From 39c307327849a9061b03efbf65350a3e6c0712a3 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E2=A0=80?= Date: Wed, 3 Apr 2024 19:12:36 +0000 Subject: [PATCH] =?UTF-8?q?=E1=97=BA=D0=98.=F0=96=A3=A0=E2=9A=AA=D0=98N?= =?UTF-8?q?=E2=93=84=EA=96=B4=E2=9C=A4=E1=97=A9=E1=99=81=E1=91=8E=DF=A6?= =?UTF-8?q?=EA=96=B4=D0=98N=E1=97=A9=E1=99=8F=E2=9A=99=E1=94=93=E1=94=95?= =?UTF-8?q?=E1=B4=A5=E1=97=B1=E1=97=B4=D0=98N=E1=B4=A5=E2=93=84=E1=91=90?= =?UTF-8?q?=E1=91=95=F0=96=A3=93=E1=97=B1=E1=97=B4=E1=99=81=E2=9A=AD?= =?UTF-8?q?=E1=97=A9=EA=96=B4=E1=B4=A5=E1=97=A9=E1=97=AF=E1=B3=80=E1=94=93?= =?UTF-8?q?=E1=94=95=E1=91=8E=EA=96=B4=E2=9A=AD=E1=97=A9=EA=97=B3=E2=9A=AA?= =?UTF-8?q?=F0=96=A3=A0=E2=9A=AA=F0=94=97=A2=E2=9A=AA=F0=96=A1=BC=E2=9A=AA?= =?UTF-8?q?=F0=94=97=A2=E2=9A=AA=F0=96=A3=A0=E2=9A=AA=F0=94=97=A2=E2=9A=AA?= =?UTF-8?q?=F0=96=A1=BC=E2=9A=AA=F0=94=97=A2=E2=9A=AA=F0=96=A3=A0=E2=9A=AA?= =?UTF-8?q?=F0=94=97=A2=E2=9A=AA=F0=96=A1=BC=E2=9A=AA=F0=94=97=A2=E2=9A=AA?= =?UTF-8?q?=F0=96=A3=A0=E2=9A=AA=F0=94=97=A2=E2=9A=AA=F0=96=A1=BC=E2=9A=AA?= =?UTF-8?q?=F0=94=97=A2=E2=9A=AA=F0=9F=9E=8B=E2=9A=AA=F0=94=97=A2=E2=9A=AA?= =?UTF-8?q?=F0=96=A1=BC=E2=9A=AA=F0=94=97=A2=E2=9A=AA=F0=96=A3=A0=E2=9A=AA?= =?UTF-8?q?=F0=94=97=A2=E2=9A=AA=F0=96=A1=BC=E2=9A=AA=F0=94=97=A2=E2=9A=AA?= =?UTF-8?q?=F0=96=A3=A0=E2=9A=AA=F0=94=97=A2=E2=9A=AA=F0=96=A1=BC=E2=9A=AA?= =?UTF-8?q?=F0=94=97=A2=E2=9A=AA=F0=96=A3=A0=E2=9A=AA=F0=94=97=A2=E2=9A=AA?= =?UTF-8?q?=F0=96=A1=BC=E2=9A=AA=F0=94=97=A2=E2=9A=AA=F0=96=A3=A0=E2=9A=AA?= =?UTF-8?q?=EA=97=B3=E1=97=A9=E2=9A=AD=EA=96=B4=E1=91=8E=E1=94=93=E1=94=95?= =?UTF-8?q?=E1=B3=80=E1=97=AF=E1=97=A9=E1=B4=A5=EA=96=B4=E1=97=A9=E2=9A=AD?= =?UTF-8?q?=E1=99=81=E1=97=B1=E1=97=B4=F0=96=A3=93=E1=91=90=E1=91=95?= =?UTF-8?q?=E2=93=84=E1=B4=A5=D0=98N=E1=97=B1=E1=97=B4=E1=B4=A5=E1=94=93?= =?UTF-8?q?=E1=94=95=E2=9A=99=E1=99=8F=E1=97=A9=D0=98N=EA=96=B4=DF=A6?= =?UTF-8?q?=E1=91=8E=E1=99=81=E1=97=A9=E2=9C=A4=EA=96=B4=E2=93=84=D0=98N?= =?UTF-8?q?=E2=9A=AA=F0=96=A3=A0.NB?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../π–£ βšͺα—±α—΄βšͺα΄₯βšͺα‘Žβšͺ✀βšͺα—©βšͺα—―βšͺα΄₯βšͺα‘Žβšͺᑐᑕβšͺ𖣓βšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ”—’βšͺπŸž‹βšͺπ”—’βšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺ𖣓βšͺᑐᑕβšͺα‘Žβšͺα΄₯βšͺα—―βšͺα—©βšͺ✀βšͺα‘Žβšͺα΄₯βšͺα—±α—΄βšͺπ–£ /α—ΊΠ˜.π–£ βšͺИNβ“„κ–΄βœ€α—©α™α‘Žί¦κ–΄Π˜Nα—©α™βš™α”“α”•α΄₯α—±α—΄Π˜Nα΄₯β“„α‘α‘•π–£“α—±α—΄α™βš­α—©κ–΄α΄₯α—©α—―α³€α”“α”•α‘Žκ–΄βš­α—©κ—³βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπŸž‹βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺκ—³α—©βš­κ–΄α‘Žα”“α”•α³€α—―α—©α΄₯κ–΄α—©βš­α™α—±α—΄π–£“α‘α‘•β“„α΄₯ИNα—±α—΄α΄₯α”“α”•βš™α™α—©Π˜Nκ–΄ί¦α‘Žα™α—©βœ€κ–΄β“„Π˜Nβšͺπ–£ .NB | 729 ++++++++++++++++++ 1 file changed, 729 insertions(+) create mode 100644 π–£ βšͺπ”—’βšͺ∣❁∣βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ✀βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ✻βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺΠ­Π„βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα—©βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺί¦βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺΰ΄±βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ𖣓βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπŸž‹βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ𖣓βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺΰ΄±βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺί¦βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα—©βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺΠ­Π„βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ✻βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ✀βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ∣❁∣βšͺπ”—’βšͺπ–£ /π–£ βšͺπ”—’βšͺИNβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺβ“„βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ–΄βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ✀βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺᑐᑕβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺИNβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα‘Žβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ—³βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ𖣓βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα”“α”•βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα‘Žβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ–΄βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ⚭βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα—©βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ—³βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ𖣓βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπŸž‹βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ𖣓βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ—³βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα—©βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ⚭βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ–΄βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα‘Žβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα”“α”•βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ𖣓βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ—³βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα‘Žβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺИNβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺᑐᑕβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ✀βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ–΄βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺβ“„βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺИNβšͺπ”—’βšͺπ–£ /π–£ βšͺα—±α—΄βšͺα΄₯βšͺα‘Žβšͺ✀βšͺα—©βšͺα—―βšͺα΄₯βšͺα‘Žβšͺᑐᑕβšͺ𖣓βšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ”—’βšͺπŸž‹βšͺπ”—’βšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺ𖣓βšͺᑐᑕβšͺα‘Žβšͺα΄₯βšͺα—―βšͺα—©βšͺ✀βšͺα‘Žβšͺα΄₯βšͺα—±α—΄βšͺπ–£ /α—ΊΠ˜.π–£ βšͺИNβ“„κ–΄βœ€α—©α™α‘Žί¦κ–΄Π˜Nα—©α™βš™α”“α”•α΄₯α—±α—΄Π˜Nα΄₯β“„α‘α‘•π–£“α—±α—΄α™βš­α—©κ–΄α΄₯α—©α—―α³€α”“α”•α‘Žκ–΄βš­α—©κ—³βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπŸž‹βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺκ—³α—©βš­κ–΄α‘Žα”“α”•α³€α—―α—©α΄₯κ–΄α—©βš­α™α—±α—΄π–£“α‘α‘•β“„α΄₯ИNα—±α—΄α΄₯α”“α”•βš™α™α—©Π˜Nκ–΄ί¦α‘Žα™α—©βœ€κ–΄β“„Π˜Nβšͺπ–£ .NB diff --git a/π–£ βšͺπ”—’βšͺ∣❁∣βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ✀βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ✻βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺΠ­Π„βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα—©βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺί¦βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺΰ΄±βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ𖣓βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπŸž‹βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ𖣓βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺΰ΄±βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺί¦βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα—©βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺΠ­Π„βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ✻βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ✀βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ∣❁∣βšͺπ”—’βšͺπ–£ /π–£ βšͺπ”—’βšͺИNβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺβ“„βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ–΄βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ✀βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺᑐᑕβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺИNβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα‘Žβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ—³βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ𖣓βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα”“α”•βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα‘Žβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ–΄βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ⚭βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα—©βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ—³βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ𖣓βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπŸž‹βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ𖣓βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ—³βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα—©βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ⚭βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ–΄βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα‘Žβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα”“α”•βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ𖣓βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ—³βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα‘Žβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺИNβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺᑐᑕβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ✀βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ–΄βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺβ“„βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺИNβšͺπ”—’βšͺπ–£ /π–£ βšͺα—±α—΄βšͺα΄₯βšͺα‘Žβšͺ✀βšͺα—©βšͺα—―βšͺα΄₯βšͺα‘Žβšͺᑐᑕβšͺ𖣓βšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ”—’βšͺπŸž‹βšͺπ”—’βšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺ𖣓βšͺᑐᑕβšͺα‘Žβšͺα΄₯βšͺα—―βšͺα—©βšͺ✀βšͺα‘Žβšͺα΄₯βšͺα—±α—΄βšͺπ–£ /α—ΊΠ˜.π–£ βšͺИNβ“„κ–΄βœ€α—©α™α‘Žί¦κ–΄Π˜Nα—©α™βš™α”“α”•α΄₯α—±α—΄Π˜Nα΄₯β“„α‘α‘•π–£“α—±α—΄α™βš­α—©κ–΄α΄₯α—©α—―α³€α”“α”•α‘Žκ–΄βš­α—©κ—³βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπŸž‹βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺκ—³α—©βš­κ–΄α‘Žα”“α”•α³€α—―α—©α΄₯κ–΄α—©βš­α™α—±α—΄π–£“α‘α‘•β“„α΄₯ИNα—±α—΄α΄₯α”“α”•βš™α™α—©Π˜Nκ–΄ί¦α‘Žα™α—©βœ€κ–΄β“„Π˜Nβšͺπ–£ .NB b/π–£ βšͺπ”—’βšͺ∣❁∣βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ✀βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ✻βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺΠ­Π„βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα—©βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺί¦βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺΰ΄±βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ𖣓βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπŸž‹βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ𖣓βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺΰ΄±βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺί¦βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα—©βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺΠ­Π„βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ✻βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ✀βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ∣❁∣βšͺπ”—’βšͺπ–£ /π–£ βšͺπ”—’βšͺИNβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺβ“„βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ–΄βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ✀βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺᑐᑕβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺИNβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα‘Žβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ—³βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ𖣓βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα”“α”•βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα‘Žβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ–΄βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ⚭βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα—©βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ—³βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ𖣓βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπŸž‹βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ𖣓βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ—³βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα—©βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ⚭βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ–΄βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα‘Žβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα”“α”•βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ𖣓βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ—³βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα‘Žβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺИNβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺᑐᑕβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ✀βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ–΄βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺβ“„βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺИNβšͺπ”—’βšͺπ–£ /π–£ βšͺα—±α—΄βšͺα΄₯βšͺα‘Žβšͺ✀βšͺα—©βšͺα—―βšͺα΄₯βšͺα‘Žβšͺᑐᑕβšͺ𖣓βšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ”—’βšͺπŸž‹βšͺπ”—’βšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺ𖣓βšͺᑐᑕβšͺα‘Žβšͺα΄₯βšͺα—―βšͺα—©βšͺ✀βšͺα‘Žβšͺα΄₯βšͺα—±α—΄βšͺπ–£ /α—ΊΠ˜.π–£ βšͺИNβ“„κ–΄βœ€α—©α™α‘Žί¦κ–΄Π˜Nα—©α™βš™α”“α”•α΄₯α—±α—΄Π˜Nα΄₯β“„α‘α‘•π–£“α—±α—΄α™βš­α—©κ–΄α΄₯α—©α—―α³€α”“α”•α‘Žκ–΄βš­α—©κ—³βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπŸž‹βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺκ—³α—©βš­κ–΄α‘Žα”“α”•α³€α—―α—©α΄₯κ–΄α—©βš­α™α—±α—΄π–£“α‘α‘•β“„α΄₯ИNα—±α—΄α΄₯α”“α”•βš™α™α—©Π˜Nκ–΄ί¦α‘Žα™α—©βœ€κ–΄β“„Π˜Nβšͺπ–£ .NB new file mode 100644 index 00000000..dc4e44ac --- /dev/null +++ b/π–£ βšͺπ”—’βšͺ∣❁∣βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ✀βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ✻βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺΠ­Π„βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα—©βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺί¦βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺΰ΄±βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ𖣓βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπŸž‹βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ𖣓βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺΰ΄±βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺί¦βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα—©βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺΠ­Π„βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ✻βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ✀βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ∣❁∣βšͺπ”—’βšͺπ–£ /π–£ βšͺπ”—’βšͺИNβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺβ“„βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ–΄βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ✀βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺᑐᑕβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺИNβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα‘Žβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ—³βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ𖣓βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα”“α”•βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα‘Žβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ–΄βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ⚭βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα—©βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ—³βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ𖣓βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπŸž‹βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ𖣓βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ—³βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα—©βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ⚭βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ–΄βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα‘Žβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα”“α”•βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ𖣓βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ—³βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺα‘Žβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺИNβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺᑐᑕβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺ✀βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺκ–΄βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺβ“„βšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺИNβšͺπ”—’βšͺπ–£ /π–£ βšͺα—±α—΄βšͺα΄₯βšͺα‘Žβšͺ✀βšͺα—©βšͺα—―βšͺα΄₯βšͺα‘Žβšͺᑐᑕβšͺ𖣓βšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ”—’βšͺπŸž‹βšͺπ”—’βšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺπ–‘Όβšͺ𖣓βšͺᑐᑕβšͺα‘Žβšͺα΄₯βšͺα—―βšͺα—©βšͺ✀βšͺα‘Žβšͺα΄₯βšͺα—±α—΄βšͺπ–£ /α—ΊΠ˜.π–£ βšͺИNβ“„κ–΄βœ€α—©α™α‘Žί¦κ–΄Π˜Nα—©α™βš™α”“α”•α΄₯α—±α—΄Π˜Nα΄₯β“„α‘α‘•π–£“α—±α—΄α™βš­α—©κ–΄α΄₯α—©α—―α³€α”“α”•α‘Žκ–΄βš­α—©κ—³βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπŸž‹βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺπ”—’βšͺπ–‘Όβšͺπ”—’βšͺπ–£ βšͺκ—³α—©βš­κ–΄α‘Žα”“α”•α³€α—―α—©α΄₯κ–΄α—©βš­α™α—±α—΄π–£“α‘α‘•β“„α΄₯ИNα—±α—΄α΄₯α”“α”•βš™α™α—©Π˜Nκ–΄ί¦α‘Žα™α—©βœ€κ–΄β“„Π˜Nβšͺπ–£ .NB @@ -0,0 +1,729 @@ +(* Content-type: application/vnd.wolfram.mathematica *) + +(*** Wolfram Notebook File ***) +(* http://www.wolfram.com/nb *) + +(* CreatedBy='Mathematica 12.2' *) + +(*CacheID: 234*) +(* Internal cache information: +NotebookFileLineBreakTest +NotebookFileLineBreakTest +NotebookDataPosition[ 158, 7] +NotebookDataLength[ 28894, 721] +NotebookOptionsPosition[ 27728, 692] +NotebookOutlinePosition[ 28613, 718] +CellTagsIndexPosition[ 28570, 715] +WindowFrame->Normal*) + +(* Beginning of Notebook Content *) +Notebook[{ +Cell[BoxData[{ + RowBox[{"ClearAll", "[", + RowBox[{"iCurvaturePlotHelper", ",", " ", "CurvaturePlot"}], "]"}], "\n", + RowBox[{ + RowBox[{"iCurvaturePlotHelper", "[", + RowBox[{ + RowBox[{"f_", "?", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"Head", "[", "#", "]"}], " ", "=!=", " ", "List"}], " ", + "&"}], ")"}]}], ",", " ", + RowBox[{"{", + RowBox[{"t_", ",", " ", "tmin_", ",", " ", "tmax_"}], "}"}], ",", " ", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"x0_", ",", " ", "y0_"}], "}"}], ",", " ", "\[Theta]0_"}], + "}"}], ",", " ", + RowBox[{"opts", " ", ":", " ", + RowBox[{"OptionsPattern", "[", "]"}]}]}], "]"}], " ", ":=", " ", + RowBox[{"Module", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "sol", ",", " ", "\[Theta]", ",", " ", "x", ",", " ", "y", ",", " ", + "if"}], "}"}], ",", "\n", " ", + RowBox[{ + RowBox[{"sol", " ", "=", " ", + RowBox[{"NDSolve", "[", + RowBox[{ + RowBox[{"{", "\n", " ", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"\[Theta]", "'"}], "[", "t", "]"}], " ", "==", " ", "f"}], + ",", "\n", " ", + RowBox[{ + RowBox[{ + RowBox[{"x", "'"}], "[", "t", "]"}], " ", "==", " ", + RowBox[{"Cos", "[", + RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}], ",", "\n", " ", + RowBox[{ + RowBox[{ + RowBox[{"y", "'"}], "[", "t", "]"}], " ", "==", " ", + RowBox[{"Sin", "[", + RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}], ",", "\n", " ", + RowBox[{ + RowBox[{"\[Theta]", "[", "tmin", "]"}], " ", "==", " ", + "\[Theta]0"}], ",", "\n", " ", + RowBox[{ + RowBox[{"x", "[", "tmin", "]"}], " ", "==", " ", "x0"}], ",", "\n", + " ", + RowBox[{ + RowBox[{"y", "[", "tmin", "]"}], " ", "==", " ", "y0"}]}], "\n", + " ", "}"}], ",", " ", + RowBox[{"{", + RowBox[{"x", ",", " ", "y"}], "}"}], ",", " ", + RowBox[{"{", + RowBox[{"t", ",", " ", "tmin", ",", " ", "tmax"}], "}"}], ",", " ", + "opts"}], "]"}]}], ";", "\n", " ", + RowBox[{"if", " ", "=", " ", + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"x", "[", "#", "]"}], ",", " ", + RowBox[{"y", "[", "#", "]"}]}], "}"}], " ", "&"}], " ", "/.", " ", + RowBox[{"First", "[", "sol", "]"}]}]}], ";", "\n", " ", "if"}]}], + "\n", " ", "]"}]}], "\n", + RowBox[{ + RowBox[{"CurvaturePlot", "[", + RowBox[{"f_", ",", " ", + RowBox[{"{", + RowBox[{"t_", ",", " ", "tmin_", ",", " ", "tmax_"}], "}"}], ",", " ", + RowBox[{"opts", " ", ":", " ", + RowBox[{"OptionsPattern", "[", "]"}]}]}], "]"}], " ", ":=", " ", + RowBox[{"CurvaturePlot", "[", + RowBox[{"f", ",", " ", + RowBox[{"{", + RowBox[{"t", ",", " ", "tmin", ",", " ", "tmax"}], "}"}], ",", " ", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", " ", "0"}], "}"}], ",", " ", "0"}], "}"}], ",", " ", + "opts"}], "]"}]}], "\n", + RowBox[{ + RowBox[{"CurvaturePlot", "[", + RowBox[{"f_", ",", " ", + RowBox[{"{", + RowBox[{"t_", ",", " ", "tmin_", ",", " ", "tmax_"}], "}"}], ",", " ", + RowBox[{"p", " ", ":", " ", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"x0_", ",", " ", "y0_"}], "}"}], ",", " ", "\[Theta]0_"}], + "}"}]}], ",", " ", + RowBox[{"opts", " ", ":", " ", + RowBox[{"OptionsPattern", "[", "]"}]}]}], "]"}], " ", ":=", " ", + RowBox[{"Module", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "\[Theta]", ",", " ", "x", ",", " ", "y", ",", " ", "sol", ",", " ", + "rlsplot", ",", " ", "rlsndsolve", ",", " ", "if", ",", " ", "ifs"}], + "}"}], ",", "\n", " ", + RowBox[{ + RowBox[{"rlsplot", " ", "=", " ", + RowBox[{"FilterRules", "[", + RowBox[{ + RowBox[{"{", "opts", "}"}], ",", " ", + RowBox[{"Options", "[", "ParametricPlot", "]"}]}], "]"}]}], ";", "\n", + " ", + RowBox[{"rlsndsolve", " ", "=", " ", + RowBox[{"FilterRules", "[", + RowBox[{ + RowBox[{"{", "opts", "}"}], ",", " ", + RowBox[{"Options", "[", "NDSolve", "]"}]}], "]"}]}], ";", "\n", " ", + RowBox[{"If", "[", + RowBox[{ + RowBox[{ + RowBox[{"Head", "[", "f", "]"}], " ", "===", " ", "List"}], ",", "\n", + " ", + RowBox[{ + RowBox[{"ifs", " ", "=", " ", + RowBox[{ + RowBox[{ + RowBox[{"iCurvaturePlotHelper", "[", + RowBox[{"#", ",", " ", + RowBox[{"{", + RowBox[{"t", ",", " ", "tmin", ",", " ", "tmax"}], "}"}], ",", + " ", "p", ",", " ", + RowBox[{"Evaluate", "@", + RowBox[{"(", + RowBox[{"Sequence", " ", "@@", " ", "rlsndsolve"}], ")"}]}]}], + "]"}], " ", "&"}], " ", "/@", " ", "f"}]}], ";", "\n", " ", + RowBox[{"ParametricPlot", "[", + RowBox[{ + RowBox[{"Evaluate", "[", + RowBox[{ + RowBox[{ + RowBox[{"#", "[", "tplot", "]"}], " ", "&"}], " ", "/@", " ", + "ifs"}], "]"}], ",", " ", + RowBox[{"{", + RowBox[{"tplot", ",", " ", "tmin", ",", " ", "tmax"}], "}"}], ",", + " ", + RowBox[{"Evaluate", "@", + RowBox[{"(", + RowBox[{"Sequence", " ", "@@", " ", "rlsplot"}], ")"}]}]}], + "]"}]}], "\n", " ", ",", "\n", " ", + RowBox[{ + RowBox[{"if", " ", "=", " ", + RowBox[{"iCurvaturePlotHelper", "[", + RowBox[{"f", ",", " ", + RowBox[{"{", + RowBox[{"t", ",", " ", "tmin", ",", " ", "tmax"}], "}"}], ",", + " ", "p", ",", " ", + RowBox[{"Evaluate", "@", + RowBox[{"(", + RowBox[{"Sequence", " ", "@@", " ", "rlsndsolve"}], ")"}]}]}], + "]"}]}], ";", "\n", " ", + RowBox[{"ParametricPlot", "[", + RowBox[{ + RowBox[{"Evaluate", "[", + RowBox[{"if", "[", "tplot", "]"}], "]"}], ",", " ", + RowBox[{"{", + RowBox[{"tplot", ",", " ", "tmin", ",", " ", "tmax"}], "}"}], ",", + " ", + RowBox[{"Evaluate", "@", + RowBox[{"(", + RowBox[{"Sequence", " ", "@@", " ", "rlsplot"}], ")"}]}]}], + "]"}]}]}], "\n", " ", "]"}]}]}], "\n", " ", "]"}]}]}], "Input", + TextAlignment->Center, + FontFamily->"Go Noto Current-Regular", + FontSize->10, + FontWeight->"Normal", + CellLabel-> + "4/3/24 21:38:11 \ +In[5275]:=",ExpressionUUID->"670c0d5c-4772-49bb-b74f-ae6a69be9ed0"], + +Cell[BoxData[ + RowBox[{"\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"ariasD", "[", "0", "]"}], " ", "=", " ", "1"}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"ariasD", "[", + RowBox[{"n_Integer", "?", "Positive"}], "]"}], " ", ":=", " ", + RowBox[{ + RowBox[{"ariasD", "[", "n", "]"}], " ", "=", " ", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"2", "^", + RowBox[{"(", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"k", " ", + RowBox[{"(", + RowBox[{"k", " ", "-", " ", "1"}], ")"}]}], " ", "-", " ", + RowBox[{"n", " ", + RowBox[{"(", + RowBox[{"n", " ", "-", " ", "1"}], ")"}]}]}], ")"}], "/", + "2"}], ")"}]}], " ", + RowBox[{ + RowBox[{"ariasD", "[", "k", "]"}], "/", + RowBox[{ + RowBox[{"(", + RowBox[{"n", " ", "-", " ", "k", " ", "+", " ", "1"}], ")"}], + "!"}]}]}], ",", " ", + RowBox[{"{", + RowBox[{"k", ",", " ", "0", ",", " ", + RowBox[{"n", " ", "-", " ", "1"}]}], "}"}]}], "]"}], "/", + RowBox[{"(", + RowBox[{ + RowBox[{"2", "^", "n"}], " ", "-", " ", "1"}], ")"}]}]}]}], ";"}], + "\n", + RowBox[{ + RowBox[{"iFabiusF", "[", "x_", "]"}], " ", ":=", " ", + RowBox[{"Module", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"prec", " ", "=", " ", + RowBox[{"Precision", "[", "x", "]"}]}], ",", " ", "n", ",", " ", "p", + ",", " ", "q", ",", " ", "s", ",", " ", "tol", ",", " ", "w", ",", + " ", "y", ",", " ", "z"}], "}"}], ",", "\n", " ", + RowBox[{ + RowBox[{"If", "[", + RowBox[{ + RowBox[{"x", " ", "<", " ", "0"}], ",", " ", + RowBox[{"Return", "[", + RowBox[{"0", ",", " ", "Module"}], "]"}]}], "]"}], ";", " ", + RowBox[{"tol", " ", "=", " ", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "prec"}], ")"}]}]}], ";", "\n", " ", + RowBox[{"z", " ", "=", " ", + RowBox[{"SetPrecision", "[", + RowBox[{"x", ",", " ", "Infinity"}], "]"}]}], ";", " ", + RowBox[{"s", " ", "=", " ", "1"}], ";", " ", + RowBox[{"y", " ", "=", " ", "0"}], ";", "\n", " ", + RowBox[{"z", " ", "=", " ", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"0", " ", "<=", " ", "z", " ", "<=", " ", "2"}], ",", " ", + RowBox[{"1", " ", "-", " ", + RowBox[{"Abs", "[", + RowBox[{"1", " ", "-", " ", "z"}], "]"}]}], ",", "\n", " ", + RowBox[{ + RowBox[{"q", " ", "=", " ", + RowBox[{"Quotient", "[", + RowBox[{"z", ",", " ", "2"}], "]"}]}], ";", "\n", " ", + RowBox[{"If", "[", + RowBox[{ + RowBox[{ + RowBox[{"ThueMorse", "[", "q", "]"}], " ", "==", " ", "1"}], + ",", " ", + RowBox[{"s", " ", "=", " ", + RowBox[{"-", "1"}]}]}], "]"}], ";", "\n", " ", + RowBox[{"1", " ", "-", " ", + RowBox[{"Abs", "[", + RowBox[{"1", " ", "-", " ", "z", " ", "+", " ", + RowBox[{"2", " ", "q"}]}], "]"}]}]}]}], "]"}]}], ";", "\n", + " ", + RowBox[{"While", "[", + RowBox[{ + RowBox[{"z", " ", ">", " ", "0"}], ",", "\n", " ", + RowBox[{ + RowBox[{"n", " ", "=", " ", + RowBox[{"-", + RowBox[{"Floor", "[", + RowBox[{"RealExponent", "[", + RowBox[{"z", ",", " ", "2"}], "]"}], "]"}]}]}], ";", " ", + RowBox[{"p", " ", "=", " ", + RowBox[{"2", "^", "n"}]}], ";", "\n", " ", + RowBox[{"z", " ", "-=", " ", + RowBox[{"1", "/", "p"}]}], ";", " ", + RowBox[{"w", " ", "=", " ", "1"}], ";", "\n", " ", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"w", " ", "=", " ", + RowBox[{ + RowBox[{"ariasD", "[", "m", "]"}], " ", "+", " ", + RowBox[{"p", " ", "z", " ", + RowBox[{"w", "/", + RowBox[{"(", + RowBox[{"n", " ", "-", " ", "m", " ", "+", " ", "1"}], + ")"}]}]}]}]}], ";", " ", + RowBox[{"p", " ", "/=", " ", "2"}]}], ",", " ", + RowBox[{"{", + RowBox[{"m", ",", " ", "n"}], "}"}]}], "]"}], ";", "\n", " ", + RowBox[{"y", " ", "=", " ", + RowBox[{"w", " ", "-", " ", "y"}]}], ";", "\n", " ", + RowBox[{"If", "[", + RowBox[{ + RowBox[{ + RowBox[{"Abs", "[", "w", "]"}], " ", "<", " ", + RowBox[{ + RowBox[{"Abs", "[", "y", "]"}], " ", "tol"}]}], ",", " ", + RowBox[{"Break", "[", "]"}]}], "]"}]}]}], "]"}], ";", "\n", " ", + RowBox[{"SetPrecision", "[", + RowBox[{ + RowBox[{"s", " ", + RowBox[{"Abs", "[", "y", "]"}]}], ",", " ", "prec"}], "]"}]}]}], + "]"}]}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"FabiusF", "[", "Infinity", "]"}], " ", "=", " ", + RowBox[{"Interval", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1"}], ",", " ", "1"}], "}"}], "]"}]}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"FabiusF", "[", + RowBox[{"x_", "?", "NumberQ"}], "]"}], " ", "/;", " ", + RowBox[{"If", "[", + RowBox[{ + RowBox[{ + RowBox[{"Im", "[", "x", "]"}], " ", "==", " ", "0"}], ",", " ", + RowBox[{"TrueQ", "[", + RowBox[{ + RowBox[{ + RowBox[{"Composition", "[", + RowBox[{ + RowBox[{ + RowBox[{"BitAnd", "[", + RowBox[{"#", ",", " ", + RowBox[{"#", " ", "-", " ", "1"}]}], "]"}], " ", "&"}], ",", + " ", "Denominator"}], "]"}], "[", "x", "]"}], " ", "==", " ", + "0"}], "]"}], ",", " ", "False"}], "]"}]}], " ", ":=", " ", + RowBox[{"iFabiusF", "[", "x", "]"}]}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"Derivative", "[", "n_Integer", "]"}], "[", "FabiusF", "]"}], + " ", ":=", " ", + RowBox[{ + RowBox[{ + RowBox[{"2", "^", + RowBox[{"(", + RowBox[{"n", " ", + RowBox[{ + RowBox[{"(", + RowBox[{"n", " ", "+", " ", "1"}], ")"}], "/", "2"}]}], ")"}]}], + " ", + RowBox[{"FabiusF", "[", + RowBox[{ + RowBox[{"2", "^", "n"}], " ", "#"}], "]"}]}], " ", "&"}]}], "\n", + RowBox[{ + RowBox[{"SetAttributes", "[", + RowBox[{"FabiusF", ",", " ", + RowBox[{"{", + RowBox[{"NumericFunction", ",", " ", "Listable"}], "}"}]}], "]"}], + ";"}]}]}]], "Input", + FontFamily->"Go Noto Current-Regular", + FontSize->10, + FontWeight->"Normal", + CellLabel-> + "4/3/24 21:38:11 \ +In[5279]:=",ExpressionUUID->"a4addeb7-2708-41df-8367-f56fd1c4c60d"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"\:15e9", "=", "90"}], ";", + RowBox[{"\:042fR", "=", + RowBox[{"(", + RowBox[{"4", "/", "8"}], ")"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{"Grid", "[", + RowBox[{"{", + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{"Manipulate", "[", "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"\:1513\:1515", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"WorkingPrecision", "\[Rule]", "\:041fW\:041f"}], ",", + RowBox[{"ImageSize", "\[Rule]", "256"}], ",", + RowBox[{"Axes", "\[Rule]", "True"}], ",", + RowBox[{"MaxRecursion", "\[Rule]", "0"}], ",", + RowBox[{"PlotPoints", "\[Rule]", + RowBox[{"1", "+", + SuperscriptBox["2", "\[CapitalPi]\[CapitalPi]"]}]}], ",", + RowBox[{"PlotStyle", "\[Rule]", + RowBox[{"Thickness", "[", "0.00001", "]"}]}], ",", + RowBox[{"PlotLegends", "\[Rule]", " ", + RowBox[{"Placed", "[", + RowBox[{"\"\\"", ",", + RowBox[{"{", + RowBox[{"Center", ",", "Top"}], "}"}]}], "]"}]}], ",", + RowBox[{"PlotRangePadding", "\[Rule]", + RowBox[{"4", "/", "256"}]}], ",", + RowBox[{"PlotRange", "\[Rule]", " ", "Full"}], ",", + RowBox[{"Frame", "\[Rule]", " ", "True"}], ",", + RowBox[{"Axes", "\[Rule]", " ", "False"}], ",", + RowBox[{"GridLines", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"{", "0", "}"}], ",", + RowBox[{"{", "0", "}"}]}], "}"}]}], " ", ",", + RowBox[{"PlotStyle", "\[Rule]", + RowBox[{"GrayLevel", "[", + RowBox[{"168", "/", "256"}], "]"}]}], ",", + RowBox[{"FrameStyle", "\[Rule]", " ", + RowBox[{"GrayLevel", "[", + RowBox[{"178", "/", "256"}], "]"}]}]}], "}"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"\:1586\:1587", "=", + RowBox[{"{", + RowBox[{"x", ",", "0", ",", + RowBox[{ + RowBox[{ + RowBox[{"(", "\:15e9", ")"}], "/", "90"}], "*", "Pi"}]}], "}"}]}], + ";", "\[IndentingNewLine]", + RowBox[{"\:a5f3", "=", + RowBox[{"Piecewise", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Abs", "[", + RowBox[{"FabiusF", "[", + RowBox[{ + RowBox[{ + RowBox[{"x", "/", "\:042fR"}], "/", "Pi"}], + RowBox[{ + RowBox[{"(", + RowBox[{"360", "/", "\:15e9"}], ")"}], "/", "4"}]}], "]"}], + "]"}], ",", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"(", "\:15e9", ")"}], "/", "90"}], "*", "Pi", "*", + "\:042fR", "*", "0"}], "<", "x", "<", + RowBox[{ + RowBox[{ + RowBox[{"(", "\:15e9", ")"}], "/", "90"}], "*", "Pi", "*", + "\:042fR"}]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"Abs", "[", + RowBox[{"FabiusF", "[", + RowBox[{"1", "-", + RowBox[{"(", + RowBox[{"(", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"x", "/", "Pi"}], + RowBox[{ + RowBox[{"(", + RowBox[{"360", "/", "\:15e9"}], ")"}], "/", "4"}]}], + ")"}], "-", "\:042fR"}], ")"}], "/", + RowBox[{"(", + RowBox[{"1", "-", "\:042fR"}], ")"}]}], ")"}], ")"}]}], + "]"}], "]"}], ",", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"(", "\:15e9", ")"}], "/", "90"}], "*", "Pi", "*", + "\:042fR"}], "<", "x", "<", + RowBox[{ + RowBox[{ + RowBox[{"(", "\:15e9", ")"}], "/", "90"}], "*", "Pi", "*", + "1"}]}]}], "}"}]}], "}"}], "]"}]}], ";", "\[IndentingNewLine]", + RowBox[{"Column", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"CurvaturePlot", "[", + RowBox[{ + RowBox[{"Evaluate", "[", + RowBox[{"SetPrecision", "[", + RowBox[{ + RowBox[{"SetAccuracy", "[", + RowBox[{"\:a5f3", ",", "\:041fW\:041f"}], "]"}], ",", + "\:041fW\:041f"}], "]"}], "]"}], ",", + RowBox[{"Evaluate", "[", "\:1586\:1587", "]"}], ",", + RowBox[{"Evaluate", "[", "\:1513\:1515", "]"}], ",", + RowBox[{"FrameTicks", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"Range", "[", + RowBox[{ + RowBox[{"-", "16"}], ",", "16", ",", + RowBox[{"1", "/", "2"}]}], "]"}], ",", + RowBox[{"Range", "[", + RowBox[{ + RowBox[{"-", "4"}], ",", "4", ",", + RowBox[{"1", "/", "2"}]}], "]"}]}], "}"}]}]}], " ", "]"}], + ",", + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"Evaluate", "[", + RowBox[{"SetPrecision", "[", + RowBox[{ + RowBox[{"SetAccuracy", "[", + RowBox[{"\:a5f3", ",", "\:041fW\:041f"}], "]"}], ",", + "\:041fW\:041f"}], "]"}], "]"}], ",", + RowBox[{"Evaluate", "[", "\:1586\:1587", "]"}], ",", + RowBox[{"Evaluate", "[", "\:1513\:1515", "]"}], ",", + RowBox[{"FrameTicks", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"Range", "[", + RowBox[{ + RowBox[{ + RowBox[{"-", "16"}], "*", "Pi"}], ",", + RowBox[{"16", "*", "Pi"}], ",", + RowBox[{"Pi", "/", "2"}]}], "]"}], ",", + RowBox[{"Range", "[", + RowBox[{ + RowBox[{"-", "1"}], ",", "1", ",", + RowBox[{"1", "/", "2"}]}], "]"}]}], "}"}]}]}], " ", "]"}]}], + "}"}], "]"}]}], "\[IndentingNewLine]", ",", "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"\:15e9", ",", "90"}], "}"}], ",", "0", ",", "360", ",", + RowBox[{"1", "/", "256"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"\:042fR", ",", + RowBox[{"4", "/", "8"}], ",", "\"\<\[CenterDot]|\[CenterDot]\>\""}], + "}"}], ",", "0", ",", "1", ",", + RowBox[{"1", "/", "256"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"\[CapitalPi]\[CapitalPi]", ",", "8"}], "}"}], ",", "0", ",", + "16", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"\:041fW\:041f", ",", "16"}], "}"}], ",", "0", ",", "64", + ",", "1"}], "}"}], "\[IndentingNewLine]", ",", + RowBox[{"FrameMargins", "\[Rule]", "0"}]}], "\[IndentingNewLine]", + "]"}], "\[IndentingNewLine]", "}"}], "}"}], "]"}]}], "Input", + FontFamily->"Go Noto Current-Regular", + FontSize->10, + FontWeight->"Normal",ExpressionUUID->"adf5a779-403a-4c2b-985b-3306f9c44e28"], + +Cell[BoxData[ + TagBox[GridBox[{ + { + TagBox[ + StyleBox[ + DynamicModuleBox[{XMPTools`Wrappers`Private`\:15e9$$ = 90, + XMPTools`Wrappers`Private`\:042fR$$ = Rational[1, 2], + XMPTools`Wrappers`Private`\:041fW\:041f$$ = 16, + XMPTools`Wrappers`Private`\[CapitalPi]\[CapitalPi]$$ = 8, + Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, + Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, + Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"", + Typeset`specs$$ = {{{ + Hold[XMPTools`Wrappers`Private`\:15e9$$], 90}, 0, 360, + Rational[1, 256]}, {{ + Hold[XMPTools`Wrappers`Private`\:042fR$$], + Rational[1, 2], "\[CenterDot]|\[CenterDot]"}, 0, 1, + Rational[1, 256]}, {{ + Hold[XMPTools`Wrappers`Private`\[CapitalPi]\[CapitalPi]$$], 8}, 0, + 16, 1}, {{ + Hold[XMPTools`Wrappers`Private`\:041fW\:041f$$], 16}, 0, 64, 1}}, + Typeset`size$$ = {256., {242., 247.}}, Typeset`update$$ = 0, + Typeset`initDone$$, Typeset`skipInitDone$$ = True}, + DynamicBox[Manipulate`ManipulateBoxes[ + 1, StandardForm, + "Variables" :> { + XMPTools`Wrappers`Private`\:15e9$$ = 90, + XMPTools`Wrappers`Private`\:042fR$$ = Rational[1, 2], + XMPTools`Wrappers`Private`\:041fW\:041f$$ = 16, + XMPTools`Wrappers`Private`\[CapitalPi]\[CapitalPi]$$ = 8}, + "ControllerVariables" :> {}, + "OtherVariables" :> { + Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, + Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, + Typeset`specs$$, Typeset`size$$, Typeset`update$$, + Typeset`initDone$$, Typeset`skipInitDone$$}, + "Body" :> ( + XMPTools`Wrappers`Private`\:1513\:1515 = { + WorkingPrecision -> XMPTools`Wrappers`Private`\:041fW\:041f$$, + ImageSize -> 256, Axes -> True, MaxRecursion -> 0, PlotPoints -> + 1 + 2^XMPTools`Wrappers`Private`\[CapitalPi]\[CapitalPi]$$, + PlotStyle -> Thickness[0.00001], PlotLegends -> + Placed["Expressions", {Center, Top}], PlotRangePadding -> 4/256, + PlotRange -> Full, Frame -> True, Axes -> False, + GridLines -> {{0}, {0}}, PlotStyle -> GrayLevel[168/256], + FrameStyle -> GrayLevel[178/256]}; + XMPTools`Wrappers`Private`\:1586\:1587 = { + XMPTools`Wrappers`Private`x, + 0, (XMPTools`Wrappers`Private`\:15e9$$/90) Pi}; + XMPTools`Wrappers`Private`\:a5f3 = Piecewise[{{ + Abs[ + + XMPTools`Wrappers`Private`FabiusF[(( + XMPTools`Wrappers`Private`x/ + XMPTools`Wrappers`Private`\:042fR$$)/ + Pi) ((360/XMPTools`Wrappers`Private`\:15e9$$)/ + 4)]], (((XMPTools`Wrappers`Private`\:15e9$$/90) Pi) + XMPTools`Wrappers`Private`\:042fR$$) 0 < + XMPTools`Wrappers`Private`x < (( + XMPTools`Wrappers`Private`\:15e9$$/90) Pi) + XMPTools`Wrappers`Private`\:042fR$$}, { + Abs[ + XMPTools`Wrappers`Private`FabiusF[ + 1 - ((XMPTools`Wrappers`Private`x/ + Pi) ((360/XMPTools`Wrappers`Private`\:15e9$$)/4) - + XMPTools`Wrappers`Private`\:042fR$$)/(1 - + XMPTools`Wrappers`Private`\:042fR$$)]], (( + XMPTools`Wrappers`Private`\:15e9$$/90) Pi) + XMPTools`Wrappers`Private`\:042fR$$ < + XMPTools`Wrappers`Private`x < (( + XMPTools`Wrappers`Private`\:15e9$$/90) Pi) 1}}]; Column[{ + XMPTools`Wrappers`Private`CurvaturePlot[ + Evaluate[ + SetPrecision[ + SetAccuracy[ + XMPTools`Wrappers`Private`\:a5f3, + XMPTools`Wrappers`Private`\:041fW\:041f$$], + XMPTools`Wrappers`Private`\:041fW\:041f$$]], + Evaluate[XMPTools`Wrappers`Private`\:1586\:1587], + Evaluate[XMPTools`Wrappers`Private`\:1513\:1515], FrameTicks -> { + Range[-16, 16, 1/2], + Range[-4, 4, 1/2]}], + Plot[ + Evaluate[ + SetPrecision[ + SetAccuracy[ + XMPTools`Wrappers`Private`\:a5f3, + XMPTools`Wrappers`Private`\:041fW\:041f$$], + XMPTools`Wrappers`Private`\:041fW\:041f$$]], + Evaluate[XMPTools`Wrappers`Private`\:1586\:1587], + Evaluate[XMPTools`Wrappers`Private`\:1513\:1515], FrameTicks -> { + Range[(-16) Pi, 16 Pi, Pi/2], + Range[-1, 1, 1/2]}]}]), + "Specifications" :> {{{XMPTools`Wrappers`Private`\:15e9$$, 90}, 0, + 360, + Rational[1, 256]}, {{XMPTools`Wrappers`Private`\:042fR$$, + Rational[1, 2], "\[CenterDot]|\[CenterDot]"}, 0, 1, + Rational[1, 256]}, {{ + XMPTools`Wrappers`Private`\[CapitalPi]\[CapitalPi]$$, 8}, 0, 16, + 1}, {{XMPTools`Wrappers`Private`\:041fW\:041f$$, 16}, 0, 64, 1}}, + "Options" :> {FrameMargins -> 0}, "DefaultOptions" :> {}], + ImageSizeCache->{281., {312., 317.}}, + SingleEvaluation->True], + Deinitialization:>None, + DynamicModuleValues:>{}, + SynchronousInitialization->True, + UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, + UnsavedVariables:>{Typeset`initDone$$}, + UntrackedVariables:>{Typeset`size$$}], "Manipulate", + Deployed->True, + StripOnInput->False], + Manipulate`InterpretManipulate[1]]} + }, + AutoDelete->False, + GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], + "Grid"]], "Output", + FontFamily->"Go Noto Current-Regular", + FontSize->10,ExpressionUUID->"87f7dffd-2a8e-4038-b9bf-2e250155a918"] +}, Open ]] +}, +WindowSize->{1672, 980}, +WindowMargins->{{0, Automatic}, {Automatic, 0}}, +FrontEndVersion->"12.2 for Microsoft Windows (64-bit) (December 12, 2020)", +StyleDefinitions->Notebook[{ + Cell[ + StyleData[StyleDefinitions -> "Default.nb"]], + Cell[ + StyleData[All], TextAlignment -> Center, FontFamily -> + "Go Noto Current-Regular", FontSize -> 10, FontWeight -> "Normal", + FontSlant -> "Plain", FontTracking -> "Plain", + FontVariations -> {"StrikeThrough" -> False, "Underline" -> False}]}, + Visible -> False, FrontEndVersion -> + "12.2 for Microsoft Windows (64-bit) (December 12, 2020)", StyleDefinitions -> + "PrivateStylesheetFormatting.nb"], +ExpressionUUID->"87e41aa9-dea0-4ea9-92c2-e68f9a3b2137" +] +(* End of Notebook Content *) + +(* Internal cache information *) +(*CellTagsOutline +CellTagsIndex->{} +*) +(*CellTagsIndex +CellTagsIndex->{} +*) +(*NotebookFileOutline +Notebook[{ +Cell[558, 20, 6723, 178, 499, "Input",ExpressionUUID->"670c0d5c-4772-49bb-b74f-ae6a69be9ed0"], +Cell[7284, 200, 6980, 185, 423, "Input",ExpressionUUID->"a4addeb7-2708-41df-8367-f56fd1c4c60d"], +Cell[CellGroupData[{ +Cell[14289, 389, 7382, 181, 289, "Input",ExpressionUUID->"adf5a779-403a-4c2b-985b-3306f9c44e28"], +Cell[21674, 572, 6038, 117, 648, "Output",ExpressionUUID->"87f7dffd-2a8e-4038-b9bf-2e250155a918"] +}, Open ]] +} +] +*) +