]], - PointSize[0.5], - Opacity[1.], - RGBColor[0.922526, 0.385626, 0.209179], - AbsoluteThickness[1.6]], { - LineBox[{{0, 10}, {40, 10}}]}}, { - Directive[ - EdgeForm[ - Directive[ - Opacity[0.3], - GrayLevel[0]]], - PointSize[0.5], - Opacity[1.], - RGBColor[0.922526, 0.385626, 0.209179], - AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, - ImageSize -> {40, 10}, PlotRangePadding -> None, - ImagePadding -> Automatic, - BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}}, - GridBoxAlignment -> { - "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, - AutoDelete -> False, - GridBoxDividers -> { - "Columns" -> {{False}}, "Rows" -> {{False}}}, - GridBoxItemSize -> { - "Columns" -> {{All}}, "Rows" -> {{All}}}, - GridBoxSpacings -> { - "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, - GridBoxAlignment -> { - "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> - False, GridBoxItemSize -> { - "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, - GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], - "Grid"], Alignment -> Left, AppearanceElements -> None, - ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> - "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { - FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> - False], TraditionalForm]& ), - Editable->True, - InterpretationFunction:>(RowBox[{"LineLegend", "[", - RowBox[{ - RowBox[{"{", - RowBox[{ - RowBox[{"Directive", "[", - RowBox[{ - RowBox[{"Opacity", "[", "1.`", "]"}], ",", - InterpretationBox[ - ButtonBox[ - TooltipBox[ - GraphicsBox[{{ - GrayLevel[0], - RectangleBox[{0, 0}]}, { - GrayLevel[0], - RectangleBox[{1, -1}]}, { - RGBColor[0.368417, 0.506779, 0.709798], - RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> - "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, - FrameStyle -> - RGBColor[ - 0.24561133333333335`, 0.3378526666666667, - 0.4731986666666667], FrameTicks -> None, PlotRangePadding -> - None, ImageSize -> - Dynamic[{Automatic, - 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ - Magnification])}]], - StyleBox[ - RowBox[{"RGBColor", "[", - RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}], - "]"}], NumberMarks -> False]], Appearance -> None, - BaseStyle -> {}, BaselinePosition -> Baseline, - DefaultBaseStyle -> {}, ButtonFunction :> - With[{Typeset`box$ = EvaluationBox[]}, - If[ - Not[ - AbsoluteCurrentValue["Deployed"]], - SelectionMove[Typeset`box$, All, Expression]; - FrontEnd`Private`$ColorSelectorInitialAlpha = 1; - FrontEnd`Private`$ColorSelectorInitialColor = - RGBColor[0.368417, 0.506779, 0.709798]; - FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; - MathLink`CallFrontEnd[ - FrontEnd`AttachCell[Typeset`box$, - FrontEndResource["RGBColorValueSelector"], { - 0, {Left, Bottom}}, {Left, Top}, - "ClosingActions" -> { - "SelectionDeparture", "ParentChanged", - "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> - Automatic, Method -> "Preemptive"], - RGBColor[0.368417, 0.506779, 0.709798], Editable -> False, - Selectable -> False], ",", - RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", - RowBox[{"Dashing", "[", - RowBox[{"{", - RowBox[{"Small", ",", "Small"}], "}"}], "]"}]}], "]"}], - ",", - RowBox[{"Directive", "[", - RowBox[{ - RowBox[{"Opacity", "[", "1.`", "]"}], ",", - InterpretationBox[ - ButtonBox[ - TooltipBox[ - GraphicsBox[{{ - GrayLevel[0], - RectangleBox[{0, 0}]}, { - GrayLevel[0], - RectangleBox[{1, -1}]}, { - RGBColor[0.880722, 0.611041, 0.142051], - RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> - "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, - FrameStyle -> - RGBColor[ - 0.587148, 0.40736066666666665`, 0.09470066666666668], - FrameTicks -> None, PlotRangePadding -> None, ImageSize -> - Dynamic[{Automatic, - 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ - Magnification])}]], - StyleBox[ - RowBox[{"RGBColor", "[", - RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}], - "]"}], NumberMarks -> False]], Appearance -> None, - BaseStyle -> {}, BaselinePosition -> Baseline, - DefaultBaseStyle -> {}, ButtonFunction :> - With[{Typeset`box$ = EvaluationBox[]}, - If[ - Not[ - AbsoluteCurrentValue["Deployed"]], - SelectionMove[Typeset`box$, All, Expression]; - FrontEnd`Private`$ColorSelectorInitialAlpha = 1; - FrontEnd`Private`$ColorSelectorInitialColor = - RGBColor[0.880722, 0.611041, 0.142051]; - FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; - MathLink`CallFrontEnd[ - FrontEnd`AttachCell[Typeset`box$, - FrontEndResource["RGBColorValueSelector"], { - 0, {Left, Bottom}}, {Left, Top}, - "ClosingActions" -> { - "SelectionDeparture", "ParentChanged", - "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> - Automatic, Method -> "Preemptive"], - RGBColor[0.880722, 0.611041, 0.142051], Editable -> False, - Selectable -> False], ",", - RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], - ",", - RowBox[{"Directive", "[", - RowBox[{ - RowBox[{"Opacity", "[", "1.`", "]"}], ",", - InterpretationBox[ - ButtonBox[ - TooltipBox[ - GraphicsBox[{{ - GrayLevel[0], - RectangleBox[{0, 0}]}, { - GrayLevel[0], - RectangleBox[{1, -1}]}, { - RGBColor[0.560181, 0.691569, 0.194885], - RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> - "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, - FrameStyle -> - RGBColor[ - 0.37345400000000006`, 0.461046, 0.12992333333333334`], - FrameTicks -> None, PlotRangePadding -> None, ImageSize -> - Dynamic[{Automatic, - 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ - Magnification])}]], - StyleBox[ - RowBox[{"RGBColor", "[", - RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}], - "]"}], NumberMarks -> False]], Appearance -> None, - BaseStyle -> {}, BaselinePosition -> Baseline, - DefaultBaseStyle -> {}, ButtonFunction :> - With[{Typeset`box$ = EvaluationBox[]}, - If[ - Not[ - AbsoluteCurrentValue["Deployed"]], - SelectionMove[Typeset`box$, All, Expression]; - FrontEnd`Private`$ColorSelectorInitialAlpha = 1; - FrontEnd`Private`$ColorSelectorInitialColor = - RGBColor[0.560181, 0.691569, 0.194885]; - FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; - MathLink`CallFrontEnd[ - FrontEnd`AttachCell[Typeset`box$, - FrontEndResource["RGBColorValueSelector"], { - 0, {Left, Bottom}}, {Left, Top}, - "ClosingActions" -> { - "SelectionDeparture", "ParentChanged", - "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> - Automatic, Method -> "Preemptive"], - RGBColor[0.560181, 0.691569, 0.194885], Editable -> False, - Selectable -> False], ",", - RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", - RowBox[{"Dashing", "[", - RowBox[{"{", - RowBox[{"Small", ",", "Small"}], "}"}], "]"}]}], "]"}], - ",", - RowBox[{"Directive", "[", - RowBox[{ - RowBox[{"Opacity", "[", "1.`", "]"}], ",", - InterpretationBox[ - ButtonBox[ - TooltipBox[ - GraphicsBox[{{ - GrayLevel[0], - RectangleBox[{0, 0}]}, { - GrayLevel[0], - RectangleBox[{1, -1}]}, { - RGBColor[0.922526, 0.385626, 0.209179], - RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> - "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, - FrameStyle -> - RGBColor[ - 0.6150173333333333, 0.25708400000000003`, - 0.13945266666666667`], FrameTicks -> None, - PlotRangePadding -> None, ImageSize -> - Dynamic[{Automatic, - 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ - Magnification])}]], - StyleBox[ - RowBox[{"RGBColor", "[", - RowBox[{"0.922526`", ",", "0.385626`", ",", "0.209179`"}], - "]"}], NumberMarks -> False]], Appearance -> None, - BaseStyle -> {}, BaselinePosition -> Baseline, - DefaultBaseStyle -> {}, ButtonFunction :> - With[{Typeset`box$ = EvaluationBox[]}, - If[ - Not[ - AbsoluteCurrentValue["Deployed"]], - SelectionMove[Typeset`box$, All, Expression]; - FrontEnd`Private`$ColorSelectorInitialAlpha = 1; - FrontEnd`Private`$ColorSelectorInitialColor = - RGBColor[0.922526, 0.385626, 0.209179]; - FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; - MathLink`CallFrontEnd[ - FrontEnd`AttachCell[Typeset`box$, - FrontEndResource["RGBColorValueSelector"], { - 0, {Left, Bottom}}, {Left, Top}, - "ClosingActions" -> { - "SelectionDeparture", "ParentChanged", - "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> - Automatic, Method -> "Preemptive"], - RGBColor[0.922526, 0.385626, 0.209179], Editable -> False, - Selectable -> False], ",", - RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], - "]"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{ - TagBox[#, HoldForm], ",", - TagBox[#2, HoldForm], ",", - TagBox[#3, HoldForm], ",", - TagBox[#4, HoldForm]}], "}"}], ",", - RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", - RowBox[{"LabelStyle", "\[Rule]", - RowBox[{"{", "}"}]}], ",", - RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], - "]"}]& )], Scaled[{0.5, 0.99}], ImageScaled[{0.5, 1}], - BaseStyle->{FontSize -> Larger}, - FormatType->StandardForm]}, - AspectRatio->NCache[ - Rational[1, 2], 0.5], - Axes->{False, False}, - AxesLabel->{None, None}, - AxesOrigin->{0.75, 0.930555556043837}, - DisplayFunction->Identity, - Frame->{{False, False}, {False, False}}, - FrameLabel->{{None, None}, {None, None}}, - FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, - GridLines->{None, None}, - GridLinesStyle->Directive[ - GrayLevel[0.5, 0.4]], - ImagePadding->All, - ImageSize->Full, - Method->{ - "DefaultBoundaryStyle" -> Automatic, - "DefaultGraphicsInteraction" -> { - "Version" -> 1.2, "TrackMousePosition" -> {True, False}, - "Effects" -> { - "Highlight" -> {"ratio" -> 2}, - "HighlightPoint" -> {"ratio" -> 2}, - "Droplines" -> { - "freeformCursorMode" -> True, - "placement" -> {"x" -> "All", "y" -> "None"}}}}, - "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> - None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ - (Identity[#]& )[ - Part[#, 1]], - (Identity[#]& )[ - Part[#, 2]]}& ), "CopiedValueFunction" -> ({ - (Identity[#]& )[ - Part[#, 1]], - (Identity[#]& )[ - Part[#, 2]]}& )}}, - PlotRange->{{0.75, 0.875}, {0.930555556043837, 1.0000000000000004`}}, - PlotRangeClipping->True, - PlotRangePadding->{{0, 0}, {0, 0}}, - Ticks->{Automatic, Automatic}], - InterpretTemplate[Legended[ - Graphics[{{{{}, {}, - Annotation[{ - Directive[ - Opacity[1.], - RGBColor[0.368417, 0.506779, 0.709798], - AbsoluteThickness[1.6], - Dashing[{Small, Small}]], - Line[CompressedData[" -1:eJwdmHlYTuv3xtOgiROFSAepKJ1UnNDAXcKJpEGEOkmDcqIiQoPx0Ekc0aCU -4RhLUhS9Ks0JSSkpDSoN9sB+SlRK3t/z/f3z7utz7X2tZ611r3Xvfb0aHgGO -3pISEhJjxkhI/O/aNt2K/jJo+v+rgJWJFp2NUgzEMy/LN0gJKDfTvCwtx2Bk -TVfsD1kBZTscLrCKDPwy1zY1KAoI3vhzTJ4Sg8Nbr6skKwlY7hu9ok2FwfnU -rI/pKgL+lfEvz1dl8DAkYWOwqoD+CsMZn6cz8O8wvBY1XYDi6j2M/CwGLrtn -J0bOFHB9g7i3TZNBSKfMRGgK2BCx+7WcDoOirSYHLeYKOLnCoJfTo+c/v9nw -fZ4AvyK/I48NGLza870yeb6AHdvOME0LGTiYKr84tUDAxzPD/z5czEBCd+9l -o0UCDrWtHd9pxiDvsnrhbFMBz8ivoz/A4D9hjf7oUgHno0z1aqwYaN1b6nzO -kta31txo4A9av1xuh/9KAU0JkfvqbRis1ROSx64W4KyQf07WnsGvho7DPWsF -RJjumjnHicG9RM2fmfYCFg/s4EedGUTaz5+2yEmARIPNWR1XBg88L7OSmwSs -tjq4e5w7jXeqZFWUC+2/v3Z5iyfV47/Vxj/dBLgUPOoV+zDomb/iS46HgL7E -mC0tfgyYhT7q87cLuHpxQ7JiIH3eU8+Z2yFAcku83dy9DArmvG6K3iWg68Zs -yx/7GVx7c+j+10ABbZNiFbTCGEyoSL17aa+ALRMclGWOMECOVKD0AQH/vDgd -VXuc9mfrme0bQwXUpKa3fIlg0CqzOunTIQEJk9R2voxi4DUic8DymICDN/zq -hs4y2KZ8p/7dCdqfQrmD72MYlH8ftTeKFCAkakVnXqD6eN5x3ntagHqi9uH6 -JAai8d2D388KeK65527WFQZ/qKbEI0ZAdN31+13Xqd4edRMq4gUoLHfSkUyh -+TU9rDK5KEDa3L61MY3BXDuvgF2XBKi6GP0lmcmgRqtX3HFVwB0ZN+PuLAbH -yq9xqjcE9PrL78nOYfCnfomk6W0B9qOJJ9/m0fOyx2km3xFgoBr87n4hg9hj -2eFF6QJ0Ni6Wbi9l4N3OzNa6L+DN+v1XhysYxOxQTw/Kpvq1Soa+qmRgUr7O -+WQO1SsqSP9bNYNhf133hlyab7nBjPo6BnYyCj/5JwJYzdc9so10XpdMM19W -LCDUsm/W3BYGGQozRGFlAs5wroniNgYzztdkHK4QIBKls/O6GNg0FW4pfCHA -U3nNASWGgZI7P1BaJaB4nveBdp7BmHjd/Ic1Apb4ettL9zIwt4+y7ayj9Rjd -397Rz0CXlGa+fSvAYuYHp4lDDHZU68+WaaL9e3kuW/8Hg/BK9b2zWgVYS59x -lJJgMbSNCZdsF3Bz265netIsUkYTU2d0Cji2JjFsvByLMjlPSckeAcpfrK41 -K7J4/W7OnDpGQF5B3ZUfSiy8VdxOtPJ03qZkNL9VYfHW/mZfhiBgbmwAkZrK -Qmn2t+bcPgFccqglN51FkKnq6n+/CnD3GivzZCYLm5d+7+wGBRD74KsfNFnk -5VpLrB4W8POZUUjxXBa/lQycUhwVMGd7rV6/Hossg4+fpSUIxpT0rZtoyKIt -0lXvkySBa6prJrOQhU/ruKxLMgSvH95llZewWOZuO+eEHMFTW+ttA2Ys3HYu -3rxYkcD/hseap2Ah/H3coXE8gcEsD0XWisVW45Pr7k0gCJybrlD+BwvT+Wd5 -OxWCF+tbO/ptaD8WRVdrTyFoXHZ6npI9i+cHDxpyUwm8H56837meRXOtoWro -dIJxDtsnKG5iceHGm02YQbDwwLl03oXe990WVzOLYLybWb5oK4tLs8aZOGgS -SOx4ca3Rk8X+zYEO0nMIgsQ3Ku77sJhjdGDFCR16P8+rrNWPhXagJFmsR+NL -BopLAlgUJNSyIn2CStnhtNgg2o8/2q/rGhLcWLDD8PF+Fr+/NJhfuYBglNHs -jw9l0aN5kjUzJggoKz1TcZjF1MnjcloWE8S6fUjsOk77U2I8stOUwOTvtV25 -ESx8zc5vrDInGHqVNLYrioV+flqDKwgW3Vzk8/QsC+Wrq7rzLQl0TO1N4mJY -5PvPdhq/gtb7dV3nowss3jtqSJ5eRVBgklh5LomFxu4i9RZrAo8bz6IKr7A4 -1TAo2mxD8Lgq+Mm76yzUpin4V9gSRB8L1E+/zcIlZNU+WXuCo652++rSWHQY -2SnvdST4Unxw5EEGC6nPYcFZTgRhayM3d2excFea+GCGM40Xp6orLWJxaPWu -rSGbCYL/6lvUksfC/s6h3FQXgrVemeqyRSyqu9UlpN0IrrG5FnwpC9uLX3wX -uBOk6a94m1fBQqwQN9/Rg+BV/AOrtkoWG3eUDiZ5EeyO2knyqllsWn63LHc7 -gf5NxSC+joXJP8sbJHcQJIfr+so20nqPzfxp5kcQ1XE+qaWZhYzszV9sdhHE -/NVxS7qdxa/jbh44FkAw/XBob3cnvW8WZhm9m2CjY2xa1kcWV10G5aKDaD5r -zi97w7PQyThvlbOP4MirZqV7hO7T9J78h/vpPO9XeNzUz2J1iuSnpoMELWl/ -Xy0aZPFzy5nqhlCq/+Xw7+dHWOSGcvIV4QRLclzmicQsDOpTlFsO035uOZEY -L8WBO5Kf+fwo3RfN2PYKWQ6mRmK3luMEtmkaid2KHBrX+U/vOEHgVDB8Nl+J -g+j73+sLIwj2DojcelQ45BcbZhRHEkzKLfF7rsohJ7Bn5FIUgY+5DZcwnYO7 -xRnLXWcI3nSKLPJmcljYLVu29SxB0ZQ99fGaHG6deq2qf46e7z9heflc+jzK -OPUYgsMn9Ge163FgXxn7i2MJRHPjzbMNOGyOuJXyJJ5AgXQaNi/ksE/WNvhS -Aq3fMtwzbzGHjI1jAjdfJHj2eGSXYMZh7EnvZYuSaT69Q+x4C8qPVkwZe5ng -xAPLGz1WNL4aI5F1heBJYsAiZWsOd8JN6w7/R7BvHDt20IZDs+5H/XnXCdqX -dlg/s+PwVmwa/uwGgVdsgcen9Rx+Rk+uOnGLwDf4Y+5zZw4fM/pPaKQQnAz/ -xn134ZA1YcvR5lQCZ6tjp6e4c2Bc63Ui0whSYrfs/OTJ4V2k78wp6QTKilO1 -JvtysH6ku7PoHsGPcRpqg34czmutDF+TSZBYlXK0PIBDksWw1vP7BHZZk4t7 -gjjoP3Yx98qi9Wi9Wla8n4PFzRlDbdkE9bl+sUIoh74PU7bvf0T9S+kfF7kj -HF6sWTNbSkTg0kvcm49zWL7dwTfwMcHgN/NlY/6hehs27R3KJVCJqN/cHsXh -mav2EY98Auul622VoznMUbwa0/OEwPCB3QPDWA7KrMm6rYUECQ8ubJBLoP29 -9YuQW0Sg1lhWsyCZzlOKQ6pBCYF65NJTU65yCLu5sjCilPr10O8Pe65z8FBY -6VNfRnDlzESRfAqHlikvrMyeEnxON/nencYhO8TP5UQFnb/+VcqTMznkVVSw -Pc+onw3WJhtmc3CUuF+89AWBfMQdbxkRB+2R07kHK6meZj5j9fOpfpbyy16+ -JOgLDegeX8TBLeuis/Qr2o+QAePmUg7XO0ZvLKimfNnDbaSCg5xbYXxwDcGm -dWrlbyrpfK/b+vPqa7ovs3OkxtRwCFyqZtteS6B4/MqRnjoOm/b/GTH2DUHD -f2MDRA0clmRdsNWsp+d3Oxq3NnN45HRJxektgeZDziSvjYPrs+GbOxuo/6T6 -TPnUyaHeQCYkoZHuh6unlzzDIU7L91zuOzo/SXd623gOmkf/dClvInAUv3WS -7+Xwl8mhkA/NBJeEdYN8P4dvYRHFTAv1n+SVinmDHEpj4xb1tBJkB2gMtozQ -fVSao/btPfW/V9YaIjGHuadeyght1B8cNmj2SPGw8nK7NthOsC22PV5CjkfD -plNaQx0EKz1yrN8o8sit9ort/EBgtSGodliJh/Q9u+fvOwmK60IuNqnwEB3i -3cu7aL/2+5iOn8rj7DltcW43re9drc1v6jwupH9qvt1DsLMiMkl6Fo9VYVKS -Rz/S+W3SLjXQ4mE3XG3pyxA8ODBed5IOD3f5YAtzlu5vfZBEtx4P+/f5vnIc -fR85F2bIGfKwCUgt7aCc4r3xUvdCHgsNxxSk8NSfE2o9Ji/hYTygoh/2ic5P -ZFWikTmPymrz8D8+E7BjJynJWvCoOlnlOEYg+JkCV4MVPPrtGjKfUo55++jj -BGseoRqH5UMJQXPJ3a73Njx2uabq6/QSLH0T8Vhsx2Pixs7+Nsozd997+W49 -D72uO7ERfXTeF+bmjN1E62FmqJl8IYg7MrHjkwsPU7X3pIly6emPoYVbeRD6 -0bCvn/pXwTWhy5NHgrG4bdpXug8hqVdKfXjcOsTLZlB+4Bqn882P1tf9yn/t -N4JVo+LZKoE8SpcUZH6gvEX3kQsXxGPAxU7Bb4AgIsRh56QDNP69+Y+GKf/u -vCRvMJTH1pxpJGyQvu+/XAqtOMzD50DX5yHKv2QxKtxxHiNq+ptChwhkxYe4 -8giqv269QR9ltcDhhK9R9PwZKx7u/E7978pXkVI07W/zdFEH5TkupqpdMTy+ -PJ/4i80w9R8zb1vFBKqP/Uvtx5S9bjcX80k8ikzzZNRHCAZe19wWXeFx2RG2 -Bylf00jzbrzOI3W9W2AT5aofNdvu3+bR6+ppZvSD+uFos3FrGo+k4jqtKMoN -/yywLsngMb+6Qq+Zsl2d7MuYLB6/Td31RXuU5re8ZK4oh0dc0KrePZT7lj4r -jsujem52+fSIsrpb1sKnhVSPa4nbflAeNv9VtbOUR8/SL7bmP+n83q5d8riC -xnNKnbGXcvWiXQs+VPJ4/PessLuUnzqs/6usmsfvv1osbKUcqCdSianjIdc5 -fq28mH7/zJOMy27g8W2aoqIx5eDsC05nm+n8RzyV2kK5zlP5U34bD3Xt+d3h -lDtfK35728nDq6S9LZlyUKW9+Z2PPMqCar8/pKzOhbjU8DxwN31CFeWVsb2i -DMIjZUFB3nvKEZ42Qkc/zad1883PlMP6tOIkhuh+Yt6YIcp9CmtCGkd43JbP -aRilrNGVLxaLefzvvwAJiV78H/9ik1Y= - "]]}, "Charting`Private`Tag$12753#1"], - Annotation[{ - Directive[ - Opacity[1.], - RGBColor[0.880722, 0.611041, 0.142051], - AbsoluteThickness[1.6]], - Line[CompressedData[" -1:eJwVlnlYSOkXx9tLMW2IGCSUJSVD0fJFMaYoVEKNpU0bRWQJkSUkmvYUmSRL -yNK0a1NKUakoFa3qLnXfok2i3/v7597n89znOec953vO971qDl5bnMVERERE -RUVE/v9unmZCnwwunlhaUsz3YG3MqvZ6cQaxf/iZ8aQHxQbqNyVkGPSu8TZ1 -7u9BkdvmKFaOgV8KKbw63APfrb9Es+UZ6MtoqsSP9mCNa4hpszKD1NLBSjFR -AVcl9xfnqDA498lRTkVSwLcSnRk90xgkhOiWnRwnQO6vg8y4WQy6jrwVLZ8g -4LbNWG+zOoMy3Z8FrxUF2AQeeCejySBk8A9+6mQBF0y1e7mFDHbobpg9XVWA -R77H6UxtBotTc5okZwhw2xPMNCyl8cMqeMwW0BU8cvU/PQZmFi6yWvMEnGre -MKHdgIHD9QvX3RYIKCW//xwFg8AFapuDFwsIDVq5sMqEwSuzvFnOugJ8Nxgu -GfyTAbvi2Nqg5QIaoi8dfm/OQOnMdlmXlQJsZXP+kd7EoLm7yPiqsYDAlftm -zrNmsNo57PuNNQL0Bt34n7YMxDQS9ziuEyBSZ35N057Bhs/C1MNmAv4yOXZg -/G4GX5VPyxhZCFi7f25xkyOtZ8Xhaz2bBdjlpvWO7WXwpfL+RtZGQF9M2I4m -DwZvFN3N4rYLuHXdJk7Om4Hn6uiomL8FiO2ItNQ4xGD51nmz/PcI6EicvXr0 -CIMn7SZD050FNE8Ml51zgsHTy8a/xN0E7FDYrCR5moFur/Xn254CLpZdCao+ -y0CzrOk3LW8BVfcfNX0NZLBy4VqbXz4Coieqer4JYhD08Lr/pSMCjiV61Axf -YyC0adXb+dH+5Mkc+xxG+1vddYs5JUCImRPyJIrBzbmWM3cFCJgeM9f/fSzV -92dpyrQLAl6rH3z4PJ6B8Wvj3LBLAkJqbj/tuM3gd4U9A5uCBciusdYUu8dA -QjTh/FCIAAnDTZ/qkxn4Gpjd3xEuQMVuibvYEwYWJk7VotECHkjuXPblOYPz -oebTXWIF9O4fdzA1ncHxQyoNqTcFbPoZc+FDNgP36wpn1iUI0Fbx/fg0j4FM -+6ltkXcEaG7Vk2h5Sc8TnKCteV9ArdWRWyMlDKLTJs9MfEj1+yTmV1HOoHit -6tbmFKpXkI/WQCWDzU2f3Oye0/MWa894X0Pjp5+2ikoTwKq/65SuZ+C2ep62 -cpYAv9V9szSaGKxNmhl87IWAYM4+ZqyZQb93eMOtfAEZGY/YBR0MWrsLBqSK -BDgqmR2VZxjI/vNbyOISAQULnI+28AzSQvvKV5cJ0Hd13iTRy0AuJSYj9C2t -Z8lTl9ZvDH6G/6uXVCVg1cw2a8Vhul8fDpwcrKH9e/NPqtYog3S5UlndOgHr -JYK3iIuwcGjrNl3SIODOnn2lCyVY1Ba0zfb8JCDALObEBBkWu84UG3m0CFD6 -apLQKMci45BL/tZ2Adm5NfGj8iy6nbzKT3TSeZuc0vhBmcVTqckarqwAjXAv -Ij6FBWPvNTu4WwAX57eam8bilUPo2BEiYLeTlOSLmSxcZe4+tfwqgGzyvdWm -zsL0cWDXrgEBv0qXHC/QYCF1Jn6i3rCAeS7VC78tZHFu1/6mtT8EiBb2WSjq -0PwpVmqrfwmwv2//hFlK46ulHZMQJXj330NWSZ9F/v575r/ECV5tXL9n0IDF -kxKTwnwpgv2JDmavwOLrUbN673EE2rMc5FgTFpHOtyy2jifw1ngkW/wnzSd5 -+ZSkPEGZ1afWb+YsLHZ/1mAVCeqNryyQ38Ri9qJy1ayJBM7/XXjabsWic7iy -zUaFYPxmFwW5bSwCXI2k5qoSLD36zyPejvb7eey1vOkEE3Ya5GTsYqEza825 -9TMJRNzKEuodWVzQd8kVn03gM5ZY8nQvi1zb1QeD5tDv2U5FnzxYrHT1DTTV -oPHFvMcKvVhc7yy/WzafoFx6JDnch56nq/E2FhEk6rrpZB5hccZAubtjMcFP -Rv1bpB+LBdu/Wm1bQuBV9DK4xJ+FU6TPnB9LCcJ3tsV0nKX9nLb81JXlBCvO -bejICmTBSVgq9egTDFfESnUEsVB9833Az4Bg+Z3le19dY2GmcSGxwYhAc+Wm -FRFhLPpT3H5qrqL19lu0p0WxCGKXRCSuIchdEVP+TyyLeWKLZftMCRwSS4Py -4lmUlZp8dvuTIPOt74uPt1n8Otg1vvovgpAAb61Hd6k+m1id8RsIzthbHq5J -ZlGYJ3PrgAXB14JjP56lUH0e1Ifd30RwYsOl7V+es4h+91e/nBWNF6EyXyKD -xSKfUfWdNgS+7n3Lm7JZnLrj3HvWlmCD05Pp0vksjJd4qtRsJ0hgs1bxL1lM -rT7mPmhHkKxl+iG7hMUyDY9k2Z0EFZHPTJrLWVRdiTX6czfBgSBPkl1J+7Wl -WXa7A4HWHTkfvobFYNq/lqFOBHEn57tK19P6esT1clwIglpDY5saWbAPK/bl -uBKEubcmSbSwsHvgrtDuTjDN36/3SzuLWP2eay2eBFu3hCc/72LRMDLhbeV+ -eh6zUONanoW1/WSfDm+C0xWN8o8Ji0NfJUTfHaTzfEQ2s+Eb7a+lh3rbIYKm -5HO38odYpB2uyyr3pfrfPPk99AeLo5PDAu4eJdBPt1uQMcZiz8HMz0nHaT93 -nI+JFOegr1iR6X+C7ot6eEuJNIeh14a2fqcINiarxXyR45B1gPnseprAOnfk -Wo48h5Geif06AQSHBjN2dipzeGFtVqZ6jmBiVqHHaxUOW3Y/zmg+T7DX0JyL -nsZBbl5KUlQgQW17xqrsmRyOz9/2t/clgvzJB99HqnP4Y0WDztwgmn+/wppi -DZpvwER05AqB/3mtWS0LOVi5dF4tuEqQoRFpmKrNQc3Fco1LCIEsaddpXMph -/43o7/NDaf2rTzpm63F4I3J2Z3kYQWnmj32CAYd8j7u/LkfQ8/QOsxNWcZgR -0ffOKIrg/LPViZ0mHAbdbm6vjCZ4EeO1XGk9h4nmaRqnrhMcHs9KDZlzMJsh -umR8HEGLUev6UksO2vZT/K7eIHAKz3XotuJQPuXjTK14AlffrqzXthwanKaP -Jt8iuHBygPtux6Gz9eGBdQkEtiYBVybv5uBW28jX3ia4F77Ds9uRQ/Tv7jdM -7xAoyU2ZM8mVQ+qkr6MVSQSj49VUhzw4rBxYomJwjyDm7b0zxV4ccl+XGsbd -J7B8Pqmg04dDxvxJi1WSaT1zKowLjnCYc9yo8tBDgvdZHuGCH9WjMyiAf0T9 -S/6incxpDosc5o+zTSGw6yW7G89yWMe16SU9IRgaMDQWvcihcm9g1IRnBMqB -77e3BHFQvPh6xvbnBOuNrDYqhXCoXxmslpNKoPPM8plOOIfXMw08JqYRRD+L -spGJ5ug9bPluczqBan1RlW4c1Xvqwro7GQTTLxldnnyLwz7rlUeaM6lfD//x -X+dtDmmH6rbLZxPEBytmjLvHYVV38DibHIKeRyu+f0nmoDNvitGZF3T+vq1T -mvSEQ1nAaEhhLvWzoeo4nVQOFXH2g9/zCMYFPnCWzOCg2x9YPqWA6mmwV0or -hwNje6jXvJCgz8/ry4R8DtXWAb9cXtJ+HB9c1viSg/++lwrHiijfdNj5o4SD -odyc5JvFBNssVItryznMNjOVf/SK7svsdHHRKlpPQZ1tRQmB3Nn40501HB57 -HGitLyWo+1fKK6OOzpupdEPDa5r/y5Zlnxo5HBY/NyCUEaj/x63Ibqbx7awW -95RT/7m/d3J3O40fYs+PvqH7Ye/oNI7h0FR5rUe8gs5P7IPeZp5DTmEvN0B5 -y9gH63G9HL2/5R8PVxLcECyG+G8cotrCP3dWUf+JWyuXPcQhm+Trv31HkOql -NtT0g85X1c+El9XU/yrWq2WMcbAeV78hqYb6w2Yb9U5xHvYWtQeiawn2hLdE -isjwMNqnFRvwnmCtQ/r6WjkeDZJUoA8EJjY+1SPyPE7vymtCHUFBzfHrDco8 -jMeq9yjX034d2btywhQey8vOzxqgnPCx2nzRdB5vVHwsKj8SeJZcipWYxaMq -bnxZVAOd34a5L7Xn8Ggx3li7r5Hg2dEJ8ydq8vhw0T5St4nu73sfkS8LeTyt -+B7bS3nYNi9FRofHufSq4OxPdH+ct974spTHrYCL3w9/pv4cXe0wSZ/H4bM2 -bwyb6fxcehuzxJDHHq+PRaOUWamJ8tKreEgtSvj+sIXg1z3Ya5vyuGJ4aMi1 -lfrzh7QuhfU8ojUqIya1ETQWPuz4bM6ju+Do7BzKRrWBmWOWPNIz3dv2tRPM -PPD4zUcrHq+uHfuu0EHnfWlWutQ2HoFvFF7nUo44rdjabcfjRK/c5p1fCF5e -6fLL28XjwVTVucOUZXMThA5HHp7Ry9TjOuk+HL8f/3IvD7O1Gy/rdtF+2Edo -DnjwkJC9m1RNed3PsdnK3jzWiJ0d9mQIdsxPs+N8eOSOBTqOUA48vtlz4lEe -cSq7RkJYgj9s9bOH/HhkudtLTuPoff/1hl+JP49fWV0/4in/9pxR5s7y2KaY -EqfFE0iPneKKA3kUuUtuTaGs6j0S3R/EY+qxvy1XdFP/i+/PkA/hkebYrpZL -eZ7dSpWOMB6GC0Ke6PVQ/zFw3igXzWPe9W9imZSd7jYW8LE8LvRLu2gLBIPv -qu5mxPPIP+Nt/i/lBLVk5/rbPEqTCv1VCcHb0ao9T+/yUD1ZZH+JstLPxmWf -knmUPRA0xyjXXdRdX5jCo6+ICO69dH5qpN+EPedhPTXhUjXlljWFGhnpPHao -T0la1Uf33ai0ICKbx9aOwo13KE/f+XzpqzweBqtO/a7wlWDE8HeV9pc8tlxW -TfOlvO1utX5mCY+LkXVutZQrl+/TbSvnMeNB+ye9b/R+2mzlXlTJY9GOi+mh -lL0XZiiH1fCoVVMkLOWlC8QiUutovlypC+v66f9HapT1tUYe3j360rGUaxyV -unOaebhpOUT3U25/JzfwoZ1H2AkNf7MB+v9XvsnwQRed56QJNdGUp3PH7ap4 -qmdiaiNPeW14b0YK4aGYbxyhN0j1djQXWr/xqAhXyAqkfKJvToTIMA/3yhUB -tZT7ZM2O1//gYZo+5qs6RKDWkTM2NsYjKK/MzIny/wCx2KQg - "]]}, "Charting`Private`Tag$12753#2"], - Annotation[{ - Directive[ - Opacity[1.], - RGBColor[0.560181, 0.691569, 0.194885], - AbsoluteThickness[1.6], - Dashing[{Small, Small}]], - Line[CompressedData[" -1:eJwl1nk4lGsbAHBbyHLIkpLK0olylKJS1J2oFIWQwlGRkD1F0aJVJVpMIlun -FNFirSkiyRIqW8iSPaF5HlEpwvfe7/fPzPW7Zq55nnt9R8XJZ5uLAB8fHz8/ -Hx++t80yYl6/AB/fej7lUh6sj1nb1SiIDp86Us6DYn21BCFRdAdH6T0PXrtb -3ugTRy9qGqnhQcD2Cf5cKXSObF49D9a5XTFuk0Xn9b5t4kHEFO/iPAX08+1R -n3gwXKo9hzcLveF2WicPxDcd+DJVGb0g5v5nHtyxmRxsU0P/lN7VzwObUL9q -UQ30qiO7CQ/OGS8e7NdEX2+YOcQDj5ceIc8Wo4Uq837wwH1P+JcmHfTM8tTf -POgNH43IWYG+nGA5zoPjbWaSXfrs5wXr+AmU0dnjfwBtojV7CoFrYas0q4zQ -jrYZogQCzAyW/NyIftARIUGgKfrCoQ+maOn4+dIEbMXyropYoA+NCssRCF3l -NXe+NVp3okqBwIqf7gPjtmiNmdtnEeBrML2s4YC+26c6l8AmoyN+ErvR+RvS -VAms9/67uMUZvW/ZnPkE7POfDE66om2GGhYQ+BYTadfigb6ptFWLwK2bNnHi -vuhgW7ElBATsoszVD6KXNafrEuhOUjX8E4j+lSGnR6BNjiM27yja8+ELfQJ2 -0pYyU0LQU/zmAYHz5ZfCak6ju1wD1hGouv+wZSgULRcvsYFAtJyiZ2UYWj1o -zyYCR5I8an9dRic2/jZj8lMgeuRTJPqJtaUFARIz70r6DbSKA8eKgFLM3yc+ -xKIzx2faEnijduBBViL6Y/wuOwJXau9kdN9h6zuz918CYuusNQRS0F6NO/cQ -EDKwaG1MY+tzNHwvAQX7JfsF0tFpUgJuBFKnOC7ryUK7jK/wIDDoPfVA9lO0 -3kw7bwIW4zHn6nPRAmvy/AgsVgj4mFGADohvP0hAY/sKofYi9EUT48ME6qwC -b42Wohs/RgYz9WsVCH5XgRYOu3ecqVeYv9aP9+hvcSMnmfsWL57zoRZ9zFji -LIE+terPIo1o3wjH8wSCDb8pq7egQxXiwwiE9zvETLax8zT7VgQBLvdh38Ju -dFtj21UCzjKbD0t9QZ88180hULjQ5XD7AHrervobBPTcXCyEBtFcEaFYJp4l -Gfs6htHLT4/EE1g7t9N62i/022nz/2PyV3k1W+sPuvS0YRIBE6HwbYJ8fYz9 -HqklE7i7x6tMUwi9ln9tKoFTm2OOSoqinU+pPSQgM2R0u1kcXVz9/TGB3Pza -xD9S6Jy9k5lMv01/3Fwvi66cUpNDQJ3jQwVnoK8sauUS6I8LNuyfhd7ZnJ5L -YPde4Skv5qKnph/IJ0AtAm51qqHl1T0LCUyULQkqVEebCC5+TWD+vhrNYU20 -QIlGKQH+V9+2TtNGv3CXLifgcN8h/YsOe78dryoJVOc86JPRQ58zTn1PoGSL -yZ6f+mivbw41BLyTnDaXAPqH+0Qdkz9lJ/E+I/Tkn7oGAr7qD8WKN6K3agc2 -ESi3au0YNkUvL9rSSqBxzaWFUhZo5VaZdgIuOecyuqzQLkeTOglIWO6TFt+B -1uS49xDQOXz14YA9ese9sV4Cko76edxd6IAFx/qZ/nIvv93ojD5pvIRHwH8y -qTTDFX1GL4syn+fufd3qgeaTcB1ifl/Ad/KVD7pFq+87gQqR0TSOP7pH0X6E -QNJSd+1ngeinwhO/CYx/URuOCkYbKvv+IeDzuii89AQ6PkRmkgDHsTOm+zT6 -gFsSP4WVZ8y6n4ei052EhSj8ehcr3B2G3l9wQ5jC8rvLXUsuox/d/i1KQWOV -xcrrkeiMn6biFHS+b+16cgO9papSkkL+ypiKq7HoWMm50hScksrCChLREYqJ -MhSevQ148fEOmz9bKXkKV075aj1MZuP7aKlA4aSD+aHaNHSTaeFMCkOFR8Yy -H6ONAwWVKBw1u7CzJwvt1uo3h/m96woLhLjopPdVyhQC9n9b3pKLfv6voBoF -s73pSiIv0W0b9vxN4Xbf87UDRejPEKlOIU3LuD63lM3HgycLKLyLyjRqq0CX -xgr9Q8EvzJPmvkfrHVJfREHrrrj/QC1bv7kHtSnEHVvgJtLI1nsiYymFsI5r -sS3NbL+kFOtSiNzfcU+oHT17o8AKCrNOBA/2dKH7VeVXUti+jZOW1cvGO0NR -n7nP5mtr6gbQJYs2rqYQ8q5Z6hFF19uZAgXvQLFnTcNo7q8AQwotaWduvRxB -35sTZERhPOHY72tjbP8+81lPQe+p/ULuJPrncNhGJp92Z2OiBPvx+R0esolC -iRqnvVQEbaIYa0phS5pKTI84Wrc9eQsF6/zRy3lSaOnOcHMKB39yHT/LosX4 -YywpyD1/5fFGAS1cecyKgquBaX/0LLRQpo0Nhbou7trcueitXyxtKbycfuBD -lBpaNEFjJ3O+t/S6YnW025iqPYUTZ7WU2zVZr5L+lwJXPcogezE6pbrRkYIY -7dJu1kGHrH29m4nf8Jhz7gq0d0CYE4WyZ2NeRJ+9f+vBvcx9Bn/1Sa5F152y -3EfhbKZh0mcjtFyJmBuFFzE+y2VM0De9etwpHJLoEx4xZfOjHO9BoX11h0mZ -OfoSMfGisJeT7/TVCq1qL+9DwS2g9/kbW3T/fwW+FM4d+9H/2x5d033hAAVb -o1OXpu9GW0iaHKSQwrHz/OqMju7sPkRBRnzGPHk3dBLvViCFPxIqiiMe6Cpp -gyMUYt6mnCz2QQd9qwiiYJ4lX/jZHx2xMegoE8+8d2sKA9HXQkSPU/jw3IND -gtEzrmafoNAodd5eNIStj5bNSQr2g3R382n0/CP1pyiM/DBYw38endly8AwF -2dAPO9vD0AJ2389SMFlttUXmCvt96yuhFLQzzTO1Oeh9uioXKERn3rARjUYr -j0ZepKDY+LpqaRyaHFe9REHpwuqL02+h6y0jwylU/9LN+XwHXd78O4JCYvg0 -7tQU9IR38BUKvIcrf/ekoX1l2q8y/Te8QUY+Hd2+YFckBZ+RmjjtbLbe5bUc -ClNDU12mcNGLDP+JYuqp7yqslYeOOpRwg8K3YJ8eyZfo7p7v0Uw+gn4uay5C -m6Ua3mSc4OQ4Vsr2/9HkWAo7tioW11Ww9TUZimPmRfWpIH8V27/XbBIoiJ9O -DPlci/ZclZBIoeE/YR9uA+tLrbeY83u2LWttRh9M171NQS2nf2VuG9qR53eH -2T/3Xad/7UI7+JYkMfPh4Lx36he2Hw5Mu8f0T2zqYNsAW/9NRskUtk3WW08d -ZPOdF5ZCIZ5sHRkYZvvbJfc+s3/i1ovnjqAHt3amUsj2URlpGWP7bfHcB8z+ -e2eiwp1E/zVm9JDZD5Y2ap8FBxgrLT/+iMIeTnsUnyh66OLjxxTWOz01qRNH -Hw95k07ByMa/ZlQKfWDdrwwKhbVBN5tk0V8FpLOYfAW6rpKcga4TN8hm4vtY -Y/qPElrizK4cCp6lF2KFlNEBjzyfMP3b9HfR4nnoPyHhTylkHpZcIKeBTtkT -zWXm94M/X48muso99hnzPLIteCyqjfY9mfGcmR+X7fE9Oui/LDNzmf0cXeMk -r4d+l1Wcx/TPhbcxSwzQworVLyj0CctJiaxF63WX5lOYSAGHxcZo7ftVBcx+ -rn/SK22CXrSw+CWF5lcPuj+ZsvHsyiyksLou9NmkObplIv0Vhbl+jyo/WqEX -jscWMf2u8/yp8A72fN6N1xSuh0zr+GqPFuKEFFMoutQbXLALnW7gVMLsr/zb -pNsZrbzJupSZh6D7iUWu6Ig0nTImHw7XNX54oC9NqL6hsGF8UlXWF/1ER7yc -gt2CJ/b9/uz5uzsYhwZZesodRr8eLKmgoGurlzsSjDaruFlJgTMUH1x6Al2i -5faWwl9ZX2T7T6PPeBu/oyAyeby/OBS94arUeyYe39Ho72Hoynl9jNsTv3Ol -rqAt1PKqKMy3X6XQHcnWP+54NbN/9F22iEez5wua1zD7Mbm5cCAWna8rVUvh -Z3VVMjcRTbzeML6tkubSeActLX+1jsLbP1V7MpLRCTM2fWD24XjzstY0NEfl -r3pmvs4vNXn1GO1UW8TYvFakMjIL/anWv4G537pX6tyn/8+HdiMz76vLCq/n -ouNUPzFWcszSKSlAT0hEf6QwajBboasIvf0fsyamf5Nr9J6Vosukhhi/X+61 -tLOCrfftO83M88nSav/r9+judRtbKPhqcmUja9l+vd/DWGehwPXsBnY+tlxu -Zf5/ZN+wvtyMNj6j+YlCrbPM17w2tGpMDeOuavEf9V3oNbsOtlHwr7AwSO1F -862Z2s7ctz/IvmqAnZ+LKYzXcwa5jynabZl+B1NvZ1PSMYzeMdzA+Oi3edf5 -frHzfNenk4lfbHNQ4xibP70xxirdeZOTk2z+Jy93UfgfqDuErg== - "]]}, "Charting`Private`Tag$12753#3"], - Annotation[{ - Directive[ - Opacity[1.], - RGBColor[0.922526, 0.385626, 0.209179], - AbsoluteThickness[1.6]], - Line[CompressedData[" -1:eJwVVnlYTWsfbS6lG+VmlmRKumXWwIoMqaSBDGUICZVUJGWekkRxmoRCFIlU -dJKL5og0CE23ufbg7DdKJdL3fv+c/aznfZ53r9/6rbX20d7uZe8qIyUlJS0t -JfX/Z8NYc/rLwH6hss+4IgmWx5i1fJFl4GHqGtj1VoICE52bckoMXN2SFUZ/ -kCB/j10Uq8Kg4Z2GdXeFBH6Of6Sz1Rh0Bu49K/4kwdLdYcsaNBgoFAZsfFsj -wSX5fQUvRjKYGrW1+Mp/EnQVGU6QjGXQMdCrkdQsgcoqH2bIRAZtoazyvXYJ -7qwb7GzQYWAs9f6UEyfBuiDvcqXpDMYcleKdBQnOLTPo5PQY2DEeqzS/S+D+ -2v1ElgGD0RGvF2X9kGCPSyhTM4fB4Z3VJok/JegI7b/0dAHl52IyzGZAgmMN -1qotJgy0eloMIS2gmIwf+A0GP46ox42WF3AlxFivzJyBkUj+TYqSAD9r01k9 -KxkMCT3lEDJUQE108MEqKwby1zP/0hkmYL3yi3BFWwbOs8d7yI4QEGTsqTV1 -LYMVvzq93o8UsKBnDz+wnsHJnj8X7McKkPpsdXm6M4OWmQectLQErDI/7D10 -G4Nt0+LEiZMELN83paBuB4PWwwaJY6YKcHr5rHPQjcHKggU7P+oK+BZzdVOd -O4ONUz0uWeoLiL+27rrKfgYu51a9UZglQGZT5JppBxhMNh62OmWugNaESUt+ -H2IQUNemM3yhgIYRIuXJRxhsfmSh9dxEwKZhduryJxhkLmlrnggB599eDKk4 -zaCw8HW1z1IBZfdT6r4HUf0S+L+GrBAQPWKMx7sQBrIRul83rxJwOMG9su8y -gwmeAZY91lSfV0qH/7tK3+coKlxtK0CImRyWGsWgdK9eaZiDgHExU45XxTJw -fBvjpblewBsdn4fpcQwm6T5Tc94kIKzyzpPWOwy6Am6FtGwWoLx07XSZJAYP -rK9YOroIkDO1rf+SzOB+wRkheKeAkU6z9sqkMtjV2H3yj5uAB/Jb5rWlMzie -V+41111A574hPhmZDO7MuxDiuE+A7UDMuU/ZDBJ2OqeKvQUYjPSrfvKKgUFl -h1r9AQHTHRfINeYxqFMyyjbzF/DR4VB8fxGDXOuN1mGBdH/1MoGlJQwkhpKB -28fovkJ89X98oPs4xKh1n6R8CwwmVFUyGOp7OFPprABWp7xd8QsDVU8faafz -AgKXfJs4rY7BrJWvLsSECAjlnGMGG+h++13Drl8SIBansDNaGRTvd7SuCxew -Q93SX41hYLvCrr9RJCBnhqt/I8/g2TWpyoooAQt3u9rKdTLgrNsCpWLpPLOe -7GrqonlLPt/bdUOAmVbz2uF91N9HN56bdIvq9y48Q/831XPe9r5FCQIs5ELt -ZaVYqB9cojMxUcBdF89iPTkWL4zP+pk+EHDKMuaIqhKLGdWDvVopAtS/m9+u -VWERedxn5bfHArJfVsb9VmPxand8za806jfNx7WfNFiM5AYCS58KmCbyIrKj -WMgqLb5bLRbAXQ9cwo1l4Rp11T4lW8C2nQry/2qxuHHLaprXSwHE1i++WYfF -BKnqm7tzBPwpnhWQM43F1XjnQL18AVN3Veh16bE4GRe+eEqRAOncbzbDDVk8 -35DdPPStAOf7zqnMHBa7XeQrXr4TUP70Iau+kEVRwu2X9z4IKFxt4dJjwmLF -yDr3jRUC9iVstywEi6lXpNv6P1L9Jm5XYc1ZLCvb5V/+WcD+aSnKBStZaJlZ -PvStEfDWob6py4qFyEaAZb2AL4svzlCzZWHWhE1qjQJcn5570uLAItdTuz++ -WcBQu13DVDawOJCWpL6rTcAc//AU3omFzZrMKX0dAlS3mLwQb2Vh2OZy/zBH -/bXn7e0vO1gscR/I15cI8B1MKHrixuLixsKsx4SeZ+/Mr3dnEeLSF7rjO71f -Zv9grheLyokPU9u6BZQo9ieLfFmMs/K9ub5XQMLsPYZZh1hUzzYN6f8pYIDR -6YoMZMHnp9/1+C3AKz8vtOg4i0vDeQW1QQGiLc0xradZdOh/I/HSBEZnrFuf -B9Hz8mJORo6grzRWoTWExf3GoxYiBYL5d+e7FV5mIdaPmtmjRDDd2NYo4irV -91vCSQsVgjndNi3PoljUeSxxfqNK8NIopiQ8lsWwhkfXxg4j2J5QHPIqjkVf -YG9SrDpB1nu/f6vvsDBWvdeu8jdB2Kn9+imJLEIzNu21GUlw0nnNwcpk6scH -h+v/HU3wPefwr7THLDz3QFlqHMER6+CNbeksPnzy9N43gd4XMVJXTsyiX17d -9f1EAr+93+bXZbPYXBjdPTiJwHpn6jjF1yyGi2c0bJ5CcJt9bsbnsfBTsKm+ -PI0gWX/Zp+wiFhV5y1em6xKURqaZN5SwWLTl7gLpmQTeIR4k+wML5cg89cn/ -EOjfVfHlK1ncjfV5ud+Q4PpR3d2KX1hcOzc37tFsgpCmK7F1tSx+j3awzJ1L -cHVv0z25RhZbTaq5P/MJxh4P7GxrYTFWdkLxcCMCR3tRcnoHi0wvk1eaJpSP -5ZXFH3kWP1e5fDZfRHCitFbtEWFRUhEnZwGCfYeUs2q6WCTNuZLgu4SgLvlM -/OteFruiqkr8zAkGbh79eeUXi+YRq3d7LCdYmOk0QzxI73dPTzi/kuq56WxM -pCyHpQnGZkdXERTqiBqLFDloFKeWRlkRrE7WjmlT4RAdXBKZsJpg7cv+yy/U -OHg7tsdcWENwoEe8pV2Dnv+zIjvCjmDE81z3NyM55MycfT7AgcDN1IqLHsuB -aar3sl9H8LFFbJatxeFym0KSzXqC15o+VZE6HI7ekNk2ZSN9/75hSwumcbC2 -inyl5URw/Kz+xEY9DscuPZRS3UwgnhZpmmHAYYRsSkzVFgJl0mJYO4fDpYd9 -yjnb6PxLju7IXsAhf0vV0vPbCYqzfnkKJhxm99Yne++kfDr7WFUzDkbTyxxs -dhGcTVuS0G7OIabAOEZxN8G/MV7z1S04+B7+vrR5D8HBoaxCrxWHtMtGfTHu -BI2LmiyK13BoNbhevNyTYKfo5favDhxGxW5doO5FsNuv4/mb9Rzul6adeLGf -4NzRH9xPJ8rHp7/gnA/BevNTFzW3cbjHd3cuO0CQJNrk8XUHh6DXTcVNBwnU -VUZN/ns3hwXTB6puHCL4PVR7TK87h6lOtb8WHiaIeZ90ssCLQ/zA8IbiAII1 -6X/ntPtyCDZKWHDoCJ1ncuninEMc9E9b+cofI6h67i4SAjnIKLade3Kc4Iva -eSelExxcx/81xf4kgVMn2VZ7msOHG899K08R9P4wXSx9noNhuEqN9xkCjaCq -jY0hHL6eNdj07SyBxSKH1ephHKSYXsfQIALDtDVphiIOEsko4wnBBNFpUeuU -ojnY7zspE36BYMyX/LLZ1zmk3z94QesiwbjgRRc04znMvai0LSyUoLxv7tP2 -Oxw+7U362nOJIC50uHhIEp03LfGUfxiBJMXoZ1syhxvlO3Xrw6n/ulao/53K -4aez/DLnqwRevRXXDTOo/4bO7CgTEQwJeuAqL+bgtq9sm24k3aeJm4L+Cw77 -1q+Ojo0i+Bbo1ab6mkOKTpbK92iqR0DPvNo8DmdWiSoWX6P45vYtv4o4LJJo -JiXEEmywGVPwsYRD29gqP3Kd5mVSpqx0GQd/Xf98+5sEKqfjTrRXUr94R3jF -xhF8vqXgJf7MwdZpaH5NPH1/m/28+loOn9dn8LNuE+g85YyyGzgUqt/W87pD -++e+m+bXFg63pGuf5CXQfDjv2DmE4RBZOTfzr3vUP7EPOht4DreXFYSbJRLY -D35aO6STw+JRIsXgJIIbgk0v38VhjL8oXXyf9s/15SrZvRzG56THNzwgyPDS -7q37xWHlYOaZcQ9p/5VaaIsHOdQlmjssSaH9YLdOp12Wx6GvH8MDHxG4iBoj -pZR4nJnexz58TLB8e6bFRxUew0dXNxemEpiv863oV+Ph4G6Z9OMJQU5lwLUa -DR4vjst5qKZTvQ65GauO4mE+7qK/UQadr7rCauY4HqpuLt3OTwk8ioJj5Sby -qDG9or33GfVvzZQ8g8k8xgeP7ruQSZDmr6o7YjqPW2O7aiPENL9VvlJtejx+ -6Q3viM6i36P1rx4rGfLoDrwg8/g5zY+r4422OTxu7MmpepxN+zm6YvvfC3lE -yxaY5L2g/gl+HzPLlEfqhwd3S/8lYBVGqCma8ZD/R8+34CXBnyQ4GyzjwVTl -mpS+ov386VnHMAseDSomr3NfE9TmPmz9z4qHyEnv5+McgkUfg7IG1/CYtack -9lEugZb3o3fVDjywOexGTB71+5znmQobePSOfxgekU8QcWJ401cnHpt2HDc5 -VkCQd7Ej8NVWHo0Pf7dvLaT99fK20LqDxzkZ5167IpqHgPtxeW48vPiNm2cV -Uz2cI6b/cOchM3N8xsQ3BCsGBidp7OchREyQKL0l2KT7zInz5REu+3RcA8VB -AXYeI/x5jHI1eJJfQjB3/cLs3kDK9/WPS9HvCETfbwQWHefxs82n2/U9wV/p -jAZ3mscws56FS0sJFAePcQVBPMqDlm9V/UDn2d8f3R3Co32SuKed4sa4brFa -GI8NbGlfVhmhvWQ8svUqjy3Kw/yOlNP+MXFdrRLNw0/TqtG6gvZjYm0OH0v9 -MOPMCNVKgp7yskRxHA/LbA27Iopvaye7frnDQz/V/PeljwTvf5e5PEnkYRN2 -RmZlFe3Dgdp59ck8qsSP1IZ+ovk6P9si9zEPBY+O/ByK11QqvruazkNzYlyx -92fKb2nuNHEmj7m32A3/fKF5X1ScE5HN493l3Al1FI/bkj6n8BWPyU65QyOr -CfpNx49syeOx+FS7gWUN9W9ixcKsIqrXivuanRR/mO85u7mER6b5vJRbtfT7 -ZOewN/8Dj0czvG2X1xHs1xNrXK3kcXDe4PMWiufMkInI+Myjz/Ho9tB6+v8j -I2rt5Voeo+0yruv+R1C5Q/3riwYe8yyjnpZR3FKu8uNTC81fYOoxnwYC3xJb -0wcdNE+BXdsUGylfLsCpjOcxf+rkJ/coXi7qFD8mdP7TD7YaNdF977ASmrp4 -TP1tqv2J4iPfJkdI9fH4YDPis2cznV/ZMuDLL8r/aIPnT4q1W18MDg7y0Dat -WXipheB/k3qOBQ== - "]]}, "Charting`Private`Tag$12753#4"]}}, {}}, { - DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, - AxesOrigin -> {0.75, 0.930555556043837}, - FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, - GridLines -> {None, None}, DisplayFunction -> Identity, - PlotRangePadding -> {{0, 0}, {0, 0}}, PlotRangeClipping -> True, - ImagePadding -> All, DisplayFunction -> Identity, AspectRatio -> - Rational[1, 2], Axes -> {False, False}, AxesLabel -> {None, None}, - AxesOrigin -> {0.75, 0.930555556043837}, DisplayFunction :> - Identity, Frame -> {{False, False}, {False, False}}, - FrameLabel -> {{None, None}, {None, None}}, - FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, - GridLines -> {None, None}, GridLinesStyle -> Directive[ - GrayLevel[0.5, 0.4]], ImageSize -> Full, - Method -> { - "DefaultBoundaryStyle" -> Automatic, - "DefaultGraphicsInteraction" -> { - "Version" -> 1.2, "TrackMousePosition" -> {True, False}, - "Effects" -> { - "Highlight" -> {"ratio" -> 2}, - "HighlightPoint" -> {"ratio" -> 2}, - "Droplines" -> { - "freeformCursorMode" -> True, - "placement" -> {"x" -> "All", "y" -> "None"}}}}, - "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> - None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ - (Identity[#]& )[ - Part[#, 1]], - (Identity[#]& )[ - Part[#, 2]]}& ), "CopiedValueFunction" -> ({ - (Identity[#]& )[ - Part[#, 1]], - (Identity[#]& )[ - Part[#, 2]]}& )}}, - PlotRange -> {{0.75, 0.875}, {0.930555556043837, - 1.0000000000000004`}}, PlotRangeClipping -> True, - PlotRangePadding -> {{0, 0}, {0, 0}}, - Ticks -> {Automatic, Automatic}}], - Placed[ - Unevaluated[ - LineLegend[{ - Directive[ - Opacity[1.], - RGBColor[0.368417, 0.506779, 0.709798], - AbsoluteThickness[1.6], - Dashing[{Small, Small}]], - Directive[ - Opacity[1.], - RGBColor[0.880722, 0.611041, 0.142051], - AbsoluteThickness[1.6]], - Directive[ - Opacity[1.], - RGBColor[0.560181, 0.691569, 0.194885], - AbsoluteThickness[1.6], - Dashing[{Small, Small}]], - Directive[ - Opacity[1.], - RGBColor[0.922526, 0.385626, 0.209179], - AbsoluteThickness[1.6]]}, { - HoldForm[ - $CellContext`OO[ - HoldForm[$CellContext`x]]], - HoldForm[ - $CellContext`OOOO[ - HoldForm[$CellContext`x]]], - - HoldForm[(-1)^ - Floor[HoldForm[$CellContext`x] $CellContext`\:01a7S] \ -($CellContext`R[ - Mod[HoldForm[$CellContext`x] $CellContext`\:01a7S, 1]] - - 0.5) + 0.5], - HoldForm[ - Abs[ - $CellContext`FabiusF[ - HoldForm[$CellContext`x]]]]}, LegendMarkers -> None, - LabelStyle -> {}, LegendLayout -> "Column"]], {Center, Top}, - Identity]]& ], - AutoDelete->True, - Editable->True, - SelectWithContents->False, - Selectable->True], "}"}]} - }, - DefaultBaseStyle->"Column", - GridBoxAlignment->{"Columns" -> {{Center}}}, - GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], - "Column"]], "Output", - CellLabel-> - "8/1/24 03:23:16 \ -Out[375]=",ExpressionUUID->"bbc14aa0-5506-4ffd-8080-e79bc76e47f7"], - -Cell[BoxData["\<\"1.7043521015873016*10^6*(2.9336661100387573*10^-7-2.\ -9336661100387573*10^-7*(-1)^FLOOR(X)+(-1)^FLOOR(X)*MAX(0,-511/512+MOD(X,1))^8-\ -1.*(-1)^FLOOR(X)*MAX(0,-509/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-507/512+\ -MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-505/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-\ -503/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-501/512+MOD(X,1))^8+(-1)^FLOOR(X)*\ -MAX(0,-499/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-497/512+MOD(X,1))^8-1.*(-1)\ -^FLOOR(X)*MAX(0,-495/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-493/512+MOD(X,1))^8+\ -(-1)^FLOOR(X)*MAX(0,-491/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-489/512+MOD(\ -X,1))^8+(-1)^FLOOR(X)*MAX(0,-487/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-485/\ -512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-483/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(\ -0,-481/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-479/512+MOD(X,1))^8+(-1)^FLOOR(\ -X)*MAX(0,-477/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-475/512+MOD(X,1))^8-1.*(-1)\ -^FLOOR(X)*MAX(0,-473/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-471/512+MOD(X,1))^8-\ -1.*(-1)^FLOOR(X)*MAX(0,-469/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-467/512+\ -MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-465/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-463/\ -512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-461/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*\ -MAX(0,-459/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-457/512+MOD(X,1))^8-1.*(-1)^\ -FLOOR(X)*MAX(0,-455/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-453/512+MOD(X,1))^8+(\ --1)^FLOOR(X)*MAX(0,-451/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-449/512+MOD(X,\ -1))^8-1.*(-1)^FLOOR(X)*MAX(0,-447/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-445/\ -512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-443/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(\ -0,-441/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-439/512+MOD(X,1))^8-1.*(-1)^FLOOR(\ -X)*MAX(0,-437/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-435/512+MOD(X,1))^8+(-1)\ -^FLOOR(X)*MAX(0,-433/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-431/512+MOD(X,1))^8-\ -1.*(-1)^FLOOR(X)*MAX(0,-429/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-427/512+\ -MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-425/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-\ -423/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-421/512+MOD(X,1))^8+(-1)^FLOOR(X)*\ -MAX(0,-419/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-417/512+MOD(X,1))^8+(-1)^\ -FLOOR(X)*MAX(0,-415/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-413/512+MOD(X,1))^\ -8-1.*(-1)^FLOOR(X)*MAX(0,-411/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-409/512+\ -MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-407/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-\ -405/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-403/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*\ -MAX(0,-401/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-399/512+MOD(X,1))^8+(-1)^\ -FLOOR(X)*MAX(0,-397/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-395/512+MOD(X,1))^8-\ -1.*(-1)^FLOOR(X)*MAX(0,-393/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-391/512+MOD(\ -X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-389/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-\ -387/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-385/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*\ -MAX(0,-383/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-381/512+MOD(X,1))^8+(-1)^\ -FLOOR(X)*MAX(0,-379/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-377/512+MOD(X,1))^\ -8+(-1)^FLOOR(X)*MAX(0,-375/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-373/512+\ -MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-371/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-\ -369/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-367/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*\ -MAX(0,-365/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-363/512+MOD(X,1))^8+(-1)^\ -FLOOR(X)*MAX(0,-361/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-359/512+MOD(X,1))^\ -8+(-1)^FLOOR(X)*MAX(0,-357/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-355/512+MOD(X,\ -1))^8-1.*(-1)^FLOOR(X)*MAX(0,-353/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-351/\ -512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-349/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*\ -MAX(0,-347/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-345/512+MOD(X,1))^8-1.*(-1)^\ -FLOOR(X)*MAX(0,-343/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-341/512+MOD(X,1))^8+(\ --1)^FLOOR(X)*MAX(0,-339/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-337/512+MOD(X,\ -1))^8-1.*(-1)^FLOOR(X)*MAX(0,-335/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-333/\ -512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-331/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(\ -0,-329/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-327/512+MOD(X,1))^8-1.*(-1)^FLOOR(\ -X)*MAX(0,-325/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-323/512+MOD(X,1))^8+(-1)\ -^FLOOR(X)*MAX(0,-321/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-319/512+MOD(X,1))^8-\ -1.*(-1)^FLOOR(X)*MAX(0,-317/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-315/512+\ -MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-313/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-\ -311/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-309/512+MOD(X,1))^8+(-1)^FLOOR(X)*\ -MAX(0,-307/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-305/512+MOD(X,1))^8-1.*(-1)\ -^FLOOR(X)*MAX(0,-303/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-301/512+MOD(X,1))^8+\ -(-1)^FLOOR(X)*MAX(0,-299/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-297/512+MOD(\ -X,1))^8+(-1)^FLOOR(X)*MAX(0,-295/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-293/\ -512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-291/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(\ -0,-289/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-287/512+MOD(X,1))^8+(-1)^FLOOR(\ -X)*MAX(0,-285/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-283/512+MOD(X,1))^8-1.*(-1)\ -^FLOOR(X)*MAX(0,-281/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-279/512+MOD(X,1))^8-\ -1.*(-1)^FLOOR(X)*MAX(0,-277/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-275/512+\ -MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-273/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-271/\ -512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-269/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*\ -MAX(0,-267/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-265/512+MOD(X,1))^8-1.*(-1)^\ -FLOOR(X)*MAX(0,-263/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-261/512+MOD(X,1))^8+(\ --1)^FLOOR(X)*MAX(0,-259/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-257/512+MOD(X,\ -1))^8-1.*(-1)^FLOOR(X)*MAX(0,-255/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-253/\ -512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-251/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(\ -0,-249/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-247/512+MOD(X,1))^8-1.*(-1)^FLOOR(\ -X)*MAX(0,-245/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-243/512+MOD(X,1))^8+(-1)\ -^FLOOR(X)*MAX(0,-241/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-239/512+MOD(X,1))^8-\ -1.*(-1)^FLOOR(X)*MAX(0,-237/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-235/512+\ -MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-233/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-\ -231/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-229/512+MOD(X,1))^8+(-1)^FLOOR(X)*\ -MAX(0,-227/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-225/512+MOD(X,1))^8+(-1)^\ -FLOOR(X)*MAX(0,-223/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-221/512+MOD(X,1))^\ -8-1.*(-1)^FLOOR(X)*MAX(0,-219/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-217/512+\ -MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-215/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-\ -213/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-211/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*\ -MAX(0,-209/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-207/512+MOD(X,1))^8+(-1)^\ -FLOOR(X)*MAX(0,-205/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-203/512+MOD(X,1))^8-\ -1.*(-1)^FLOOR(X)*MAX(0,-201/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-199/512+MOD(\ -X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-197/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-\ -195/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-193/512+MOD(X,1))^8+(-1)^FLOOR(X)*\ -MAX(0,-191/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-189/512+MOD(X,1))^8-1.*(-1)\ -^FLOOR(X)*MAX(0,-187/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-185/512+MOD(X,1))^8-\ -1.*(-1)^FLOOR(X)*MAX(0,-183/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-181/512+MOD(\ -X,1))^8+(-1)^FLOOR(X)*MAX(0,-179/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-177/\ -512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-175/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(\ -0,-173/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-171/512+MOD(X,1))^8-1.*(-1)^FLOOR(\ -X)*MAX(0,-169/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-167/512+MOD(X,1))^8-1.*(-1)\ -^FLOOR(X)*MAX(0,-165/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-163/512+MOD(X,1))\ -^8+(-1)^FLOOR(X)*MAX(0,-161/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-159/512+\ -MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-157/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-155/\ -512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-153/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(\ -0,-151/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-149/512+MOD(X,1))^8-1.*(-1)^\ -FLOOR(X)*MAX(0,-147/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-145/512+MOD(X,1))^8+(\ --1)^FLOOR(X)*MAX(0,-143/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-141/512+MOD(X,\ -1))^8-1.*(-1)^FLOOR(X)*MAX(0,-139/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-137/\ -512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-135/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(\ -0,-133/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-131/512+MOD(X,1))^8-1.*(-1)^FLOOR(\ -X)*MAX(0,-129/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-127/512+MOD(X,1))^8-1.*(-1)\ -^FLOOR(X)*MAX(0,-125/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-123/512+MOD(X,1))\ -^8+(-1)^FLOOR(X)*MAX(0,-121/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-119/512+\ -MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-117/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-115/\ -512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-113/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*\ -MAX(0,-111/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-109/512+MOD(X,1))^8+(-1)^\ -FLOOR(X)*MAX(0,-107/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-105/512+MOD(X,1))^\ -8+(-1)^FLOOR(X)*MAX(0,-103/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-101/512+\ -MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-99/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-\ -97/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-95/512+MOD(X,1))^8+(-1)^FLOOR(X)*\ -MAX(0,-93/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-91/512+MOD(X,1))^8-1.*(-1)^\ -FLOOR(X)*MAX(0,-89/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-87/512+MOD(X,1))^8-1.*\ -(-1)^FLOOR(X)*MAX(0,-85/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-83/512+MOD(X,\ -1))^8+(-1)^FLOOR(X)*MAX(0,-81/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-79/512+MOD(\ -X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-77/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-75/\ -512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-73/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(\ -0,-71/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-69/512+MOD(X,1))^8+(-1)^FLOOR(X)*\ -MAX(0,-67/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-65/512+MOD(X,1))^8-1.*(-1)^\ -FLOOR(X)*MAX(0,-63/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-61/512+MOD(X,1))^8+(-\ -1)^FLOOR(X)*MAX(0,-59/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-57/512+MOD(X,1))\ -^8+(-1)^FLOOR(X)*MAX(0,-55/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-53/512+MOD(\ -X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-51/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-49/\ -512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-47/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(\ -0,-45/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-43/512+MOD(X,1))^8+(-1)^FLOOR(X)\ -*MAX(0,-41/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-39/512+MOD(X,1))^8+(-1)^\ -FLOOR(X)*MAX(0,-37/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-35/512+MOD(X,1))^8-1.*\ -(-1)^FLOOR(X)*MAX(0,-33/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-31/512+MOD(X,1))^\ -8-1.*(-1)^FLOOR(X)*MAX(0,-29/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-27/512+\ -MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-25/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-\ -23/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-21/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(\ -0,-19/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-17/512+MOD(X,1))^8-1.*(-1)^\ -FLOOR(X)*MAX(0,-15/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-13/512+MOD(X,1))^8+(-\ -1)^FLOOR(X)*MAX(0,-11/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-9/512+MOD(X,1))^\ -8+(-1)^FLOOR(X)*MAX(0,-7/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-5/512+MOD(X,\ -1))^8-1.*(-1)^FLOOR(X)*MAX(0,-3/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-1/512+\ -MOD(X,1))^8)\"\>"], "Output", - CellLabel-> - "8/1/24 03:23:24 \ -Out[376]=",ExpressionUUID->"2a3f5d13-a0d0-468c-ac4b-3c81da7ee7db"] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[{ - RowBox[{"ToUpperCase", "[", - RowBox[{"StringReplace", "[", - RowBox[{ - RowBox[{"ToString", "[", "\[IndentingNewLine]", - RowBox[{"(*", - RowBox[{"Simplify", "[", - RowBox[{"ExpandAll", "["}]}], "*)"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"-", "1"}], ")"}], "^", - RowBox[{"Floor", "[", - RowBox[{"x", "*", "O"}], "]"}]}], "*", - RowBox[{"(", - RowBox[{ - RowBox[{"R", "[", - RowBox[{"Mod", "[", - RowBox[{ - RowBox[{"x", "*", "O"}], ",", "1"}], "]"}], "]"}], "-", "0.5"}], - ")"}]}], "+", "0.5"}], "\[IndentingNewLine]", - RowBox[{"(*", - RowBox[{"]", "]"}], "*)"}], "\[IndentingNewLine]", ",", "InputForm"}], - "]"}], ",", - RowBox[{"{", - RowBox[{ - RowBox[{"\"\< \>\"", "\[Rule]", " ", "\"\<\>\""}], ",", - RowBox[{"\"\<*^\>\"", "\[Rule]", " ", "\"\<*10^\>\""}], ",", - RowBox[{"\"\<[\>\"", "->", "\"\<(\>\""}], ",", - RowBox[{"\"\<]\>\"", "->", "\"\<)\>\""}]}], " ", "}"}]}], "]"}], - "]"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{"(*", - RowBox[{"Simplify", "[", - RowBox[{"R", "[", "x", "]"}], "]"}], "*)"}]}]}], "Input", - CellLabel-> - "8/1/24 03:23:24 \ -In[377]:=",ExpressionUUID->"fdb9eb7c-a68c-4320-98a0-d5b673c97b25"], - -Cell[BoxData["\<\"0.5+(-1)^FLOOR(O*X)*(-0.5+256*(-128*(-64*(-32*(-16*(-8*(-4*(\ --2*(-1/40320*MAX(0,-511/512+MOD(O*X,1))^8+MAX(0,-255/512+MOD(O*X,1))^8/40320)+\ -2*(-1/40320*MAX(0,-383/512+MOD(O*X,1))^8+MAX(0,-127/512+MOD(O*X,1))^8/40320))+\ -4*(-2*(-1/40320*MAX(0,-447/512+MOD(O*X,1))^8+MAX(0,-191/512+MOD(O*X,1))^8/\ -40320)+2*(-1/40320*MAX(0,-319/512+MOD(O*X,1))^8+MAX(0,-63/512+MOD(O*X,1))^8/\ -40320)))+8*(-4*(-2*(-1/40320*MAX(0,-479/512+MOD(O*X,1))^8+MAX(0,-223/512+MOD(\ -O*X,1))^8/40320)+2*(-1/40320*MAX(0,-351/512+MOD(O*X,1))^8+MAX(0,-95/512+MOD(O*\ -X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-415/512+MOD(O*X,1))^8+MAX(0,-159/512+\ -MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-287/512+MOD(O*X,1))^8+MAX(0,-31/512+\ -MOD(O*X,1))^8/40320))))+16*(-8*(-4*(-2*(-1/40320*MAX(0,-495/512+MOD(O*X,1))^8+\ -MAX(0,-239/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-367/512+MOD(O*X,1))^8+\ -MAX(0,-111/512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-431/512+MOD(O*X,1)\ -)^8+MAX(0,-175/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-303/512+MOD(O*X,1))\ -^8+MAX(0,-47/512+MOD(O*X,1))^8/40320)))+8*(-4*(-2*(-1/40320*MAX(0,-463/512+\ -MOD(O*X,1))^8+MAX(0,-207/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-335/512+\ -MOD(O*X,1))^8+MAX(0,-79/512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-399/\ -512+MOD(O*X,1))^8+MAX(0,-143/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-271/\ -512+MOD(O*X,1))^8+MAX(0,-15/512+MOD(O*X,1))^8/40320)))))+32*(-16*(-8*(-4*(-2*(\ --1/40320*MAX(0,-503/512+MOD(O*X,1))^8+MAX(0,-247/512+MOD(O*X,1))^8/40320)+2*(-\ -1/40320*MAX(0,-375/512+MOD(O*X,1))^8+MAX(0,-119/512+MOD(O*X,1))^8/40320))+4*(-\ -2*(-1/40320*MAX(0,-439/512+MOD(O*X,1))^8+MAX(0,-183/512+MOD(O*X,1))^8/40320)+\ -2*(-1/40320*MAX(0,-311/512+MOD(O*X,1))^8+MAX(0,-55/512+MOD(O*X,1))^8/40320)))+\ -8*(-4*(-2*(-1/40320*MAX(0,-471/512+MOD(O*X,1))^8+MAX(0,-215/512+MOD(O*X,1))^8/\ -40320)+2*(-1/40320*MAX(0,-343/512+MOD(O*X,1))^8+MAX(0,-87/512+MOD(O*X,1))^8/\ -40320))+4*(-2*(-1/40320*MAX(0,-407/512+MOD(O*X,1))^8+MAX(0,-151/512+MOD(O*X,1)\ -)^8/40320)+2*(-1/40320*MAX(0,-279/512+MOD(O*X,1))^8+MAX(0,-23/512+MOD(O*X,1))^\ -8/40320))))+16*(-8*(-4*(-2*(-1/40320*MAX(0,-487/512+MOD(O*X,1))^8+MAX(0,-231/\ -512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-359/512+MOD(O*X,1))^8+MAX(0,-103/\ -512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-423/512+MOD(O*X,1))^8+MAX(0,-\ -167/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-295/512+MOD(O*X,1))^8+MAX(0,-\ -39/512+MOD(O*X,1))^8/40320)))+8*(-4*(-2*(-1/40320*MAX(0,-455/512+MOD(O*X,1))^\ -8+MAX(0,-199/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-327/512+MOD(O*X,1))^\ -8+MAX(0,-71/512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-391/512+MOD(O*X,\ -1))^8+MAX(0,-135/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-263/512+MOD(O*X,\ -1))^8+MAX(0,-7/512+MOD(O*X,1))^8/40320))))))+64*(-32*(-16*(-8*(-4*(-2*(-1/\ -40320*MAX(0,-507/512+MOD(O*X,1))^8+MAX(0,-251/512+MOD(O*X,1))^8/40320)+2*(-1/\ -40320*MAX(0,-379/512+MOD(O*X,1))^8+MAX(0,-123/512+MOD(O*X,1))^8/40320))+4*(-2*\ -(-1/40320*MAX(0,-443/512+MOD(O*X,1))^8+MAX(0,-187/512+MOD(O*X,1))^8/40320)+2*(\ --1/40320*MAX(0,-315/512+MOD(O*X,1))^8+MAX(0,-59/512+MOD(O*X,1))^8/40320)))+8*(\ --4*(-2*(-1/40320*MAX(0,-475/512+MOD(O*X,1))^8+MAX(0,-219/512+MOD(O*X,1))^8/\ -40320)+2*(-1/40320*MAX(0,-347/512+MOD(O*X,1))^8+MAX(0,-91/512+MOD(O*X,1))^8/\ -40320))+4*(-2*(-1/40320*MAX(0,-411/512+MOD(O*X,1))^8+MAX(0,-155/512+MOD(O*X,1)\ -)^8/40320)+2*(-1/40320*MAX(0,-283/512+MOD(O*X,1))^8+MAX(0,-27/512+MOD(O*X,1))^\ -8/40320))))+16*(-8*(-4*(-2*(-1/40320*MAX(0,-491/512+MOD(O*X,1))^8+MAX(0,-235/\ -512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-363/512+MOD(O*X,1))^8+MAX(0,-107/\ -512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-427/512+MOD(O*X,1))^8+MAX(0,-\ -171/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-299/512+MOD(O*X,1))^8+MAX(0,-\ -43/512+MOD(O*X,1))^8/40320)))+8*(-4*(-2*(-1/40320*MAX(0,-459/512+MOD(O*X,1))^\ -8+MAX(0,-203/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-331/512+MOD(O*X,1))^\ -8+MAX(0,-75/512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-395/512+MOD(O*X,\ -1))^8+MAX(0,-139/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-267/512+MOD(O*X,\ -1))^8+MAX(0,-11/512+MOD(O*X,1))^8/40320)))))+32*(-16*(-8*(-4*(-2*(-1/40320*\ -MAX(0,-499/512+MOD(O*X,1))^8+MAX(0,-243/512+MOD(O*X,1))^8/40320)+2*(-1/40320*\ -MAX(0,-371/512+MOD(O*X,1))^8+MAX(0,-115/512+MOD(O*X,1))^8/40320))+4*(-2*(-1/\ -40320*MAX(0,-435/512+MOD(O*X,1))^8+MAX(0,-179/512+MOD(O*X,1))^8/40320)+2*(-1/\ -40320*MAX(0,-307/512+MOD(O*X,1))^8+MAX(0,-51/512+MOD(O*X,1))^8/40320)))+8*(-4*\ -(-2*(-1/40320*MAX(0,-467/512+MOD(O*X,1))^8+MAX(0,-211/512+MOD(O*X,1))^8/40320)\ -+2*(-1/40320*MAX(0,-339/512+MOD(O*X,1))^8+MAX(0,-83/512+MOD(O*X,1))^8/40320))+\ -4*(-2*(-1/40320*MAX(0,-403/512+MOD(O*X,1))^8+MAX(0,-147/512+MOD(O*X,1))^8/\ -40320)+2*(-1/40320*MAX(0,-275/512+MOD(O*X,1))^8+MAX(0,-19/512+MOD(O*X,1))^8/\ -40320))))+16*(-8*(-4*(-2*(-1/40320*MAX(0,-483/512+MOD(O*X,1))^8+MAX(0,-227/\ -512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-355/512+MOD(O*X,1))^8+MAX(0,-99/\ -512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-419/512+MOD(O*X,1))^8+MAX(0,-\ -163/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-291/512+MOD(O*X,1))^8+MAX(0,-\ -35/512+MOD(O*X,1))^8/40320)))+8*(-4*(-2*(-1/40320*MAX(0,-451/512+MOD(O*X,1))^\ -8+MAX(0,-195/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-323/512+MOD(O*X,1))^\ -8+MAX(0,-67/512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-387/512+MOD(O*X,\ -1))^8+MAX(0,-131/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-259/512+MOD(O*X,\ -1))^8+MAX(0,-3/512+MOD(O*X,1))^8/40320)))))))+128*(-64*(-32*(-16*(-8*(-4*(-2*(\ --1/40320*MAX(0,-509/512+MOD(O*X,1))^8+MAX(0,-253/512+MOD(O*X,1))^8/40320)+2*(-\ -1/40320*MAX(0,-381/512+MOD(O*X,1))^8+MAX(0,-125/512+MOD(O*X,1))^8/40320))+4*(-\ -2*(-1/40320*MAX(0,-445/512+MOD(O*X,1))^8+MAX(0,-189/512+MOD(O*X,1))^8/40320)+\ -2*(-1/40320*MAX(0,-317/512+MOD(O*X,1))^8+MAX(0,-61/512+MOD(O*X,1))^8/40320)))+\ -8*(-4*(-2*(-1/40320*MAX(0,-477/512+MOD(O*X,1))^8+MAX(0,-221/512+MOD(O*X,1))^8/\ -40320)+2*(-1/40320*MAX(0,-349/512+MOD(O*X,1))^8+MAX(0,-93/512+MOD(O*X,1))^8/\ -40320))+4*(-2*(-1/40320*MAX(0,-413/512+MOD(O*X,1))^8+MAX(0,-157/512+MOD(O*X,1)\ -)^8/40320)+2*(-1/40320*MAX(0,-285/512+MOD(O*X,1))^8+MAX(0,-29/512+MOD(O*X,1))^\ -8/40320))))+16*(-8*(-4*(-2*(-1/40320*MAX(0,-493/512+MOD(O*X,1))^8+MAX(0,-237/\ -512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-365/512+MOD(O*X,1))^8+MAX(0,-109/\ -512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-429/512+MOD(O*X,1))^8+MAX(0,-\ -173/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-301/512+MOD(O*X,1))^8+MAX(0,-\ -45/512+MOD(O*X,1))^8/40320)))+8*(-4*(-2*(-1/40320*MAX(0,-461/512+MOD(O*X,1))^\ -8+MAX(0,-205/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-333/512+MOD(O*X,1))^\ -8+MAX(0,-77/512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-397/512+MOD(O*X,\ -1))^8+MAX(0,-141/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-269/512+MOD(O*X,\ -1))^8+MAX(0,-13/512+MOD(O*X,1))^8/40320)))))+32*(-16*(-8*(-4*(-2*(-1/40320*\ -MAX(0,-501/512+MOD(O*X,1))^8+MAX(0,-245/512+MOD(O*X,1))^8/40320)+2*(-1/40320*\ -MAX(0,-373/512+MOD(O*X,1))^8+MAX(0,-117/512+MOD(O*X,1))^8/40320))+4*(-2*(-1/\ -40320*MAX(0,-437/512+MOD(O*X,1))^8+MAX(0,-181/512+MOD(O*X,1))^8/40320)+2*(-1/\ -40320*MAX(0,-309/512+MOD(O*X,1))^8+MAX(0,-53/512+MOD(O*X,1))^8/40320)))+8*(-4*\ -(-2*(-1/40320*MAX(0,-469/512+MOD(O*X,1))^8+MAX(0,-213/512+MOD(O*X,1))^8/40320)\ -+2*(-1/40320*MAX(0,-341/512+MOD(O*X,1))^8+MAX(0,-85/512+MOD(O*X,1))^8/40320))+\ -4*(-2*(-1/40320*MAX(0,-405/512+MOD(O*X,1))^8+MAX(0,-149/512+MOD(O*X,1))^8/\ -40320)+2*(-1/40320*MAX(0,-277/512+MOD(O*X,1))^8+MAX(0,-21/512+MOD(O*X,1))^8/\ -40320))))+16*(-8*(-4*(-2*(-1/40320*MAX(0,-485/512+MOD(O*X,1))^8+MAX(0,-229/\ -512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-357/512+MOD(O*X,1))^8+MAX(0,-101/\ -512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-421/512+MOD(O*X,1))^8+MAX(0,-\ -165/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-293/512+MOD(O*X,1))^8+MAX(0,-\ -37/512+MOD(O*X,1))^8/40320)))+8*(-4*(-2*(-1/40320*MAX(0,-453/512+MOD(O*X,1))^\ -8+MAX(0,-197/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-325/512+MOD(O*X,1))^\ -8+MAX(0,-69/512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-389/512+MOD(O*X,\ -1))^8+MAX(0,-133/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-261/512+MOD(O*X,\ -1))^8+MAX(0,-5/512+MOD(O*X,1))^8/40320))))))+64*(-32*(-16*(-8*(-4*(-2*(-1/\ -40320*MAX(0,-505/512+MOD(O*X,1))^8+MAX(0,-249/512+MOD(O*X,1))^8/40320)+2*(-1/\ -40320*MAX(0,-377/512+MOD(O*X,1))^8+MAX(0,-121/512+MOD(O*X,1))^8/40320))+4*(-2*\ -(-1/40320*MAX(0,-441/512+MOD(O*X,1))^8+MAX(0,-185/512+MOD(O*X,1))^8/40320)+2*(\ --1/40320*MAX(0,-313/512+MOD(O*X,1))^8+MAX(0,-57/512+MOD(O*X,1))^8/40320)))+8*(\ --4*(-2*(-1/40320*MAX(0,-473/512+MOD(O*X,1))^8+MAX(0,-217/512+MOD(O*X,1))^8/\ -40320)+2*(-1/40320*MAX(0,-345/512+MOD(O*X,1))^8+MAX(0,-89/512+MOD(O*X,1))^8/\ -40320))+4*(-2*(-1/40320*MAX(0,-409/512+MOD(O*X,1))^8+MAX(0,-153/512+MOD(O*X,1)\ -)^8/40320)+2*(-1/40320*MAX(0,-281/512+MOD(O*X,1))^8+MAX(0,-25/512+MOD(O*X,1))^\ -8/40320))))+16*(-8*(-4*(-2*(-1/40320*MAX(0,-489/512+MOD(O*X,1))^8+MAX(0,-233/\ -512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-361/512+MOD(O*X,1))^8+MAX(0,-105/\ -512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-425/512+MOD(O*X,1))^8+MAX(0,-\ -169/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-297/512+MOD(O*X,1))^8+MAX(0,-\ -41/512+MOD(O*X,1))^8/40320)))+8*(-4*(-2*(-1/40320*MAX(0,-457/512+MOD(O*X,1))^\ -8+MAX(0,-201/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-329/512+MOD(O*X,1))^\ -8+MAX(0,-73/512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-393/512+MOD(O*X,\ -1))^8+MAX(0,-137/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-265/512+MOD(O*X,\ -1))^8+MAX(0,-9/512+MOD(O*X,1))^8/40320)))))+32*(-16*(-8*(-4*(-2*(-1/40320*MAX(\ -0,-497/512+MOD(O*X,1))^8+MAX(0,-241/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(\ -0,-369/512+MOD(O*X,1))^8+MAX(0,-113/512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*\ -MAX(0,-433/512+MOD(O*X,1))^8+MAX(0,-177/512+MOD(O*X,1))^8/40320)+2*(-1/40320*\ -MAX(0,-305/512+MOD(O*X,1))^8+MAX(0,-49/512+MOD(O*X,1))^8/40320)))+8*(-4*(-2*(-\ -1/40320*MAX(0,-465/512+MOD(O*X,1))^8+MAX(0,-209/512+MOD(O*X,1))^8/40320)+2*(-\ -1/40320*MAX(0,-337/512+MOD(O*X,1))^8+MAX(0,-81/512+MOD(O*X,1))^8/40320))+4*(-\ -2*(-1/40320*MAX(0,-401/512+MOD(O*X,1))^8+MAX(0,-145/512+MOD(O*X,1))^8/40320)+\ -2*(-1/40320*MAX(0,-273/512+MOD(O*X,1))^8+MAX(0,-17/512+MOD(O*X,1))^8/40320))))\ -+16*(-8*(-4*(-2*(-1/40320*MAX(0,-481/512+MOD(O*X,1))^8+MAX(0,-225/512+MOD(O*X,\ -1))^8/40320)+2*(-1/40320*MAX(0,-353/512+MOD(O*X,1))^8+MAX(0,-97/512+MOD(O*X,1)\ -)^8/40320))+4*(-2*(-1/40320*MAX(0,-417/512+MOD(O*X,1))^8+MAX(0,-161/512+MOD(O*\ -X,1))^8/40320)+2*(-1/40320*MAX(0,-289/512+MOD(O*X,1))^8+MAX(0,-33/512+MOD(O*X,\ -1))^8/40320)))+8*(-4*(-2*(-1/40320*MAX(0,-449/512+MOD(O*X,1))^8+MAX(0,-193/\ -512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-321/512+MOD(O*X,1))^8+MAX(0,-65/\ -512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-385/512+MOD(O*X,1))^8+MAX(0,-\ -129/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-257/512+MOD(O*X,1))^8+MAX(0,-\ -1/512+MOD(O*X,1))^8/40320)))))))))\"\>"], "Output", - CellLabel-> - "8/1/24 03:23:24 \ -Out[377]=",ExpressionUUID->"6143c44d-8f8f-407f-8083-421c8e51b666"] -}, Open ]] -}, -WindowSize->{1672, 980}, -WindowMargins->{{0, Automatic}, {Automatic, 0}}, -FrontEndVersion->"12.2 for Microsoft Windows (64-bit) (December 12, 2020)", -StyleDefinitions->Notebook[{ - Cell[ - StyleData[StyleDefinitions -> "Default.nb"]], - Cell[ - StyleData[All], TextAlignment -> Center, FontFamily -> "Segoe UI Symbol", - FontSize -> 12, FontWeight -> "Normal", FontSlant -> "Plain", - FontTracking -> "Plain", - FontVariations -> {"StrikeThrough" -> False, "Underline" -> False}]}, - Visible -> False, FrontEndVersion -> - "12.2 for Microsoft Windows (64-bit) (December 12, 2020)", StyleDefinitions -> - "PrivateStylesheetFormatting.nb"], -ExpressionUUID->"8e3d3569-6290-49a7-9e70-032aa06fb7e0" -] -(* End of Notebook Content *) - -(* Internal cache information *) -(*CellTagsOutline -CellTagsIndex->{} -*) -(*CellTagsIndex -CellTagsIndex->{} -*) -(*NotebookFileOutline -Notebook[{ -Cell[558, 20, 6560, 181, 412, "Input",ExpressionUUID->"a4addeb7-2708-41df-8367-f56fd1c4c60d"], -Cell[CellGroupData[{ -Cell[7143, 205, 26283, 846, 1167, "Input",ExpressionUUID->"4b599907-b90e-4af8-8102-af55e168ea88"], -Cell[33429, 1053, 68326, 1274, 975, "Output",ExpressionUUID->"bbc14aa0-5506-4ffd-8080-e79bc76e47f7"], -Cell[101758, 2329, 11334, 145, 928, "Output",ExpressionUUID->"2a3f5d13-a0d0-468c-ac4b-3c81da7ee7db"] -}, Open ]], -Cell[CellGroupData[{ -Cell[113129, 2479, 1390, 39, 132, "Input",ExpressionUUID->"fdb9eb7c-a68c-4320-98a0-d5b673c97b25"], -Cell[114522, 2520, 10904, 139, 892, "Output",ExpressionUUID->"6143c44d-8f8f-407f-8083-421c8e51b666"] -}, Open ]] -} -] -*) - +(* Content-type: application/vnd.wolfram.mathematica *) + +(*** Wolfram Notebook File ***) +(* http://www.wolfram.com/nb *) + +(* CreatedBy='Mathematica 12.2' *) + +(*CacheID: 234*) +(* Internal cache information: +NotebookFileLineBreakTest +NotebookFileLineBreakTest +NotebookDataPosition[ 158, 7] +NotebookDataLength[ 126843, 2695] +NotebookOptionsPosition[ 125442, 2662] +NotebookOutlinePosition[ 126319, 2688] +CellTagsIndexPosition[ 126276, 2685] +WindowFrame->Normal*) + +(* Beginning of Notebook Content *) +Notebook[{ +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"ariasD", "[", "0", "]"}], " ", "=", " ", "1"}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"ariasD", "[", + RowBox[{"n_Integer", "?", "Positive"}], "]"}], " ", ":=", " ", + RowBox[{ + RowBox[{"ariasD", "[", "n", "]"}], " ", "=", " ", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"2", "^", + RowBox[{"(", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"k", " ", + RowBox[{"(", + RowBox[{"k", " ", "-", " ", "1"}], ")"}]}], " ", "-", " ", + RowBox[{"n", " ", + RowBox[{"(", + RowBox[{"n", " ", "-", " ", "1"}], ")"}]}]}], ")"}], "/", + "2"}], ")"}]}], " ", + RowBox[{ + RowBox[{"ariasD", "[", "k", "]"}], "/", + RowBox[{ + RowBox[{"(", + RowBox[{"n", " ", "-", " ", "k", " ", "+", " ", "1"}], ")"}], + "!"}]}]}], ",", " ", + RowBox[{"{", + RowBox[{"k", ",", " ", "0", ",", " ", + RowBox[{"n", " ", "-", " ", "1"}]}], "}"}]}], "]"}], "/", + RowBox[{"(", + RowBox[{ + RowBox[{"2", "^", "n"}], " ", "-", " ", "1"}], ")"}]}]}]}], + ";"}], "\n", + RowBox[{ + RowBox[{"iFabiusF", "[", "x_", "]"}], " ", ":=", " ", + RowBox[{"Module", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"prec", " ", "=", " ", + RowBox[{"Precision", "[", "x", "]"}]}], ",", " ", "n", ",", " ", "p", + ",", " ", "q", ",", " ", "s", ",", " ", "tol", ",", " ", "w", ",", " ", + "y", ",", " ", "z"}], "}"}], ",", "\n", " ", + RowBox[{ + RowBox[{"If", "[", + RowBox[{ + RowBox[{"x", " ", "<", " ", "0"}], ",", " ", + RowBox[{"Return", "[", + RowBox[{"0", ",", " ", "Module"}], "]"}]}], "]"}], ";", " ", + RowBox[{"tol", " ", "=", " ", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "prec"}], ")"}]}]}], ";", "\n", " ", + RowBox[{"z", " ", "=", " ", + RowBox[{"SetPrecision", "[", + RowBox[{"x", ",", " ", "Infinity"}], "]"}]}], ";", " ", + RowBox[{"s", " ", "=", " ", "1"}], ";", " ", + RowBox[{"y", " ", "=", " ", "0"}], ";", "\n", " ", + RowBox[{"z", " ", "=", " ", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"0", " ", "<=", " ", "z", " ", "<=", " ", "2"}], ",", " ", + RowBox[{"1", " ", "-", " ", + RowBox[{"Abs", "[", + RowBox[{"1", " ", "-", " ", "z"}], "]"}]}], ",", "\n", " ", + RowBox[{ + RowBox[{"q", " ", "=", " ", + RowBox[{"Quotient", "[", + RowBox[{"z", ",", " ", "2"}], "]"}]}], ";", "\n", " ", + RowBox[{"If", "[", + RowBox[{ + RowBox[{ + RowBox[{"ThueMorse", "[", "q", "]"}], " ", "==", " ", "1"}], ",", + " ", + RowBox[{"s", " ", "=", " ", + RowBox[{"-", "1"}]}]}], "]"}], ";", "\n", " ", + RowBox[{"1", " ", "-", " ", + RowBox[{"Abs", "[", + RowBox[{"1", " ", "-", " ", "z", " ", "+", " ", + RowBox[{"2", " ", "q"}]}], "]"}]}]}]}], "]"}]}], ";", "\n", " ", + RowBox[{"While", "[", + RowBox[{ + RowBox[{"z", " ", ">", " ", "0"}], ",", "\n", " ", + RowBox[{ + RowBox[{"n", " ", "=", " ", + RowBox[{"-", + RowBox[{"Floor", "[", + RowBox[{"RealExponent", "[", + RowBox[{"z", ",", " ", "2"}], "]"}], "]"}]}]}], ";", " ", + RowBox[{"p", " ", "=", " ", + RowBox[{"2", "^", "n"}]}], ";", "\n", " ", + RowBox[{"z", " ", "-=", " ", + RowBox[{"1", "/", "p"}]}], ";", " ", + RowBox[{"w", " ", "=", " ", "1"}], ";", "\n", " ", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"w", " ", "=", " ", + RowBox[{ + RowBox[{"ariasD", "[", "m", "]"}], " ", "+", " ", + RowBox[{"p", " ", "z", " ", + RowBox[{"w", "/", + RowBox[{"(", + RowBox[{"n", " ", "-", " ", "m", " ", "+", " ", "1"}], + ")"}]}]}]}]}], ";", " ", + RowBox[{"p", " ", "/=", " ", "2"}]}], ",", " ", + RowBox[{"{", + RowBox[{"m", ",", " ", "n"}], "}"}]}], "]"}], ";", "\n", " ", + RowBox[{"y", " ", "=", " ", + RowBox[{"w", " ", "-", " ", "y"}]}], ";", "\n", " ", + RowBox[{"If", "[", + RowBox[{ + RowBox[{ + RowBox[{"Abs", "[", "w", "]"}], " ", "<", " ", + RowBox[{ + RowBox[{"Abs", "[", "y", "]"}], " ", "tol"}]}], ",", " ", + RowBox[{"Break", "[", "]"}]}], "]"}]}]}], "]"}], ";", "\n", " ", + RowBox[{"SetPrecision", "[", + RowBox[{ + RowBox[{"s", " ", + RowBox[{"Abs", "[", "y", "]"}]}], ",", " ", "prec"}], "]"}]}]}], + "]"}]}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"FabiusF", "[", "Infinity", "]"}], " ", "=", " ", + RowBox[{"Interval", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1"}], ",", " ", "1"}], "}"}], "]"}]}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"FabiusF", "[", + RowBox[{"x_", "?", "NumberQ"}], "]"}], " ", "/;", " ", + RowBox[{"If", "[", + RowBox[{ + RowBox[{ + RowBox[{"Im", "[", "x", "]"}], " ", "==", " ", "0"}], ",", " ", + RowBox[{"TrueQ", "[", + RowBox[{ + RowBox[{ + RowBox[{"Composition", "[", + RowBox[{ + RowBox[{ + RowBox[{"BitAnd", "[", + RowBox[{"#", ",", " ", + RowBox[{"#", " ", "-", " ", "1"}]}], "]"}], " ", "&"}], ",", " ", + "Denominator"}], "]"}], "[", "x", "]"}], " ", "==", " ", "0"}], + "]"}], ",", " ", "False"}], "]"}]}], " ", ":=", " ", + RowBox[{"iFabiusF", "[", "x", "]"}]}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"Derivative", "[", "n_Integer", "]"}], "[", "FabiusF", "]"}], " ", + ":=", " ", + RowBox[{ + RowBox[{ + RowBox[{"2", "^", + RowBox[{"(", + RowBox[{"n", " ", + RowBox[{ + RowBox[{"(", + RowBox[{"n", " ", "+", " ", "1"}], ")"}], "/", "2"}]}], ")"}]}], " ", + RowBox[{"FabiusF", "[", + RowBox[{ + RowBox[{"2", "^", "n"}], " ", "#"}], "]"}]}], " ", "&"}]}], "\n", + RowBox[{ + RowBox[{"SetAttributes", "[", + RowBox[{"FabiusF", ",", " ", + RowBox[{"{", + RowBox[{"NumericFunction", ",", " ", "Listable"}], "}"}]}], "]"}], + ";"}]}], "Input", + FontFamily->"Segoe UI Symbol", + FontSize->12, + FontWeight->"Normal", + CellLabel-> + "8/1/24 03:23:15 \ +In[329]:=",ExpressionUUID->"a4addeb7-2708-41df-8367-f56fd1c4c60d"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"T", "=", "8"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A0", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"Max", "[", + RowBox[{"x", ",", "0"}], "]"}], "^", "T"}], ")"}], "/", + RowBox[{"T", "!"}]}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A1", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "1"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A0", "[", "x", "]"}], "-", + RowBox[{"A0", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "1"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A2", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "2"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A1", "[", "x", "]"}], "-", + RowBox[{"A1", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "2"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A3", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "3"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A2", "[", "x", "]"}], "-", + RowBox[{"A2", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "3"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A4", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "4"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A3", "[", "x", "]"}], "-", + RowBox[{"A3", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "4"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A5", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "5"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A4", "[", "x", "]"}], "-", + RowBox[{"A4", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "5"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A6", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "6"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A5", "[", "x", "]"}], "-", + RowBox[{"A5", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "6"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A7", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "7"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A6", "[", "x", "]"}], "-", + RowBox[{"A6", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "7"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A8", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "8"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A7", "[", "x", "]"}], "-", + RowBox[{"A7", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "8"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A9", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "9"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A8", "[", "x", "]"}], "-", + RowBox[{"A8", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "9"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A10", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "10"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A9", "[", "x", "]"}], "-", + RowBox[{"A9", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "10"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A11", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "11"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A10", "[", "x", "]"}], "-", + RowBox[{"A10", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "11"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A12", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "12"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A11", "[", "x", "]"}], "-", + RowBox[{"A11", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "12"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A13", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "13"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A12", "[", "x", "]"}], "-", + RowBox[{"A12", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "13"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A14", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "14"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A13", "[", "x", "]"}], "-", + RowBox[{"A13", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "14"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A15", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "15"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A14", "[", "x", "]"}], "-", + RowBox[{"A14", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "15"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A16", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "16"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A15", "[", "x", "]"}], "-", + RowBox[{"A15", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "16"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A17", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "17"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A16", "[", "x", "]"}], "-", + RowBox[{"A16", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "17"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A18", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "18"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A17", "[", "x", "]"}], "-", + RowBox[{"A17", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "18"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A19", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "19"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A18", "[", "x", "]"}], "-", + RowBox[{"A18", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "19"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A20", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "20"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A19", "[", "x", "]"}], "-", + RowBox[{"A19", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "20"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A21", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "21"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A20", "[", "x", "]"}], "-", + RowBox[{"A20", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "21"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A22", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "22"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A21", "[", "x", "]"}], "-", + RowBox[{"A21", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "22"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A23", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "23"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A22", "[", "x", "]"}], "-", + RowBox[{"A22", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "23"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A24", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "24"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A23", "[", "x", "]"}], "-", + RowBox[{"A23", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "24"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A25", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "25"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A24", "[", "x", "]"}], "-", + RowBox[{"A24", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "25"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A26", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "26"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A25", "[", "x", "]"}], "-", + RowBox[{"A25", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "26"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A27", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "27"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A26", "[", "x", "]"}], "-", + RowBox[{"A26", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "27"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A28", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "28"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A27", "[", "x", "]"}], "-", + RowBox[{"A27", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "28"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A29", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "29"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A28", "[", "x", "]"}], "-", + RowBox[{"A28", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "29"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A30", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "30"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A29", "[", "x", "]"}], "-", + RowBox[{"A29", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "30"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A31", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "31"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A30", "[", "x", "]"}], "-", + RowBox[{"A30", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "31"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"A32", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"2", "^", "32"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"A31", "[", "x", "]"}], "-", + RowBox[{"A31", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", "32"}]}]}], ")"}], "]"}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"R", "[", "x_", "]"}], ":=", + RowBox[{"A8", "[", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "/", + RowBox[{"2", "^", + RowBox[{"(", + RowBox[{"T", "+", "1"}], ")"}]}]}]}], ")"}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"\:01a7S", "=", "1"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"RC", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"-", "1"}], ")"}], "^", + RowBox[{"Floor", "[", + RowBox[{"x", "*", "\:01a7S"}], "]"}]}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"R", "[", + RowBox[{"Mod", "[", + RowBox[{ + RowBox[{"x", "*", "\:01a7S"}], ",", "1"}], "]"}], "]"}], "-", + "0.5"}], ")"}]}], "+", "0.5"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{"(*", + RowBox[{"ToUpperCase", "[", + RowBox[{"StringReplace", "[", + RowBox[{ + RowBox[{"StringReplace", "[", + RowBox[{ + RowBox[{"StringReplace", "[", + RowBox[{ + RowBox[{"ToString", "[", + RowBox[{ + RowBox[{"R", "[", "x", "]"}], ",", "InputForm"}], "]"}], ",", + RowBox[{"\"\<[\>\"", "\[Rule]", "\"\<(\>\""}]}], "]"}], ",", + RowBox[{"\"\<]\>\"", "\[Rule]", "\"\<)\>\""}]}], "]"}], ",", + RowBox[{"\"\< \>\"", "\[Rule]", " ", "\"\<\>\""}]}], "]"}], "]"}], + "*)"}], "\[IndentingNewLine]", + RowBox[{"(*", + RowBox[{"ToUpperCase", "[", + RowBox[{"StringReplace", "[", + RowBox[{ + RowBox[{"StringReplace", "[", + RowBox[{ + RowBox[{"StringReplace", "[", + RowBox[{ + RowBox[{"ToString", "[", + RowBox[{ + RowBox[{"Simplify", "[", + RowBox[{"R", "[", "x", "]"}], "]"}], ",", "InputForm"}], "]"}], + ",", + RowBox[{"\"\<[\>\"", "\[Rule]", "\"\<(\>\""}]}], "]"}], ",", + RowBox[{"\"\<]\>\"", "\[Rule]", "\"\<)\>\""}]}], "]"}], ",", + RowBox[{"\"\< \>\"", "\[Rule]", " ", "\"\<\>\""}]}], "]"}], "]"}], + "*)"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"OO", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"(", + RowBox[{"1", "/", "32"}], ")"}], "*", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"1", "-", + RowBox[{"8", "*", + RowBox[{"(", + RowBox[{"x", "-", "1"}], ")"}]}]}], ")"}], "*", + RowBox[{"Abs", "[", + RowBox[{"1", "-", + RowBox[{"8", "*", + RowBox[{"(", + RowBox[{"x", "-", "1"}], ")"}]}]}], "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"8", "*", + RowBox[{"(", + RowBox[{"x", "-", "1"}], ")"}]}], "+", "7"}], ")"}], "*", + RowBox[{"Abs", "[", + RowBox[{ + RowBox[{"8", "*", + RowBox[{"(", + RowBox[{"x", "-", "1"}], ")"}]}], "+", "7"}], "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"8", "*", + RowBox[{"(", + RowBox[{"x", "-", "1"}], ")"}]}], "+", "5"}], ")"}], "*", + RowBox[{"Abs", "[", + RowBox[{ + RowBox[{"8", "*", + RowBox[{"(", + RowBox[{"x", "-", "1"}], ")"}]}], "+", "5"}], "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"8", "*", + RowBox[{"(", + RowBox[{"x", "-", "1"}], ")"}]}], "+", "3"}], ")"}], "*", + RowBox[{"Abs", "[", + RowBox[{ + RowBox[{"8", "*", + RowBox[{"(", + RowBox[{"x", "-", "1"}], ")"}]}], "+", "3"}], "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"8", "*", + RowBox[{"(", + RowBox[{"x", "-", "1"}], ")"}]}], "+", "1"}], ")"}], "*", + RowBox[{"Abs", "[", + RowBox[{ + RowBox[{"8", "*", + RowBox[{"(", + RowBox[{"x", "-", "1"}], ")"}]}], "+", "1"}], "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"3", "-", + RowBox[{"8", "*", + RowBox[{"(", + RowBox[{"x", "-", "1"}], ")"}]}]}], ")"}], "*", + RowBox[{"Abs", "[", + RowBox[{"3", "-", + RowBox[{"8", "*", + RowBox[{"(", + RowBox[{"x", "-", "1"}], ")"}]}]}], "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"5", "-", + RowBox[{"8", "*", + RowBox[{"(", + RowBox[{"x", "-", "1"}], ")"}]}]}], ")"}], "*", + RowBox[{"Abs", "[", + RowBox[{"5", "-", + RowBox[{"8", "*", + RowBox[{"(", + RowBox[{"x", "-", "1"}], ")"}]}]}], "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{"7", "-", + RowBox[{"8", "*", + RowBox[{"(", + RowBox[{"x", "-", "1"}], ")"}]}]}], ")"}], "*", + RowBox[{"Abs", "[", + RowBox[{"7", "-", + RowBox[{"8", "*", + RowBox[{"(", + RowBox[{"x", "-", "1"}], ")"}]}]}], "]"}]}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"OOOO", "[", "x_", "]"}], ":=", + RowBox[{ + RowBox[{"-", + RowBox[{"(", + RowBox[{ + RowBox[{"(", + RowBox[{"0", "-", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"-", "1"}], ")"}], "^", + RowBox[{"Floor", "[", + RowBox[{ + RowBox[{"x", "/", "1"}], "+", "0."}], "]"}]}], "*", + RowBox[{"(", + RowBox[{ + RowBox[{"Exp", "[", + RowBox[{"-", + RowBox[{"(", + RowBox[{"1", "/", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "*", + RowBox[{"Floor", "[", + RowBox[{"x", "/", "1"}], "]"}]}]}], ")"}]}], ")"}]}], + "]"}], "/", + RowBox[{"(", + RowBox[{ + RowBox[{"Exp", "[", + RowBox[{"-", + RowBox[{"(", + RowBox[{"1", "/", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "*", + RowBox[{"Floor", "[", + RowBox[{"x", "/", "1"}], "]"}]}]}], ")"}]}], ")"}]}], + "]"}], "+", + RowBox[{"Exp", "[", + RowBox[{"-", + RowBox[{"(", + RowBox[{"1", "/", + RowBox[{"(", + RowBox[{"1", "-", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "*", + RowBox[{"Floor", "[", + RowBox[{"x", "/", "1"}], "]"}]}]}], ")"}]}], ")"}]}], + ")"}]}], "]"}]}], ")"}]}], ")"}]}], "+", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"-", "1"}], ")"}], "^", + RowBox[{"Floor", "[", + RowBox[{ + RowBox[{"x", "/", "1"}], "+", "0."}], "]"}]}], "*", + RowBox[{"(", + RowBox[{ + RowBox[{"Exp", "[", + RowBox[{"-", + RowBox[{"(", + RowBox[{"1", "/", + RowBox[{"(", + RowBox[{"1", "-", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "*", + RowBox[{"Floor", "[", + RowBox[{"x", "/", "1"}], "]"}]}]}], ")"}]}], ")"}]}], + ")"}]}], "]"}], "/", + RowBox[{"(", + RowBox[{ + RowBox[{"Exp", "[", + RowBox[{"-", + RowBox[{"(", + RowBox[{"1", "/", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "*", + RowBox[{"Floor", "[", + RowBox[{"x", "/", "1"}], "]"}]}]}], ")"}]}], ")"}]}], + "]"}], "+", + RowBox[{"Exp", "[", + RowBox[{"-", + RowBox[{"(", + RowBox[{"1", "/", + RowBox[{"(", + RowBox[{"1", "-", + RowBox[{"(", + RowBox[{"x", "-", + RowBox[{"1", "*", + RowBox[{"Floor", "[", + RowBox[{"x", "/", "1"}], "]"}]}]}], ")"}]}], ")"}]}], + ")"}]}], "]"}]}], ")"}]}], ")"}]}]}], ")"}], "/", "2"}], + ")"}]}], "+", "0.5"}]}], ";"}], + "\[IndentingNewLine]"}], "\[IndentingNewLine]", + RowBox[{"Column", "[", + RowBox[{ + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"TableForm", "[", + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"{", + RowBox[{"\"\\"", " ", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"OO", "[", + RowBox[{"3", "/", "4"}], "]"}], ",", + RowBox[{"N", "[", + RowBox[{"OO", "[", + RowBox[{"3", "/", "4"}], "]"}], "]"}]}], "}"}]}], "}"}], ",", + "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{"\"\\"", " ", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"OOOO", "[", + RowBox[{"3", "/", "4"}], "]"}], ",", + RowBox[{"N", "[", + RowBox[{"OOOO", "[", + RowBox[{"3", "/", "4"}], "]"}], "]"}]}], "}"}]}], "}"}], ",", + "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{"\"\\"", " ", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"R", "[", + RowBox[{"3", "/", "4"}], "]"}], ",", + RowBox[{"N", "[", + RowBox[{"R", "[", + RowBox[{"3", "/", "4"}], "]"}], "]"}]}], "}"}]}], "}"}], ",", + "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{"\"\\"", " ", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"FabiusF", "[", + RowBox[{"3", "/", "4"}], "]"}], ",", + RowBox[{"N", "[", + RowBox[{"FabiusF", "[", + RowBox[{"3", "/", "4"}], "]"}], "]"}]}], "}"}]}], "}"}]}], + "\[IndentingNewLine]", "}"}], "]"}], ",", "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"OO", "[", "x", "]"}], ",", + RowBox[{"OOOO", "[", "x", "]"}], ",", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"-", "1"}], ")"}], "^", + RowBox[{"Floor", "[", + RowBox[{"x", "*", "\:01a7S"}], "]"}]}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"R", "[", + RowBox[{"Mod", "[", + RowBox[{ + RowBox[{"x", "*", "\:01a7S"}], ",", "1"}], "]"}], "]"}], "-", + "0.5"}], ")"}]}], "+", "0.5"}], ",", + RowBox[{"Abs", "[", + RowBox[{"FabiusF", "[", "x", "]"}], "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"x", ",", ".75", ",", ".875"}], "}"}], ",", + RowBox[{"AspectRatio", "\[Rule]", + RowBox[{"1", "/", "2"}]}], ",", + RowBox[{"ImageSize", "\[Rule]", "Full"}], ",", + RowBox[{"Axes", "\[Rule]", "False"}], ",", + RowBox[{"MaxRecursion", "\[Rule]", "0"}], ",", + RowBox[{"PlotPoints", "\[Rule]", + RowBox[{"1", "+", + SuperscriptBox["2", "8"]}]}], ",", + RowBox[{"PlotStyle", "\[Rule]", + RowBox[{"{", + RowBox[{"Dashed", ",", "Normal"}], "}"}]}], ",", + RowBox[{"PlotLegends", "\[Rule]", " ", + RowBox[{"Placed", "[", + RowBox[{"\"\\"", ",", + RowBox[{"{", + RowBox[{"Center", ",", "Top"}], "}"}]}], "]"}]}], ",", + RowBox[{"PlotRangePadding", "\[Rule]", "0"}]}], "]"}], "}"}]}], "}"}], + ",", "Center"}], "]"}], "\[IndentingNewLine]", + RowBox[{"ToUpperCase", "[", + RowBox[{"StringReplace", "[", + RowBox[{ + RowBox[{"ToString", "[", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Simplify", "[", + RowBox[{"ExpandAll", "[", "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"-", "1"}], ")"}], "^", + RowBox[{"Floor", "[", "x", "]"}]}], "*", + RowBox[{"(", + RowBox[{ + RowBox[{"R", "[", + RowBox[{"Mod", "[", + RowBox[{"x", ",", "1"}], "]"}], "]"}], "-", "0.5"}], ")"}]}], + "+", "0.5"}], "\[IndentingNewLine]", "]"}], "]"}], + "\[IndentingNewLine]", ",", "InputForm"}], "]"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"\"\< \>\"", "\[Rule]", " ", "\"\<\>\""}], ",", + RowBox[{"\"\<*^\>\"", "\[Rule]", " ", "\"\<*10^\>\""}], ",", + RowBox[{"\"\<[\>\"", "->", "\"\<(\>\""}], ",", + RowBox[{"\"\<]\>\"", "->", "\"\<)\>\""}]}], " ", "}"}]}], "]"}], + "]"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"(*", + RowBox[{"Simplify", "[", + RowBox[{"R", "[", "x", "]"}], "]"}], "*)"}]}]}], "Input", + FontFamily->"Segoe UI Symbol", + FontSize->12, + FontWeight->"Normal", + CellLabel-> + "8/1/24 03:23:15 \ +In[336]:=",ExpressionUUID->"4b599907-b90e-4af8-8102-af55e168ea88"], + +Cell[BoxData[ + TagBox[GridBox[{ + { + InterpretationBox[GridBox[{ + {"\<\"OO[3/4]=\"\>", GridBox[{ + { + FractionBox["15", "16"]}, + {"0.9375`"} + }, + GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "Rows" -> { + Offset[0.2], { + Offset[0.1]}, + Offset[0.2]}}]}, + {"\<\"OOOO[3/4]=\"\>", GridBox[{ + {"0.935030830871336`"}, + {"0.935030830871336`"} + }, + GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "Rows" -> { + Offset[0.2], { + Offset[0.1]}, + Offset[0.2]}}]}, + {"\<\"R[3/4]=\"\>", GridBox[{ + { + FractionBox["60985", "65536"]}, + {"0.9305572509765625`"} + }, + GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "Rows" -> { + Offset[0.2], { + Offset[0.1]}, + Offset[0.2]}}]}, + {"\<\"FabiusF[3/4]=\"\>", GridBox[{ + { + FractionBox["67", "72"]}, + {"0.9305555555555556`"} + }, + GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "Rows" -> { + Offset[0.2], { + Offset[0.1]}, + Offset[0.2]}}]} + }, + GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[2.0999999999999996`]}, + Offset[0.27999999999999997`]}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}}], + TableForm[{{"OO[3/4]=", { + Rational[15, 16], 0.9375}}, { + "OOOO[3/4]=", {0.935030830871336, 0.935030830871336}}, {"R[3/4]=", { + Rational[60985, 65536], 0.9305572509765625}}, {"FabiusF[3/4]=", { + Rational[67, 72], 0.9305555555555556}}}]]}, + { + RowBox[{"{", + TagBox[ + GraphicsBox[{{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], + Opacity[1.], Dashing[{Small, Small}], LineBox[CompressedData[" +1:eJwdmHlYTuv3xtOgiROFSAepKJ1UnNDAXcKJpEGEOkmDcqIiQoPx0Ekc0aCU +4RhLUhS9Ks0JSSkpDSoN9sB+SlRK3t/z/f3z7utz7X2tZ611r3Xvfb0aHgGO +3pISEhJjxkhI/O/aNt2K/jJo+v+rgJWJFp2NUgzEMy/LN0gJKDfTvCwtx2Bk +TVfsD1kBZTscLrCKDPwy1zY1KAoI3vhzTJ4Sg8Nbr6skKwlY7hu9ok2FwfnU +rI/pKgL+lfEvz1dl8DAkYWOwqoD+CsMZn6cz8O8wvBY1XYDi6j2M/CwGLrtn +J0bOFHB9g7i3TZNBSKfMRGgK2BCx+7WcDoOirSYHLeYKOLnCoJfTo+c/v9nw +fZ4AvyK/I48NGLza870yeb6AHdvOME0LGTiYKr84tUDAxzPD/z5czEBCd+9l +o0UCDrWtHd9pxiDvsnrhbFMBz8ivoz/A4D9hjf7oUgHno0z1aqwYaN1b6nzO +kta31txo4A9av1xuh/9KAU0JkfvqbRis1ROSx64W4KyQf07WnsGvho7DPWsF +RJjumjnHicG9RM2fmfYCFg/s4EedGUTaz5+2yEmARIPNWR1XBg88L7OSmwSs +tjq4e5w7jXeqZFWUC+2/v3Z5iyfV47/Vxj/dBLgUPOoV+zDomb/iS46HgL7E +mC0tfgyYhT7q87cLuHpxQ7JiIH3eU8+Z2yFAcku83dy9DArmvG6K3iWg68Zs +yx/7GVx7c+j+10ABbZNiFbTCGEyoSL17aa+ALRMclGWOMECOVKD0AQH/vDgd +VXuc9mfrme0bQwXUpKa3fIlg0CqzOunTIQEJk9R2voxi4DUic8DymICDN/zq +hs4y2KZ8p/7dCdqfQrmD72MYlH8ftTeKFCAkakVnXqD6eN5x3ntagHqi9uH6 +JAai8d2D388KeK65527WFQZ/qKbEI0ZAdN31+13Xqd4edRMq4gUoLHfSkUyh ++TU9rDK5KEDa3L61MY3BXDuvgF2XBKi6GP0lmcmgRqtX3HFVwB0ZN+PuLAbH +yq9xqjcE9PrL78nOYfCnfomk6W0B9qOJJ9/m0fOyx2km3xFgoBr87n4hg9hj +2eFF6QJ0Ni6Wbi9l4N3OzNa6L+DN+v1XhysYxOxQTw/Kpvq1Soa+qmRgUr7O ++WQO1SsqSP9bNYNhf133hlyab7nBjPo6BnYyCj/5JwJYzdc9so10XpdMM19W +LCDUsm/W3BYGGQozRGFlAs5wroniNgYzztdkHK4QIBKls/O6GNg0FW4pfCHA +U3nNASWGgZI7P1BaJaB4nveBdp7BmHjd/Ic1Apb4ettL9zIwt4+y7ayj9Rjd +397Rz0CXlGa+fSvAYuYHp4lDDHZU68+WaaL9e3kuW/8Hg/BK9b2zWgVYS59x +lJJgMbSNCZdsF3Bz265netIsUkYTU2d0Cji2JjFsvByLMjlPSckeAcpfrK41 +K7J4/W7OnDpGQF5B3ZUfSiy8VdxOtPJ03qZkNL9VYfHW/mZfhiBgbmwAkZrK +Qmn2t+bcPgFccqglN51FkKnq6n+/CnD3GivzZCYLm5d+7+wGBRD74KsfNFnk +5VpLrB4W8POZUUjxXBa/lQycUhwVMGd7rV6/Hossg4+fpSUIxpT0rZtoyKIt +0lXvkySBa6prJrOQhU/ruKxLMgSvH95llZewWOZuO+eEHMFTW+ttA2Ys3HYu +3rxYkcD/hseap2Ah/H3coXE8gcEsD0XWisVW45Pr7k0gCJybrlD+BwvT+Wd5 +OxWCF+tbO/ptaD8WRVdrTyFoXHZ6npI9i+cHDxpyUwm8H56837meRXOtoWro +dIJxDtsnKG5iceHGm02YQbDwwLl03oXe990WVzOLYLybWb5oK4tLs8aZOGgS +SOx4ca3Rk8X+zYEO0nMIgsQ3Ku77sJhjdGDFCR16P8+rrNWPhXagJFmsR+NL +BopLAlgUJNSyIn2CStnhtNgg2o8/2q/rGhLcWLDD8PF+Fr+/NJhfuYBglNHs +jw9l0aN5kjUzJggoKz1TcZjF1MnjcloWE8S6fUjsOk77U2I8stOUwOTvtV25 +ESx8zc5vrDInGHqVNLYrioV+flqDKwgW3Vzk8/QsC+Wrq7rzLQl0TO1N4mJY +5PvPdhq/gtb7dV3nowss3jtqSJ5eRVBgklh5LomFxu4i9RZrAo8bz6IKr7A4 +1TAo2mxD8Lgq+Mm76yzUpin4V9gSRB8L1E+/zcIlZNU+WXuCo652++rSWHQY +2SnvdST4Unxw5EEGC6nPYcFZTgRhayM3d2excFea+GCGM40Xp6orLWJxaPWu +rSGbCYL/6lvUksfC/s6h3FQXgrVemeqyRSyqu9UlpN0IrrG5FnwpC9uLX3wX +uBOk6a94m1fBQqwQN9/Rg+BV/AOrtkoWG3eUDiZ5EeyO2knyqllsWn63LHc7 +gf5NxSC+joXJP8sbJHcQJIfr+so20nqPzfxp5kcQ1XE+qaWZhYzszV9sdhHE +/NVxS7qdxa/jbh44FkAw/XBob3cnvW8WZhm9m2CjY2xa1kcWV10G5aKDaD5r +zi97w7PQyThvlbOP4MirZqV7hO7T9J78h/vpPO9XeNzUz2J1iuSnpoMELWl/ +Xy0aZPFzy5nqhlCq/+Xw7+dHWOSGcvIV4QRLclzmicQsDOpTlFsO035uOZEY +L8WBO5Kf+fwo3RfN2PYKWQ6mRmK3luMEtmkaid2KHBrX+U/vOEHgVDB8Nl+J +g+j73+sLIwj2DojcelQ45BcbZhRHEkzKLfF7rsohJ7Bn5FIUgY+5DZcwnYO7 +xRnLXWcI3nSKLPJmcljYLVu29SxB0ZQ99fGaHG6deq2qf46e7z9heflc+jzK +OPUYgsMn9Ge163FgXxn7i2MJRHPjzbMNOGyOuJXyJJ5AgXQaNi/ksE/WNvhS +Aq3fMtwzbzGHjI1jAjdfJHj2eGSXYMZh7EnvZYuSaT69Q+x4C8qPVkwZe5ng +xAPLGz1WNL4aI5F1heBJYsAiZWsOd8JN6w7/R7BvHDt20IZDs+5H/XnXCdqX +dlg/s+PwVmwa/uwGgVdsgcen9Rx+Rk+uOnGLwDf4Y+5zZw4fM/pPaKQQnAz/ +xn134ZA1YcvR5lQCZ6tjp6e4c2Bc63Ui0whSYrfs/OTJ4V2k78wp6QTKilO1 +JvtysH6ku7PoHsGPcRpqg34czmutDF+TSZBYlXK0PIBDksWw1vP7BHZZk4t7 +gjjoP3Yx98qi9Wi9Wla8n4PFzRlDbdkE9bl+sUIoh74PU7bvf0T9S+kfF7kj +HF6sWTNbSkTg0kvcm49zWL7dwTfwMcHgN/NlY/6hehs27R3KJVCJqN/cHsXh +mav2EY98Auul622VoznMUbwa0/OEwPCB3QPDWA7KrMm6rYUECQ8ubJBLoP29 +9YuQW0Sg1lhWsyCZzlOKQ6pBCYF65NJTU65yCLu5sjCilPr10O8Pe65z8FBY +6VNfRnDlzESRfAqHlikvrMyeEnxON/nencYhO8TP5UQFnb/+VcqTMznkVVSw +Pc+onw3WJhtmc3CUuF+89AWBfMQdbxkRB+2R07kHK6meZj5j9fOpfpbyy16+ +JOgLDegeX8TBLeuis/Qr2o+QAePmUg7XO0ZvLKimfNnDbaSCg5xbYXxwDcGm +dWrlbyrpfK/b+vPqa7ovs3OkxtRwCFyqZtteS6B4/MqRnjoOm/b/GTH2DUHD +f2MDRA0clmRdsNWsp+d3Oxq3NnN45HRJxektgeZDziSvjYPrs+GbOxuo/6T6 +TPnUyaHeQCYkoZHuh6unlzzDIU7L91zuOzo/SXd623gOmkf/dClvInAUv3WS +7+Xwl8mhkA/NBJeEdYN8P4dvYRHFTAv1n+SVinmDHEpj4xb1tBJkB2gMtozQ +fVSao/btPfW/V9YaIjGHuadeyght1B8cNmj2SPGw8nK7NthOsC22PV5CjkfD +plNaQx0EKz1yrN8o8sit9ort/EBgtSGodliJh/Q9u+fvOwmK60IuNqnwEB3i +3cu7aL/2+5iOn8rj7DltcW43re9drc1v6jwupH9qvt1DsLMiMkl6Fo9VYVKS +Rz/S+W3SLjXQ4mE3XG3pyxA8ODBed5IOD3f5YAtzlu5vfZBEtx4P+/f5vnIc +fR85F2bIGfKwCUgt7aCc4r3xUvdCHgsNxxSk8NSfE2o9Ji/hYTygoh/2ic5P +ZFWikTmPymrz8D8+E7BjJynJWvCoOlnlOEYg+JkCV4MVPPrtGjKfUo55++jj +BGseoRqH5UMJQXPJ3a73Njx2uabq6/QSLH0T8Vhsx2Pixs7+Nsozd997+W49 +D72uO7ERfXTeF+bmjN1E62FmqJl8IYg7MrHjkwsPU7X3pIly6emPoYVbeRD6 +0bCvn/pXwTWhy5NHgrG4bdpXug8hqVdKfXjcOsTLZlB+4Bqn882P1tf9yn/t +N4JVo+LZKoE8SpcUZH6gvEX3kQsXxGPAxU7Bb4AgIsRh56QDNP69+Y+GKf/u +vCRvMJTH1pxpJGyQvu+/XAqtOMzD50DX5yHKv2QxKtxxHiNq+ptChwhkxYe4 +8giqv269QR9ltcDhhK9R9PwZKx7u/E7978pXkVI07W/zdFEH5TkupqpdMTy+ +PJ/4i80w9R8zb1vFBKqP/Uvtx5S9bjcX80k8ikzzZNRHCAZe19wWXeFx2RG2 +Bylf00jzbrzOI3W9W2AT5aofNdvu3+bR6+ppZvSD+uFos3FrGo+k4jqtKMoN +/yywLsngMb+6Qq+Zsl2d7MuYLB6/Td31RXuU5re8ZK4oh0dc0KrePZT7lj4r +jsujem52+fSIsrpb1sKnhVSPa4nbflAeNv9VtbOUR8/SL7bmP+n83q5d8riC +xnNKnbGXcvWiXQs+VPJ4/PessLuUnzqs/6usmsfvv1osbKUcqCdSianjIdc5 +fq28mH7/zJOMy27g8W2aoqIx5eDsC05nm+n8RzyV2kK5zlP5U34bD3Xt+d3h +lDtfK35728nDq6S9LZlyUKW9+Z2PPMqCar8/pKzOhbjU8DxwN31CFeWVsb2i +DMIjZUFB3nvKEZ42Qkc/zad1883PlMP6tOIkhuh+Yt6YIcp9CmtCGkd43JbP +aRilrNGVLxaLefzvvwAJiV78H/9ik1Y= + "]]}, + Annotation[#, "Charting`Private`Tag$12753#1"]& ], + TagBox[ + {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], + Opacity[1.], LineBox[CompressedData[" +1:eJwVlnlYSOkXx9tLMW2IGCSUJSVD0fJFMaYoVEKNpU0bRWQJkSUkmvYUmSRL +yNK0a1NKUakoFa3qLnXfok2i3/v7597n89znOec953vO971qDl5bnMVERERE +RUVE/v9unmZCnwwunlhaUsz3YG3MqvZ6cQaxf/iZ8aQHxQbqNyVkGPSu8TZ1 +7u9BkdvmKFaOgV8KKbw63APfrb9Es+UZ6MtoqsSP9mCNa4hpszKD1NLBSjFR +AVcl9xfnqDA498lRTkVSwLcSnRk90xgkhOiWnRwnQO6vg8y4WQy6jrwVLZ8g +4LbNWG+zOoMy3Z8FrxUF2AQeeCejySBk8A9+6mQBF0y1e7mFDHbobpg9XVWA +R77H6UxtBotTc5okZwhw2xPMNCyl8cMqeMwW0BU8cvU/PQZmFi6yWvMEnGre +MKHdgIHD9QvX3RYIKCW//xwFg8AFapuDFwsIDVq5sMqEwSuzvFnOugJ8Nxgu +GfyTAbvi2Nqg5QIaoi8dfm/OQOnMdlmXlQJsZXP+kd7EoLm7yPiqsYDAlftm +zrNmsNo57PuNNQL0Bt34n7YMxDQS9ziuEyBSZ35N057Bhs/C1MNmAv4yOXZg +/G4GX5VPyxhZCFi7f25xkyOtZ8Xhaz2bBdjlpvWO7WXwpfL+RtZGQF9M2I4m +DwZvFN3N4rYLuHXdJk7Om4Hn6uiomL8FiO2ItNQ4xGD51nmz/PcI6EicvXr0 +CIMn7SZD050FNE8Ml51zgsHTy8a/xN0E7FDYrCR5moFur/Xn254CLpZdCao+ +y0CzrOk3LW8BVfcfNX0NZLBy4VqbXz4Coieqer4JYhD08Lr/pSMCjiV61Axf +YyC0adXb+dH+5Mkc+xxG+1vddYs5JUCImRPyJIrBzbmWM3cFCJgeM9f/fSzV +92dpyrQLAl6rH3z4PJ6B8Wvj3LBLAkJqbj/tuM3gd4U9A5uCBciusdYUu8dA +QjTh/FCIAAnDTZ/qkxn4Gpjd3xEuQMVuibvYEwYWJk7VotECHkjuXPblOYPz +oebTXWIF9O4fdzA1ncHxQyoNqTcFbPoZc+FDNgP36wpn1iUI0Fbx/fg0j4FM ++6ltkXcEaG7Vk2h5Sc8TnKCteV9ArdWRWyMlDKLTJs9MfEj1+yTmV1HOoHit +6tbmFKpXkI/WQCWDzU2f3Oye0/MWa894X0Pjp5+2ikoTwKq/65SuZ+C2ep62 +cpYAv9V9szSaGKxNmhl87IWAYM4+ZqyZQb93eMOtfAEZGY/YBR0MWrsLBqSK +BDgqmR2VZxjI/vNbyOISAQULnI+28AzSQvvKV5cJ0Hd13iTRy0AuJSYj9C2t +Z8lTl9ZvDH6G/6uXVCVg1cw2a8Vhul8fDpwcrKH9e/NPqtYog3S5UlndOgHr +JYK3iIuwcGjrNl3SIODOnn2lCyVY1Ba0zfb8JCDALObEBBkWu84UG3m0CFD6 +apLQKMci45BL/tZ2Adm5NfGj8iy6nbzKT3TSeZuc0vhBmcVTqckarqwAjXAv +Ij6FBWPvNTu4WwAX57eam8bilUPo2BEiYLeTlOSLmSxcZe4+tfwqgGzyvdWm +zsL0cWDXrgEBv0qXHC/QYCF1Jn6i3rCAeS7VC78tZHFu1/6mtT8EiBb2WSjq +0PwpVmqrfwmwv2//hFlK46ulHZMQJXj330NWSZ9F/v575r/ECV5tXL9n0IDF +kxKTwnwpgv2JDmavwOLrUbN673EE2rMc5FgTFpHOtyy2jifw1ngkW/wnzSd5 ++ZSkPEGZ1afWb+YsLHZ/1mAVCeqNryyQ38Ri9qJy1ayJBM7/XXjabsWic7iy +zUaFYPxmFwW5bSwCXI2k5qoSLD36zyPejvb7eey1vOkEE3Ya5GTsYqEza825 +9TMJRNzKEuodWVzQd8kVn03gM5ZY8nQvi1zb1QeD5tDv2U5FnzxYrHT1DTTV +oPHFvMcKvVhc7yy/WzafoFx6JDnch56nq/E2FhEk6rrpZB5hccZAubtjMcFP +Rv1bpB+LBdu/Wm1bQuBV9DK4xJ+FU6TPnB9LCcJ3tsV0nKX9nLb81JXlBCvO +bejICmTBSVgq9egTDFfESnUEsVB9833Az4Bg+Z3le19dY2GmcSGxwYhAc+Wm +FRFhLPpT3H5qrqL19lu0p0WxCGKXRCSuIchdEVP+TyyLeWKLZftMCRwSS4Py +4lmUlZp8dvuTIPOt74uPt1n8Otg1vvovgpAAb61Hd6k+m1id8RsIzthbHq5J +ZlGYJ3PrgAXB14JjP56lUH0e1Ifd30RwYsOl7V+es4h+91e/nBWNF6EyXyKD +xSKfUfWdNgS+7n3Lm7JZnLrj3HvWlmCD05Pp0vksjJd4qtRsJ0hgs1bxL1lM +rT7mPmhHkKxl+iG7hMUyDY9k2Z0EFZHPTJrLWVRdiTX6czfBgSBPkl1J+7Wl +WXa7A4HWHTkfvobFYNq/lqFOBHEn57tK19P6esT1clwIglpDY5saWbAPK/bl +uBKEubcmSbSwsHvgrtDuTjDN36/3SzuLWP2eay2eBFu3hCc/72LRMDLhbeV+ +eh6zUONanoW1/WSfDm+C0xWN8o8Ji0NfJUTfHaTzfEQ2s+Eb7a+lh3rbIYKm +5HO38odYpB2uyyr3pfrfPPk99AeLo5PDAu4eJdBPt1uQMcZiz8HMz0nHaT93 +nI+JFOegr1iR6X+C7ot6eEuJNIeh14a2fqcINiarxXyR45B1gPnseprAOnfk +Wo48h5Geif06AQSHBjN2dipzeGFtVqZ6jmBiVqHHaxUOW3Y/zmg+T7DX0JyL +nsZBbl5KUlQgQW17xqrsmRyOz9/2t/clgvzJB99HqnP4Y0WDztwgmn+/wppi +DZpvwER05AqB/3mtWS0LOVi5dF4tuEqQoRFpmKrNQc3Fco1LCIEsaddpXMph +/43o7/NDaf2rTzpm63F4I3J2Z3kYQWnmj32CAYd8j7u/LkfQ8/QOsxNWcZgR +0ffOKIrg/LPViZ0mHAbdbm6vjCZ4EeO1XGk9h4nmaRqnrhMcHs9KDZlzMJsh +umR8HEGLUev6UksO2vZT/K7eIHAKz3XotuJQPuXjTK14AlffrqzXthwanKaP +Jt8iuHBygPtux6Gz9eGBdQkEtiYBVybv5uBW28jX3ia4F77Ds9uRQ/Tv7jdM +7xAoyU2ZM8mVQ+qkr6MVSQSj49VUhzw4rBxYomJwjyDm7b0zxV4ccl+XGsbd +J7B8Pqmg04dDxvxJi1WSaT1zKowLjnCYc9yo8tBDgvdZHuGCH9WjMyiAf0T9 +S/6incxpDosc5o+zTSGw6yW7G89yWMe16SU9IRgaMDQWvcihcm9g1IRnBMqB +77e3BHFQvPh6xvbnBOuNrDYqhXCoXxmslpNKoPPM8plOOIfXMw08JqYRRD+L +spGJ5ug9bPluczqBan1RlW4c1Xvqwro7GQTTLxldnnyLwz7rlUeaM6lfD//x +X+dtDmmH6rbLZxPEBytmjLvHYVV38DibHIKeRyu+f0nmoDNvitGZF3T+vq1T +mvSEQ1nAaEhhLvWzoeo4nVQOFXH2g9/zCMYFPnCWzOCg2x9YPqWA6mmwV0or +hwNje6jXvJCgz8/ry4R8DtXWAb9cXtJ+HB9c1viSg/++lwrHiijfdNj5o4SD +odyc5JvFBNssVItryznMNjOVf/SK7svsdHHRKlpPQZ1tRQmB3Nn40501HB57 +HGitLyWo+1fKK6OOzpupdEPDa5r/y5Zlnxo5HBY/NyCUEaj/x63Ibqbx7awW +95RT/7m/d3J3O40fYs+PvqH7Ye/oNI7h0FR5rUe8gs5P7IPeZp5DTmEvN0B5 +y9gH63G9HL2/5R8PVxLcECyG+G8cotrCP3dWUf+JWyuXPcQhm+Trv31HkOql +NtT0g85X1c+El9XU/yrWq2WMcbAeV78hqYb6w2Yb9U5xHvYWtQeiawn2hLdE +isjwMNqnFRvwnmCtQ/r6WjkeDZJUoA8EJjY+1SPyPE7vymtCHUFBzfHrDco8 +jMeq9yjX034d2btywhQey8vOzxqgnPCx2nzRdB5vVHwsKj8SeJZcipWYxaMq +bnxZVAOd34a5L7Xn8Ggx3li7r5Hg2dEJ8ydq8vhw0T5St4nu73sfkS8LeTyt ++B7bS3nYNi9FRofHufSq4OxPdH+ct974spTHrYCL3w9/pv4cXe0wSZ/H4bM2 +bwyb6fxcehuzxJDHHq+PRaOUWamJ8tKreEgtSvj+sIXg1z3Ya5vyuGJ4aMi1 +lfrzh7QuhfU8ojUqIya1ETQWPuz4bM6ju+Do7BzKRrWBmWOWPNIz3dv2tRPM +PPD4zUcrHq+uHfuu0EHnfWlWutQ2HoFvFF7nUo44rdjabcfjRK/c5p1fCF5e +6fLL28XjwVTVucOUZXMThA5HHp7Ry9TjOuk+HL8f/3IvD7O1Gy/rdtF+2Edo +DnjwkJC9m1RNed3PsdnK3jzWiJ0d9mQIdsxPs+N8eOSOBTqOUA48vtlz4lEe +cSq7RkJYgj9s9bOH/HhkudtLTuPoff/1hl+JP49fWV0/4in/9pxR5s7y2KaY +EqfFE0iPneKKA3kUuUtuTaGs6j0S3R/EY+qxvy1XdFP/i+/PkA/hkebYrpZL +eZ7dSpWOMB6GC0Ke6PVQ/zFw3igXzWPe9W9imZSd7jYW8LE8LvRLu2gLBIPv +qu5mxPPIP+Nt/i/lBLVk5/rbPEqTCv1VCcHb0ao9T+/yUD1ZZH+JstLPxmWf +knmUPRA0xyjXXdRdX5jCo6+ICO69dH5qpN+EPedhPTXhUjXlljWFGhnpPHao +T0la1Uf33ai0ICKbx9aOwo13KE/f+XzpqzweBqtO/a7wlWDE8HeV9pc8tlxW +TfOlvO1utX5mCY+LkXVutZQrl+/TbSvnMeNB+ye9b/R+2mzlXlTJY9GOi+mh +lL0XZiiH1fCoVVMkLOWlC8QiUutovlypC+v66f9HapT1tUYe3j360rGUaxyV +unOaebhpOUT3U25/JzfwoZ1H2AkNf7MB+v9XvsnwQRed56QJNdGUp3PH7ap4 +qmdiaiNPeW14b0YK4aGYbxyhN0j1djQXWr/xqAhXyAqkfKJvToTIMA/3yhUB +tZT7ZM2O1//gYZo+5qs6RKDWkTM2NsYjKK/MzIny/wCx2KQg + "]]}, + Annotation[#, "Charting`Private`Tag$12753#2"]& ], + TagBox[ + {RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6], + Opacity[1.], Dashing[{Small, Small}], LineBox[CompressedData[" +1:eJwl1nk4lGsbAHBbyHLIkpLK0olylKJS1J2oFIWQwlGRkD1F0aJVJVpMIlun +FNFirSkiyRIqW8iSPaF5HlEpwvfe7/fPzPW7Zq55nnt9R8XJZ5uLAB8fHz8/ +Hx++t80yYl6/AB/fej7lUh6sj1nb1SiIDp86Us6DYn21BCFRdAdH6T0PXrtb +3ugTRy9qGqnhQcD2Cf5cKXSObF49D9a5XTFuk0Xn9b5t4kHEFO/iPAX08+1R +n3gwXKo9hzcLveF2WicPxDcd+DJVGb0g5v5nHtyxmRxsU0P/lN7VzwObUL9q +UQ30qiO7CQ/OGS8e7NdEX2+YOcQDj5ceIc8Wo4Uq837wwH1P+JcmHfTM8tTf +POgNH43IWYG+nGA5zoPjbWaSXfrs5wXr+AmU0dnjfwBtojV7CoFrYas0q4zQ +jrYZogQCzAyW/NyIftARIUGgKfrCoQ+maOn4+dIEbMXyropYoA+NCssRCF3l +NXe+NVp3okqBwIqf7gPjtmiNmdtnEeBrML2s4YC+26c6l8AmoyN+ErvR+RvS +VAms9/67uMUZvW/ZnPkE7POfDE66om2GGhYQ+BYTadfigb6ptFWLwK2bNnHi +vuhgW7ElBATsoszVD6KXNafrEuhOUjX8E4j+lSGnR6BNjiM27yja8+ELfQJ2 +0pYyU0LQU/zmAYHz5ZfCak6ju1wD1hGouv+wZSgULRcvsYFAtJyiZ2UYWj1o +zyYCR5I8an9dRic2/jZj8lMgeuRTJPqJtaUFARIz70r6DbSKA8eKgFLM3yc+ +xKIzx2faEnijduBBViL6Y/wuOwJXau9kdN9h6zuz918CYuusNQRS0F6NO/cQ +EDKwaG1MY+tzNHwvAQX7JfsF0tFpUgJuBFKnOC7ryUK7jK/wIDDoPfVA9lO0 +3kw7bwIW4zHn6nPRAmvy/AgsVgj4mFGADohvP0hAY/sKofYi9EUT48ME6qwC +b42Wohs/RgYz9WsVCH5XgRYOu3ecqVeYv9aP9+hvcSMnmfsWL57zoRZ9zFji +LIE+terPIo1o3wjH8wSCDb8pq7egQxXiwwiE9zvETLax8zT7VgQBLvdh38Ju +dFtj21UCzjKbD0t9QZ88180hULjQ5XD7AHrervobBPTcXCyEBtFcEaFYJp4l +Gfs6htHLT4/EE1g7t9N62i/022nz/2PyV3k1W+sPuvS0YRIBE6HwbYJ8fYz9 +HqklE7i7x6tMUwi9ln9tKoFTm2OOSoqinU+pPSQgM2R0u1kcXVz9/TGB3Pza +xD9S6Jy9k5lMv01/3Fwvi66cUpNDQJ3jQwVnoK8sauUS6I8LNuyfhd7ZnJ5L +YPde4Skv5qKnph/IJ0AtAm51qqHl1T0LCUyULQkqVEebCC5+TWD+vhrNYU20 +QIlGKQH+V9+2TtNGv3CXLifgcN8h/YsOe78dryoJVOc86JPRQ58zTn1PoGSL +yZ6f+mivbw41BLyTnDaXAPqH+0Qdkz9lJ/E+I/Tkn7oGAr7qD8WKN6K3agc2 +ESi3au0YNkUvL9rSSqBxzaWFUhZo5VaZdgIuOecyuqzQLkeTOglIWO6TFt+B +1uS49xDQOXz14YA9ese9sV4Cko76edxd6IAFx/qZ/nIvv93ojD5pvIRHwH8y +qTTDFX1GL4syn+fufd3qgeaTcB1ifl/Ad/KVD7pFq+87gQqR0TSOP7pH0X6E +QNJSd+1ngeinwhO/CYx/URuOCkYbKvv+IeDzuii89AQ6PkRmkgDHsTOm+zT6 +gFsSP4WVZ8y6n4ei052EhSj8ehcr3B2G3l9wQ5jC8rvLXUsuox/d/i1KQWOV +xcrrkeiMn6biFHS+b+16cgO9papSkkL+ypiKq7HoWMm50hScksrCChLREYqJ +MhSevQ148fEOmz9bKXkKV075aj1MZuP7aKlA4aSD+aHaNHSTaeFMCkOFR8Yy +H6ONAwWVKBw1u7CzJwvt1uo3h/m96woLhLjopPdVyhQC9n9b3pKLfv6voBoF +s73pSiIv0W0b9vxN4Xbf87UDRejPEKlOIU3LuD63lM3HgycLKLyLyjRqq0CX +xgr9Q8EvzJPmvkfrHVJfREHrrrj/QC1bv7kHtSnEHVvgJtLI1nsiYymFsI5r +sS3NbL+kFOtSiNzfcU+oHT17o8AKCrNOBA/2dKH7VeVXUti+jZOW1cvGO0NR +n7nP5mtr6gbQJYs2rqYQ8q5Z6hFF19uZAgXvQLFnTcNo7q8AQwotaWduvRxB +35sTZERhPOHY72tjbP8+81lPQe+p/ULuJPrncNhGJp92Z2OiBPvx+R0esolC +iRqnvVQEbaIYa0phS5pKTI84Wrc9eQsF6/zRy3lSaOnOcHMKB39yHT/LosX4 +YywpyD1/5fFGAS1cecyKgquBaX/0LLRQpo0Nhbou7trcueitXyxtKbycfuBD +lBpaNEFjJ3O+t/S6YnW025iqPYUTZ7WU2zVZr5L+lwJXPcogezE6pbrRkYIY +7dJu1kGHrH29m4nf8Jhz7gq0d0CYE4WyZ2NeRJ+9f+vBvcx9Bn/1Sa5F152y +3EfhbKZh0mcjtFyJmBuFFzE+y2VM0De9etwpHJLoEx4xZfOjHO9BoX11h0mZ +OfoSMfGisJeT7/TVCq1qL+9DwS2g9/kbW3T/fwW+FM4d+9H/2x5d033hAAVb +o1OXpu9GW0iaHKSQwrHz/OqMju7sPkRBRnzGPHk3dBLvViCFPxIqiiMe6Cpp +gyMUYt6mnCz2QQd9qwiiYJ4lX/jZHx2xMegoE8+8d2sKA9HXQkSPU/jw3IND +gtEzrmafoNAodd5eNIStj5bNSQr2g3R382n0/CP1pyiM/DBYw38endly8AwF +2dAPO9vD0AJ2389SMFlttUXmCvt96yuhFLQzzTO1Oeh9uioXKERn3rARjUYr +j0ZepKDY+LpqaRyaHFe9REHpwuqL02+h6y0jwylU/9LN+XwHXd78O4JCYvg0 +7tQU9IR38BUKvIcrf/ekoX1l2q8y/Te8QUY+Hd2+YFckBZ+RmjjtbLbe5bUc +ClNDU12mcNGLDP+JYuqp7yqslYeOOpRwg8K3YJ8eyZfo7p7v0Uw+gn4uay5C +m6Ua3mSc4OQ4Vsr2/9HkWAo7tioW11Ww9TUZimPmRfWpIH8V27/XbBIoiJ9O +DPlci/ZclZBIoeE/YR9uA+tLrbeY83u2LWttRh9M171NQS2nf2VuG9qR53eH +2T/3Xad/7UI7+JYkMfPh4Lx36he2Hw5Mu8f0T2zqYNsAW/9NRskUtk3WW08d +ZPOdF5ZCIZ5sHRkYZvvbJfc+s3/i1ovnjqAHt3amUsj2URlpGWP7bfHcB8z+ +e2eiwp1E/zVm9JDZD5Y2ap8FBxgrLT/+iMIeTnsUnyh66OLjxxTWOz01qRNH +Hw95k07ByMa/ZlQKfWDdrwwKhbVBN5tk0V8FpLOYfAW6rpKcga4TN8hm4vtY +Y/qPElrizK4cCp6lF2KFlNEBjzyfMP3b9HfR4nnoPyHhTylkHpZcIKeBTtkT +zWXm94M/X48muso99hnzPLIteCyqjfY9mfGcmR+X7fE9Oui/LDNzmf0cXeMk +r4d+l1Wcx/TPhbcxSwzQworVLyj0CctJiaxF63WX5lOYSAGHxcZo7ftVBcx+ +rn/SK22CXrSw+CWF5lcPuj+ZsvHsyiyksLou9NmkObplIv0Vhbl+jyo/WqEX +jscWMf2u8/yp8A72fN6N1xSuh0zr+GqPFuKEFFMoutQbXLALnW7gVMLsr/zb +pNsZrbzJupSZh6D7iUWu6Ig0nTImHw7XNX54oC9NqL6hsGF8UlXWF/1ER7yc +gt2CJ/b9/uz5uzsYhwZZesodRr8eLKmgoGurlzsSjDaruFlJgTMUH1x6Al2i +5faWwl9ZX2T7T6PPeBu/oyAyeby/OBS94arUeyYe39Ho72Hoynl9jNsTv3Ol +rqAt1PKqKMy3X6XQHcnWP+54NbN/9F22iEez5wua1zD7Mbm5cCAWna8rVUvh +Z3VVMjcRTbzeML6tkubSeActLX+1jsLbP1V7MpLRCTM2fWD24XjzstY0NEfl +r3pmvs4vNXn1GO1UW8TYvFakMjIL/anWv4G537pX6tyn/8+HdiMz76vLCq/n +ouNUPzFWcszSKSlAT0hEf6QwajBboasIvf0fsyamf5Nr9J6Vosukhhi/X+61 +tLOCrfftO83M88nSav/r9+judRtbKPhqcmUja9l+vd/DWGehwPXsBnY+tlxu +Zf5/ZN+wvtyMNj6j+YlCrbPM17w2tGpMDeOuavEf9V3oNbsOtlHwr7AwSO1F +862Z2s7ctz/IvmqAnZ+LKYzXcwa5jynabZl+B1NvZ1PSMYzeMdzA+Oi3edf5 +frHzfNenk4lfbHNQ4xibP70xxirdeZOTk2z+Jy93UfgfqDuErg== + "]]}, + Annotation[#, "Charting`Private`Tag$12753#3"]& ], + TagBox[ + {RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6], + Opacity[1.], LineBox[CompressedData[" +1:eJwVVnlYTWsfbS6lG+VmlmRKumXWwIoMqaSBDGUICZVUJGWekkRxmoRCFIlU +dJKL5og0CE23ufbg7DdKJdL3fv+c/aznfZ53r9/6rbX20d7uZe8qIyUlJS0t +JfX/Z8NYc/rLwH6hss+4IgmWx5i1fJFl4GHqGtj1VoICE52bckoMXN2SFUZ/ +kCB/j10Uq8Kg4Z2GdXeFBH6Of6Sz1Rh0Bu49K/4kwdLdYcsaNBgoFAZsfFsj +wSX5fQUvRjKYGrW1+Mp/EnQVGU6QjGXQMdCrkdQsgcoqH2bIRAZtoazyvXYJ +7qwb7GzQYWAs9f6UEyfBuiDvcqXpDMYcleKdBQnOLTPo5PQY2DEeqzS/S+D+ +2v1ElgGD0RGvF2X9kGCPSyhTM4fB4Z3VJok/JegI7b/0dAHl52IyzGZAgmMN +1qotJgy0eloMIS2gmIwf+A0GP46ox42WF3AlxFivzJyBkUj+TYqSAD9r01k9 +KxkMCT3lEDJUQE108MEqKwby1zP/0hkmYL3yi3BFWwbOs8d7yI4QEGTsqTV1 +LYMVvzq93o8UsKBnDz+wnsHJnj8X7McKkPpsdXm6M4OWmQectLQErDI/7D10 +G4Nt0+LEiZMELN83paBuB4PWwwaJY6YKcHr5rHPQjcHKggU7P+oK+BZzdVOd +O4ONUz0uWeoLiL+27rrKfgYu51a9UZglQGZT5JppBxhMNh62OmWugNaESUt+ +H2IQUNemM3yhgIYRIuXJRxhsfmSh9dxEwKZhduryJxhkLmlrnggB599eDKk4 +zaCw8HW1z1IBZfdT6r4HUf0S+L+GrBAQPWKMx7sQBrIRul83rxJwOMG9su8y +gwmeAZY91lSfV0qH/7tK3+coKlxtK0CImRyWGsWgdK9eaZiDgHExU45XxTJw +fBvjpblewBsdn4fpcQwm6T5Tc94kIKzyzpPWOwy6Am6FtGwWoLx07XSZJAYP +rK9YOroIkDO1rf+SzOB+wRkheKeAkU6z9sqkMtjV2H3yj5uAB/Jb5rWlMzie +V+41111A574hPhmZDO7MuxDiuE+A7UDMuU/ZDBJ2OqeKvQUYjPSrfvKKgUFl +h1r9AQHTHRfINeYxqFMyyjbzF/DR4VB8fxGDXOuN1mGBdH/1MoGlJQwkhpKB +28fovkJ89X98oPs4xKh1n6R8CwwmVFUyGOp7OFPprABWp7xd8QsDVU8faafz +AgKXfJs4rY7BrJWvLsSECAjlnGMGG+h++13Drl8SIBansDNaGRTvd7SuCxew +Q93SX41hYLvCrr9RJCBnhqt/I8/g2TWpyoooAQt3u9rKdTLgrNsCpWLpPLOe +7GrqonlLPt/bdUOAmVbz2uF91N9HN56bdIvq9y48Q/831XPe9r5FCQIs5ELt +ZaVYqB9cojMxUcBdF89iPTkWL4zP+pk+EHDKMuaIqhKLGdWDvVopAtS/m9+u +VWERedxn5bfHArJfVsb9VmPxand8za806jfNx7WfNFiM5AYCS58KmCbyIrKj +WMgqLb5bLRbAXQ9cwo1l4Rp11T4lW8C2nQry/2qxuHHLaprXSwHE1i++WYfF +BKnqm7tzBPwpnhWQM43F1XjnQL18AVN3Veh16bE4GRe+eEqRAOncbzbDDVk8 +35DdPPStAOf7zqnMHBa7XeQrXr4TUP70Iau+kEVRwu2X9z4IKFxt4dJjwmLF +yDr3jRUC9iVstywEi6lXpNv6P1L9Jm5XYc1ZLCvb5V/+WcD+aSnKBStZaJlZ +PvStEfDWob6py4qFyEaAZb2AL4svzlCzZWHWhE1qjQJcn5570uLAItdTuz++ +WcBQu13DVDawOJCWpL6rTcAc//AU3omFzZrMKX0dAlS3mLwQb2Vh2OZy/zBH +/bXn7e0vO1gscR/I15cI8B1MKHrixuLixsKsx4SeZ+/Mr3dnEeLSF7rjO71f +Zv9grheLyokPU9u6BZQo9ieLfFmMs/K9ub5XQMLsPYZZh1hUzzYN6f8pYIDR +6YoMZMHnp9/1+C3AKz8vtOg4i0vDeQW1QQGiLc0xradZdOh/I/HSBEZnrFuf +B9Hz8mJORo6grzRWoTWExf3GoxYiBYL5d+e7FV5mIdaPmtmjRDDd2NYo4irV +91vCSQsVgjndNi3PoljUeSxxfqNK8NIopiQ8lsWwhkfXxg4j2J5QHPIqjkVf +YG9SrDpB1nu/f6vvsDBWvdeu8jdB2Kn9+imJLEIzNu21GUlw0nnNwcpk6scH +h+v/HU3wPefwr7THLDz3QFlqHMER6+CNbeksPnzy9N43gd4XMVJXTsyiX17d +9f1EAr+93+bXZbPYXBjdPTiJwHpn6jjF1yyGi2c0bJ5CcJt9bsbnsfBTsKm+ +PI0gWX/Zp+wiFhV5y1em6xKURqaZN5SwWLTl7gLpmQTeIR4k+wML5cg89cn/ +EOjfVfHlK1ncjfV5ud+Q4PpR3d2KX1hcOzc37tFsgpCmK7F1tSx+j3awzJ1L +cHVv0z25RhZbTaq5P/MJxh4P7GxrYTFWdkLxcCMCR3tRcnoHi0wvk1eaJpSP +5ZXFH3kWP1e5fDZfRHCitFbtEWFRUhEnZwGCfYeUs2q6WCTNuZLgu4SgLvlM +/OteFruiqkr8zAkGbh79eeUXi+YRq3d7LCdYmOk0QzxI73dPTzi/kuq56WxM +pCyHpQnGZkdXERTqiBqLFDloFKeWRlkRrE7WjmlT4RAdXBKZsJpg7cv+yy/U +OHg7tsdcWENwoEe8pV2Dnv+zIjvCjmDE81z3NyM55MycfT7AgcDN1IqLHsuB +aar3sl9H8LFFbJatxeFym0KSzXqC15o+VZE6HI7ekNk2ZSN9/75hSwumcbC2 +inyl5URw/Kz+xEY9DscuPZRS3UwgnhZpmmHAYYRsSkzVFgJl0mJYO4fDpYd9 +yjnb6PxLju7IXsAhf0vV0vPbCYqzfnkKJhxm99Yne++kfDr7WFUzDkbTyxxs +dhGcTVuS0G7OIabAOEZxN8G/MV7z1S04+B7+vrR5D8HBoaxCrxWHtMtGfTHu +BI2LmiyK13BoNbhevNyTYKfo5favDhxGxW5doO5FsNuv4/mb9Rzul6adeLGf +4NzRH9xPJ8rHp7/gnA/BevNTFzW3cbjHd3cuO0CQJNrk8XUHh6DXTcVNBwnU +VUZN/ns3hwXTB6puHCL4PVR7TK87h6lOtb8WHiaIeZ90ssCLQ/zA8IbiAII1 +6X/ntPtyCDZKWHDoCJ1ncuninEMc9E9b+cofI6h67i4SAjnIKLade3Kc4Iva +eSelExxcx/81xf4kgVMn2VZ7msOHG899K08R9P4wXSx9noNhuEqN9xkCjaCq +jY0hHL6eNdj07SyBxSKH1ephHKSYXsfQIALDtDVphiIOEsko4wnBBNFpUeuU +ojnY7zspE36BYMyX/LLZ1zmk3z94QesiwbjgRRc04znMvai0LSyUoLxv7tP2 +Oxw+7U362nOJIC50uHhIEp03LfGUfxiBJMXoZ1syhxvlO3Xrw6n/ulao/53K +4aez/DLnqwRevRXXDTOo/4bO7CgTEQwJeuAqL+bgtq9sm24k3aeJm4L+Cw77 +1q+Ojo0i+Bbo1ab6mkOKTpbK92iqR0DPvNo8DmdWiSoWX6P45vYtv4o4LJJo +JiXEEmywGVPwsYRD29gqP3Kd5mVSpqx0GQd/Xf98+5sEKqfjTrRXUr94R3jF +xhF8vqXgJf7MwdZpaH5NPH1/m/28+loOn9dn8LNuE+g85YyyGzgUqt/W87pD +++e+m+bXFg63pGuf5CXQfDjv2DmE4RBZOTfzr3vUP7EPOht4DreXFYSbJRLY +D35aO6STw+JRIsXgJIIbgk0v38VhjL8oXXyf9s/15SrZvRzG56THNzwgyPDS +7q37xWHlYOaZcQ9p/5VaaIsHOdQlmjssSaH9YLdOp12Wx6GvH8MDHxG4iBoj +pZR4nJnexz58TLB8e6bFRxUew0dXNxemEpiv863oV+Ph4G6Z9OMJQU5lwLUa +DR4vjst5qKZTvQ65GauO4mE+7qK/UQadr7rCauY4HqpuLt3OTwk8ioJj5Sby +qDG9or33GfVvzZQ8g8k8xgeP7ruQSZDmr6o7YjqPW2O7aiPENL9VvlJtejx+ +6Q3viM6i36P1rx4rGfLoDrwg8/g5zY+r4422OTxu7MmpepxN+zm6YvvfC3lE +yxaY5L2g/gl+HzPLlEfqhwd3S/8lYBVGqCma8ZD/R8+34CXBnyQ4GyzjwVTl +mpS+ov386VnHMAseDSomr3NfE9TmPmz9z4qHyEnv5+McgkUfg7IG1/CYtack +9lEugZb3o3fVDjywOexGTB71+5znmQobePSOfxgekU8QcWJ401cnHpt2HDc5 +VkCQd7Ej8NVWHo0Pf7dvLaT99fK20LqDxzkZ5167IpqHgPtxeW48vPiNm2cV +Uz2cI6b/cOchM3N8xsQ3BCsGBidp7OchREyQKL0l2KT7zInz5REu+3RcA8VB +AXYeI/x5jHI1eJJfQjB3/cLs3kDK9/WPS9HvCETfbwQWHefxs82n2/U9wV/p +jAZ3mscws56FS0sJFAePcQVBPMqDlm9V/UDn2d8f3R3Co32SuKed4sa4brFa +GI8NbGlfVhmhvWQ8svUqjy3Kw/yOlNP+MXFdrRLNw0/TqtG6gvZjYm0OH0v9 +MOPMCNVKgp7yskRxHA/LbA27Iopvaye7frnDQz/V/PeljwTvf5e5PEnkYRN2 +RmZlFe3Dgdp59ck8qsSP1IZ+ovk6P9si9zEPBY+O/ByK11QqvruazkNzYlyx +92fKb2nuNHEmj7m32A3/fKF5X1ScE5HN493l3Al1FI/bkj6n8BWPyU65QyOr +CfpNx49syeOx+FS7gWUN9W9ixcKsIqrXivuanRR/mO85u7mER6b5vJRbtfT7 +ZOewN/8Dj0czvG2X1xHs1xNrXK3kcXDe4PMWiufMkInI+Myjz/Ho9tB6+v8j +I2rt5Voeo+0yruv+R1C5Q/3riwYe8yyjnpZR3FKu8uNTC81fYOoxnwYC3xJb +0wcdNE+BXdsUGylfLsCpjOcxf+rkJ/coXi7qFD8mdP7TD7YaNdF977ASmrp4 +TP1tqv2J4iPfJkdI9fH4YDPis2cznV/ZMuDLL8r/aIPnT4q1W18MDg7y0Dat +WXipheB/k3qOBQ== + "]]}, + Annotation[#, "Charting`Private`Tag$12753#4"]& ]}, {}}, InsetBox[ + TemplateBox[{ + RowBox[{"OO", "(", + TagBox["x", HoldForm], ")"}], + RowBox[{"OOOO", "(", + TagBox["x", HoldForm], ")"}], + RowBox[{ + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{"-", "1"}], ")"}], + TemplateBox[{ + RowBox[{ + TagBox["x", HoldForm], " ", "\:01a7S"}]}, "Floor"]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"R", "(", + TemplateBox[{ + RowBox[{"(", + RowBox[{ + TagBox["x", HoldForm], " ", "\:01a7S"}], ")"}], "1"}, + "Mod"], ")"}], "-", "0.5`"}], ")"}]}], "+", "0.5`"}], + TemplateBox[{ + RowBox[{"FabiusF", "(", + TagBox["x", HoldForm], ")"}]}, "Abs"]}, + "LineLegend", + DisplayFunction->(FormBox[ + StyleBox[ + StyleBox[ + PaneBox[ + TagBox[ + GridBox[{{ + TagBox[ + GridBox[{{ + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6], + Dashing[{Small, Small}]], { + LineBox[{{0, 10}, {40, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6], + Dashing[{Small, Small}]], {}}}, AspectRatio -> Full, + ImageSize -> {40, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {40, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {40, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6], + Dashing[{Small, Small}]], { + LineBox[{{0, 10}, {40, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6], + Dashing[{Small, Small}]], {}}}, AspectRatio -> Full, + ImageSize -> {40, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {40, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {40, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}}, + GridBoxAlignment -> { + "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, + AutoDelete -> False, + GridBoxDividers -> { + "Columns" -> {{False}}, "Rows" -> {{False}}}, + GridBoxItemSize -> { + "Columns" -> {{All}}, "Rows" -> {{All}}}, + GridBoxSpacings -> { + "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], + "Grid"], Alignment -> Left, AppearanceElements -> None, + ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> + "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { + FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> + False], TraditionalForm]& ), + Editable->True, + InterpretationFunction:>(RowBox[{"LineLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{{ + GrayLevel[0], + RectangleBox[{0, 0}]}, { + GrayLevel[0], + RectangleBox[{1, -1}]}, { + RGBColor[0.368417, 0.506779, 0.709798], + RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> + "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, + FrameStyle -> + RGBColor[ + 0.24561133333333335`, 0.3378526666666667, + 0.4731986666666667], FrameTicks -> None, PlotRangePadding -> + None, ImageSize -> + Dynamic[{Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}], + "]"}], NumberMarks -> False]], Appearance -> None, + BaseStyle -> {}, BaselinePosition -> Baseline, + DefaultBaseStyle -> {}, ButtonFunction :> + With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.368417, 0.506779, 0.709798]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], { + 0, {Left, Bottom}}, {Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", + "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> + Automatic, Method -> "Preemptive"], + RGBColor[0.368417, 0.506779, 0.709798], Editable -> False, + Selectable -> False], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", + RowBox[{"Dashing", "[", + RowBox[{"{", + RowBox[{"Small", ",", "Small"}], "}"}], "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{{ + GrayLevel[0], + RectangleBox[{0, 0}]}, { + GrayLevel[0], + RectangleBox[{1, -1}]}, { + RGBColor[0.880722, 0.611041, 0.142051], + RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> + "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, + FrameStyle -> + RGBColor[ + 0.587148, 0.40736066666666665`, 0.09470066666666668], + FrameTicks -> None, PlotRangePadding -> None, ImageSize -> + Dynamic[{Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}], + "]"}], NumberMarks -> False]], Appearance -> None, + BaseStyle -> {}, BaselinePosition -> Baseline, + DefaultBaseStyle -> {}, ButtonFunction :> + With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.880722, 0.611041, 0.142051]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], { + 0, {Left, Bottom}}, {Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", + "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> + Automatic, Method -> "Preemptive"], + RGBColor[0.880722, 0.611041, 0.142051], Editable -> False, + Selectable -> False], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{{ + GrayLevel[0], + RectangleBox[{0, 0}]}, { + GrayLevel[0], + RectangleBox[{1, -1}]}, { + RGBColor[0.560181, 0.691569, 0.194885], + RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> + "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, + FrameStyle -> + RGBColor[ + 0.37345400000000006`, 0.461046, 0.12992333333333334`], + FrameTicks -> None, PlotRangePadding -> None, ImageSize -> + Dynamic[{Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}], + "]"}], NumberMarks -> False]], Appearance -> None, + BaseStyle -> {}, BaselinePosition -> Baseline, + DefaultBaseStyle -> {}, ButtonFunction :> + With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.560181, 0.691569, 0.194885]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], { + 0, {Left, Bottom}}, {Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", + "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> + Automatic, Method -> "Preemptive"], + RGBColor[0.560181, 0.691569, 0.194885], Editable -> False, + Selectable -> False], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", + RowBox[{"Dashing", "[", + RowBox[{"{", + RowBox[{"Small", ",", "Small"}], "}"}], "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{{ + GrayLevel[0], + RectangleBox[{0, 0}]}, { + GrayLevel[0], + RectangleBox[{1, -1}]}, { + RGBColor[0.922526, 0.385626, 0.209179], + RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> + "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, + FrameStyle -> + RGBColor[ + 0.6150173333333333, 0.25708400000000003`, + 0.13945266666666667`], FrameTicks -> None, + PlotRangePadding -> None, ImageSize -> + Dynamic[{Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{"0.922526`", ",", "0.385626`", ",", "0.209179`"}], + "]"}], NumberMarks -> False]], Appearance -> None, + BaseStyle -> {}, BaselinePosition -> Baseline, + DefaultBaseStyle -> {}, ButtonFunction :> + With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.922526, 0.385626, 0.209179]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], { + 0, {Left, Bottom}}, {Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", + "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> + Automatic, Method -> "Preemptive"], + RGBColor[0.922526, 0.385626, 0.209179], Editable -> False, + Selectable -> False], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], + "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + TagBox[#, HoldForm], ",", + TagBox[#2, HoldForm], ",", + TagBox[#3, HoldForm], ",", + TagBox[#4, HoldForm]}], "}"}], ",", + RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", + RowBox[{"LabelStyle", "\[Rule]", + RowBox[{"{", "}"}]}], ",", + RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], + "]"}]& )], Scaled[{0.5, 0.99}], ImageScaled[{0.5, 1}], + BaseStyle->{FontSize -> Larger}, + FormatType->StandardForm]}, + AspectRatio->NCache[ + Rational[1, 2], 0.5], + Axes->{False, False}, + AxesLabel->{None, None}, + AxesOrigin->{0.75, 0.930555556043837}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->All, + ImageSize->Full, + Method->{ + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, + "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> + None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->{{0.75, 0.875}, {0.930555556043837, 1.0000000000000004`}}, + PlotRangeClipping->True, + PlotRangePadding->{{0, 0}, {0, 0}}, + Ticks->{Automatic, Automatic}], + InterpretTemplate[Legended[ + Graphics[{{{{}, {}, + Annotation[{ + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6], + Dashing[{Small, Small}]], + Line[CompressedData[" +1:eJwdmHlYTuv3xtOgiROFSAepKJ1UnNDAXcKJpEGEOkmDcqIiQoPx0Ekc0aCU +4RhLUhS9Ks0JSSkpDSoN9sB+SlRK3t/z/f3z7utz7X2tZ611r3Xvfb0aHgGO +3pISEhJjxkhI/O/aNt2K/jJo+v+rgJWJFp2NUgzEMy/LN0gJKDfTvCwtx2Bk +TVfsD1kBZTscLrCKDPwy1zY1KAoI3vhzTJ4Sg8Nbr6skKwlY7hu9ok2FwfnU +rI/pKgL+lfEvz1dl8DAkYWOwqoD+CsMZn6cz8O8wvBY1XYDi6j2M/CwGLrtn +J0bOFHB9g7i3TZNBSKfMRGgK2BCx+7WcDoOirSYHLeYKOLnCoJfTo+c/v9nw +fZ4AvyK/I48NGLza870yeb6AHdvOME0LGTiYKr84tUDAxzPD/z5czEBCd+9l +o0UCDrWtHd9pxiDvsnrhbFMBz8ivoz/A4D9hjf7oUgHno0z1aqwYaN1b6nzO +kta31txo4A9av1xuh/9KAU0JkfvqbRis1ROSx64W4KyQf07WnsGvho7DPWsF +RJjumjnHicG9RM2fmfYCFg/s4EedGUTaz5+2yEmARIPNWR1XBg88L7OSmwSs +tjq4e5w7jXeqZFWUC+2/v3Z5iyfV47/Vxj/dBLgUPOoV+zDomb/iS46HgL7E +mC0tfgyYhT7q87cLuHpxQ7JiIH3eU8+Z2yFAcku83dy9DArmvG6K3iWg68Zs +yx/7GVx7c+j+10ABbZNiFbTCGEyoSL17aa+ALRMclGWOMECOVKD0AQH/vDgd +VXuc9mfrme0bQwXUpKa3fIlg0CqzOunTIQEJk9R2voxi4DUic8DymICDN/zq +hs4y2KZ8p/7dCdqfQrmD72MYlH8ftTeKFCAkakVnXqD6eN5x3ntagHqi9uH6 +JAai8d2D388KeK65527WFQZ/qKbEI0ZAdN31+13Xqd4edRMq4gUoLHfSkUyh ++TU9rDK5KEDa3L61MY3BXDuvgF2XBKi6GP0lmcmgRqtX3HFVwB0ZN+PuLAbH +yq9xqjcE9PrL78nOYfCnfomk6W0B9qOJJ9/m0fOyx2km3xFgoBr87n4hg9hj +2eFF6QJ0Ni6Wbi9l4N3OzNa6L+DN+v1XhysYxOxQTw/Kpvq1Soa+qmRgUr7O ++WQO1SsqSP9bNYNhf133hlyab7nBjPo6BnYyCj/5JwJYzdc9so10XpdMM19W +LCDUsm/W3BYGGQozRGFlAs5wroniNgYzztdkHK4QIBKls/O6GNg0FW4pfCHA +U3nNASWGgZI7P1BaJaB4nveBdp7BmHjd/Ic1Apb4ettL9zIwt4+y7ayj9Rjd +397Rz0CXlGa+fSvAYuYHp4lDDHZU68+WaaL9e3kuW/8Hg/BK9b2zWgVYS59x +lJJgMbSNCZdsF3Bz265netIsUkYTU2d0Cji2JjFsvByLMjlPSckeAcpfrK41 +K7J4/W7OnDpGQF5B3ZUfSiy8VdxOtPJ03qZkNL9VYfHW/mZfhiBgbmwAkZrK +Qmn2t+bcPgFccqglN51FkKnq6n+/CnD3GivzZCYLm5d+7+wGBRD74KsfNFnk +5VpLrB4W8POZUUjxXBa/lQycUhwVMGd7rV6/Hossg4+fpSUIxpT0rZtoyKIt +0lXvkySBa6prJrOQhU/ruKxLMgSvH95llZewWOZuO+eEHMFTW+ttA2Ys3HYu +3rxYkcD/hseap2Ah/H3coXE8gcEsD0XWisVW45Pr7k0gCJybrlD+BwvT+Wd5 +OxWCF+tbO/ptaD8WRVdrTyFoXHZ6npI9i+cHDxpyUwm8H56837meRXOtoWro +dIJxDtsnKG5iceHGm02YQbDwwLl03oXe990WVzOLYLybWb5oK4tLs8aZOGgS +SOx4ca3Rk8X+zYEO0nMIgsQ3Ku77sJhjdGDFCR16P8+rrNWPhXagJFmsR+NL +BopLAlgUJNSyIn2CStnhtNgg2o8/2q/rGhLcWLDD8PF+Fr+/NJhfuYBglNHs +jw9l0aN5kjUzJggoKz1TcZjF1MnjcloWE8S6fUjsOk77U2I8stOUwOTvtV25 +ESx8zc5vrDInGHqVNLYrioV+flqDKwgW3Vzk8/QsC+Wrq7rzLQl0TO1N4mJY +5PvPdhq/gtb7dV3nowss3jtqSJ5eRVBgklh5LomFxu4i9RZrAo8bz6IKr7A4 +1TAo2mxD8Lgq+Mm76yzUpin4V9gSRB8L1E+/zcIlZNU+WXuCo652++rSWHQY +2SnvdST4Unxw5EEGC6nPYcFZTgRhayM3d2excFea+GCGM40Xp6orLWJxaPWu +rSGbCYL/6lvUksfC/s6h3FQXgrVemeqyRSyqu9UlpN0IrrG5FnwpC9uLX3wX +uBOk6a94m1fBQqwQN9/Rg+BV/AOrtkoWG3eUDiZ5EeyO2knyqllsWn63LHc7 +gf5NxSC+joXJP8sbJHcQJIfr+so20nqPzfxp5kcQ1XE+qaWZhYzszV9sdhHE +/NVxS7qdxa/jbh44FkAw/XBob3cnvW8WZhm9m2CjY2xa1kcWV10G5aKDaD5r +zi97w7PQyThvlbOP4MirZqV7hO7T9J78h/vpPO9XeNzUz2J1iuSnpoMELWl/ +Xy0aZPFzy5nqhlCq/+Xw7+dHWOSGcvIV4QRLclzmicQsDOpTlFsO035uOZEY +L8WBO5Kf+fwo3RfN2PYKWQ6mRmK3luMEtmkaid2KHBrX+U/vOEHgVDB8Nl+J +g+j73+sLIwj2DojcelQ45BcbZhRHEkzKLfF7rsohJ7Bn5FIUgY+5DZcwnYO7 +xRnLXWcI3nSKLPJmcljYLVu29SxB0ZQ99fGaHG6deq2qf46e7z9heflc+jzK +OPUYgsMn9Ge163FgXxn7i2MJRHPjzbMNOGyOuJXyJJ5AgXQaNi/ksE/WNvhS +Aq3fMtwzbzGHjI1jAjdfJHj2eGSXYMZh7EnvZYuSaT69Q+x4C8qPVkwZe5ng +xAPLGz1WNL4aI5F1heBJYsAiZWsOd8JN6w7/R7BvHDt20IZDs+5H/XnXCdqX +dlg/s+PwVmwa/uwGgVdsgcen9Rx+Rk+uOnGLwDf4Y+5zZw4fM/pPaKQQnAz/ +xn134ZA1YcvR5lQCZ6tjp6e4c2Bc63Ui0whSYrfs/OTJ4V2k78wp6QTKilO1 +JvtysH6ku7PoHsGPcRpqg34czmutDF+TSZBYlXK0PIBDksWw1vP7BHZZk4t7 +gjjoP3Yx98qi9Wi9Wla8n4PFzRlDbdkE9bl+sUIoh74PU7bvf0T9S+kfF7kj +HF6sWTNbSkTg0kvcm49zWL7dwTfwMcHgN/NlY/6hehs27R3KJVCJqN/cHsXh +mav2EY98Auul622VoznMUbwa0/OEwPCB3QPDWA7KrMm6rYUECQ8ubJBLoP29 +9YuQW0Sg1lhWsyCZzlOKQ6pBCYF65NJTU65yCLu5sjCilPr10O8Pe65z8FBY +6VNfRnDlzESRfAqHlikvrMyeEnxON/nencYhO8TP5UQFnb/+VcqTMznkVVSw +Pc+onw3WJhtmc3CUuF+89AWBfMQdbxkRB+2R07kHK6meZj5j9fOpfpbyy16+ +JOgLDegeX8TBLeuis/Qr2o+QAePmUg7XO0ZvLKimfNnDbaSCg5xbYXxwDcGm +dWrlbyrpfK/b+vPqa7ovs3OkxtRwCFyqZtteS6B4/MqRnjoOm/b/GTH2DUHD +f2MDRA0clmRdsNWsp+d3Oxq3NnN45HRJxektgeZDziSvjYPrs+GbOxuo/6T6 +TPnUyaHeQCYkoZHuh6unlzzDIU7L91zuOzo/SXd623gOmkf/dClvInAUv3WS +7+Xwl8mhkA/NBJeEdYN8P4dvYRHFTAv1n+SVinmDHEpj4xb1tBJkB2gMtozQ +fVSao/btPfW/V9YaIjGHuadeyght1B8cNmj2SPGw8nK7NthOsC22PV5CjkfD +plNaQx0EKz1yrN8o8sit9ort/EBgtSGodliJh/Q9u+fvOwmK60IuNqnwEB3i +3cu7aL/2+5iOn8rj7DltcW43re9drc1v6jwupH9qvt1DsLMiMkl6Fo9VYVKS +Rz/S+W3SLjXQ4mE3XG3pyxA8ODBed5IOD3f5YAtzlu5vfZBEtx4P+/f5vnIc +fR85F2bIGfKwCUgt7aCc4r3xUvdCHgsNxxSk8NSfE2o9Ji/hYTygoh/2ic5P +ZFWikTmPymrz8D8+E7BjJynJWvCoOlnlOEYg+JkCV4MVPPrtGjKfUo55++jj +BGseoRqH5UMJQXPJ3a73Njx2uabq6/QSLH0T8Vhsx2Pixs7+Nsozd997+W49 +D72uO7ERfXTeF+bmjN1E62FmqJl8IYg7MrHjkwsPU7X3pIly6emPoYVbeRD6 +0bCvn/pXwTWhy5NHgrG4bdpXug8hqVdKfXjcOsTLZlB+4Bqn882P1tf9yn/t +N4JVo+LZKoE8SpcUZH6gvEX3kQsXxGPAxU7Bb4AgIsRh56QDNP69+Y+GKf/u +vCRvMJTH1pxpJGyQvu+/XAqtOMzD50DX5yHKv2QxKtxxHiNq+ptChwhkxYe4 +8giqv269QR9ltcDhhK9R9PwZKx7u/E7978pXkVI07W/zdFEH5TkupqpdMTy+ +PJ/4i80w9R8zb1vFBKqP/Uvtx5S9bjcX80k8ikzzZNRHCAZe19wWXeFx2RG2 +Bylf00jzbrzOI3W9W2AT5aofNdvu3+bR6+ppZvSD+uFos3FrGo+k4jqtKMoN +/yywLsngMb+6Qq+Zsl2d7MuYLB6/Td31RXuU5re8ZK4oh0dc0KrePZT7lj4r +jsujem52+fSIsrpb1sKnhVSPa4nbflAeNv9VtbOUR8/SL7bmP+n83q5d8riC +xnNKnbGXcvWiXQs+VPJ4/PessLuUnzqs/6usmsfvv1osbKUcqCdSianjIdc5 +fq28mH7/zJOMy27g8W2aoqIx5eDsC05nm+n8RzyV2kK5zlP5U34bD3Xt+d3h +lDtfK35728nDq6S9LZlyUKW9+Z2PPMqCar8/pKzOhbjU8DxwN31CFeWVsb2i +DMIjZUFB3nvKEZ42Qkc/zad1883PlMP6tOIkhuh+Yt6YIcp9CmtCGkd43JbP +aRilrNGVLxaLefzvvwAJiV78H/9ik1Y= + "]]}, "Charting`Private`Tag$12753#1"], + Annotation[{ + Directive[ + Opacity[1.], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], + Line[CompressedData[" +1:eJwVlnlYSOkXx9tLMW2IGCSUJSVD0fJFMaYoVEKNpU0bRWQJkSUkmvYUmSRL +yNK0a1NKUakoFa3qLnXfok2i3/v7597n89znOec953vO971qDl5bnMVERERE +RUVE/v9unmZCnwwunlhaUsz3YG3MqvZ6cQaxf/iZ8aQHxQbqNyVkGPSu8TZ1 +7u9BkdvmKFaOgV8KKbw63APfrb9Es+UZ6MtoqsSP9mCNa4hpszKD1NLBSjFR +AVcl9xfnqDA498lRTkVSwLcSnRk90xgkhOiWnRwnQO6vg8y4WQy6jrwVLZ8g +4LbNWG+zOoMy3Z8FrxUF2AQeeCejySBk8A9+6mQBF0y1e7mFDHbobpg9XVWA +R77H6UxtBotTc5okZwhw2xPMNCyl8cMqeMwW0BU8cvU/PQZmFi6yWvMEnGre +MKHdgIHD9QvX3RYIKCW//xwFg8AFapuDFwsIDVq5sMqEwSuzvFnOugJ8Nxgu +GfyTAbvi2Nqg5QIaoi8dfm/OQOnMdlmXlQJsZXP+kd7EoLm7yPiqsYDAlftm +zrNmsNo57PuNNQL0Bt34n7YMxDQS9ziuEyBSZ35N057Bhs/C1MNmAv4yOXZg +/G4GX5VPyxhZCFi7f25xkyOtZ8Xhaz2bBdjlpvWO7WXwpfL+RtZGQF9M2I4m +DwZvFN3N4rYLuHXdJk7Om4Hn6uiomL8FiO2ItNQ4xGD51nmz/PcI6EicvXr0 +CIMn7SZD050FNE8Ml51zgsHTy8a/xN0E7FDYrCR5moFur/Xn254CLpZdCao+ +y0CzrOk3LW8BVfcfNX0NZLBy4VqbXz4Coieqer4JYhD08Lr/pSMCjiV61Axf +YyC0adXb+dH+5Mkc+xxG+1vddYs5JUCImRPyJIrBzbmWM3cFCJgeM9f/fSzV +92dpyrQLAl6rH3z4PJ6B8Wvj3LBLAkJqbj/tuM3gd4U9A5uCBciusdYUu8dA +QjTh/FCIAAnDTZ/qkxn4Gpjd3xEuQMVuibvYEwYWJk7VotECHkjuXPblOYPz +oebTXWIF9O4fdzA1ncHxQyoNqTcFbPoZc+FDNgP36wpn1iUI0Fbx/fg0j4FM ++6ltkXcEaG7Vk2h5Sc8TnKCteV9ArdWRWyMlDKLTJs9MfEj1+yTmV1HOoHit +6tbmFKpXkI/WQCWDzU2f3Oye0/MWa894X0Pjp5+2ikoTwKq/65SuZ+C2ep62 +cpYAv9V9szSaGKxNmhl87IWAYM4+ZqyZQb93eMOtfAEZGY/YBR0MWrsLBqSK +BDgqmR2VZxjI/vNbyOISAQULnI+28AzSQvvKV5cJ0Hd13iTRy0AuJSYj9C2t +Z8lTl9ZvDH6G/6uXVCVg1cw2a8Vhul8fDpwcrKH9e/NPqtYog3S5UlndOgHr +JYK3iIuwcGjrNl3SIODOnn2lCyVY1Ba0zfb8JCDALObEBBkWu84UG3m0CFD6 +apLQKMci45BL/tZ2Adm5NfGj8iy6nbzKT3TSeZuc0vhBmcVTqckarqwAjXAv +Ij6FBWPvNTu4WwAX57eam8bilUPo2BEiYLeTlOSLmSxcZe4+tfwqgGzyvdWm +zsL0cWDXrgEBv0qXHC/QYCF1Jn6i3rCAeS7VC78tZHFu1/6mtT8EiBb2WSjq +0PwpVmqrfwmwv2//hFlK46ulHZMQJXj330NWSZ9F/v575r/ECV5tXL9n0IDF +kxKTwnwpgv2JDmavwOLrUbN673EE2rMc5FgTFpHOtyy2jifw1ngkW/wnzSd5 ++ZSkPEGZ1afWb+YsLHZ/1mAVCeqNryyQ38Ri9qJy1ayJBM7/XXjabsWic7iy +zUaFYPxmFwW5bSwCXI2k5qoSLD36zyPejvb7eey1vOkEE3Ya5GTsYqEza825 +9TMJRNzKEuodWVzQd8kVn03gM5ZY8nQvi1zb1QeD5tDv2U5FnzxYrHT1DTTV +oPHFvMcKvVhc7yy/WzafoFx6JDnch56nq/E2FhEk6rrpZB5hccZAubtjMcFP +Rv1bpB+LBdu/Wm1bQuBV9DK4xJ+FU6TPnB9LCcJ3tsV0nKX9nLb81JXlBCvO +bejICmTBSVgq9egTDFfESnUEsVB9833Az4Bg+Z3le19dY2GmcSGxwYhAc+Wm +FRFhLPpT3H5qrqL19lu0p0WxCGKXRCSuIchdEVP+TyyLeWKLZftMCRwSS4Py +4lmUlZp8dvuTIPOt74uPt1n8Otg1vvovgpAAb61Hd6k+m1id8RsIzthbHq5J +ZlGYJ3PrgAXB14JjP56lUH0e1Ifd30RwYsOl7V+es4h+91e/nBWNF6EyXyKD +xSKfUfWdNgS+7n3Lm7JZnLrj3HvWlmCD05Pp0vksjJd4qtRsJ0hgs1bxL1lM +rT7mPmhHkKxl+iG7hMUyDY9k2Z0EFZHPTJrLWVRdiTX6czfBgSBPkl1J+7Wl +WXa7A4HWHTkfvobFYNq/lqFOBHEn57tK19P6esT1clwIglpDY5saWbAPK/bl +uBKEubcmSbSwsHvgrtDuTjDN36/3SzuLWP2eay2eBFu3hCc/72LRMDLhbeV+ +eh6zUONanoW1/WSfDm+C0xWN8o8Ji0NfJUTfHaTzfEQ2s+Eb7a+lh3rbIYKm +5HO38odYpB2uyyr3pfrfPPk99AeLo5PDAu4eJdBPt1uQMcZiz8HMz0nHaT93 +nI+JFOegr1iR6X+C7ot6eEuJNIeh14a2fqcINiarxXyR45B1gPnseprAOnfk +Wo48h5Geif06AQSHBjN2dipzeGFtVqZ6jmBiVqHHaxUOW3Y/zmg+T7DX0JyL +nsZBbl5KUlQgQW17xqrsmRyOz9/2t/clgvzJB99HqnP4Y0WDztwgmn+/wppi +DZpvwER05AqB/3mtWS0LOVi5dF4tuEqQoRFpmKrNQc3Fco1LCIEsaddpXMph +/43o7/NDaf2rTzpm63F4I3J2Z3kYQWnmj32CAYd8j7u/LkfQ8/QOsxNWcZgR +0ffOKIrg/LPViZ0mHAbdbm6vjCZ4EeO1XGk9h4nmaRqnrhMcHs9KDZlzMJsh +umR8HEGLUev6UksO2vZT/K7eIHAKz3XotuJQPuXjTK14AlffrqzXthwanKaP +Jt8iuHBygPtux6Gz9eGBdQkEtiYBVybv5uBW28jX3ia4F77Ds9uRQ/Tv7jdM +7xAoyU2ZM8mVQ+qkr6MVSQSj49VUhzw4rBxYomJwjyDm7b0zxV4ccl+XGsbd +J7B8Pqmg04dDxvxJi1WSaT1zKowLjnCYc9yo8tBDgvdZHuGCH9WjMyiAf0T9 +S/6incxpDosc5o+zTSGw6yW7G89yWMe16SU9IRgaMDQWvcihcm9g1IRnBMqB +77e3BHFQvPh6xvbnBOuNrDYqhXCoXxmslpNKoPPM8plOOIfXMw08JqYRRD+L +spGJ5ug9bPluczqBan1RlW4c1Xvqwro7GQTTLxldnnyLwz7rlUeaM6lfD//x +X+dtDmmH6rbLZxPEBytmjLvHYVV38DibHIKeRyu+f0nmoDNvitGZF3T+vq1T +mvSEQ1nAaEhhLvWzoeo4nVQOFXH2g9/zCMYFPnCWzOCg2x9YPqWA6mmwV0or +hwNje6jXvJCgz8/ry4R8DtXWAb9cXtJ+HB9c1viSg/++lwrHiijfdNj5o4SD +odyc5JvFBNssVItryznMNjOVf/SK7svsdHHRKlpPQZ1tRQmB3Nn40501HB57 +HGitLyWo+1fKK6OOzpupdEPDa5r/y5Zlnxo5HBY/NyCUEaj/x63Ibqbx7awW +95RT/7m/d3J3O40fYs+PvqH7Ye/oNI7h0FR5rUe8gs5P7IPeZp5DTmEvN0B5 +y9gH63G9HL2/5R8PVxLcECyG+G8cotrCP3dWUf+JWyuXPcQhm+Trv31HkOql +NtT0g85X1c+El9XU/yrWq2WMcbAeV78hqYb6w2Yb9U5xHvYWtQeiawn2hLdE +isjwMNqnFRvwnmCtQ/r6WjkeDZJUoA8EJjY+1SPyPE7vymtCHUFBzfHrDco8 +jMeq9yjX034d2btywhQey8vOzxqgnPCx2nzRdB5vVHwsKj8SeJZcipWYxaMq +bnxZVAOd34a5L7Xn8Ggx3li7r5Hg2dEJ8ydq8vhw0T5St4nu73sfkS8LeTyt ++B7bS3nYNi9FRofHufSq4OxPdH+ct974spTHrYCL3w9/pv4cXe0wSZ/H4bM2 +bwyb6fxcehuzxJDHHq+PRaOUWamJ8tKreEgtSvj+sIXg1z3Ya5vyuGJ4aMi1 +lfrzh7QuhfU8ojUqIya1ETQWPuz4bM6ju+Do7BzKRrWBmWOWPNIz3dv2tRPM +PPD4zUcrHq+uHfuu0EHnfWlWutQ2HoFvFF7nUo44rdjabcfjRK/c5p1fCF5e +6fLL28XjwVTVucOUZXMThA5HHp7Ry9TjOuk+HL8f/3IvD7O1Gy/rdtF+2Edo +DnjwkJC9m1RNed3PsdnK3jzWiJ0d9mQIdsxPs+N8eOSOBTqOUA48vtlz4lEe +cSq7RkJYgj9s9bOH/HhkudtLTuPoff/1hl+JP49fWV0/4in/9pxR5s7y2KaY +EqfFE0iPneKKA3kUuUtuTaGs6j0S3R/EY+qxvy1XdFP/i+/PkA/hkebYrpZL +eZ7dSpWOMB6GC0Ke6PVQ/zFw3igXzWPe9W9imZSd7jYW8LE8LvRLu2gLBIPv +qu5mxPPIP+Nt/i/lBLVk5/rbPEqTCv1VCcHb0ao9T+/yUD1ZZH+JstLPxmWf +knmUPRA0xyjXXdRdX5jCo6+ICO69dH5qpN+EPedhPTXhUjXlljWFGhnpPHao +T0la1Uf33ai0ICKbx9aOwo13KE/f+XzpqzweBqtO/a7wlWDE8HeV9pc8tlxW +TfOlvO1utX5mCY+LkXVutZQrl+/TbSvnMeNB+ye9b/R+2mzlXlTJY9GOi+mh +lL0XZiiH1fCoVVMkLOWlC8QiUutovlypC+v66f9HapT1tUYe3j360rGUaxyV +unOaebhpOUT3U25/JzfwoZ1H2AkNf7MB+v9XvsnwQRed56QJNdGUp3PH7ap4 +qmdiaiNPeW14b0YK4aGYbxyhN0j1djQXWr/xqAhXyAqkfKJvToTIMA/3yhUB +tZT7ZM2O1//gYZo+5qs6RKDWkTM2NsYjKK/MzIny/wCx2KQg + "]]}, "Charting`Private`Tag$12753#2"], + Annotation[{ + Directive[ + Opacity[1.], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6], + Dashing[{Small, Small}]], + Line[CompressedData[" +1:eJwl1nk4lGsbAHBbyHLIkpLK0olylKJS1J2oFIWQwlGRkD1F0aJVJVpMIlun +FNFirSkiyRIqW8iSPaF5HlEpwvfe7/fPzPW7Zq55nnt9R8XJZ5uLAB8fHz8/ +Hx++t80yYl6/AB/fej7lUh6sj1nb1SiIDp86Us6DYn21BCFRdAdH6T0PXrtb +3ugTRy9qGqnhQcD2Cf5cKXSObF49D9a5XTFuk0Xn9b5t4kHEFO/iPAX08+1R +n3gwXKo9hzcLveF2WicPxDcd+DJVGb0g5v5nHtyxmRxsU0P/lN7VzwObUL9q +UQ30qiO7CQ/OGS8e7NdEX2+YOcQDj5ceIc8Wo4Uq837wwH1P+JcmHfTM8tTf +POgNH43IWYG+nGA5zoPjbWaSXfrs5wXr+AmU0dnjfwBtojV7CoFrYas0q4zQ +jrYZogQCzAyW/NyIftARIUGgKfrCoQ+maOn4+dIEbMXyropYoA+NCssRCF3l +NXe+NVp3okqBwIqf7gPjtmiNmdtnEeBrML2s4YC+26c6l8AmoyN+ErvR+RvS +VAms9/67uMUZvW/ZnPkE7POfDE66om2GGhYQ+BYTadfigb6ptFWLwK2bNnHi +vuhgW7ElBATsoszVD6KXNafrEuhOUjX8E4j+lSGnR6BNjiM27yja8+ELfQJ2 +0pYyU0LQU/zmAYHz5ZfCak6ju1wD1hGouv+wZSgULRcvsYFAtJyiZ2UYWj1o +zyYCR5I8an9dRic2/jZj8lMgeuRTJPqJtaUFARIz70r6DbSKA8eKgFLM3yc+ +xKIzx2faEnijduBBViL6Y/wuOwJXau9kdN9h6zuz918CYuusNQRS0F6NO/cQ +EDKwaG1MY+tzNHwvAQX7JfsF0tFpUgJuBFKnOC7ryUK7jK/wIDDoPfVA9lO0 +3kw7bwIW4zHn6nPRAmvy/AgsVgj4mFGADohvP0hAY/sKofYi9EUT48ME6qwC +b42Wohs/RgYz9WsVCH5XgRYOu3ecqVeYv9aP9+hvcSMnmfsWL57zoRZ9zFji +LIE+terPIo1o3wjH8wSCDb8pq7egQxXiwwiE9zvETLax8zT7VgQBLvdh38Ju +dFtj21UCzjKbD0t9QZ88180hULjQ5XD7AHrervobBPTcXCyEBtFcEaFYJp4l +Gfs6htHLT4/EE1g7t9N62i/022nz/2PyV3k1W+sPuvS0YRIBE6HwbYJ8fYz9 +HqklE7i7x6tMUwi9ln9tKoFTm2OOSoqinU+pPSQgM2R0u1kcXVz9/TGB3Pza +xD9S6Jy9k5lMv01/3Fwvi66cUpNDQJ3jQwVnoK8sauUS6I8LNuyfhd7ZnJ5L +YPde4Skv5qKnph/IJ0AtAm51qqHl1T0LCUyULQkqVEebCC5+TWD+vhrNYU20 +QIlGKQH+V9+2TtNGv3CXLifgcN8h/YsOe78dryoJVOc86JPRQ58zTn1PoGSL +yZ6f+mivbw41BLyTnDaXAPqH+0Qdkz9lJ/E+I/Tkn7oGAr7qD8WKN6K3agc2 +ESi3au0YNkUvL9rSSqBxzaWFUhZo5VaZdgIuOecyuqzQLkeTOglIWO6TFt+B +1uS49xDQOXz14YA9ese9sV4Cko76edxd6IAFx/qZ/nIvv93ojD5pvIRHwH8y +qTTDFX1GL4syn+fufd3qgeaTcB1ifl/Ad/KVD7pFq+87gQqR0TSOP7pH0X6E +QNJSd+1ngeinwhO/CYx/URuOCkYbKvv+IeDzuii89AQ6PkRmkgDHsTOm+zT6 +gFsSP4WVZ8y6n4ei052EhSj8ehcr3B2G3l9wQ5jC8rvLXUsuox/d/i1KQWOV +xcrrkeiMn6biFHS+b+16cgO9papSkkL+ypiKq7HoWMm50hScksrCChLREYqJ +MhSevQ148fEOmz9bKXkKV075aj1MZuP7aKlA4aSD+aHaNHSTaeFMCkOFR8Yy +H6ONAwWVKBw1u7CzJwvt1uo3h/m96woLhLjopPdVyhQC9n9b3pKLfv6voBoF +s73pSiIv0W0b9vxN4Xbf87UDRejPEKlOIU3LuD63lM3HgycLKLyLyjRqq0CX +xgr9Q8EvzJPmvkfrHVJfREHrrrj/QC1bv7kHtSnEHVvgJtLI1nsiYymFsI5r +sS3NbL+kFOtSiNzfcU+oHT17o8AKCrNOBA/2dKH7VeVXUti+jZOW1cvGO0NR +n7nP5mtr6gbQJYs2rqYQ8q5Z6hFF19uZAgXvQLFnTcNo7q8AQwotaWduvRxB +35sTZERhPOHY72tjbP8+81lPQe+p/ULuJPrncNhGJp92Z2OiBPvx+R0esolC +iRqnvVQEbaIYa0phS5pKTI84Wrc9eQsF6/zRy3lSaOnOcHMKB39yHT/LosX4 +YywpyD1/5fFGAS1cecyKgquBaX/0LLRQpo0Nhbou7trcueitXyxtKbycfuBD +lBpaNEFjJ3O+t/S6YnW025iqPYUTZ7WU2zVZr5L+lwJXPcogezE6pbrRkYIY +7dJu1kGHrH29m4nf8Jhz7gq0d0CYE4WyZ2NeRJ+9f+vBvcx9Bn/1Sa5F152y +3EfhbKZh0mcjtFyJmBuFFzE+y2VM0De9etwpHJLoEx4xZfOjHO9BoX11h0mZ +OfoSMfGisJeT7/TVCq1qL+9DwS2g9/kbW3T/fwW+FM4d+9H/2x5d033hAAVb +o1OXpu9GW0iaHKSQwrHz/OqMju7sPkRBRnzGPHk3dBLvViCFPxIqiiMe6Cpp +gyMUYt6mnCz2QQd9qwiiYJ4lX/jZHx2xMegoE8+8d2sKA9HXQkSPU/jw3IND +gtEzrmafoNAodd5eNIStj5bNSQr2g3R382n0/CP1pyiM/DBYw38endly8AwF +2dAPO9vD0AJ2389SMFlttUXmCvt96yuhFLQzzTO1Oeh9uioXKERn3rARjUYr +j0ZepKDY+LpqaRyaHFe9REHpwuqL02+h6y0jwylU/9LN+XwHXd78O4JCYvg0 +7tQU9IR38BUKvIcrf/ekoX1l2q8y/Te8QUY+Hd2+YFckBZ+RmjjtbLbe5bUc +ClNDU12mcNGLDP+JYuqp7yqslYeOOpRwg8K3YJ8eyZfo7p7v0Uw+gn4uay5C +m6Ua3mSc4OQ4Vsr2/9HkWAo7tioW11Ww9TUZimPmRfWpIH8V27/XbBIoiJ9O +DPlci/ZclZBIoeE/YR9uA+tLrbeY83u2LWttRh9M171NQS2nf2VuG9qR53eH +2T/3Xad/7UI7+JYkMfPh4Lx36he2Hw5Mu8f0T2zqYNsAW/9NRskUtk3WW08d +ZPOdF5ZCIZ5sHRkYZvvbJfc+s3/i1ovnjqAHt3amUsj2URlpGWP7bfHcB8z+ +e2eiwp1E/zVm9JDZD5Y2ap8FBxgrLT/+iMIeTnsUnyh66OLjxxTWOz01qRNH +Hw95k07ByMa/ZlQKfWDdrwwKhbVBN5tk0V8FpLOYfAW6rpKcga4TN8hm4vtY +Y/qPElrizK4cCp6lF2KFlNEBjzyfMP3b9HfR4nnoPyHhTylkHpZcIKeBTtkT +zWXm94M/X48muso99hnzPLIteCyqjfY9mfGcmR+X7fE9Oui/LDNzmf0cXeMk +r4d+l1Wcx/TPhbcxSwzQworVLyj0CctJiaxF63WX5lOYSAGHxcZo7ftVBcx+ +rn/SK22CXrSw+CWF5lcPuj+ZsvHsyiyksLou9NmkObplIv0Vhbl+jyo/WqEX +jscWMf2u8/yp8A72fN6N1xSuh0zr+GqPFuKEFFMoutQbXLALnW7gVMLsr/zb +pNsZrbzJupSZh6D7iUWu6Ig0nTImHw7XNX54oC9NqL6hsGF8UlXWF/1ER7yc +gt2CJ/b9/uz5uzsYhwZZesodRr8eLKmgoGurlzsSjDaruFlJgTMUH1x6Al2i +5faWwl9ZX2T7T6PPeBu/oyAyeby/OBS94arUeyYe39Ho72Hoynl9jNsTv3Ol +rqAt1PKqKMy3X6XQHcnWP+54NbN/9F22iEez5wua1zD7Mbm5cCAWna8rVUvh +Z3VVMjcRTbzeML6tkubSeActLX+1jsLbP1V7MpLRCTM2fWD24XjzstY0NEfl +r3pmvs4vNXn1GO1UW8TYvFakMjIL/anWv4G537pX6tyn/8+HdiMz76vLCq/n +ouNUPzFWcszSKSlAT0hEf6QwajBboasIvf0fsyamf5Nr9J6Vosukhhi/X+61 +tLOCrfftO83M88nSav/r9+judRtbKPhqcmUja9l+vd/DWGehwPXsBnY+tlxu +Zf5/ZN+wvtyMNj6j+YlCrbPM17w2tGpMDeOuavEf9V3oNbsOtlHwr7AwSO1F +862Z2s7ctz/IvmqAnZ+LKYzXcwa5jynabZl+B1NvZ1PSMYzeMdzA+Oi3edf5 +frHzfNenk4lfbHNQ4xibP70xxirdeZOTk2z+Jy93UfgfqDuErg== + "]]}, "Charting`Private`Tag$12753#3"], + Annotation[{ + Directive[ + Opacity[1.], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], + Line[CompressedData[" +1:eJwVVnlYTWsfbS6lG+VmlmRKumXWwIoMqaSBDGUICZVUJGWekkRxmoRCFIlU +dJKL5og0CE23ufbg7DdKJdL3fv+c/aznfZ53r9/6rbX20d7uZe8qIyUlJS0t +JfX/Z8NYc/rLwH6hss+4IgmWx5i1fJFl4GHqGtj1VoICE52bckoMXN2SFUZ/ +kCB/j10Uq8Kg4Z2GdXeFBH6Of6Sz1Rh0Bu49K/4kwdLdYcsaNBgoFAZsfFsj +wSX5fQUvRjKYGrW1+Mp/EnQVGU6QjGXQMdCrkdQsgcoqH2bIRAZtoazyvXYJ +7qwb7GzQYWAs9f6UEyfBuiDvcqXpDMYcleKdBQnOLTPo5PQY2DEeqzS/S+D+ +2v1ElgGD0RGvF2X9kGCPSyhTM4fB4Z3VJok/JegI7b/0dAHl52IyzGZAgmMN +1qotJgy0eloMIS2gmIwf+A0GP46ox42WF3AlxFivzJyBkUj+TYqSAD9r01k9 +KxkMCT3lEDJUQE108MEqKwby1zP/0hkmYL3yi3BFWwbOs8d7yI4QEGTsqTV1 +LYMVvzq93o8UsKBnDz+wnsHJnj8X7McKkPpsdXm6M4OWmQectLQErDI/7D10 +G4Nt0+LEiZMELN83paBuB4PWwwaJY6YKcHr5rHPQjcHKggU7P+oK+BZzdVOd +O4ONUz0uWeoLiL+27rrKfgYu51a9UZglQGZT5JppBxhMNh62OmWugNaESUt+ +H2IQUNemM3yhgIYRIuXJRxhsfmSh9dxEwKZhduryJxhkLmlrnggB599eDKk4 +zaCw8HW1z1IBZfdT6r4HUf0S+L+GrBAQPWKMx7sQBrIRul83rxJwOMG9su8y +gwmeAZY91lSfV0qH/7tK3+coKlxtK0CImRyWGsWgdK9eaZiDgHExU45XxTJw +fBvjpblewBsdn4fpcQwm6T5Tc94kIKzyzpPWOwy6Am6FtGwWoLx07XSZJAYP +rK9YOroIkDO1rf+SzOB+wRkheKeAkU6z9sqkMtjV2H3yj5uAB/Jb5rWlMzie +V+41111A574hPhmZDO7MuxDiuE+A7UDMuU/ZDBJ2OqeKvQUYjPSrfvKKgUFl +h1r9AQHTHRfINeYxqFMyyjbzF/DR4VB8fxGDXOuN1mGBdH/1MoGlJQwkhpKB +28fovkJ89X98oPs4xKh1n6R8CwwmVFUyGOp7OFPprABWp7xd8QsDVU8faafz +AgKXfJs4rY7BrJWvLsSECAjlnGMGG+h++13Drl8SIBansDNaGRTvd7SuCxew +Q93SX41hYLvCrr9RJCBnhqt/I8/g2TWpyoooAQt3u9rKdTLgrNsCpWLpPLOe +7GrqonlLPt/bdUOAmVbz2uF91N9HN56bdIvq9y48Q/831XPe9r5FCQIs5ELt +ZaVYqB9cojMxUcBdF89iPTkWL4zP+pk+EHDKMuaIqhKLGdWDvVopAtS/m9+u +VWERedxn5bfHArJfVsb9VmPxand8za806jfNx7WfNFiM5AYCS58KmCbyIrKj +WMgqLb5bLRbAXQ9cwo1l4Rp11T4lW8C2nQry/2qxuHHLaprXSwHE1i++WYfF +BKnqm7tzBPwpnhWQM43F1XjnQL18AVN3Veh16bE4GRe+eEqRAOncbzbDDVk8 +35DdPPStAOf7zqnMHBa7XeQrXr4TUP70Iau+kEVRwu2X9z4IKFxt4dJjwmLF +yDr3jRUC9iVstywEi6lXpNv6P1L9Jm5XYc1ZLCvb5V/+WcD+aSnKBStZaJlZ +PvStEfDWob6py4qFyEaAZb2AL4svzlCzZWHWhE1qjQJcn5570uLAItdTuz++ +WcBQu13DVDawOJCWpL6rTcAc//AU3omFzZrMKX0dAlS3mLwQb2Vh2OZy/zBH +/bXn7e0vO1gscR/I15cI8B1MKHrixuLixsKsx4SeZ+/Mr3dnEeLSF7rjO71f +Zv9grheLyokPU9u6BZQo9ieLfFmMs/K9ub5XQMLsPYZZh1hUzzYN6f8pYIDR +6YoMZMHnp9/1+C3AKz8vtOg4i0vDeQW1QQGiLc0xradZdOh/I/HSBEZnrFuf +B9Hz8mJORo6grzRWoTWExf3GoxYiBYL5d+e7FV5mIdaPmtmjRDDd2NYo4irV +91vCSQsVgjndNi3PoljUeSxxfqNK8NIopiQ8lsWwhkfXxg4j2J5QHPIqjkVf +YG9SrDpB1nu/f6vvsDBWvdeu8jdB2Kn9+imJLEIzNu21GUlw0nnNwcpk6scH +h+v/HU3wPefwr7THLDz3QFlqHMER6+CNbeksPnzy9N43gd4XMVJXTsyiX17d +9f1EAr+93+bXZbPYXBjdPTiJwHpn6jjF1yyGi2c0bJ5CcJt9bsbnsfBTsKm+ +PI0gWX/Zp+wiFhV5y1em6xKURqaZN5SwWLTl7gLpmQTeIR4k+wML5cg89cn/ +EOjfVfHlK1ncjfV5ud+Q4PpR3d2KX1hcOzc37tFsgpCmK7F1tSx+j3awzJ1L +cHVv0z25RhZbTaq5P/MJxh4P7GxrYTFWdkLxcCMCR3tRcnoHi0wvk1eaJpSP +5ZXFH3kWP1e5fDZfRHCitFbtEWFRUhEnZwGCfYeUs2q6WCTNuZLgu4SgLvlM +/OteFruiqkr8zAkGbh79eeUXi+YRq3d7LCdYmOk0QzxI73dPTzi/kuq56WxM +pCyHpQnGZkdXERTqiBqLFDloFKeWRlkRrE7WjmlT4RAdXBKZsJpg7cv+yy/U +OHg7tsdcWENwoEe8pV2Dnv+zIjvCjmDE81z3NyM55MycfT7AgcDN1IqLHsuB +aar3sl9H8LFFbJatxeFym0KSzXqC15o+VZE6HI7ekNk2ZSN9/75hSwumcbC2 +inyl5URw/Kz+xEY9DscuPZRS3UwgnhZpmmHAYYRsSkzVFgJl0mJYO4fDpYd9 +yjnb6PxLju7IXsAhf0vV0vPbCYqzfnkKJhxm99Yne++kfDr7WFUzDkbTyxxs +dhGcTVuS0G7OIabAOEZxN8G/MV7z1S04+B7+vrR5D8HBoaxCrxWHtMtGfTHu +BI2LmiyK13BoNbhevNyTYKfo5favDhxGxW5doO5FsNuv4/mb9Rzul6adeLGf +4NzRH9xPJ8rHp7/gnA/BevNTFzW3cbjHd3cuO0CQJNrk8XUHh6DXTcVNBwnU +VUZN/ns3hwXTB6puHCL4PVR7TK87h6lOtb8WHiaIeZ90ssCLQ/zA8IbiAII1 +6X/ntPtyCDZKWHDoCJ1ncuninEMc9E9b+cofI6h67i4SAjnIKLade3Kc4Iva +eSelExxcx/81xf4kgVMn2VZ7msOHG899K08R9P4wXSx9noNhuEqN9xkCjaCq +jY0hHL6eNdj07SyBxSKH1ephHKSYXsfQIALDtDVphiIOEsko4wnBBNFpUeuU +ojnY7zspE36BYMyX/LLZ1zmk3z94QesiwbjgRRc04znMvai0LSyUoLxv7tP2 +Oxw+7U362nOJIC50uHhIEp03LfGUfxiBJMXoZ1syhxvlO3Xrw6n/ulao/53K +4aez/DLnqwRevRXXDTOo/4bO7CgTEQwJeuAqL+bgtq9sm24k3aeJm4L+Cw77 +1q+Ojo0i+Bbo1ab6mkOKTpbK92iqR0DPvNo8DmdWiSoWX6P45vYtv4o4LJJo +JiXEEmywGVPwsYRD29gqP3Kd5mVSpqx0GQd/Xf98+5sEKqfjTrRXUr94R3jF +xhF8vqXgJf7MwdZpaH5NPH1/m/28+loOn9dn8LNuE+g85YyyGzgUqt/W87pD +++e+m+bXFg63pGuf5CXQfDjv2DmE4RBZOTfzr3vUP7EPOht4DreXFYSbJRLY +D35aO6STw+JRIsXgJIIbgk0v38VhjL8oXXyf9s/15SrZvRzG56THNzwgyPDS +7q37xWHlYOaZcQ9p/5VaaIsHOdQlmjssSaH9YLdOp12Wx6GvH8MDHxG4iBoj +pZR4nJnexz58TLB8e6bFRxUew0dXNxemEpiv863oV+Ph4G6Z9OMJQU5lwLUa +DR4vjst5qKZTvQ65GauO4mE+7qK/UQadr7rCauY4HqpuLt3OTwk8ioJj5Sby +qDG9or33GfVvzZQ8g8k8xgeP7ruQSZDmr6o7YjqPW2O7aiPENL9VvlJtejx+ +6Q3viM6i36P1rx4rGfLoDrwg8/g5zY+r4422OTxu7MmpepxN+zm6YvvfC3lE +yxaY5L2g/gl+HzPLlEfqhwd3S/8lYBVGqCma8ZD/R8+34CXBnyQ4GyzjwVTl +mpS+ov386VnHMAseDSomr3NfE9TmPmz9z4qHyEnv5+McgkUfg7IG1/CYtack +9lEugZb3o3fVDjywOexGTB71+5znmQobePSOfxgekU8QcWJ401cnHpt2HDc5 +VkCQd7Ej8NVWHo0Pf7dvLaT99fK20LqDxzkZ5167IpqHgPtxeW48vPiNm2cV +Uz2cI6b/cOchM3N8xsQ3BCsGBidp7OchREyQKL0l2KT7zInz5REu+3RcA8VB +AXYeI/x5jHI1eJJfQjB3/cLs3kDK9/WPS9HvCETfbwQWHefxs82n2/U9wV/p +jAZ3mscws56FS0sJFAePcQVBPMqDlm9V/UDn2d8f3R3Co32SuKed4sa4brFa +GI8NbGlfVhmhvWQ8svUqjy3Kw/yOlNP+MXFdrRLNw0/TqtG6gvZjYm0OH0v9 +MOPMCNVKgp7yskRxHA/LbA27Iopvaye7frnDQz/V/PeljwTvf5e5PEnkYRN2 +RmZlFe3Dgdp59ck8qsSP1IZ+ovk6P9si9zEPBY+O/ByK11QqvruazkNzYlyx +92fKb2nuNHEmj7m32A3/fKF5X1ScE5HN493l3Al1FI/bkj6n8BWPyU65QyOr +CfpNx49syeOx+FS7gWUN9W9ixcKsIqrXivuanRR/mO85u7mER6b5vJRbtfT7 +ZOewN/8Dj0czvG2X1xHs1xNrXK3kcXDe4PMWiufMkInI+Myjz/Ho9tB6+v8j +I2rt5Voeo+0yruv+R1C5Q/3riwYe8yyjnpZR3FKu8uNTC81fYOoxnwYC3xJb +0wcdNE+BXdsUGylfLsCpjOcxf+rkJ/coXi7qFD8mdP7TD7YaNdF977ASmrp4 +TP1tqv2J4iPfJkdI9fH4YDPis2cznV/ZMuDLL8r/aIPnT4q1W18MDg7y0Dat +WXipheB/k3qOBQ== + "]]}, "Charting`Private`Tag$12753#4"]}}, {}}, { + DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, + AxesOrigin -> {0.75, 0.930555556043837}, + FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines -> {None, None}, DisplayFunction -> Identity, + PlotRangePadding -> {{0, 0}, {0, 0}}, PlotRangeClipping -> True, + ImagePadding -> All, DisplayFunction -> Identity, AspectRatio -> + Rational[1, 2], Axes -> {False, False}, AxesLabel -> {None, None}, + AxesOrigin -> {0.75, 0.930555556043837}, DisplayFunction :> + Identity, Frame -> {{False, False}, {False, False}}, + FrameLabel -> {{None, None}, {None, None}}, + FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines -> {None, None}, GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], ImageSize -> Full, + Method -> { + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, + "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> + None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange -> {{0.75, 0.875}, {0.930555556043837, + 1.0000000000000004`}}, PlotRangeClipping -> True, + PlotRangePadding -> {{0, 0}, {0, 0}}, + Ticks -> {Automatic, Automatic}}], + Placed[ + Unevaluated[ + LineLegend[{ + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6], + Dashing[{Small, Small}]], + Directive[ + Opacity[1.], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], + Directive[ + Opacity[1.], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6], + Dashing[{Small, Small}]], + Directive[ + Opacity[1.], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]]}, { + HoldForm[ + $CellContext`OO[ + HoldForm[$CellContext`x]]], + HoldForm[ + $CellContext`OOOO[ + HoldForm[$CellContext`x]]], + + HoldForm[(-1)^ + Floor[HoldForm[$CellContext`x] $CellContext`\:01a7S] \ +($CellContext`R[ + Mod[HoldForm[$CellContext`x] $CellContext`\:01a7S, 1]] - + 0.5) + 0.5], + HoldForm[ + Abs[ + $CellContext`FabiusF[ + HoldForm[$CellContext`x]]]]}, LegendMarkers -> None, + LabelStyle -> {}, LegendLayout -> "Column"]], {Center, Top}, + Identity]]& ], + AutoDelete->True, + Editable->True, + SelectWithContents->False, + Selectable->True], "}"}]} + }, + DefaultBaseStyle->"Column", + GridBoxAlignment->{"Columns" -> {{Center}}}, + GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], + "Column"]], "Output", + CellLabel-> + "8/1/24 03:23:16 \ +Out[375]=",ExpressionUUID->"bbc14aa0-5506-4ffd-8080-e79bc76e47f7"], + +Cell[BoxData["\<\"1.7043521015873016*10^6*(2.9336661100387573*10^-7-2.\ +9336661100387573*10^-7*(-1)^FLOOR(X)+(-1)^FLOOR(X)*MAX(0,-511/512+MOD(X,1))^8-\ +1.*(-1)^FLOOR(X)*MAX(0,-509/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-507/512+\ +MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-505/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-\ +503/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-501/512+MOD(X,1))^8+(-1)^FLOOR(X)*\ +MAX(0,-499/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-497/512+MOD(X,1))^8-1.*(-1)\ +^FLOOR(X)*MAX(0,-495/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-493/512+MOD(X,1))^8+\ +(-1)^FLOOR(X)*MAX(0,-491/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-489/512+MOD(\ +X,1))^8+(-1)^FLOOR(X)*MAX(0,-487/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-485/\ +512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-483/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(\ +0,-481/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-479/512+MOD(X,1))^8+(-1)^FLOOR(\ +X)*MAX(0,-477/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-475/512+MOD(X,1))^8-1.*(-1)\ +^FLOOR(X)*MAX(0,-473/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-471/512+MOD(X,1))^8-\ +1.*(-1)^FLOOR(X)*MAX(0,-469/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-467/512+\ +MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-465/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-463/\ +512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-461/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*\ +MAX(0,-459/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-457/512+MOD(X,1))^8-1.*(-1)^\ +FLOOR(X)*MAX(0,-455/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-453/512+MOD(X,1))^8+(\ +-1)^FLOOR(X)*MAX(0,-451/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-449/512+MOD(X,\ +1))^8-1.*(-1)^FLOOR(X)*MAX(0,-447/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-445/\ +512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-443/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(\ +0,-441/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-439/512+MOD(X,1))^8-1.*(-1)^FLOOR(\ +X)*MAX(0,-437/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-435/512+MOD(X,1))^8+(-1)\ +^FLOOR(X)*MAX(0,-433/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-431/512+MOD(X,1))^8-\ +1.*(-1)^FLOOR(X)*MAX(0,-429/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-427/512+\ +MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-425/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-\ +423/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-421/512+MOD(X,1))^8+(-1)^FLOOR(X)*\ +MAX(0,-419/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-417/512+MOD(X,1))^8+(-1)^\ +FLOOR(X)*MAX(0,-415/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-413/512+MOD(X,1))^\ +8-1.*(-1)^FLOOR(X)*MAX(0,-411/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-409/512+\ +MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-407/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-\ +405/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-403/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*\ +MAX(0,-401/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-399/512+MOD(X,1))^8+(-1)^\ +FLOOR(X)*MAX(0,-397/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-395/512+MOD(X,1))^8-\ +1.*(-1)^FLOOR(X)*MAX(0,-393/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-391/512+MOD(\ +X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-389/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-\ +387/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-385/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*\ +MAX(0,-383/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-381/512+MOD(X,1))^8+(-1)^\ +FLOOR(X)*MAX(0,-379/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-377/512+MOD(X,1))^\ +8+(-1)^FLOOR(X)*MAX(0,-375/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-373/512+\ +MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-371/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-\ +369/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-367/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*\ +MAX(0,-365/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-363/512+MOD(X,1))^8+(-1)^\ +FLOOR(X)*MAX(0,-361/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-359/512+MOD(X,1))^\ +8+(-1)^FLOOR(X)*MAX(0,-357/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-355/512+MOD(X,\ +1))^8-1.*(-1)^FLOOR(X)*MAX(0,-353/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-351/\ +512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-349/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*\ +MAX(0,-347/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-345/512+MOD(X,1))^8-1.*(-1)^\ +FLOOR(X)*MAX(0,-343/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-341/512+MOD(X,1))^8+(\ +-1)^FLOOR(X)*MAX(0,-339/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-337/512+MOD(X,\ +1))^8-1.*(-1)^FLOOR(X)*MAX(0,-335/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-333/\ +512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-331/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(\ +0,-329/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-327/512+MOD(X,1))^8-1.*(-1)^FLOOR(\ +X)*MAX(0,-325/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-323/512+MOD(X,1))^8+(-1)\ +^FLOOR(X)*MAX(0,-321/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-319/512+MOD(X,1))^8-\ +1.*(-1)^FLOOR(X)*MAX(0,-317/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-315/512+\ +MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-313/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-\ +311/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-309/512+MOD(X,1))^8+(-1)^FLOOR(X)*\ +MAX(0,-307/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-305/512+MOD(X,1))^8-1.*(-1)\ +^FLOOR(X)*MAX(0,-303/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-301/512+MOD(X,1))^8+\ +(-1)^FLOOR(X)*MAX(0,-299/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-297/512+MOD(\ +X,1))^8+(-1)^FLOOR(X)*MAX(0,-295/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-293/\ +512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-291/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(\ +0,-289/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-287/512+MOD(X,1))^8+(-1)^FLOOR(\ +X)*MAX(0,-285/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-283/512+MOD(X,1))^8-1.*(-1)\ +^FLOOR(X)*MAX(0,-281/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-279/512+MOD(X,1))^8-\ +1.*(-1)^FLOOR(X)*MAX(0,-277/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-275/512+\ +MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-273/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-271/\ +512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-269/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*\ +MAX(0,-267/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-265/512+MOD(X,1))^8-1.*(-1)^\ +FLOOR(X)*MAX(0,-263/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-261/512+MOD(X,1))^8+(\ +-1)^FLOOR(X)*MAX(0,-259/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-257/512+MOD(X,\ +1))^8-1.*(-1)^FLOOR(X)*MAX(0,-255/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-253/\ +512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-251/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(\ +0,-249/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-247/512+MOD(X,1))^8-1.*(-1)^FLOOR(\ +X)*MAX(0,-245/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-243/512+MOD(X,1))^8+(-1)\ +^FLOOR(X)*MAX(0,-241/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-239/512+MOD(X,1))^8-\ +1.*(-1)^FLOOR(X)*MAX(0,-237/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-235/512+\ +MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-233/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-\ +231/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-229/512+MOD(X,1))^8+(-1)^FLOOR(X)*\ +MAX(0,-227/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-225/512+MOD(X,1))^8+(-1)^\ +FLOOR(X)*MAX(0,-223/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-221/512+MOD(X,1))^\ +8-1.*(-1)^FLOOR(X)*MAX(0,-219/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-217/512+\ +MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-215/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-\ +213/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-211/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*\ +MAX(0,-209/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-207/512+MOD(X,1))^8+(-1)^\ +FLOOR(X)*MAX(0,-205/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-203/512+MOD(X,1))^8-\ +1.*(-1)^FLOOR(X)*MAX(0,-201/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-199/512+MOD(\ +X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-197/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-\ +195/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-193/512+MOD(X,1))^8+(-1)^FLOOR(X)*\ +MAX(0,-191/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-189/512+MOD(X,1))^8-1.*(-1)\ +^FLOOR(X)*MAX(0,-187/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-185/512+MOD(X,1))^8-\ +1.*(-1)^FLOOR(X)*MAX(0,-183/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-181/512+MOD(\ +X,1))^8+(-1)^FLOOR(X)*MAX(0,-179/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-177/\ +512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-175/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(\ +0,-173/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-171/512+MOD(X,1))^8-1.*(-1)^FLOOR(\ +X)*MAX(0,-169/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-167/512+MOD(X,1))^8-1.*(-1)\ +^FLOOR(X)*MAX(0,-165/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-163/512+MOD(X,1))\ +^8+(-1)^FLOOR(X)*MAX(0,-161/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-159/512+\ +MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-157/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-155/\ +512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-153/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(\ +0,-151/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-149/512+MOD(X,1))^8-1.*(-1)^\ +FLOOR(X)*MAX(0,-147/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-145/512+MOD(X,1))^8+(\ +-1)^FLOOR(X)*MAX(0,-143/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-141/512+MOD(X,\ +1))^8-1.*(-1)^FLOOR(X)*MAX(0,-139/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-137/\ +512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-135/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(\ +0,-133/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-131/512+MOD(X,1))^8-1.*(-1)^FLOOR(\ +X)*MAX(0,-129/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-127/512+MOD(X,1))^8-1.*(-1)\ +^FLOOR(X)*MAX(0,-125/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-123/512+MOD(X,1))\ +^8+(-1)^FLOOR(X)*MAX(0,-121/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-119/512+\ +MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-117/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-115/\ +512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-113/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*\ +MAX(0,-111/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-109/512+MOD(X,1))^8+(-1)^\ +FLOOR(X)*MAX(0,-107/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-105/512+MOD(X,1))^\ +8+(-1)^FLOOR(X)*MAX(0,-103/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-101/512+\ +MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-99/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-\ +97/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-95/512+MOD(X,1))^8+(-1)^FLOOR(X)*\ +MAX(0,-93/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-91/512+MOD(X,1))^8-1.*(-1)^\ +FLOOR(X)*MAX(0,-89/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-87/512+MOD(X,1))^8-1.*\ +(-1)^FLOOR(X)*MAX(0,-85/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-83/512+MOD(X,\ +1))^8+(-1)^FLOOR(X)*MAX(0,-81/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-79/512+MOD(\ +X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-77/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-75/\ +512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-73/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(\ +0,-71/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-69/512+MOD(X,1))^8+(-1)^FLOOR(X)*\ +MAX(0,-67/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-65/512+MOD(X,1))^8-1.*(-1)^\ +FLOOR(X)*MAX(0,-63/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-61/512+MOD(X,1))^8+(-\ +1)^FLOOR(X)*MAX(0,-59/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-57/512+MOD(X,1))\ +^8+(-1)^FLOOR(X)*MAX(0,-55/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-53/512+MOD(\ +X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-51/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-49/\ +512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-47/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(\ +0,-45/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-43/512+MOD(X,1))^8+(-1)^FLOOR(X)\ +*MAX(0,-41/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-39/512+MOD(X,1))^8+(-1)^\ +FLOOR(X)*MAX(0,-37/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-35/512+MOD(X,1))^8-1.*\ +(-1)^FLOOR(X)*MAX(0,-33/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-31/512+MOD(X,1))^\ +8-1.*(-1)^FLOOR(X)*MAX(0,-29/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-27/512+\ +MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-25/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-\ +23/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-21/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(\ +0,-19/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-17/512+MOD(X,1))^8-1.*(-1)^\ +FLOOR(X)*MAX(0,-15/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-13/512+MOD(X,1))^8+(-\ +1)^FLOOR(X)*MAX(0,-11/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-9/512+MOD(X,1))^\ +8+(-1)^FLOOR(X)*MAX(0,-7/512+MOD(X,1))^8-1.*(-1)^FLOOR(X)*MAX(0,-5/512+MOD(X,\ +1))^8-1.*(-1)^FLOOR(X)*MAX(0,-3/512+MOD(X,1))^8+(-1)^FLOOR(X)*MAX(0,-1/512+\ +MOD(X,1))^8)\"\>"], "Output", + CellLabel-> + "8/1/24 03:23:24 \ +Out[376]=",ExpressionUUID->"2a3f5d13-a0d0-468c-ac4b-3c81da7ee7db"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{"ToUpperCase", "[", + RowBox[{"StringReplace", "[", + RowBox[{ + RowBox[{"ToString", "[", "\[IndentingNewLine]", + RowBox[{"(*", + RowBox[{"Simplify", "[", + RowBox[{"ExpandAll", "["}]}], "*)"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"-", "1"}], ")"}], "^", + RowBox[{"Floor", "[", + RowBox[{"x", "*", "O"}], "]"}]}], "*", + RowBox[{"(", + RowBox[{ + RowBox[{"R", "[", + RowBox[{"Mod", "[", + RowBox[{ + RowBox[{"x", "*", "O"}], ",", "1"}], "]"}], "]"}], "-", "0.5"}], + ")"}]}], "+", "0.5"}], "\[IndentingNewLine]", + RowBox[{"(*", + RowBox[{"]", "]"}], "*)"}], "\[IndentingNewLine]", ",", "InputForm"}], + "]"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"\"\< \>\"", "\[Rule]", " ", "\"\<\>\""}], ",", + RowBox[{"\"\<*^\>\"", "\[Rule]", " ", "\"\<*10^\>\""}], ",", + RowBox[{"\"\<[\>\"", "->", "\"\<(\>\""}], ",", + RowBox[{"\"\<]\>\"", "->", "\"\<)\>\""}]}], " ", "}"}]}], "]"}], + "]"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"(*", + RowBox[{"Simplify", "[", + RowBox[{"R", "[", "x", "]"}], "]"}], "*)"}]}]}], "Input", + CellLabel-> + "8/1/24 03:23:24 \ +In[377]:=",ExpressionUUID->"fdb9eb7c-a68c-4320-98a0-d5b673c97b25"], + +Cell[BoxData["\<\"0.5+(-1)^FLOOR(O*X)*(-0.5+256*(-128*(-64*(-32*(-16*(-8*(-4*(\ +-2*(-1/40320*MAX(0,-511/512+MOD(O*X,1))^8+MAX(0,-255/512+MOD(O*X,1))^8/40320)+\ +2*(-1/40320*MAX(0,-383/512+MOD(O*X,1))^8+MAX(0,-127/512+MOD(O*X,1))^8/40320))+\ +4*(-2*(-1/40320*MAX(0,-447/512+MOD(O*X,1))^8+MAX(0,-191/512+MOD(O*X,1))^8/\ +40320)+2*(-1/40320*MAX(0,-319/512+MOD(O*X,1))^8+MAX(0,-63/512+MOD(O*X,1))^8/\ +40320)))+8*(-4*(-2*(-1/40320*MAX(0,-479/512+MOD(O*X,1))^8+MAX(0,-223/512+MOD(\ +O*X,1))^8/40320)+2*(-1/40320*MAX(0,-351/512+MOD(O*X,1))^8+MAX(0,-95/512+MOD(O*\ +X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-415/512+MOD(O*X,1))^8+MAX(0,-159/512+\ +MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-287/512+MOD(O*X,1))^8+MAX(0,-31/512+\ +MOD(O*X,1))^8/40320))))+16*(-8*(-4*(-2*(-1/40320*MAX(0,-495/512+MOD(O*X,1))^8+\ +MAX(0,-239/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-367/512+MOD(O*X,1))^8+\ +MAX(0,-111/512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-431/512+MOD(O*X,1)\ +)^8+MAX(0,-175/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-303/512+MOD(O*X,1))\ +^8+MAX(0,-47/512+MOD(O*X,1))^8/40320)))+8*(-4*(-2*(-1/40320*MAX(0,-463/512+\ +MOD(O*X,1))^8+MAX(0,-207/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-335/512+\ +MOD(O*X,1))^8+MAX(0,-79/512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-399/\ +512+MOD(O*X,1))^8+MAX(0,-143/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-271/\ +512+MOD(O*X,1))^8+MAX(0,-15/512+MOD(O*X,1))^8/40320)))))+32*(-16*(-8*(-4*(-2*(\ +-1/40320*MAX(0,-503/512+MOD(O*X,1))^8+MAX(0,-247/512+MOD(O*X,1))^8/40320)+2*(-\ +1/40320*MAX(0,-375/512+MOD(O*X,1))^8+MAX(0,-119/512+MOD(O*X,1))^8/40320))+4*(-\ +2*(-1/40320*MAX(0,-439/512+MOD(O*X,1))^8+MAX(0,-183/512+MOD(O*X,1))^8/40320)+\ +2*(-1/40320*MAX(0,-311/512+MOD(O*X,1))^8+MAX(0,-55/512+MOD(O*X,1))^8/40320)))+\ +8*(-4*(-2*(-1/40320*MAX(0,-471/512+MOD(O*X,1))^8+MAX(0,-215/512+MOD(O*X,1))^8/\ +40320)+2*(-1/40320*MAX(0,-343/512+MOD(O*X,1))^8+MAX(0,-87/512+MOD(O*X,1))^8/\ +40320))+4*(-2*(-1/40320*MAX(0,-407/512+MOD(O*X,1))^8+MAX(0,-151/512+MOD(O*X,1)\ +)^8/40320)+2*(-1/40320*MAX(0,-279/512+MOD(O*X,1))^8+MAX(0,-23/512+MOD(O*X,1))^\ +8/40320))))+16*(-8*(-4*(-2*(-1/40320*MAX(0,-487/512+MOD(O*X,1))^8+MAX(0,-231/\ +512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-359/512+MOD(O*X,1))^8+MAX(0,-103/\ +512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-423/512+MOD(O*X,1))^8+MAX(0,-\ +167/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-295/512+MOD(O*X,1))^8+MAX(0,-\ +39/512+MOD(O*X,1))^8/40320)))+8*(-4*(-2*(-1/40320*MAX(0,-455/512+MOD(O*X,1))^\ +8+MAX(0,-199/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-327/512+MOD(O*X,1))^\ +8+MAX(0,-71/512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-391/512+MOD(O*X,\ +1))^8+MAX(0,-135/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-263/512+MOD(O*X,\ +1))^8+MAX(0,-7/512+MOD(O*X,1))^8/40320))))))+64*(-32*(-16*(-8*(-4*(-2*(-1/\ +40320*MAX(0,-507/512+MOD(O*X,1))^8+MAX(0,-251/512+MOD(O*X,1))^8/40320)+2*(-1/\ +40320*MAX(0,-379/512+MOD(O*X,1))^8+MAX(0,-123/512+MOD(O*X,1))^8/40320))+4*(-2*\ +(-1/40320*MAX(0,-443/512+MOD(O*X,1))^8+MAX(0,-187/512+MOD(O*X,1))^8/40320)+2*(\ +-1/40320*MAX(0,-315/512+MOD(O*X,1))^8+MAX(0,-59/512+MOD(O*X,1))^8/40320)))+8*(\ +-4*(-2*(-1/40320*MAX(0,-475/512+MOD(O*X,1))^8+MAX(0,-219/512+MOD(O*X,1))^8/\ +40320)+2*(-1/40320*MAX(0,-347/512+MOD(O*X,1))^8+MAX(0,-91/512+MOD(O*X,1))^8/\ +40320))+4*(-2*(-1/40320*MAX(0,-411/512+MOD(O*X,1))^8+MAX(0,-155/512+MOD(O*X,1)\ +)^8/40320)+2*(-1/40320*MAX(0,-283/512+MOD(O*X,1))^8+MAX(0,-27/512+MOD(O*X,1))^\ +8/40320))))+16*(-8*(-4*(-2*(-1/40320*MAX(0,-491/512+MOD(O*X,1))^8+MAX(0,-235/\ +512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-363/512+MOD(O*X,1))^8+MAX(0,-107/\ +512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-427/512+MOD(O*X,1))^8+MAX(0,-\ +171/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-299/512+MOD(O*X,1))^8+MAX(0,-\ +43/512+MOD(O*X,1))^8/40320)))+8*(-4*(-2*(-1/40320*MAX(0,-459/512+MOD(O*X,1))^\ +8+MAX(0,-203/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-331/512+MOD(O*X,1))^\ +8+MAX(0,-75/512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-395/512+MOD(O*X,\ +1))^8+MAX(0,-139/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-267/512+MOD(O*X,\ +1))^8+MAX(0,-11/512+MOD(O*X,1))^8/40320)))))+32*(-16*(-8*(-4*(-2*(-1/40320*\ +MAX(0,-499/512+MOD(O*X,1))^8+MAX(0,-243/512+MOD(O*X,1))^8/40320)+2*(-1/40320*\ +MAX(0,-371/512+MOD(O*X,1))^8+MAX(0,-115/512+MOD(O*X,1))^8/40320))+4*(-2*(-1/\ +40320*MAX(0,-435/512+MOD(O*X,1))^8+MAX(0,-179/512+MOD(O*X,1))^8/40320)+2*(-1/\ +40320*MAX(0,-307/512+MOD(O*X,1))^8+MAX(0,-51/512+MOD(O*X,1))^8/40320)))+8*(-4*\ +(-2*(-1/40320*MAX(0,-467/512+MOD(O*X,1))^8+MAX(0,-211/512+MOD(O*X,1))^8/40320)\ ++2*(-1/40320*MAX(0,-339/512+MOD(O*X,1))^8+MAX(0,-83/512+MOD(O*X,1))^8/40320))+\ +4*(-2*(-1/40320*MAX(0,-403/512+MOD(O*X,1))^8+MAX(0,-147/512+MOD(O*X,1))^8/\ +40320)+2*(-1/40320*MAX(0,-275/512+MOD(O*X,1))^8+MAX(0,-19/512+MOD(O*X,1))^8/\ +40320))))+16*(-8*(-4*(-2*(-1/40320*MAX(0,-483/512+MOD(O*X,1))^8+MAX(0,-227/\ +512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-355/512+MOD(O*X,1))^8+MAX(0,-99/\ +512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-419/512+MOD(O*X,1))^8+MAX(0,-\ +163/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-291/512+MOD(O*X,1))^8+MAX(0,-\ +35/512+MOD(O*X,1))^8/40320)))+8*(-4*(-2*(-1/40320*MAX(0,-451/512+MOD(O*X,1))^\ +8+MAX(0,-195/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-323/512+MOD(O*X,1))^\ +8+MAX(0,-67/512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-387/512+MOD(O*X,\ +1))^8+MAX(0,-131/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-259/512+MOD(O*X,\ +1))^8+MAX(0,-3/512+MOD(O*X,1))^8/40320)))))))+128*(-64*(-32*(-16*(-8*(-4*(-2*(\ +-1/40320*MAX(0,-509/512+MOD(O*X,1))^8+MAX(0,-253/512+MOD(O*X,1))^8/40320)+2*(-\ +1/40320*MAX(0,-381/512+MOD(O*X,1))^8+MAX(0,-125/512+MOD(O*X,1))^8/40320))+4*(-\ +2*(-1/40320*MAX(0,-445/512+MOD(O*X,1))^8+MAX(0,-189/512+MOD(O*X,1))^8/40320)+\ +2*(-1/40320*MAX(0,-317/512+MOD(O*X,1))^8+MAX(0,-61/512+MOD(O*X,1))^8/40320)))+\ +8*(-4*(-2*(-1/40320*MAX(0,-477/512+MOD(O*X,1))^8+MAX(0,-221/512+MOD(O*X,1))^8/\ +40320)+2*(-1/40320*MAX(0,-349/512+MOD(O*X,1))^8+MAX(0,-93/512+MOD(O*X,1))^8/\ +40320))+4*(-2*(-1/40320*MAX(0,-413/512+MOD(O*X,1))^8+MAX(0,-157/512+MOD(O*X,1)\ +)^8/40320)+2*(-1/40320*MAX(0,-285/512+MOD(O*X,1))^8+MAX(0,-29/512+MOD(O*X,1))^\ +8/40320))))+16*(-8*(-4*(-2*(-1/40320*MAX(0,-493/512+MOD(O*X,1))^8+MAX(0,-237/\ +512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-365/512+MOD(O*X,1))^8+MAX(0,-109/\ +512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-429/512+MOD(O*X,1))^8+MAX(0,-\ +173/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-301/512+MOD(O*X,1))^8+MAX(0,-\ +45/512+MOD(O*X,1))^8/40320)))+8*(-4*(-2*(-1/40320*MAX(0,-461/512+MOD(O*X,1))^\ +8+MAX(0,-205/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-333/512+MOD(O*X,1))^\ +8+MAX(0,-77/512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-397/512+MOD(O*X,\ +1))^8+MAX(0,-141/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-269/512+MOD(O*X,\ +1))^8+MAX(0,-13/512+MOD(O*X,1))^8/40320)))))+32*(-16*(-8*(-4*(-2*(-1/40320*\ +MAX(0,-501/512+MOD(O*X,1))^8+MAX(0,-245/512+MOD(O*X,1))^8/40320)+2*(-1/40320*\ +MAX(0,-373/512+MOD(O*X,1))^8+MAX(0,-117/512+MOD(O*X,1))^8/40320))+4*(-2*(-1/\ +40320*MAX(0,-437/512+MOD(O*X,1))^8+MAX(0,-181/512+MOD(O*X,1))^8/40320)+2*(-1/\ +40320*MAX(0,-309/512+MOD(O*X,1))^8+MAX(0,-53/512+MOD(O*X,1))^8/40320)))+8*(-4*\ +(-2*(-1/40320*MAX(0,-469/512+MOD(O*X,1))^8+MAX(0,-213/512+MOD(O*X,1))^8/40320)\ ++2*(-1/40320*MAX(0,-341/512+MOD(O*X,1))^8+MAX(0,-85/512+MOD(O*X,1))^8/40320))+\ +4*(-2*(-1/40320*MAX(0,-405/512+MOD(O*X,1))^8+MAX(0,-149/512+MOD(O*X,1))^8/\ +40320)+2*(-1/40320*MAX(0,-277/512+MOD(O*X,1))^8+MAX(0,-21/512+MOD(O*X,1))^8/\ +40320))))+16*(-8*(-4*(-2*(-1/40320*MAX(0,-485/512+MOD(O*X,1))^8+MAX(0,-229/\ +512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-357/512+MOD(O*X,1))^8+MAX(0,-101/\ +512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-421/512+MOD(O*X,1))^8+MAX(0,-\ +165/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-293/512+MOD(O*X,1))^8+MAX(0,-\ +37/512+MOD(O*X,1))^8/40320)))+8*(-4*(-2*(-1/40320*MAX(0,-453/512+MOD(O*X,1))^\ +8+MAX(0,-197/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-325/512+MOD(O*X,1))^\ +8+MAX(0,-69/512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-389/512+MOD(O*X,\ +1))^8+MAX(0,-133/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-261/512+MOD(O*X,\ +1))^8+MAX(0,-5/512+MOD(O*X,1))^8/40320))))))+64*(-32*(-16*(-8*(-4*(-2*(-1/\ +40320*MAX(0,-505/512+MOD(O*X,1))^8+MAX(0,-249/512+MOD(O*X,1))^8/40320)+2*(-1/\ +40320*MAX(0,-377/512+MOD(O*X,1))^8+MAX(0,-121/512+MOD(O*X,1))^8/40320))+4*(-2*\ +(-1/40320*MAX(0,-441/512+MOD(O*X,1))^8+MAX(0,-185/512+MOD(O*X,1))^8/40320)+2*(\ +-1/40320*MAX(0,-313/512+MOD(O*X,1))^8+MAX(0,-57/512+MOD(O*X,1))^8/40320)))+8*(\ +-4*(-2*(-1/40320*MAX(0,-473/512+MOD(O*X,1))^8+MAX(0,-217/512+MOD(O*X,1))^8/\ +40320)+2*(-1/40320*MAX(0,-345/512+MOD(O*X,1))^8+MAX(0,-89/512+MOD(O*X,1))^8/\ +40320))+4*(-2*(-1/40320*MAX(0,-409/512+MOD(O*X,1))^8+MAX(0,-153/512+MOD(O*X,1)\ +)^8/40320)+2*(-1/40320*MAX(0,-281/512+MOD(O*X,1))^8+MAX(0,-25/512+MOD(O*X,1))^\ +8/40320))))+16*(-8*(-4*(-2*(-1/40320*MAX(0,-489/512+MOD(O*X,1))^8+MAX(0,-233/\ +512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-361/512+MOD(O*X,1))^8+MAX(0,-105/\ +512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-425/512+MOD(O*X,1))^8+MAX(0,-\ +169/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-297/512+MOD(O*X,1))^8+MAX(0,-\ +41/512+MOD(O*X,1))^8/40320)))+8*(-4*(-2*(-1/40320*MAX(0,-457/512+MOD(O*X,1))^\ +8+MAX(0,-201/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-329/512+MOD(O*X,1))^\ +8+MAX(0,-73/512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-393/512+MOD(O*X,\ +1))^8+MAX(0,-137/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-265/512+MOD(O*X,\ +1))^8+MAX(0,-9/512+MOD(O*X,1))^8/40320)))))+32*(-16*(-8*(-4*(-2*(-1/40320*MAX(\ +0,-497/512+MOD(O*X,1))^8+MAX(0,-241/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(\ +0,-369/512+MOD(O*X,1))^8+MAX(0,-113/512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*\ +MAX(0,-433/512+MOD(O*X,1))^8+MAX(0,-177/512+MOD(O*X,1))^8/40320)+2*(-1/40320*\ +MAX(0,-305/512+MOD(O*X,1))^8+MAX(0,-49/512+MOD(O*X,1))^8/40320)))+8*(-4*(-2*(-\ +1/40320*MAX(0,-465/512+MOD(O*X,1))^8+MAX(0,-209/512+MOD(O*X,1))^8/40320)+2*(-\ +1/40320*MAX(0,-337/512+MOD(O*X,1))^8+MAX(0,-81/512+MOD(O*X,1))^8/40320))+4*(-\ +2*(-1/40320*MAX(0,-401/512+MOD(O*X,1))^8+MAX(0,-145/512+MOD(O*X,1))^8/40320)+\ +2*(-1/40320*MAX(0,-273/512+MOD(O*X,1))^8+MAX(0,-17/512+MOD(O*X,1))^8/40320))))\ ++16*(-8*(-4*(-2*(-1/40320*MAX(0,-481/512+MOD(O*X,1))^8+MAX(0,-225/512+MOD(O*X,\ +1))^8/40320)+2*(-1/40320*MAX(0,-353/512+MOD(O*X,1))^8+MAX(0,-97/512+MOD(O*X,1)\ +)^8/40320))+4*(-2*(-1/40320*MAX(0,-417/512+MOD(O*X,1))^8+MAX(0,-161/512+MOD(O*\ +X,1))^8/40320)+2*(-1/40320*MAX(0,-289/512+MOD(O*X,1))^8+MAX(0,-33/512+MOD(O*X,\ +1))^8/40320)))+8*(-4*(-2*(-1/40320*MAX(0,-449/512+MOD(O*X,1))^8+MAX(0,-193/\ +512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-321/512+MOD(O*X,1))^8+MAX(0,-65/\ +512+MOD(O*X,1))^8/40320))+4*(-2*(-1/40320*MAX(0,-385/512+MOD(O*X,1))^8+MAX(0,-\ +129/512+MOD(O*X,1))^8/40320)+2*(-1/40320*MAX(0,-257/512+MOD(O*X,1))^8+MAX(0,-\ +1/512+MOD(O*X,1))^8/40320)))))))))\"\>"], "Output", + CellLabel-> + "8/1/24 03:23:24 \ +Out[377]=",ExpressionUUID->"6143c44d-8f8f-407f-8083-421c8e51b666"] +}, Open ]] +}, +WindowSize->{1672, 980}, +WindowMargins->{{0, Automatic}, {Automatic, 0}}, +FrontEndVersion->"12.2 for Microsoft Windows (64-bit) (December 12, 2020)", +StyleDefinitions->Notebook[{ + Cell[ + StyleData[StyleDefinitions -> "Default.nb"]], + Cell[ + StyleData[All], TextAlignment -> Center, FontFamily -> "Segoe UI Symbol", + FontSize -> 12, FontWeight -> "Normal", FontSlant -> "Plain", + FontTracking -> "Plain", + FontVariations -> {"StrikeThrough" -> False, "Underline" -> False}]}, + Visible -> False, FrontEndVersion -> + "12.2 for Microsoft Windows (64-bit) (December 12, 2020)", StyleDefinitions -> + "PrivateStylesheetFormatting.nb"], +ExpressionUUID->"8e3d3569-6290-49a7-9e70-032aa06fb7e0" +] +(* End of Notebook Content *) + +(* Internal cache information *) +(*CellTagsOutline +CellTagsIndex->{} +*) +(*CellTagsIndex +CellTagsIndex->{} +*) +(*NotebookFileOutline +Notebook[{ +Cell[558, 20, 6560, 181, 412, "Input",ExpressionUUID->"a4addeb7-2708-41df-8367-f56fd1c4c60d"], +Cell[CellGroupData[{ +Cell[7143, 205, 26283, 846, 1167, "Input",ExpressionUUID->"4b599907-b90e-4af8-8102-af55e168ea88"], +Cell[33429, 1053, 68326, 1274, 975, "Output",ExpressionUUID->"bbc14aa0-5506-4ffd-8080-e79bc76e47f7"], +Cell[101758, 2329, 11334, 145, 928, "Output",ExpressionUUID->"2a3f5d13-a0d0-468c-ac4b-3c81da7ee7db"] +}, Open ]], +Cell[CellGroupData[{ +Cell[113129, 2479, 1390, 39, 132, "Input",ExpressionUUID->"fdb9eb7c-a68c-4320-98a0-d5b673c97b25"], +Cell[114522, 2520, 10904, 139, 892, "Output",ExpressionUUID->"6143c44d-8f8f-407f-8083-421c8e51b666"] +}, Open ]] +} +] +*) +