From 48268b0f94411603dbd044a64bf78bf5bbd21eef Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E2=A0=80?= Date: Sun, 12 Nov 2023 17:56:37 +0000 Subject: [PATCH] =?UTF-8?q?YP.=E2=9A=AA=D0=98N=E2=9A=AA=E2=93=84=E2=9A=AA?= =?UTF-8?q?=EA=96=B4=E2=9A=AA=E2=9C=A4=E2=9A=AA=E1=97=A9=E2=9A=AA=E1=99=8F?= =?UTF-8?q?=E2=9A=AA=EA=96=B4=E2=9A=AA=EA=95=A4=E2=9A=AA=E2=93=84=E2=9A=AA?= =?UTF-8?q?=E1=B4=A5=E2=9A=AA=DF=A6=E2=9A=AA=E1=97=A9=E2=9A=AA=E2=97=AF?= =?UTF-8?q?=E2=9A=AA=E1=99=81=E2=9A=AA=E1=97=A9=E2=9A=AA=EA=96=B4=E2=9A=AA?= =?UTF-8?q?=E2=9C=A4=E2=9A=AA=D0=98N=E2=9A=AA=E1=97=B1=E1=97=B4=E2=9A=AA?= =?UTF-8?q?=D0=98N=E2=9A=AA=E2=93=84=E2=9A=AA=DF=A6=E2=9A=AA=EA=95=A4?= =?UTF-8?q?=E2=9A=AA=E1=97=B1=E1=97=B4=E2=9A=AA=E2=97=AF=E2=9A=AA=E1=97=B1?= =?UTF-8?q?=E1=97=B4=E2=9A=AA=E1=99=81=E2=9A=AA=E1=91=90=E1=91=95=E2=9A=AA?= =?UTF-8?q?=E1=B4=A5=E2=9A=AA=EA=96=B4=E2=9A=AA=E1=91=8E=E2=9A=AA=C2=A4?= =?UTF-8?q?=E2=9A=AA=E1=94=93=E1=94=95=E2=9A=AA=E2=97=AF=E2=9A=AA=E1=97=B1?= =?UTF-8?q?=E1=97=B4=E2=9A=AA=E1=B4=A5=E2=9A=AA=E1=91=8E=E2=9A=AA=E2=9C=A4?= =?UTF-8?q?=E2=9A=AA=E1=97=A9=E2=9A=AA=E1=97=AF=E2=9A=AA=E1=B4=A5=E2=9A=AA?= =?UTF-8?q?=E1=91=8E=E2=9A=AA=E1=91=90=E1=91=95=E2=9A=AA=E2=97=AF=E2=9A=AA?= =?UTF-8?q?=E1=94=93=E1=94=95=E2=9A=AA=E1=91=8E=E2=9A=AA=EA=96=B4=E2=9A=AA?= =?UTF-8?q?=E2=9A=AD=E2=9A=AA=E1=97=A9=E2=9A=AA=EA=97=B3=E2=9A=AA=E2=97=8C?= =?UTF-8?q?=E2=9A=AA=E2=97=8C=E2=9A=AA=E2=97=8C=E2=9A=AA=E2=97=8C=E2=9A=AA?= =?UTF-8?q?=E2=97=8C=E2=9A=AA=E2=97=8C=E2=9A=AA=EA=97=B3=E2=9A=AA=E1=97=A9?= =?UTF-8?q?=E2=9A=AA=E2=9A=AD=E2=9A=AA=EA=96=B4=E2=9A=AA=E1=91=8E=E2=9A=AA?= =?UTF-8?q?=E1=94=93=E1=94=95=E2=9A=AA=E2=97=AF=E2=9A=AA=E1=91=90=E1=91=95?= =?UTF-8?q?=E2=9A=AA=E1=91=8E=E2=9A=AA=E1=B4=A5=E2=9A=AA=E1=97=AF=E2=9A=AA?= =?UTF-8?q?=E1=97=A9=E2=9A=AA=E2=9C=A4=E2=9A=AA=E1=91=8E=E2=9A=AA=E1=B4=A5?= =?UTF-8?q?=E2=9A=AA=E1=97=B1=E1=97=B4=E2=9A=AA=E2=97=AF=E2=9A=AA=E1=94=93?= =?UTF-8?q?=E1=94=95=E2=9A=AA=C2=A4=E2=9A=AA=E1=91=8E=E2=9A=AA=EA=96=B4?= =?UTF-8?q?=E2=9A=AA=E1=B4=A5=E2=9A=AA=E1=91=90=E1=91=95=E2=9A=AA=E1=99=81?= =?UTF-8?q?=E2=9A=AA=E1=97=B1=E1=97=B4=E2=9A=AA=E2=97=AF=E2=9A=AA=E1=97=B1?= =?UTF-8?q?=E1=97=B4=E2=9A=AA=EA=95=A4=E2=9A=AA=DF=A6=E2=9A=AA=E2=93=84?= =?UTF-8?q?=E2=9A=AA=D0=98N=E2=9A=AA=E1=97=B1=E1=97=B4=E2=9A=AA=D0=98N?= =?UTF-8?q?=E2=9A=AA=E2=9C=A4=E2=9A=AA=EA=96=B4=E2=9A=AA=E1=97=A9=E2=9A=AA?= =?UTF-8?q?=E1=99=81=E2=9A=AA=E2=97=AF=E2=9A=AA=E1=97=A9=E2=9A=AA=DF=A6?= =?UTF-8?q?=E2=9A=AA=E1=B4=A5=E2=9A=AA=E2=93=84=E2=9A=AA=EA=95=A4=E2=9A=AA?= =?UTF-8?q?=EA=96=B4=E2=9A=AA=E1=99=8F=E2=9A=AA=E1=97=A9=E2=9A=AA=E2=9C=A4?= =?UTF-8?q?=E2=9A=AA=EA=96=B4=E2=9A=AA=E2=93=84=E2=9A=AA=D0=98N=E2=9A=AA.P?= =?UTF-8?q?Y?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- ...šͺα—±α—΄βšͺИNβšͺβ“„βšͺί¦βšͺκ•€βšͺα—±α—΄βšͺβ—―βšͺα—±α—΄βšͺᙁβšͺᑐᑕβšͺα΄₯βšͺκ–΄βšͺα‘ŽβšͺΒ€βšͺα”“α”•βšͺβ—―βšͺα—±α—΄βšͺα΄₯βšͺα‘Žβšͺ✀βšͺα—©βšͺα—―βšͺα΄₯βšͺα‘Žβšͺᑐᑕβšͺβ—―βšͺα”“α”•βšͺα‘Žβšͺκ–΄βšͺ⚭βšͺα—©βšͺκ—³βšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺκ—³βšͺα—©βšͺ⚭βšͺκ–΄βšͺα‘Žβšͺα”“α”•βšͺβ—―βšͺᑐᑕβšͺα‘Žβšͺα΄₯βšͺα—―βšͺα—©βšͺ✀βšͺα‘Žβšͺα΄₯βšͺα—±α—΄βšͺβ—―βšͺα”“α”•βšͺΒ€βšͺα‘Žβšͺκ–΄βšͺα΄₯βšͺᑐᑕβšͺᙁβšͺα—±α—΄βšͺβ—―βšͺα—±α—΄βšͺκ•€βšͺί¦βšͺβ“„βšͺИNβšͺα—±α—΄βšͺИNβšͺ✀βšͺκ–΄βšͺα—©βšͺᙁβšͺβ—―βšͺα—©βšͺί¦βšͺα΄₯βšͺβ“„βšͺκ•€βšͺκ–΄βšͺᙏβšͺα—©βšͺ✀βšͺκ–΄βšͺβ“„βšͺИNβšͺ.PY | 35 +++++++++++++++++++ 1 file changed, 35 insertions(+) create mode 100644 βšͺᕀᕦβšͺИNβšͺκ–΄βšͺᙏβšͺα—©βšͺα΄₯βšͺᕀᕦβšͺβ“„βšͺα΄₯βšͺί¦βšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺί¦βšͺα΄₯βšͺβ“„βšͺᕀᕦβšͺα΄₯βšͺα—©βšͺᙏβšͺκ–΄βšͺИNβšͺᕀᕦβšͺ/βšͺИNβšͺβ“„βšͺ옷βšͺ✀βšͺδΊΊβšͺί¦βšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺί¦βšͺδΊΊβšͺ✀βšͺ옷βšͺβ“„βšͺИNβšͺ/βšͺα΄₯βšͺα—±α—΄βšͺ✀βšͺδΊΊβšͺί¦βšͺα‘Žβšͺᒍᒐβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺᒍᒐβšͺα‘Žβšͺί¦βšͺδΊΊβšͺ✀βšͺα—±α—΄βšͺα΄₯βšͺ/YP.βšͺИNβšͺβ“„βšͺκ–΄βšͺ✀βšͺα—©βšͺᙏβšͺκ–΄βšͺκ•€βšͺβ“„βšͺα΄₯βšͺί¦βšͺα—©βšͺβ—―βšͺᙁβšͺα—©βšͺκ–΄βšͺ✀βšͺИNβšͺα—±α—΄βšͺИNβšͺβ“„βšͺί¦βšͺκ•€βšͺα—±α—΄βšͺβ—―βšͺα—±α—΄βšͺᙁβšͺᑐᑕβšͺα΄₯βšͺκ–΄βšͺα‘ŽβšͺΒ€βšͺα”“α”•βšͺβ—―βšͺα—±α—΄βšͺα΄₯βšͺα‘Žβšͺ✀βšͺα—©βšͺα—―βšͺα΄₯βšͺα‘Žβšͺᑐᑕβšͺβ—―βšͺα”“α”•βšͺα‘Žβšͺκ–΄βšͺ⚭βšͺα—©βšͺκ—³βšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺκ—³βšͺα—©βšͺ⚭βšͺκ–΄βšͺα‘Žβšͺα”“α”•βšͺβ—―βšͺᑐᑕβšͺα‘Žβšͺα΄₯βšͺα—―βšͺα—©βšͺ✀βšͺα‘Žβšͺα΄₯βšͺα—±α—΄βšͺβ—―βšͺα”“α”•βšͺΒ€βšͺα‘Žβšͺκ–΄βšͺα΄₯βšͺᑐᑕβšͺᙁβšͺα—±α—΄βšͺβ—―βšͺα—±α—΄βšͺκ•€βšͺί¦βšͺβ“„βšͺИNβšͺα—±α—΄βšͺИNβšͺ✀βšͺκ–΄βšͺα—©βšͺᙁβšͺβ—―βšͺα—©βšͺί¦βšͺα΄₯βšͺβ“„βšͺκ•€βšͺκ–΄βšͺᙏβšͺα—©βšͺ✀βšͺκ–΄βšͺβ“„βšͺИNβšͺ.PY diff --git a/βšͺᕀᕦβšͺИNβšͺκ–΄βšͺᙏβšͺα—©βšͺα΄₯βšͺᕀᕦβšͺβ“„βšͺα΄₯βšͺί¦βšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺί¦βšͺα΄₯βšͺβ“„βšͺᕀᕦβšͺα΄₯βšͺα—©βšͺᙏβšͺκ–΄βšͺИNβšͺᕀᕦβšͺ/βšͺИNβšͺβ“„βšͺ옷βšͺ✀βšͺδΊΊβšͺί¦βšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺί¦βšͺδΊΊβšͺ✀βšͺ옷βšͺβ“„βšͺИNβšͺ/βšͺα΄₯βšͺα—±α—΄βšͺ✀βšͺδΊΊβšͺί¦βšͺα‘Žβšͺᒍᒐβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺᒍᒐβšͺα‘Žβšͺί¦βšͺδΊΊβšͺ✀βšͺα—±α—΄βšͺα΄₯βšͺ/YP.βšͺИNβšͺβ“„βšͺκ–΄βšͺ✀βšͺα—©βšͺᙏβšͺκ–΄βšͺκ•€βšͺβ“„βšͺα΄₯βšͺί¦βšͺα—©βšͺβ—―βšͺᙁβšͺα—©βšͺκ–΄βšͺ✀βšͺИNβšͺα—±α—΄βšͺИNβšͺβ“„βšͺί¦βšͺκ•€βšͺα—±α—΄βšͺβ—―βšͺα—±α—΄βšͺᙁβšͺᑐᑕβšͺα΄₯βšͺκ–΄βšͺα‘ŽβšͺΒ€βšͺα”“α”•βšͺβ—―βšͺα—±α—΄βšͺα΄₯βšͺα‘Žβšͺ✀βšͺα—©βšͺα—―βšͺα΄₯βšͺα‘Žβšͺᑐᑕβšͺβ—―βšͺα”“α”•βšͺα‘Žβšͺκ–΄βšͺ⚭βšͺα—©βšͺκ—³βšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺκ—³βšͺα—©βšͺ⚭βšͺκ–΄βšͺα‘Žβšͺα”“α”•βšͺβ—―βšͺᑐᑕβšͺα‘Žβšͺα΄₯βšͺα—―βšͺα—©βšͺ✀βšͺα‘Žβšͺα΄₯βšͺα—±α—΄βšͺβ—―βšͺα”“α”•βšͺΒ€βšͺα‘Žβšͺκ–΄βšͺα΄₯βšͺᑐᑕβšͺᙁβšͺα—±α—΄βšͺβ—―βšͺα—±α—΄βšͺκ•€βšͺί¦βšͺβ“„βšͺИNβšͺα—±α—΄βšͺИNβšͺ✀βšͺκ–΄βšͺα—©βšͺᙁβšͺβ—―βšͺα—©βšͺί¦βšͺα΄₯βšͺβ“„βšͺκ•€βšͺκ–΄βšͺᙏβšͺα—©βšͺ✀βšͺκ–΄βšͺβ“„βšͺИNβšͺ.PY b/βšͺᕀᕦβšͺИNβšͺκ–΄βšͺᙏβšͺα—©βšͺα΄₯βšͺᕀᕦβšͺβ“„βšͺα΄₯βšͺί¦βšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺί¦βšͺα΄₯βšͺβ“„βšͺᕀᕦβšͺα΄₯βšͺα—©βšͺᙏβšͺκ–΄βšͺИNβšͺᕀᕦβšͺ/βšͺИNβšͺβ“„βšͺ옷βšͺ✀βšͺδΊΊβšͺί¦βšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺί¦βšͺδΊΊβšͺ✀βšͺ옷βšͺβ“„βšͺИNβšͺ/βšͺα΄₯βšͺα—±α—΄βšͺ✀βšͺδΊΊβšͺί¦βšͺα‘Žβšͺᒍᒐβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺᒍᒐβšͺα‘Žβšͺί¦βšͺδΊΊβšͺ✀βšͺα—±α—΄βšͺα΄₯βšͺ/YP.βšͺИNβšͺβ“„βšͺκ–΄βšͺ✀βšͺα—©βšͺᙏβšͺκ–΄βšͺκ•€βšͺβ“„βšͺα΄₯βšͺί¦βšͺα—©βšͺβ—―βšͺᙁβšͺα—©βšͺκ–΄βšͺ✀βšͺИNβšͺα—±α—΄βšͺИNβšͺβ“„βšͺί¦βšͺκ•€βšͺα—±α—΄βšͺβ—―βšͺα—±α—΄βšͺᙁβšͺᑐᑕβšͺα΄₯βšͺκ–΄βšͺα‘ŽβšͺΒ€βšͺα”“α”•βšͺβ—―βšͺα—±α—΄βšͺα΄₯βšͺα‘Žβšͺ✀βšͺα—©βšͺα—―βšͺα΄₯βšͺα‘Žβšͺᑐᑕβšͺβ—―βšͺα”“α”•βšͺα‘Žβšͺκ–΄βšͺ⚭βšͺα—©βšͺκ—³βšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺκ—³βšͺα—©βšͺ⚭βšͺκ–΄βšͺα‘Žβšͺα”“α”•βšͺβ—―βšͺᑐᑕβšͺα‘Žβšͺα΄₯βšͺα—―βšͺα—©βšͺ✀βšͺα‘Žβšͺα΄₯βšͺα—±α—΄βšͺβ—―βšͺα”“α”•βšͺΒ€βšͺα‘Žβšͺκ–΄βšͺα΄₯βšͺᑐᑕβšͺᙁβšͺα—±α—΄βšͺβ—―βšͺα—±α—΄βšͺκ•€βšͺί¦βšͺβ“„βšͺИNβšͺα—±α—΄βšͺИNβšͺ✀βšͺκ–΄βšͺα—©βšͺᙁβšͺβ—―βšͺα—©βšͺί¦βšͺα΄₯βšͺβ“„βšͺκ•€βšͺκ–΄βšͺᙏβšͺα—©βšͺ✀βšͺκ–΄βšͺβ“„βšͺИNβšͺ.PY new file mode 100644 index 00000000..2a470a87 --- /dev/null +++ b/βšͺᕀᕦβšͺИNβšͺκ–΄βšͺᙏβšͺα—©βšͺα΄₯βšͺᕀᕦβšͺβ“„βšͺα΄₯βšͺί¦βšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺί¦βšͺα΄₯βšͺβ“„βšͺᕀᕦβšͺα΄₯βšͺα—©βšͺᙏβšͺκ–΄βšͺИNβšͺᕀᕦβšͺ/βšͺИNβšͺβ“„βšͺ옷βšͺ✀βšͺδΊΊβšͺί¦βšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺί¦βšͺδΊΊβšͺ✀βšͺ옷βšͺβ“„βšͺИNβšͺ/βšͺα΄₯βšͺα—±α—΄βšͺ✀βšͺδΊΊβšͺί¦βšͺα‘Žβšͺᒍᒐβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺᒍᒐβšͺα‘Žβšͺί¦βšͺδΊΊβšͺ✀βšͺα—±α—΄βšͺα΄₯βšͺ/YP.βšͺИNβšͺβ“„βšͺκ–΄βšͺ✀βšͺα—©βšͺᙏβšͺκ–΄βšͺκ•€βšͺβ“„βšͺα΄₯βšͺί¦βšͺα—©βšͺβ—―βšͺᙁβšͺα—©βšͺκ–΄βšͺ✀βšͺИNβšͺα—±α—΄βšͺИNβšͺβ“„βšͺί¦βšͺκ•€βšͺα—±α—΄βšͺβ—―βšͺα—±α—΄βšͺᙁβšͺᑐᑕβšͺα΄₯βšͺκ–΄βšͺα‘ŽβšͺΒ€βšͺα”“α”•βšͺβ—―βšͺα—±α—΄βšͺα΄₯βšͺα‘Žβšͺ✀βšͺα—©βšͺα—―βšͺα΄₯βšͺα‘Žβšͺᑐᑕβšͺβ—―βšͺα”“α”•βšͺα‘Žβšͺκ–΄βšͺ⚭βšͺα—©βšͺκ—³βšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺβ—Œβšͺκ—³βšͺα—©βšͺ⚭βšͺκ–΄βšͺα‘Žβšͺα”“α”•βšͺβ—―βšͺᑐᑕβšͺα‘Žβšͺα΄₯βšͺα—―βšͺα—©βšͺ✀βšͺα‘Žβšͺα΄₯βšͺα—±α—΄βšͺβ—―βšͺα”“α”•βšͺΒ€βšͺα‘Žβšͺκ–΄βšͺα΄₯βšͺᑐᑕβšͺᙁβšͺα—±α—΄βšͺβ—―βšͺα—±α—΄βšͺκ•€βšͺί¦βšͺβ“„βšͺИNβšͺα—±α—΄βšͺИNβšͺ✀βšͺκ–΄βšͺα—©βšͺᙁβšͺβ—―βšͺα—©βšͺί¦βšͺα΄₯βšͺβ“„βšͺκ•€βšͺκ–΄βšͺᙏβšͺα—©βšͺ✀βšͺκ–΄βšͺβ“„βšͺИNβšͺ.PY @@ -0,0 +1,35 @@ +import plotly.graph_objects as go +import numpy as np + +# Define the curvature function +def kappa(x): + return (1-((-((-1)**np.floor(x/np.pi*2)*(np.exp(-1/((x/np.pi*2)-np.floor((x/np.pi*2)))) + /(np.exp(-1/((x/np.pi*2)-np.floor((x/np.pi*2))))+np.exp(-1/(1-(x/np.pi*2)+np.floor((x/np.pi*2))))))) + + ((-1)**np.floor((x/np.pi*2)/1)*(np.exp(-1/(1-(x/np.pi*2)+np.floor((x/np.pi*2))))/(np.exp(-1/((x/np.pi*2)- + np.floor((x/np.pi*2))))+np.exp(-1/(1-(x/np.pi*2)+np.floor((x/np.pi*2))))))))/2 + .5)) + +# Generate x values +x_vals = np.linspace(0, 4*np.pi, 1000) + +# Compute kappa values +kappa_vals = kappa(x_vals) + +# Integrate kappa values to get theta values (angles) +theta_vals = np.cumsum(kappa_vals) * (x_vals[1]-x_vals[0]) + +# Compute x and y coordinates of the curve +x_coords = np.cumsum(np.cos(theta_vals)) * (x_vals[1]-x_vals[0]) +y_coords = np.cumsum(np.sin(theta_vals)) * (x_vals[1]-x_vals[0]) + +# Create a plot using plotly +fig = go.Figure() + +# Add line to the figure for the curve +fig.add_trace(go.Scatter(x=x_coords, y=y_coords, mode='lines', name='Curve')) + +# Update layout +fig.update_layout( + autosize=True, + xaxis=dict(scaleanchor='y', scaleratio=1) # this line sets the aspect ratio +) +fig.show() \ No newline at end of file