diff --git a/π–£ βšͺβˆ£ββˆ£π”—’βœ€π”—’βœ»π”—’Π­Π„π”—’α—©π”—’ί¦π”—’ΰ΄±π–£“π–‘Όπ”—’π–‘Όπ”—’π–‘Όπ”—’π–‘ΌβšͺπŸž‹βšͺπ–‘Όπ”—’π–‘Όπ”—’π–‘Όπ”—’π–‘Όπ–£“ΰ΄±π”—’ί¦π”—’α—©π”—’Π­Π„π”—’βœ»π”—’βœ€π”—’βˆ£ββˆ£βšͺπ–£ /Ξ©/XHG.Ξ©.GHX b/π–£ βšͺβˆ£ββˆ£π”—’βœ€π”—’βœ»π”—’Π­Π„π”—’α—©π”—’ί¦π”—’ΰ΄±π–£“π–‘Όπ”—’π–‘Όπ”—’π–‘Όπ”—’π–‘ΌβšͺπŸž‹βšͺπ–‘Όπ”—’π–‘Όπ”—’π–‘Όπ”—’π–‘Όπ–£“ΰ΄±π”—’ί¦π”—’α—©π”—’Π­Π„π”—’βœ»π”—’βœ€π”—’βˆ£ββˆ£βšͺπ–£ /Ξ©/XHG.Ξ©.GHX new file mode 100644 index 00000000..b05ab9f5 --- /dev/null +++ b/π–£ βšͺβˆ£ββˆ£π”—’βœ€π”—’βœ»π”—’Π­Π„π”—’α—©π”—’ί¦π”—’ΰ΄±π–£“π–‘Όπ”—’π–‘Όπ”—’π–‘Όπ”—’π–‘ΌβšͺπŸž‹βšͺπ–‘Όπ”—’π–‘Όπ”—’π–‘Όπ”—’π–‘Όπ–£“ΰ΄±π”—’ί¦π”—’α—©π”—’Π­Π„π”—’βœ»π”—’βœ€π”—’βˆ£ββˆ£βšͺπ–£ /Ξ©/XHG.Ξ©.GHX @@ -0,0 +1,38836 @@ +ο»Ώ + + + + + + + 0 + 2 + 2 + + + + + + + 1 + 0 + 7 + + + + + + 9c289971-7752-4ad3-8a4a-deedfe2bc3d8 + Shaded + 0 + + 255;191;191;191 + + + 255;191;191;191 + + + + + + 638440181684034983 + + XHG.Ξ©.GHX + + + + + 0 + + + + + + -611 + -3625 + + 0.7791645 + + + + + 0 + + + + + + + 0 + + + + + 2 + + + + + Heteroptera, Version=0.7.3.0, Culture=neutral, PublicKeyToken=null + 0.7.3.0 + Amin Bahrami [Studio Helioripple] + 08bdcae0-d034-48dd-a145-24a9fcf3d3ff + Heteroptera + 0.7.3.4 + + + + + Pufferfish, Version=3.0.0.0, Culture=neutral, PublicKeyToken=null + 3.0.0.0 + Michael Pryor + 1c9de8a1-315f-4c56-af06-8f69fee80a7a + Pufferfish + 3.0.0.0 + + + + + + + 266 + + + + + fb6aba99-fead-4e42-b5d8-c6de5ff90ea6 + DotNET VB Script (LEGACY) + + + + + A VB.NET scriptable component + true + 3d61b0e4-4de6-412e-930f-fc95867b87c2 + DotNET VB Script (LEGACY) + Turtle + 0 + Dim i As Integer + Dim dir As New On3dVector(1, 0, 0) + Dim pos As New On3dVector(0, 0, 0) + Dim axis As New On3dVector(0, 0, 1) + Dim pnts As New List(Of On3dVector) + + pnts.Add(pos) + + For i = 0 To Forward.Count() - 1 + Dim P As New On3dVector + dir.Rotate(Left(i), axis) + P = dir * Forward(i) + pnts(i) + pnts.Add(P) + + Next + + Points = pnts + + + + + + 860 + 84 + 104 + 44 + + + 915 + 106 + + + + + + 1 + 1 + 2 + Script Variable Forward + Script Variable Left + 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 + 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 + true + true + Forward + Left + true + true + + + + + 2 + Print, Reflect and Error streams + Output parameter Points + 3ede854e-c753-40eb-84cb-b48008f14fd4 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + true + true + Output + Points + false + false + + + + + 1 + false + Script Variable Forward + ce317ead-faeb-4407-80c1-d99efd640ebc + Forward + Forward + true + 1 + true + d5996e27-1db2-4cfd-81c0-ba62a76266d3 + 1 + 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 + + + + + + 862 + 86 + 41 + 20 + + + 882.5 + 96 + + + + + + + + 1 + false + Script Variable Left + ee93da26-6275-4bd5-8137-86f21f15ac46 + Left + Left + true + 1 + true + bcb37e0b-3c8a-405f-aa6f-dcd2e5bb07ca + 1 + 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 + + + + + + 862 + 106 + 41 + 20 + + + 882.5 + 116 + + + + + + + + Print, Reflect and Error streams + ffa7a548-a363-4ed3-b06f-1f56c34b92d9 + Output + Output + false + 0 + + + + + + 927 + 86 + 35 + 20 + + + 944.5 + 96 + + + + + + + + Output parameter Points + 78c464d7-84e4-4bf0-aadc-869f9b4fda82 + Points + Points + false + 0 + + + + + + 927 + 106 + 35 + 20 + + + 944.5 + 116 + + + + + + + + + + + + e64c5fb1-845c-4ab1-8911-5f338516ba67 + Series + + + + + Create a series of numbers. + true + 2ca7e1d3-965f-482b-aadc-124aff6b6aea + Series + Series + + + + + + 359 + 214 + 89 + 64 + + + 403 + 246 + + + + + + First number in the series + fadaf414-149e-4983-b3fa-5803240091b4 + Start + Start + false + c0501684-bc40-4a82-a718-a4182ddcafd0 + 1 + + + + + + 361 + 216 + 30 + 20 + + + 376 + 226 + + + + + + 1 + + + + + 1 + {0} + + + + + 0 + + + + + + + + + + + Step size for each successive number + 7b0495e3-bd4a-4b58-987a-df7e75e23d99 + Step + Step + false + c0501684-bc40-4a82-a718-a4182ddcafd0 + 1 + + + + + + 361 + 236 + 30 + 20 + + + 376 + 246 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Number of values in the series + c2336e9e-62db-4e7c-b386-10dbce7ec153 + Count + Count + false + 262c30fe-27e2-4d85-ab9e-97c61e273cba + 1 + + + + + + 361 + 256 + 30 + 20 + + + 376 + 266 + + + + + + 1 + + + + + 1 + {0} + + + + + 500 + + + + + + + + + + + 1 + Series of numbers + e19fe4db-d765-4b53-a8f1-aad962d839f5 + Series + Series + false + 0 + + + + + + 415 + 216 + 31 + 60 + + + 430.5 + 246 + + + + + + + + + + + + dd8134c0-109b-4012-92be-51d843edfff7 + Duplicate Data + + + + + Duplicate data a predefined number of times. + true + ecdd9484-1dc5-4373-813b-a0843dff0f24 + Duplicate Data + Duplicate Data + + + + + + 350 + 57 + 102 + 64 + + + 413 + 89 + + + + + + 1 + Data to duplicate + fac6ec86-8adb-4f3b-adb3-49e59eac8176 + Data + Data + false + 845d88dc-f057-493a-b7e5-8c521e783992 + 1 + + + + + + 352 + 59 + 49 + 20 + + + 376.5 + 69 + + + + + + + + Number of duplicates + a205ae38-8b3f-4825-ab5c-32284131d818 + Number + Number + false + 262c30fe-27e2-4d85-ab9e-97c61e273cba + 1 + + + + + + 352 + 79 + 49 + 20 + + + 376.5 + 89 + + + + + + 1 + + + + + 1 + {0} + + + + + 500 + + + + + + + + + + + Retain list order + 1f01019d-89a2-486c-88ba-d6fb26bd72a9 + Order + Order + false + 0 + + + + + + 352 + 99 + 49 + 20 + + + 376.5 + 109 + + + + + + 1 + + + + + 1 + {0} + + + + + true + + + + + + + + + + + 1 + Duplicated data + be464ca1-422c-476c-b2a6-f6710f1fc6f5 + Data + Data + false + 0 + + + + + + 425 + 59 + 25 + 60 + + + 437.5 + 89 + + + + + + + + + + + + 33bcf975-a0b2-4b54-99fd-585c893b9e88 + Digit Scroller + + + + + Numeric scroller for single numbers + f1fbb0e1-fe5e-40d2-841e-732012e40657 + Digit Scroller + . + false + 0 + + + + + 12 + . + 11 + + 1024.0 + + + + + + -178 + 205 + 250 + 20 + + + -177.0572 + 205.4425 + + + + + + + + + + 33bcf975-a0b2-4b54-99fd-585c893b9e88 + Digit Scroller + + + + + Numeric scroller for single numbers + 7fbc35ee-c93d-4288-b414-b6d63a02edf6 + Digit Scroller + Π―R + false + 0 + + + + + 12 + Π―R + 1 + + 0.11963403409 + + + + + + -173 + 107 + 250 + 20 + + + -172.3578 + 107.1254 + + + + + + + + + + 33bcf975-a0b2-4b54-99fd-585c893b9e88 + Digit Scroller + + + + + Numeric scroller for single numbers + 2fc63193-0d11-4984-80d9-de58980f5096 + Digit Scroller + Β° + false + 0 + + + + + 12 + Β° + 2 + + 0.0005104413 + + + + + + -175 + 150 + 250 + 20 + + + -174.4397 + 150.3848 + + + + + + + + + + a4cd2751-414d-42ec-8916-476ebf62d7fe + Radians + + + + + Convert an angle specified in degrees to radians + true + b8e372a5-0ec1-405a-8c3e-4d4db388b39d + Radians + Radians + + + + + + 214 + 268 + 108 + 28 + + + 269 + 282 + + + + + + Angle in degrees + 70416b1f-5eb7-4580-afa9-2c0961044fb4 + Degrees + Degrees + false + f18af49f-2c36-475e-9666-3bd16c62f28a + 1 + + + + + + 216 + 270 + 41 + 24 + + + 236.5 + 282 + + + + + + + + Angle in radians + c0501684-bc40-4a82-a718-a4182ddcafd0 + Radians + Radians + false + 0 + + + + + + 281 + 270 + 39 + 24 + + + 300.5 + 282 + + + + + + + + + + + + fbac3e32-f100-4292-8692-77240a42fd1a + Point + + + + + Contains a collection of three-dimensional points + true + c88c0b93-14b6-40b3-a27f-00ff79f7b13c + Point + Point + false + 78c464d7-84e4-4bf0-aadc-869f9b4fda82 + 1 + + + + + + 767 + 290 + 50 + 24 + + + 792.0005 + 302.1751 + + + + + + + + + + dd8134c0-109b-4012-92be-51d843edfff7 + Duplicate Data + + + + + Duplicate data a predefined number of times. + true + 10029d4c-14e7-48f1-bbcb-e6dcd175c7fe + Duplicate Data + Duplicate Data + + + + + + 395 + 300 + 102 + 64 + + + 458 + 332 + + + + + + 1 + Data to duplicate + 15eb2d85-2b0a-49bd-a09b-191727194d7f + Data + Data + false + c0501684-bc40-4a82-a718-a4182ddcafd0 + 1 + + + + + + 397 + 302 + 49 + 20 + + + 421.5 + 312 + + + + + + + + Number of duplicates + ce1c8b30-0bc8-4d6f-ae83-f9eb16815340 + Number + Number + false + 262c30fe-27e2-4d85-ab9e-97c61e273cba + 1 + + + + + + 397 + 322 + 49 + 20 + + + 421.5 + 332 + + + + + + 1 + + + + + 1 + {0} + + + + + 500 + + + + + + + + + + + Retain list order + a041d52d-da4b-4226-9e1c-264d3a823b22 + Order + Order + false + 0 + + + + + + 397 + 342 + 49 + 20 + + + 421.5 + 352 + + + + + + 1 + + + + + 1 + {0} + + + + + true + + + + + + + + + + + 1 + Duplicated data + 397a31a1-ec30-45a1-8e15-b2f48d006bb7 + Data + Data + false + 0 + + + + + + 470 + 302 + 25 + 60 + + + 482.5 + 332 + + + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 262c30fe-27e2-4d85-ab9e-97c61e273cba + Relay + + false + f9f71a55-f522-4a2a-a443-1fc9358ef7f9 + 1 + + + + + + 215 + 177 + 40 + 16 + + + 235 + 185 + + + + + + + + + + be52336f-a2e1-43b1-b5f5-178ba489508a + Circle Fit + + + + + Fit a circle to a collection of points. + true + b4af4abe-d4a8-4b3c-bee6-4c3f34202ce9 + Circle Fit + Circle Fit + + + + + + 332 + 475 + 104 + 64 + + + 377 + 507 + + + + + + 1 + Points to fit + db0a3289-864c-4f55-99cb-5e0f98a661e3 + Points + Points + false + c88c0b93-14b6-40b3-a27f-00ff79f7b13c + 1 + + + + + + 334 + 477 + 31 + 60 + + + 349.5 + 507 + + + + + + + + Resulting circle + 05372bd4-17e2-415c-9486-b313b5739964 + Circle + Circle + false + 0 + + + + + + 389 + 477 + 45 + 20 + + + 411.5 + 487 + + + + + + + + Circle radius + 0623a205-c072-466d-92db-0da0f552f93b + Radius + Radius + false + 0 + + + + + + 389 + 497 + 45 + 20 + + + 411.5 + 507 + + + + + + + + Maximum distance between circle and points + 833b7ba2-ecb4-4e06-bc96-ae20ee32797a + Deviation + Deviation + false + 0 + + + + + + 389 + 517 + 45 + 20 + + + 411.5 + 527 + + + + + + + + + + + + 9df5e896-552d-4c8c-b9ca-4fc147ffa022 + Expression + + + + + Evaluate an expression + cos((4*atan(1))/N) + true + 4367604e-a116-40f7-8d8d-988b5d3de819 + Expression + Expression + + + + + + 483 + 437 + 215 + 28 + + + 581 + 451 + + + + + + 1 + ba80fd98-91a1-4958-b6a7-a94e40e52bdb + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + Expression variable + 7ecdea7f-0f93-40d6-8931-a086334ae2d1 + Variable Variable x + N + true + 262c30fe-27e2-4d85-ab9e-97c61e273cba + 1 + + + + + + 485 + 439 + 11 + 24 + + + 490.5 + 451 + + + + + + + + Result of expression + c7cec9be-11ae-4598-8068-2121d1ade51b + Result + Result + false + 0 + + + + + + 665 + 439 + 31 + 24 + + + 680.5 + 451 + + + + + + + + + + + + + + 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 + Scale + + + + + Scale an object uniformly in all directions. + true + 03e5b781-f7eb-42f3-abd8-cc10f3b05609 + Scale + Scale + + + + + + 506 + 582 + 126 + 64 + + + 568 + 614 + + + + + + Base geometry + 6907e204-b264-49bd-a5f1-2db17048b9df + Geometry + Geometry + true + 05372bd4-17e2-415c-9486-b313b5739964 + 1 + + + + + + 508 + 584 + 48 + 20 + + + 532 + 594 + + + + + + + + Center of scaling + be76ebca-fa99-4f87-8033-b15b1fe639df + Center + Center + false + 0cd7c1cb-6524-4abc-b02f-8000b02c2e4a + 1 + + + + + + 508 + 604 + 48 + 20 + + + 532 + 614 + + + + + + 1 + + + + + 1 + {0} + + + + + + + 0 + 0 + 0 + + + + + + + + + + + + Scaling factor + b0afd88c-aeb5-40db-842c-94af85a4a1a5 + Factor + Factor + false + c7cec9be-11ae-4598-8068-2121d1ade51b + 1 + + + + + + 508 + 624 + 48 + 20 + + + 532 + 634 + + + + + + 1 + + + + + 1 + {0} + + + + + 0.5 + + + + + + + + + + + Scaled geometry + 345752d3-26cb-450b-bbc5-24b071eecb78 + Geometry + Geometry + false + 0 + + + + + + 580 + 584 + 50 + 30 + + + 605 + 599 + + + + + + + + Transformation data + 1fcd789f-dea0-49e3-a218-f22153dc209a + Transform + Transform + false + 0 + + + + + + 580 + 614 + 50 + 30 + + + 605 + 629 + + + + + + + + + + + + 2e205f24-9279-47b2-b414-d06dcd0b21a7 + Area + + + + + Solve area properties for breps, meshes and planar closed curves. + true + 85df7bc1-c6a1-40db-8c89-352a1e7599c4 + Area + Area + + + + + + 320 + 592 + 118 + 44 + + + 382 + 614 + + + + + + Brep, mesh or planar closed curve for area computation + bf640742-a279-4f17-bb07-9d1b84caaab4 + Geometry + Geometry + false + 05372bd4-17e2-415c-9486-b313b5739964 + 1 + + + + + + 322 + 594 + 48 + 40 + + + 346 + 614 + + + + + + + + Area of geometry + 3c2545f6-aac8-42fc-aefd-5e99034a2bac + Area + Area + false + 0 + + + + + + 394 + 594 + 42 + 20 + + + 415 + 604 + + + + + + + + Area centroid of geometry + 0cd7c1cb-6524-4abc-b02f-8000b02c2e4a + Centroid + Centroid + false + 0 + + + + + + 394 + 614 + 42 + 20 + + + 415 + 624 + + + + + + + + + + + + ce46b74e-00c9-43c4-805a-193b69ea4a11 + Multiplication + + + + + Mathematical multiplication + true + 7f713906-b4f7-457d-b43d-f57d3d074da3 + Multiplication + Multiplication + + + + + + 631 + 494 + 70 + 44 + + + 656 + 516 + + + + + + 2 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + First item for multiplication + 0a2032cc-6c9a-4eca-a40f-88736807e6ee + A + A + true + c7cec9be-11ae-4598-8068-2121d1ade51b + 1 + + + + + + 633 + 496 + 11 + 20 + + + 638.5 + 506 + + + + + + + + Second item for multiplication + 608f7e5e-b2e4-4880-9963-416c99f1afb4 + B + B + true + 0623a205-c072-466d-92db-0da0f552f93b + 1 + + + + + + 633 + 516 + 11 + 20 + + + 638.5 + 526 + + + + + + + + Result of multiplication + b74f0585-4293-489c-9893-889377fac93a + Result + Result + false + 0 + + + + + + 668 + 496 + 31 + 40 + + + 683.5 + 516 + + + + + + + + + + + + + + 9df5e896-552d-4c8c-b9ca-4fc147ffa022 + Expression + + + + + Evaluate an expression + .5*L*(1/SIN(Ο€/N)) + true + f501d46e-90e6-461c-bb9e-83beabda9ca6 + Expression + Expression + + + + + + 571 + 336 + 207 + 44 + + + 665 + 358 + + + + + + 2 + ba80fd98-91a1-4958-b6a7-a94e40e52bdb + ba80fd98-91a1-4958-b6a7-a94e40e52bdb + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + Expression variable + 4172d6f8-0262-47fa-b2fa-b487930372f8 + Variable x + L + true + 7fbc35ee-c93d-4288-b414-b6d63a02edf6 + 1 + + + + + + 573 + 338 + 11 + 20 + + + 578.5 + 348 + + + + + + + + Expression variable + 893d2f38-c3ff-432d-9562-99fe91034cc4 + Variable N + N + true + 262c30fe-27e2-4d85-ab9e-97c61e273cba + 1 + + + + + + 573 + 358 + 11 + 20 + + + 578.5 + 368 + + + + + + + + Result of expression + 871baec3-457c-4734-ae89-c9dc38a72254 + Result + Result + false + 0 + + + + + + 745 + 338 + 31 + 40 + + + 760.5 + 358 + + + + + + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + e186075d-d2c2-449d-87c8-80fdeafbef90 + Panel + Panel + false + 0 + 871baec3-457c-4734-ae89-c9dc38a72254 + 1 + Double click to edit panel content… + + + + + + 856 + 337 + 160 + 100 + + 0 + 0 + 0 + + 856.2946 + 337.3611 + + + + + + + 255;255;255;255 + + true + true + true + false + false + true + + + + + + + + + 9df5e896-552d-4c8c-b9ca-4fc147ffa022 + Expression + + + + + Evaluate an expression + R/(.5*(1/SIN(Ο€/N))) + true + cd4acd9d-cbdc-4d38-97c4-be071e6d8e96 + Expression + Expression + + + + + + 234 + -17 + 224 + 44 + + + 336 + 5 + + + + + + 2 + ba80fd98-91a1-4958-b6a7-a94e40e52bdb + ba80fd98-91a1-4958-b6a7-a94e40e52bdb + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + Expression variable + 47b5aec6-b919-47fa-aa50-c4074fdd094f + Variable L + R + true + 23d9f3a2-1454-4364-a19c-8801a4aa8e4a + 1 + + + + + + 236 + -15 + 11 + 20 + + + 241.5 + -5 + + + + + + + + Expression variable + e620dac2-b443-461d-8820-8f57e0929fbd + Variable N + N + true + 262c30fe-27e2-4d85-ab9e-97c61e273cba + 1 + + + + + + 236 + 5 + 11 + 20 + + + 241.5 + 15 + + + + + + + + Result of expression + 845d88dc-f057-493a-b7e5-8c521e783992 + Result + Result + false + 0 + + + + + + 425 + -15 + 31 + 40 + + + 440.5 + 5 + + + + + + + + + + + + + + 9c85271f-89fa-4e9f-9f4a-d75802120ccc + Division + + + + + Mathematical division + true + 79214b28-9042-4fce-9bff-aefa3c8afdce + Division + Division + + + + + + 21 + 274 + 90 + 44 + + + 66 + 296 + + + + + + Item to divide (dividend) + cd12f72c-b624-4a1d-b4e0-3e7090b7a7ef + A + A + false + 0 + + + + + + 23 + 276 + 31 + 20 + + + 38.5 + 286 + + + + + + 1 + + + + + 1 + {0} + + + + + Grasshopper.Kernel.Types.GH_String + false + 360 + + + + + + + + + + + Item to divide with (divisor) + 39527ecc-cc31-4e87-a0f0-71398918b3ef + B + B + false + f1fbb0e1-fe5e-40d2-841e-732012e40657 + 1 + + + + + + 23 + 296 + 31 + 20 + + + 38.5 + 306 + + + + + + + + The result of the Division + c60648d6-21f7-4608-9114-2716dc67c91f + Result + Result + false + 0 + + + + + + 78 + 276 + 31 + 40 + + + 93.5 + 296 + + + + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + bc8d16e7-6518-4d54-9e28-8feae351da64 + Panel + Panel + false + 0 + 0623a205-c072-466d-92db-0da0f552f93b + 1 + Double click to edit panel content… + + + + + + 526 + -153 + 160 + 100 + + 0 + 0 + 0 + + 526.2639 + -152.3152 + + + + + + + 255;255;255;255 + + true + true + true + false + false + true + + + + + + + + + 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4 + Reverse List + + + + + Reverse the order of a list. + true + 7f113fc2-d918-4a84-a319-cc5320e0abe4 + Reverse List + Reverse List + + + + + + 434 + 152 + 66 + 28 + + + 467 + 166 + + + + + + 1 + Base list + ac476c41-08df-4926-99e5-227c0b7793d9 + List + List + false + e19fe4db-d765-4b53-a8f1-aad962d839f5 + 1 + + + + + + 436 + 154 + 19 + 24 + + + 445.5 + 166 + + + + + + + + 1 + Reversed list + a706ad0d-f779-4309-8a67-f57c406db026 + List + List + false + 0 + + + + + + 479 + 154 + 19 + 24 + + + 488.5 + 166 + + + + + + + + + + + + 4fdfe351-6c07-47ce-9fb9-be027fb62186 + Shift List + + + + + Offset all items in a list. + true + a0b095f5-462d-41a1-9833-aceddde83e84 + Shift List + Shift List + + + + + + 513 + 237 + 90 + 64 + + + 570 + 269 + + + + + + 1 + List to shift + 2811c1b6-447e-4ff8-bebe-171f2beebd93 + List + List + false + a706ad0d-f779-4309-8a67-f57c406db026 + 1 + + + + + + 515 + 239 + 43 + 20 + + + 536.5 + 249 + + + + + + + + Shift offset + 66337458-366e-433a-85b9-70a9c5af71e4 + Shift + Shift + false + 0 + + + + + + 515 + 259 + 43 + 20 + + + 536.5 + 269 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Wrap values + 7d577852-39b8-4caf-bb55-52666b680297 + Wrap + Wrap + false + 0 + + + + + + 515 + 279 + 43 + 20 + + + 536.5 + 289 + + + + + + 1 + + + + + 1 + {0} + + + + + false + + + + + + + + + + + 1 + Shifted list + c63cd484-0b02-471a-bd03-c1ddd82ac8e2 + List + List + false + 0 + + + + + + 582 + 239 + 19 + 60 + + + 591.5 + 269 + + + + + + + + + + + + a3371040-e552-4bc8-b0ff-10a840258e88 + Negative + + + + + Compute the negative of a value. + true + 8bcc8ae8-e318-42a5-9758-a25fe9ea46a2 + Negative + Negative + + + + + + 633 + 248 + 88 + 28 + + + 676 + 262 + + + + + + Input value + 79828215-32cc-45c1-a351-78dceaf8a991 + Value + Value + false + e19fe4db-d765-4b53-a8f1-aad962d839f5 + 1 + + + + + + 635 + 250 + 29 + 24 + + + 649.5 + 262 + + + + + + + + Output value + f8ca467e-c13d-4d81-8b30-5bc5193e7bbb + Result + Result + false + 0 + + + + + + 688 + 250 + 31 + 24 + + + 703.5 + 262 + + + + + + + + + + + + 3cadddef-1e2b-4c09-9390-0e8f78f7609f + Merge + + + + + Merge a bunch of data streams + true + 9a46c0d6-1b86-4536-84b4-88cc87aa997c + Merge + Merge + + + + + + 578 + 117 + 122 + 84 + + + 639 + 159 + + + + + + 4 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + 2 + Data stream 1 + b5578463-fe15-4eb8-ac35-f137bf5743f4 + 1 + false + Data 1 + D1 + true + a706ad0d-f779-4309-8a67-f57c406db026 + 1 + + + + + + 580 + 119 + 47 + 20 + + + 611.5 + 129 + + + + + + + + 2 + Data stream 2 + ae7d37b7-f367-48cc-8f9a-45ba6583d329 + 1 + false + Data 2 + D2 + true + 0 + + + + + + 580 + 139 + 47 + 20 + + + 611.5 + 149 + + + + + + 1 + + + + + 1 + {0} + + + + + Grasshopper.Kernel.Types.GH_String + false + 0 + + + + + + + + + + + 2 + Data stream 3 + d1b0650a-6115-4b34-95b2-d759d434da03 + 1 + false + Data 3 + D3 + true + f8ca467e-c13d-4d81-8b30-5bc5193e7bbb + 1 + + + + + + 580 + 159 + 47 + 20 + + + 611.5 + 169 + + + + + + + + 2 + Data stream 4 + d9d34c99-475c-4a79-b95a-a25471df3fb7 + false + Data 4 + D4 + true + 0 + + + + + + 580 + 179 + 47 + 20 + + + 611.5 + 189 + + + + + + + + 2 + Result of merge + bcb37e0b-3c8a-405f-aa6f-dcd2e5bb07ca + 1 + Result + Result + false + 0 + + + + + + 651 + 119 + 47 + 80 + + + 666.5 + 159 + + + + + + + + + + + + + + 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4 + Reverse List + + + + + Reverse the order of a list. + true + 66885faa-16ff-4dcc-883a-2cc9528f684e + Reverse List + Reverse List + + + + + + 511 + -21 + 66 + 28 + + + 544 + -7 + + + + + + 1 + Base list + 4b0852c3-fa4d-4bc2-ae8d-7e187a5a9b96 + List + List + false + be464ca1-422c-476c-b2a6-f6710f1fc6f5 + 1 + + + + + + 513 + -19 + 19 + 24 + + + 522.5 + -7 + + + + + + + + 1 + Reversed list + a79dc447-c143-4e69-af36-d93bb673c4f4 + List + List + false + 0 + + + + + + 556 + -19 + 19 + 24 + + + 565.5 + -7 + + + + + + + + + + + + 4fdfe351-6c07-47ce-9fb9-be027fb62186 + Shift List + + + + + Offset all items in a list. + true + 601251d7-c744-4070-836a-acb30bc91624 + Shift List + Shift List + + + + + + 528 + 37 + 90 + 64 + + + 585 + 69 + + + + + + 1 + List to shift + a9c71af4-63fe-4c31-9f1c-0b3d6f0a24af + List + List + false + be464ca1-422c-476c-b2a6-f6710f1fc6f5 + 1 + + + + + + 530 + 39 + 43 + 20 + + + 551.5 + 49 + + + + + + + + Shift offset + da00b811-78b0-4f79-9f82-4acecc2ebdeb + Shift + Shift + false + 0 + + + + + + 530 + 59 + 43 + 20 + + + 551.5 + 69 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Wrap values + d359d1bb-b59d-4333-a939-bda455edf8f2 + Wrap + Wrap + false + 0 + + + + + + 530 + 79 + 43 + 20 + + + 551.5 + 89 + + + + + + 1 + + + + + 1 + {0} + + + + + false + + + + + + + + + + + 1 + Shifted list + 69cf53a4-2337-4e09-8a6b-013e270433d8 + List + List + false + 0 + + + + + + 597 + 39 + 19 + 60 + + + 606.5 + 69 + + + + + + + + + + + + 3cadddef-1e2b-4c09-9390-0e8f78f7609f + Merge + + + + + Merge a bunch of data streams + true + 7e129286-32cc-4d60-9d6d-04c9446f6282 + Merge + Merge + + + + + + 675 + -29 + 122 + 84 + + + 736 + 13 + + + + + + 4 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + 2 + Data stream 1 + 40957671-acb8-405a-9dda-8d9bd7232911 + 1 + false + Data 1 + D1 + true + a79dc447-c143-4e69-af36-d93bb673c4f4 + 1 + + + + + + 677 + -27 + 47 + 20 + + + 708.5 + -17 + + + + + + + + 2 + Data stream 2 + b530795a-c051-456a-86c1-7a0b4ece28be + 1 + false + Data 2 + D2 + true + 0 + + + + + + 677 + -7 + 47 + 20 + + + 708.5 + 3 + + + + + + + + 2 + Data stream 3 + 5ef29980-07e3-443d-8b13-3534b6d2daa8 + 1 + false + Data 3 + D3 + true + be464ca1-422c-476c-b2a6-f6710f1fc6f5 + 1 + + + + + + 677 + 13 + 47 + 20 + + + 708.5 + 23 + + + + + + + + 2 + Data stream 4 + 08749507-1829-4296-8479-604964a24385 + false + Data 4 + D4 + true + 0 + + + + + + 677 + 33 + 47 + 20 + + + 708.5 + 43 + + + + + + + + 2 + Result of merge + d5996e27-1db2-4cfd-81c0-ba62a76266d3 + 1 + Result + Result + false + 0 + + + + + + 748 + -27 + 47 + 80 + + + 763.5 + 13 + + + + + + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + 21c33c2f-9fca-4a36-986e-1011355096ea + Panel + Panel + false + 0 + bcb37e0b-3c8a-405f-aa6f-dcd2e5bb07ca + 1 + Double click to edit panel content… + + + + + + 1020 + -57 + 160 + 479 + + 0 + 0 + 0 + + 1020.859 + -56.40537 + + + + + + + 255;255;255;255 + + true + true + true + false + false + true + + + + + + + + + 59daf374-bc21-4a5e-8282-5504fb7ae9ae + List Item + + + + + 0 + Retrieve a specific item from a list. + true + 20d638e5-5eab-4294-9eb2-e332f163c51f + List Item + List Item + + + + + + 752 + 493 + 95 + 64 + + + 809 + 525 + + + + + + 3 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 2e3ab970-8545-46bb-836c-1c11e5610bce + cb95db89-6165-43b6-9c41-5702bc5bf137 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + 1 + Base list + dca67d8b-109c-4519-8679-2f289d90be84 + List + List + false + c88c0b93-14b6-40b3-a27f-00ff79f7b13c + 1 + + + + + + 754 + 495 + 43 + 20 + + + 775.5 + 505 + + + + + + + + Item index + 2873bc33-81bd-45b7-9091-864600654a23 + Index + Index + false + 0 + + + + + + 754 + 515 + 43 + 20 + + + 775.5 + 525 + + + + + + 1 + + + + + 1 + {0} + + + + + -1 + + + + + + + + + + + Wrap index to list bounds + 2b291a54-118f-4855-9d9b-c247bbb61a58 + Wrap + Wrap + false + 0 + + + + + + 754 + 535 + 43 + 20 + + + 775.5 + 545 + + + + + + 1 + + + + + 1 + {0} + + + + + true + + + + + + + + + + + Item at {i'} + 733e62a8-108b-451e-a02f-fefecafbcf4e + false + Item + Item + false + 0 + + + + + + 821 + 495 + 24 + 60 + + + 833 + 525 + + + + + + + + + + + + + + 9abae6b7-fa1d-448c-9209-4a8155345841 + Deconstruct + + + + + Deconstruct a point into its component parts. + true + 1c65cddb-9bca-4abc-a88b-4eebe341e2b8 + Deconstruct + Deconstruct + + + + + + 865 + 499 + 120 + 64 + + + 906 + 531 + + + + + + Input point + e43ffa74-15cc-4939-91c8-a9bbfb57563e + Point + Point + false + 733e62a8-108b-451e-a02f-fefecafbcf4e + 1 + + + + + + 867 + 501 + 27 + 60 + + + 880.5 + 531 + + + + + + + + Point {x} component + c48f2a86-4388-4b9b-a155-5f9d30e70ed5 + X component + X component + false + 0 + + + + + + 918 + 501 + 65 + 20 + + + 950.5 + 511 + + + + + + + + Point {y} component + c2694786-f0d6-43b4-a7b8-e3a0d5b6af9f + Y component + Y component + false + 0 + + + + + + 918 + 521 + 65 + 20 + + + 950.5 + 531 + + + + + + + + Point {z} component + 20ab697b-7ea5-45b0-9a27-0c47130264ef + Z component + Z component + false + 0 + + + + + + 918 + 541 + 65 + 20 + + + 950.5 + 551 + + + + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + e4a3a123-a46a-4ffe-9866-096c857bfd95 + Panel + + false + 0 + fe9b2349-403b-4c80-bf8e-3415f7e9017a + 1 + Double click to edit panel content… + + + + + + -110 + -81 + 116 + 20 + + 0 + 0 + 0 + + -109.6386 + -80.95573 + + + + + + + 255;255;255;255 + + false + false + true + false + false + true + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + 1706b589-82a3-484e-8bb3-c9784fb4ea88 + Panel + + false + 0 + 12a00da0-f03d-412c-99e3-24174bf36562 + 1 + Double click to edit panel content… + + + + + + -109 + 0 + 118 + 20 + + 0 + 0 + 0 + + -108.8092 + 0.6788788 + + + + + + + 255;255;255;255 + + false + false + true + false + false + true + + + + + + + + + 9c85271f-89fa-4e9f-9f4a-d75802120ccc + Division + + + + + Mathematical division + true + b241a6a3-6e71-4ff3-95dd-95c013252b2b + Division + Division + + + + + + 1117 + 499 + 70 + 44 + + + 1142 + 521 + + + + + + Item to divide (dividend) + 93b650fe-9575-4d53-a3ea-1bb3acc7ac2f + A + A + false + c48f2a86-4388-4b9b-a155-5f9d30e70ed5 + 1 + + + + + + 1119 + 501 + 11 + 20 + + + 1124.5 + 511 + + + + + + + + Item to divide with (divisor) + b5d9a2c7-a217-4fe1-86b3-eb50e420e921 + B + B + false + c2694786-f0d6-43b4-a7b8-e3a0d5b6af9f + 1 + + + + + + 1119 + 521 + 11 + 20 + + + 1124.5 + 531 + + + + + + + + The result of the Division + 118e674e-db63-4847-b023-71a1ecd9c236 + Result + Result + false + 0 + + + + + + 1154 + 501 + 31 + 40 + + + 1169.5 + 521 + + + + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + eefae472-b11a-4e30-a3af-f2edf06a8f62 + Panel + + false + 0 + 07b602e6-3f30-4265-8f7b-014173103908 + 1 + Double click to edit panel content… + + + + + + -110 + -40 + 116 + 20 + + 0 + 0 + 0 + + -109.8456 + -39.18073 + + + + + + + 255;255;255;255 + + false + false + true + false + false + true + + + + + + + + + fb6aba99-fead-4e42-b5d8-c6de5ff90ea6 + DotNET VB Script (LEGACY) + + + + + A VB.NET scriptable component + true + ef7b22da-b20f-421c-87e5-2e9f24448f61 + true + DotNET VB Script (LEGACY) + Turtle + 0 + Dim i As Integer + Dim dir As New On3dVector(1, 0, 0) + Dim pos As New On3dVector(0, 0, 0) + Dim axis As New On3dVector(0, 0, 1) + Dim pnts As New List(Of On3dVector) + + pnts.Add(pos) + + For i = 0 To Forward.Count() - 1 + Dim P As New On3dVector + dir.Rotate(Left(i), axis) + P = dir * Forward(i) + pnts(i) + pnts.Add(P) + Next + + Points = pnts + + + + + + 1751 + 8294 + 104 + 44 + + + 1806 + 8316 + + + + + + 1 + 1 + 2 + Script Variable Forward + Script Variable Left + 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 + 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 + true + true + Forward + Left + true + true + + + + + 2 + Print, Reflect and Error streams + Output parameter Points + 3ede854e-c753-40eb-84cb-b48008f14fd4 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + true + true + Output + Points + false + false + + + + + 1 + false + Script Variable Forward + fd045b5b-1058-41aa-b97b-59bfbe37a445 + true + Forward + Forward + true + 1 + true + 7e67df61-227f-4e08-8fea-e7dad9589772 + 1 + 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 + + + + + + 1753 + 8296 + 41 + 20 + + + 1773.5 + 8306 + + + + + + + + 1 + false + Script Variable Left + e27890c1-ddf5-43e8-aa7c-855130530b9f + true + Left + Left + true + 1 + true + 23600005-afd8-49b3-9cdc-f94db3ed139f + 1 + 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 + + + + + + 1753 + 8316 + 41 + 20 + + + 1773.5 + 8326 + + + + + + + + Print, Reflect and Error streams + 59490336-0317-48ab-8fa9-f2f20609911c + true + Output + Output + false + 0 + + + + + + 1818 + 8296 + 35 + 20 + + + 1835.5 + 8306 + + + + + + + + Output parameter Points + 6840a0ad-a870-47ab-bde6-1fa3333a7543 + true + Points + Points + false + 0 + + + + + + 1818 + 8316 + 35 + 20 + + + 1835.5 + 8326 + + + + + + + + + + + + fbac3e32-f100-4292-8692-77240a42fd1a + Point + + + + + Contains a collection of three-dimensional points + true + 5c241406-61cd-4678-b6c8-910e404014a9 + Point + Point + false + 6840a0ad-a870-47ab-bde6-1fa3333a7543 + 1 + + + + + + 1848 + 8214 + 50 + 24 + + + 1873.7 + 8226.781 + + + + + + + + + + 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 + Interpolate + + + + + Create an interpolated curve through a set of points. + true + 63398084-0450-4259-9328-14f137aafbf6 + Interpolate + Interpolate + + + + + + 1439 + 7976 + 197 + 84 + + + 1584 + 8018 + + + + + + 1 + Interpolation points + 0079b3b3-5e0d-4669-8059-717b19e83522 + Vertices + Vertices + false + 5c241406-61cd-4678-b6c8-910e404014a9 + 1 + + + + + + 1441 + 7978 + 131 + 20 + + + 1506.5 + 7988 + + + + + + + + Curve degree + f131594d-f681-40b3-ae43-d4d2fb1d04c5 + Degree + Degree + false + 0 + + + + + + 1441 + 7998 + 131 + 20 + + + 1506.5 + 8008 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Periodic curve + 167576c0-ddfd-4da2-a2b8-bc93ee9de310 + Periodic + Periodic + false + 0 + + + + + + 1441 + 8018 + 131 + 20 + + + 1506.5 + 8028 + + + + + + 1 + + + + + 1 + {0} + + + + + false + + + + + + + + + + + Knot spacing (0=uniform, 1=chord, 2=sqrtchord) + abb2709c-5d24-446c-be6b-d0277ec8791d + KnotStyle + KnotStyle + false + 0 + + + + + + 1441 + 8038 + 131 + 20 + + + 1506.5 + 8048 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Resulting nurbs curve + 1f58aef3-68df-4afa-abcb-766ccf636dd2 + Curve + Curve + false + 0 + + + + + + 1596 + 7978 + 38 + 26 + + + 1615 + 7991.333 + + + + + + + + Curve length + 95a44c5f-50e2-48d0-a7c6-c7c016870137 + Length + Length + false + 0 + + + + + + 1596 + 8004 + 38 + 27 + + + 1615 + 8018 + + + + + + + + Curve domain + e0a12ce0-d875-401f-91ce-0007c6b27dc0 + Domain + Domain + false + 0 + + + + + + 1596 + 8031 + 38 + 27 + + + 1615 + 8044.667 + + + + + + + + + + + + 0d2ccfb3-9d41-4759-9452-da6a522c3eaa + Pi + + + + + Returns a factor of Pi. + true + effc9ff2-741c-4863-855b-3a155ab1d9a1 + Pi + Pi + + + + + + 1034 + 8181 + 112 + 28 + + + 1097 + 8195 + + + + + + Factor to be multiplied by Pi + d17006a4-ce99-41fe-8ecd-7966c23c3d7a + Factor + Factor + false + 0 + + + + + + 1036 + 8183 + 49 + 24 + + + 1060.5 + 8195 + + + + + + 1 + + + + + 1 + {0} + + + + + 2 + + + + + + + + + + + Output value + b5428967-7bc3-4973-a90b-95ea5e112e93 + Output + Output + false + 0 + + + + + + 1109 + 8183 + 35 + 24 + + + 1126.5 + 8195 + + + + + + + + + + + + 9c85271f-89fa-4e9f-9f4a-d75802120ccc + Division + + + + + Mathematical division + true + 19e600ed-4d93-474e-9270-60871e3ea572 + Division + Division + + + + + + 1241 + 8202 + 70 + 44 + + + 1266 + 8224 + + + + + + Item to divide (dividend) + 09773635-d7f3-4dee-bcc5-d34fb2031ac1 + A + A + false + b5428967-7bc3-4973-a90b-95ea5e112e93 + 1 + + + + + + 1243 + 8204 + 11 + 20 + + + 1248.5 + 8214 + + + + + + + + Item to divide with (divisor) + e52a2212-3eda-4183-af6c-93c16d4cb773 + B + B + false + 2d3182bc-0ec5-416a-a889-562bebb78f4d + 1 + + + + + + 1243 + 8224 + 11 + 20 + + + 1248.5 + 8234 + + + + + + + + The result of the Division + f5876fb4-0209-47b9-89c8-779610d79b15 + Result + Result + false + 0 + + + + + + 1278 + 8204 + 31 + 40 + + + 1293.5 + 8224 + + + + + + + + + + + + 33bcf975-a0b2-4b54-99fd-585c893b9e88 + Digit Scroller + + + + + Numeric scroller for single numbers + feacff2e-50e3-4537-ac1b-4450d7a3cae4 + Digit Scroller + Digit Scroller + false + 0 + + + + + 12 + Digit Scroller + 11 + + 63.0 + + + + + + 506 + 8513 + 250 + 20 + + + 506.2305 + 8513.215 + + + + + + + + + + dd8134c0-109b-4012-92be-51d843edfff7 + Duplicate Data + + + + + Duplicate data a predefined number of times. + true + 95efbcb9-4866-4cc7-8946-58ac406c0650 + Duplicate Data + Duplicate Data + + + + + + 1595 + 8256 + 102 + 64 + + + 1658 + 8288 + + + + + + 1 + Data to duplicate + 3714f2eb-dd48-4a34-a0aa-888903093857 + Data + Data + false + f5876fb4-0209-47b9-89c8-779610d79b15 + 1 + + + + + + 1597 + 8258 + 49 + 20 + + + 1621.5 + 8268 + + + + + + + + Number of duplicates + 7e939ba2-797c-4137-b8a8-d430da27e930 + Number + Number + false + 2d3182bc-0ec5-416a-a889-562bebb78f4d + 1 + + + + + + 1597 + 8278 + 49 + 20 + + + 1621.5 + 8288 + + + + + + 1 + + + + + 1 + {0} + + + + + 2 + + + + + + + + + + + Retain list order + 95b2b7dd-614a-42ae-bf10-1aff9572036e + Order + Order + false + 0 + + + + + + 1597 + 8298 + 49 + 20 + + + 1621.5 + 8308 + + + + + + 1 + + + + + 1 + {0} + + + + + true + + + + + + + + + + + 1 + Duplicated data + 7e67df61-227f-4e08-8fea-e7dad9589772 + Data + Data + false + 0 + + + + + + 1670 + 8258 + 25 + 60 + + + 1682.5 + 8288 + + + + + + + + + + + + 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef + Quick Graph + + + + + 1 + Display a set of y-values as a graph + b37d3ce8-3c7b-462a-ad59-ec77ca864ff9 + Quick Graph + Quick Graph + false + 0 + 23600005-afd8-49b3-9cdc-f94db3ed139f + 1 + + + + + + 2104 + 8257 + 150 + 150 + + + 2104.25 + 8257.683 + + -1 + + + + + + + + + e64c5fb1-845c-4ab1-8911-5f338516ba67 + Series + + + + + Create a series of numbers. + true + a159a761-225a-47bc-bd40-22ea126c629b + Series + Series + + + + + + 1579 + 8345 + 122 + 64 + + + 1656 + 8377 + + + + + + First number in the series + bd1dd0f1-5f6e-4438-9280-e9898072b190 + Start + Start + false + 0 + + + + + + 1581 + 8347 + 63 + 20 + + + 1620.5 + 8357 + + + + + + 1 + + + + + 1 + {0} + + + + + 0 + + + + + + + + + + + Step size for each successive number + f00e9eae-ae27-417b-8d69-e7ba1904dc47 + Step + Step + false + 422f40c8-6c25-44c9-bedb-da6dc0b54fd9 + 1 + + + + + + 1581 + 8367 + 63 + 20 + + + 1620.5 + 8377 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Number of values in the series + 9f5b0947-9738-43af-8617-f16229f943ba + X+1 + Count + Count + false + 2d3182bc-0ec5-416a-a889-562bebb78f4d + 1 + + + + + + 1581 + 8387 + 63 + 20 + + + 1620.5 + 8397 + + + + + + 1 + + + + + 1 + {0} + + + + + 10 + + + + + + + + + + + 1 + Series of numbers + a3febab5-0271-4176-b12a-837fcb0b83d6 + Series + Series + false + 0 + + + + + + 1668 + 8347 + 31 + 60 + + + 1683.5 + 8377 + + + + + + + + + + + + 9c85271f-89fa-4e9f-9f4a-d75802120ccc + Division + + + + + Mathematical division + true + d3b99e99-94b2-4d3b-a5b9-6791f7fbcf1f + Division + Division + + + + + + 1055 + 8433 + 70 + 44 + + + 1080 + 8455 + + + + + + Item to divide (dividend) + 437989cf-f5bc-4a29-8bf3-2053b6564069 + A + A + false + 087687ee-5b85-4a79-9b21-7b21c6a77520 + 1 + + + + + + 1057 + 8435 + 11 + 20 + + + 1062.5 + 8445 + + + + + + 1 + + + + + 1 + {0} + + + + + Grasshopper.Kernel.Types.GH_String + false + Pi + + + + + + + + + + + Item to divide with (divisor) + 6702514d-d709-4347-b6df-b5df7b7df591 + B + B + false + 2d3182bc-0ec5-416a-a889-562bebb78f4d + 1 + + + + + + 1057 + 8455 + 11 + 20 + + + 1062.5 + 8465 + + + + + + + + The result of the Division + 30e03bf5-47ab-4743-8ca6-661654fa103d + Result + Result + false + 0 + + + + + + 1092 + 8435 + 31 + 40 + + + 1107.5 + 8455 + + + + + + + + + + + + e64c5fb1-845c-4ab1-8911-5f338516ba67 + Series + + + + + Create a series of numbers. + true + b02bc189-98fc-45be-8330-ec7401fd8524 + Series + Series + + + + + + 1109 + 8603 + 106 + 64 + + + 1170 + 8635 + + + + + + First number in the series + f92f6d5f-73bb-41d2-8dc8-3a376687a5a9 + Start + Start + false + 0 + + + + + + 1111 + 8605 + 47 + 20 + + + 1134.5 + 8615 + + + + + + 1 + + + + + 1 + {0} + + + + + 0 + + + + + + + + + + + Step size for each successive number + 13e63881-4ca1-4f87-83da-29e52a136cb6 + Step + Step + false + 30e03bf5-47ab-4743-8ca6-661654fa103d + 1 + + + + + + 1111 + 8625 + 47 + 20 + + + 1134.5 + 8635 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Number of values in the series + 9c323bdd-446a-4b22-8a2f-aca538e02cef + Count + Count + false + 2d3182bc-0ec5-416a-a889-562bebb78f4d + 1 + + + + + + 1111 + 8645 + 47 + 20 + + + 1134.5 + 8655 + + + + + + 1 + + + + + 1 + {0} + + + + + 16 + + + + + + + + + + + 1 + Series of numbers + 9ba20636-1b4f-4f30-88d1-ccd070ba1f32 + Series + Series + false + 0 + + + + + + 1182 + 8605 + 31 + 60 + + + 1197.5 + 8635 + + + + + + + + + + + + 78fed580-851b-46fe-af2f-6519a9d378e0 + Power + + + + + Raise a value to a power. + true + 7f12f249-7659-48dc-8774-d8dcb4014948 + Power + Power + + + + + + 1195 + 8375 + 85 + 44 + + + 1235 + 8397 + + + + + + The item to be raised + 05c526ea-ba6f-4b1f-b463-e5886b50b151 + A + A + false + 9ba20636-1b4f-4f30-88d1-ccd070ba1f32 + 1 + + + + + + 1197 + 8377 + 26 + 20 + + + 1210 + 8387 + + + + + + + + The exponent + 0da0f993-8b6b-4b81-85c8-6b46088bc636 + B + B + false + 0 + + + + + + 1197 + 8397 + 26 + 20 + + + 1210 + 8407 + + + + + + 1 + + + + + 1 + {0} + + + + + Grasshopper.Kernel.Types.GH_String + false + 2 + + + + + + + + + + + A raised to the B power + 3cd244e7-2aba-4f95-8566-03dc0fea7a2d + Result + Result + false + 0 + + + + + + 1247 + 8377 + 31 + 40 + + + 1262.5 + 8397 + + + + + + + + + + + + dd17d442-3776-40b3-ad5b-5e188b56bd4c + Relative Differences + + + + + Compute relative differences for a list of data + true + 29bec5af-d71f-4b18-b185-c780701e9c65 + Relative Differences + Relative Differences + + + + + + 1306 + 8356 + 116 + 28 + + + 1353 + 8370 + + + + + + 1 + List of data to operate on (numbers or points or vectors allowed) + 8a3e4a46-60b5-4cd7-b23c-80e2d63b0311 + Values + Values + false + 3cd244e7-2aba-4f95-8566-03dc0fea7a2d + 1 + + + + + + 1308 + 8358 + 33 + 24 + + + 1324.5 + 8370 + + + + + + + + 1 + Differences between consecutive items + 6ecfdbf0-d6ed-416d-ae60-dc1cd2f30b14 + Differenced + Differenced + false + 0 + + + + + + 1365 + 8358 + 55 + 24 + + + 1392.5 + 8370 + + + + + + + + + + + + 59daf374-bc21-4a5e-8282-5504fb7ae9ae + List Item + + + + + 0 + Retrieve a specific item from a list. + true + d496411c-0e08-4f19-8c68-12df038a1cec + List Item + List Item + + + + + + 1464 + 8354 + 77 + 64 + + + 1521 + 8386 + + + + + + 3 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 2e3ab970-8545-46bb-836c-1c11e5610bce + cb95db89-6165-43b6-9c41-5702bc5bf137 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + 1 + Base list + 2bc8b542-a3b1-49f2-8e63-0ddfd4da1235 + List + List + false + 6ecfdbf0-d6ed-416d-ae60-dc1cd2f30b14 + 1 + + + + + + 1466 + 8356 + 43 + 20 + + + 1487.5 + 8366 + + + + + + + + Item index + 80fd802f-ac9a-453e-8304-f69ee4cc0bad + Index + Index + false + 0 + + + + + + 1466 + 8376 + 43 + 20 + + + 1487.5 + 8386 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Wrap index to list bounds + 132fbf1d-fa65-4a75-b78b-358d4a9f1143 + Wrap + Wrap + false + 0 + + + + + + 1466 + 8396 + 43 + 20 + + + 1487.5 + 8406 + + + + + + 1 + + + + + 1 + {0} + + + + + true + + + + + + + + + + + Item at {i'} + 422f40c8-6c25-44c9-bedb-da6dc0b54fd9 + false + Item + i + false + 0 + + + + + + 1533 + 8356 + 6 + 60 + + + 1536 + 8386 + + + + + + + + + + + + + + 0d2ccfb3-9d41-4759-9452-da6a522c3eaa + Pi + + + + + Returns a factor of Pi. + true + f8fd5bf9-b1ba-477c-ac09-f12dbb0d08b7 + Pi + Pi + + + + + + 885 + 8396 + 95 + 28 + + + 931 + 8410 + + + + + + Factor to be multiplied by Pi + 754ee990-be8c-4cb0-a171-80cebfb39821 + Factor + Factor + false + 5ce031d5-550e-4710-ac8a-f97d9d9ec811 + 1 + + + + + + 887 + 8398 + 32 + 24 + + + 903 + 8410 + + + + + + 1 + + + + + 1 + {0} + + + + + 2 + + + + + + + + + + + Output value + 087687ee-5b85-4a79-9b21-7b21c6a77520 + Output + Output + false + 0 + + + + + + 943 + 8398 + 35 + 24 + + + 960.5 + 8410 + + + + + + + + + + + + 33bcf975-a0b2-4b54-99fd-585c893b9e88 + Digit Scroller + + + + + Numeric scroller for single numbers + 6227facb-1359-4bc9-8a73-12332e396c9c + Digit Scroller + Digit Scroller + false + 0 + + + + + 12 + Digit Scroller + 11 + + 8.0 + + + + + + 454 + 8377 + 250 + 20 + + + 454.3884 + 8377.877 + + + + + + + + + + f44b92b0-3b5b-493a-86f4-fd7408c3daf3 + Bounds + + + + + Create a numeric domain which encompasses a list of numbers. + true + fa6f6ed3-8022-4333-9e94-6c5db08fe4eb + Bounds + Bounds + + + + + + 1472 + 8569 + 110 + 28 + + + 1530 + 8583 + + + + + + 1 + Numbers to include in Bounds + 6fee80bf-b69e-4deb-8ded-13a85bc7ece7 + Numbers + Numbers + false + a3febab5-0271-4176-b12a-837fcb0b83d6 + 1 + + + + + + 1474 + 8571 + 44 + 24 + + + 1496 + 8583 + + + + + + + + Numeric Domain between the lowest and highest numbers in {N} + 6f69003f-1e11-417d-8dce-8be904a546f9 + Domain + Domain + false + 0 + + + + + + 1542 + 8571 + 38 + 24 + + + 1561 + 8583 + + + + + + + + + + + + 825ea536-aebb-41e9-af32-8baeb2ecb590 + Deconstruct Domain + + + + + Deconstruct a numeric domain into its component parts. + true + 41f87425-df39-4e1f-bc61-a8f5c18e33a3 + Deconstruct Domain + Deconstruct Domain + + + + + + 1625 + 8541 + 92 + 44 + + + 1677 + 8563 + + + + + + Base domain + 21c2532b-843d-4f8b-ad74-ecdefdba10c2 + Domain + Domain + false + 6f69003f-1e11-417d-8dce-8be904a546f9 + 1 + + + + + + 1627 + 8543 + 38 + 40 + + + 1646 + 8563 + + + + + + + + Start of domain + 65ed304d-edc4-4a09-945e-c299554c1818 + Start + Start + false + 0 + + + + + + 1689 + 8543 + 26 + 20 + + + 1702 + 8553 + + + + + + + + End of domain + 089c5e76-4804-4fcf-8f98-119c1fd40e7b + End + End + false + 0 + + + + + + 1689 + 8563 + 26 + 20 + + + 1702 + 8573 + + + + + + + + + + + + 9df5e896-552d-4c8c-b9ca-4fc147ffa022 + Expression + + + + + Evaluate an expression + 2/M-acos(cos(x*M/(4)^N))/pi/M*2 + true + c19c7708-89b4-4d41-a5f6-2a51bc0d8618 + Expression + Expression + + + + + + 1766 + 8422 + 299 + 64 + + + 1919 + 8454 + + + + + + 3 + ba80fd98-91a1-4958-b6a7-a94e40e52bdb + ba80fd98-91a1-4958-b6a7-a94e40e52bdb + ba80fd98-91a1-4958-b6a7-a94e40e52bdb + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + Expression variable + 4f73ab90-d9c2-4189-96c3-f7ceb3560707 + Variable X + X + true + a3febab5-0271-4176-b12a-837fcb0b83d6 + 1 + + + + + + 1768 + 8424 + 13 + 20 + + + 1774.5 + 8434 + + + + + + + + Expression variable + 65f88199-8270-4b57-b0a1-ab7b5996f9f3 + Variable M + M + true + 089c5e76-4804-4fcf-8f98-119c1fd40e7b + 1 + + + + + + 1768 + 8444 + 13 + 20 + + + 1774.5 + 8454 + + + + + + + + Expression variable + bc07ff13-3e3a-4bd7-af78-bb649c9e89ee + Variable N + N + true + e7e40e74-e4a9-4cfa-8865-866414e101d5 + 1 + + + + + + 1768 + 8464 + 13 + 20 + + + 1774.5 + 8474 + + + + + + + + Result of expression + 23600005-afd8-49b3-9cdc-f94db3ed139f + Result + + false + 0 + + + + + + 2057 + 8424 + 6 + 60 + + + 2060 + 8454 + + + + + + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + a87d0fb1-539b-41ce-a26a-b4dcf5b1b5fd + Panel + + false + 1 + 23600005-afd8-49b3-9cdc-f94db3ed139f + 1 + Double click to edit panel content… + + + + + + 2109 + 8442 + 160 + 427 + + 0 + 0 + 0 + + 2109.659 + 8442.332 + + + + + + + 255;255;255;255 + + true + true + true + false + false + true + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + 97020dcf-606f-47a4-ab0d-e1e8f271fb8d + Panel + + false + 0 + a3febab5-0271-4176-b12a-837fcb0b83d6 + 1 + Double click to edit panel content… + + + + + + 1798 + 8514 + 160 + 427 + + 0 + 0 + 0 + + 1798.659 + 8514.332 + + + + + + + 255;255;255;255 + + true + true + true + false + false + true + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + 1c950b7d-6e97-42a7-be91-b200f898b18f + Panel + + false + 0 + 0 + acos(cos(x*M/(4)/1))/pi/M*2 +1/M-cos(x*M/4)/M*1 + +1/M-cos(x*M/(4)^N)/M +acos(cos(x*M/(4)^N))/pi/M*2 + +2/M-acos(cos(x*M/(4)^N))/pi/M*2 + + + + + + 2285 + 8562 + 160 + 100 + + 0 + 0 + 0 + + 2285.659 + 8562.332 + + + + + + + 255;255;255;255 + + true + true + true + false + false + true + + + + + + + + + 33bcf975-a0b2-4b54-99fd-585c893b9e88 + Digit Scroller + + + + + Numeric scroller for single numbers + e7e40e74-e4a9-4cfa-8865-866414e101d5 + Digit Scroller + Digit Scroller + false + 0 + + + + + 12 + Digit Scroller + 11 + + 3.0 + + + + + + 509 + 8636 + 250 + 20 + + + 509.7244 + 8636.291 + + + + + + + + + + ce46b74e-00c9-43c4-805a-193b69ea4a11 + Multiplication + + + + + Mathematical multiplication + true + 7589060f-5d73-4d28-9ae2-cdee4613db19 + Multiplication + Multiplication + + + + + + 818 + 8479 + 70 + 44 + + + 843 + 8501 + + + + + + 2 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + First item for multiplication + f1e2ab25-8f12-4966-beaf-aabe3350f631 + A + A + true + feacff2e-50e3-4537-ac1b-4450d7a3cae4 + 1 + + + + + + 820 + 8481 + 11 + 20 + + + 825.5 + 8491 + + + + + + + + Second item for multiplication + 5457775d-df24-4b87-9fa0-0f9070a5b613 + B + B + true + 1fc3214e-bc6b-438b-a612-257a7963060a + 1 + + + + + + 820 + 8501 + 11 + 20 + + + 825.5 + 8511 + + + + + + + + Result of multiplication + d0fd4455-ef6a-40ab-bf66-a1a06d0f359b + Result + Result + false + 0 + + + + + + 855 + 8481 + 31 + 40 + + + 870.5 + 8501 + + + + + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 2d3182bc-0ec5-416a-a889-562bebb78f4d + Relay + + false + d0fd4455-ef6a-40ab-bf66-a1a06d0f359b + 1 + + + + + + 907 + 8499 + 40 + 16 + + + 927 + 8507 + + + + + + + + + + ce46b74e-00c9-43c4-805a-193b69ea4a11 + Multiplication + + + + + Mathematical multiplication + true + 3739f329-0285-4b2e-ac4c-a8d100233f51 + Multiplication + Multiplication + + + + + + 773 + 8335 + 70 + 44 + + + 798 + 8357 + + + + + + 2 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + First item for multiplication + b748839d-75e4-4877-b212-7eddb6662943 + A + A + true + 6227facb-1359-4bc9-8a73-12332e396c9c + 1 + + + + + + 775 + 8337 + 11 + 20 + + + 780.5 + 8347 + + + + + + + + Second item for multiplication + 3541e88a-f4fd-4d36-87a1-cc0f6cdb1331 + B + B + true + 1fc3214e-bc6b-438b-a612-257a7963060a + 1 + + + + + + 775 + 8357 + 11 + 20 + + + 780.5 + 8367 + + + + + + + + Result of multiplication + 5ce031d5-550e-4710-ac8a-f97d9d9ec811 + Result + Result + false + 0 + + + + + + 810 + 8337 + 31 + 40 + + + 825.5 + 8357 + + + + + + + + + + + + + + 78fed580-851b-46fe-af2f-6519a9d378e0 + Power + + + + + Raise a value to a power. + true + f775f8ef-72f5-4450-9f33-f67c7addf15e + Power + Power + + + + + + 684 + 8432 + 85 + 44 + + + 724 + 8454 + + + + + + The item to be raised + 6ff9cadb-ce5e-4bbe-a18e-4c62289ec994 + A + A + false + 0 + + + + + + 686 + 8434 + 26 + 20 + + + 699 + 8444 + + + + + + 1 + + + + + 1 + {0} + + + + + Grasshopper.Kernel.Types.GH_String + false + 2 + + + + + + + + + + + The exponent + 6241507d-85d7-495b-8812-bb17ccd1f133 + B + B + false + 390d4b65-0f4c-4379-bea3-25ff8980556d + 1 + + + + + + 686 + 8454 + 26 + 20 + + + 699 + 8464 + + + + + + + + A raised to the B power + 1fc3214e-bc6b-438b-a612-257a7963060a + Result + Result + false + 0 + + + + + + 736 + 8434 + 31 + 40 + + + 751.5 + 8454 + + + + + + + + + + + + 9c007a04-d0d9-48e4-9da3-9ba142bc4d46 + Subtraction + + + + + Mathematical subtraction + true + ac482cf8-8042-478c-a153-b403db159440 + Subtraction + Subtraction + + + + + + 593 + 8555 + 85 + 44 + + + 633 + 8577 + + + + + + 2 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + First operand for subtraction + 16deb2d3-84bc-41f7-a6a0-152e9348f5f1 + A + A + true + e7e40e74-e4a9-4cfa-8865-866414e101d5 + 1 + + + + + + 595 + 8557 + 26 + 20 + + + 608 + 8567 + + + + + + + + Second operand for subtraction + 9ea16d4f-3008-444c-b245-36c78633a93b + B + B + true + 0 + + + + + + 595 + 8577 + 26 + 20 + + + 608 + 8587 + + + + + + 1 + + + + + 1 + {0} + + + + + Grasshopper.Kernel.Types.GH_String + false + 1 + + + + + + + + + + + Result of subtraction + 390d4b65-0f4c-4379-bea3-25ff8980556d + Result + Result + false + 0 + + + + + + 645 + 8557 + 31 + 40 + + + 660.5 + 8577 + + + + + + + + + + + + + + c552a431-af5b-46a9-a8a4-0fcbc27ef596 + Group + + + + + 1 + + 255;255;255;255 + + A group of Grasshopper objects + e4a3a123-a46a-4ffe-9866-096c857bfd95 + 1706b589-82a3-484e-8bb3-c9784fb4ea88 + eefae472-b11a-4e30-a3af-f2edf06a8f62 + 3 + a7e16223-7e7f-47a9-a6a4-1798355eced1 + Group + + + + + + + + + + + 9c85271f-89fa-4e9f-9f4a-d75802120ccc + Division + + + + + Mathematical division + true + 08f95884-61d8-41f8-9981-a49261f89170 + Division + Division + + + + + + 134 + 220 + 49 + 44 + + + 163 + 242 + + + + + + Item to divide (dividend) + 15f59732-d55b-4064-bfcf-d92a0d4a7554 + A + + false + f1fbb0e1-fe5e-40d2-841e-732012e40657 + 1 + + + + + + 136 + 222 + 15 + 20 + + + 143.5 + 232 + + + + + + + + Item to divide with (divisor) + 13d0d6f9-cb1f-40ca-910c-0316229f403f + B + + false + 0 + + + + + + 136 + 242 + 15 + 20 + + + 143.5 + 252 + + + + + + 1 + + + + + 1 + {0} + + + + + Grasshopper.Kernel.Types.GH_Integer + 2 + + + + + + + + + + + The result of the Division + f9f71a55-f522-4a2a-a443-1fc9358ef7f9 + Result + + false + 0 + + + + + + 175 + 222 + 6 + 40 + + + 178 + 242 + + + + + + + + + + + + 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 + Interpolate + + + + + Create an interpolated curve through a set of points. + 8efc9f10-8cb0-403b-8685-a3d111daf33a + Interpolate + Interpolate + + + + + + 546 + -273 + 225 + 84 + + + 719 + -231 + + + + + + 1 + Interpolation points + 8a719936-af83-4cbf-b0ed-2084e2c21b39 + Vertices + Vertices + false + 7f737f09-6227-4105-9ed2-0609a54e83ce + 1 + + + + + + 548 + -271 + 159 + 20 + + + 627.5 + -261 + + + + + + + + Curve degree + 83765e12-d3f7-43b5-8493-73ab54796ff6 + Degree + Degree + false + 0 + + + + + + 548 + -251 + 159 + 20 + + + 627.5 + -241 + + + + + + 1 + + + + + 1 + {0} + + + + + 3 + + + + + + + + + + + Periodic curve + 099b5b20-3e92-4e05-8202-860af9f51fd3 + Periodic + Periodic + false + 0 + + + + + + 548 + -231 + 159 + 20 + + + 627.5 + -221 + + + + + + 1 + + + + + 1 + {0} + + + + + false + + + + + + + + + + + Knot spacing (0=uniform, 1=chord, 2=sqrtchord) + 96546139-2197-41d8-a62f-50f7801e11f7 + KnotStyle + KnotStyle + false + 0 + + + + + + 548 + -211 + 159 + 20 + + + 627.5 + -201 + + + + + + 1 + + + + + 1 + {0} + + + + + 2 + + + + + + + + + + + Resulting nurbs curve + fe2c7fd3-a20d-49fe-8b1d-09361e90e45d + Curve + Curve + false + 0 + + + + + + 731 + -271 + 38 + 26 + + + 750 + -257.6667 + + + + + + + + Curve length + a2c92f41-aee7-4cf7-a313-7c3e8badc964 + Length + Length + false + 0 + + + + + + 731 + -245 + 38 + 27 + + + 750 + -231 + + + + + + + + Curve domain + a05c8f68-8b87-484d-9af1-b77025d32b4f + Domain + Domain + false + 0 + + + + + + 731 + -218 + 38 + 27 + + + 750 + -204.3333 + + + + + + + + + + + + f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a + DIFERENCE CURWATURE SHAPED GRAPH + + + + + + 7H0HXBNZ13dQpEpRUVAUgwVRuh2VlRaKhKKgYieQANGQxCQo2BYVe0NFRWzYsYIde8O2lsXe67qKbcVeVuW7dzITMhXyECDP9z7uTxfmZCZ3/ufcU+499xwjf0lccpJArCgFf/RYLFYd8NdcKkpOEIqHjRLI5EKJGJIiwGVIhn8M4Uew+4IEPL5ABj9SByWbYKRgf3jZGFzqH3j/WeSQVeHT7irCt8iS1xhGyASjhILRkG4C6AaRieApfAv0cqhAnhiVKhVAcm30i81QWphElsQTQUorcHX16tWl2F2RApEgTiHgYzShUFhq5S+IF4qFCvAWETKJVCBTCAVy7LHwr74/T4F8jxH4ZdfjpJnzp901MvUXyONkQqkCfXk4RJZ+GC9JgP32pnZ0UKCr65M9S1+unAH+fbIkD/z7eMmOx0t2Iz8gv+5eD/+dPxf5N+Px/EWqTxZlhcGfF6bDJyyGtzxZvk718+PMhY8zF6k+9njJJtXTlB9TPuTlkl3w+tKJuK/G7kWHhFI34Ye3oux7Z2YjH57N9HP2ZtUD0X/RK4x3IT+jb4R8o9oANqnGho4TG3bZZxCq8h3RL0XeHUUVeQKKD3YvGUklwijayi/CGIHyBX0ajn0ovAhnXV0Dg6KN+wAJg1NBjk0T+McMu+onSVZOoNrYFADCNhwIIyo/tdDLBlE8WYIA+aQdnGpfS0sH1QOSNVAiScJm0KSmMT3r9APijPsqY3iF9DXGfeKkXF6qJFmh/lmTQJkkWUr6cN3AIB+uMFbGk6FTQA+dWXVwH4VXDJWfS0XGjN5u6SOXC5JiRakBySKR+lTwiUiOjxfI4oXyRGd2P6XG8Org6g7/c2b7JYsUyTKBl1iQrJDxRM7siORYkTAuRJAaJRkhEHuJwdMssEf3K9M38MmG6FMMfJIViRIZdtksVBiXyBOI2BGyVImsVjAf0zKri1c0HebRj5tnME/4q9hkDG7GmpQN05Dme+qVKYvwWMg+FUz9AAdNlddwYMHrBsrrEKNaKH76gX3LdJ/Huj6nBuVtCshdZ3H+xIRPi3GjqoPwythPIlbwhGKlHnVEn2LgK5GhqhVjjIGfRCRJlmEaDv6fSlfZ+bAT4HPZknh2oIwnlydKpED3sSXKt6oV7I9ID/i7sM/LcQM+JoTNdHvl+v1F8mJA0kNJpTF3rj+83yoks/eOYVkX/jABpFooSTb2l3Oxu6l/3h95r23zQxoCUm2U9MS+G++Y6yzuljVbPN4ILBwBSR8l7TjjM+q7rU3Q0WeP5nW1tH8ASHVQ0ofrTwrWNCjm5jx7PiQ9essLQDJASasOdbC6/rNu4GG9WgUT7LK+A5IhSpLmcVdusejGSWs01ye49YTRgGSEkiZ9PsQyP6Ifnn+oq97lfYHrAMkYJU0/earv0b/MuFvTn8zv+uKrEyCZoCTxXpeXp19s52x+tCXG03H/N0AyRUm1D464Xsfzl3fOmwWPdroNuA5IdVHSzAmtf7y5ERuwyCzizccI24GAZIaSUj41sneSZoWsnTDLcNnXGf0ByRwl/XjSqtvFN5167fOMdBm5OuYjIFmgpJ8HfFYMXLTWP9u49PLa2+lGgGSJkpo3X3F+TsfHQfNXni3cGfh9ISDVQ0lLQ15xj23pyl2w16npyoG9nQGpPkp6s7Zu0/wHluE7Y3rz79u2KASkBijJ3vi4k3vIO5+CqB/H5tdp1BWQrFBSk8HSFfW7vA1epL/fdKR58BJAaoiSHrz8uHFOeqOg7cdHPLXcumwTIDVCScVtOKf/zejpd3CZj1vc+M+PAckaJf0+J8vo7NufAdOdr+b9sX5iIiDZoKT4hpHf9KaOC5imt08mtg+ZDkiNUVJ4VsGklNphPmuGJdR/ZZT+LyA1QUlnkjt0fD8hLfTQg/W3rxulTgQkW5R0qfPC0QtOFPXKr7/xIPv0xHaA1BQlZU25tu/7iiSfbe/szfnibChRzbDpUCicWt86i5PxntP+BNfrFSDZoaQeV5pfW7jyqM/6cVsnJY0YuxmQmmPv9SB3wMYpncInxj+/x2JlxgISGyWtFCZl7l7ryllfJ/vWoV/99hoF+w/DaRB7qJmDxXIFTxwnCEwWqpTZZNmfdW4frRV0dG/onEfHePoUasMoTBg3Qv0yy8RHoZAJY5MVSg2Pqm5MRelpTUX9Vo0qqkNUwZIfwTf9cnu+6OKz74pCTUVJdzfLMzBM4uTddO40Y9LLwWoqakvepe2T3jwM2RlrGfPGrKelmoqa2Dfs09kNKQGbJDOCpvumnlBTUU9f71/1LjDYd4ZT23msIPZTNRW1K+/4r6A9A7hz7GaVnF9yzEJNRfWNanrGrn+pz9KTHXOMo35+VFNRUT0aJ01t9Sp8Vpjex8lmId/VVNT4QIVk+HqPwIO1rqY/rHv0g5qKWuYUZhfw79CwHfJlyza2m7hDTUV9z0rx3xzMCtzZaJbX88l936upqIXTOR2LbMcGrOm2lvOscFdLNRVV8nu9en9ODQ1aFtR8d5RL289qKsoktPPnyytaBOX1utVzaKtrF9VUVFHE+3yX56GcTS3X2Jl5yF3VVNRMp7WpthHcwIzUbNudV/ocUFNR+5YWGtoayrgb+t+wM7xeOEBNRbXdfefsu0+vQmavfucW2d86U01F1fLauWDM/gnhi79092o/vfSamoo68TrifROLdiFLnVesMNkYsE1NRX3K6xdgkucdsr+lW72EPj23qamou8PYwgPX+wQtt7/a58awg6vUVNTM4T5fZ19YFbwj9UODnKehKWoqivVXQpeIPSW+Ga3evR0yu8dNNRXFihzw/Ni1tb12Xm28v86sO/XVVFSfzl5ZDSKdfHYPntHLcd6bdDUVNa3xaNvsXRdCZo3lWRe+Hs5WU1H9kof5dShMDdll6JVv9VHWUk1FcS/ZnF5RUC9g5bHf4xvual+qpqI+eizkeL4rCdrll3Pg2pBWSWoqqs4/M5J9BswMmt7bZ9BFSZC3mora+iF8Q5evrfz3mOx4f3ziQpmaimr5+Y/X3vbHA5cbbGVPidZvAEj2KMmz3SGum1+XgB1ngjv7jNg5D5BaoKQRAR59DXat8p1oNmX2hPvnoAvQEht8VPrgLcv1A5bGft5gfXBMT0BqhZIO279dHDPNxmfqmcxbXtsPHwWk1igpzTFjc0u7+b4H2x6IWjLwsQ0gOaCkCdw9A88k5QbsS+qybG7/5taA1AYludxlL+V/9eLM6rLCult/OfwuR2yE/a+YLxvVtlf2RkuHF4U9ZwJSW5S0qF5pWGf+uNAVr1p8uCsP7Q1I7VDSWpf8hbdcZ3jPYUdNjSicdweQnFCS3VqvP84nJQbsXrv99gpWJz9AckZJm/R6tzrLjfSbeiV7mGEP03OA5IKSTi+wNPjt3cPQDetWPAq7ePgwILliU2/qmtN1zd722tDb1TK6VwtbQHJDSf827rRuaPto78Orv/zFPecsASR3lPTl69ONF5uWBE39TXw5o8WVsYDkgZL+cD7Z6HztuaFHZ3yyf2VUfxkgtUdJ66d0cV456LbvTjuF5R9216CB7YCSno3ZN+n+RXmvrVzr4LP8Mb6A1BElLe8mfdT5TmrAbpHRvnnPdroBUidMs11zaDH05ODAufV2ng/5vCAAkDqjJHmtZOuwZpa9Fuz4uGP4h309SEavC4vG6E3Z+Dzax+Fc0MQXZ2abWIw314LRgwaB0ugd2TD7t9yfeb32HOsRdfagvD7uuwzCkpNiBTK81TNEH0Vlz9zQT8rZPHacRCRSBn/QusWLJDyFUJzAlkqEYgVbjDxYTvn6RFNHNSTS+2PXw5HxKJdGkFDQIBLY4TgBC+XKxsdLG4+/3TVs/58TEkOdiqaYKsmk4I8Apyp29QUf5COX4ERnpbXjsCI6nGKxgnxZrGM+dSKEoyTIc6DKYVk6c8bObH/KPAJGWnKFQKzw5yl4zFGnga8MAJLIUmMY+UP6ETxFIvbqtce6j9cPVgiSWKyy1SkDJcLwM1jsymJleKPiUJtOHA4LNmwW/zzPneN8ape7rP4QHPbGfsmyUTwYyOIlAjoHBjQS0Z0ziidK5ikEbEWigB2HPQCKBA/5VcDmKcCPcqkgThgvFPDZUp4MfKdCIHM1CBLy+QKxCi9KaSF6PzQjJglMGamCrGY7cgCAgNXfAavTfAmsZjsD6m+nTJHRDxOKpclILGyIgkwFTT0/5PUVErYAxYjyBce9fdHudeaa4NmDTNv3XfNxIl4bIM8gvRx6ubzJQPQBKzkZvAFCUm90MpQQJ0NRWw4rrScOIb1yEGodgckCG2gRpbTwJUlA8MpFbUFKyzyvkB4h267fOGCd1UyGFwvVc8liUUYqD71f/eeLiutmB0yrnebao9+03VpAD0gQA3o5XqfqKtGTJCtQATNggK9hBKJrVdCBiTZWMZ4SLttBC+8t9ojw3mPxuEnA9QGReCFDnkMWMuVlEkxUOLAqjsMjZ1SKegAccog4RLtyWEU98TjolYODtWqqs0cB5SeRMSHBf2JkwPWbxV0d/FvXde+KXmmuT6oEEfeeTIgAucEhUqviiMQJZXEiRtk43/9madCG46GbeaJ/Cq2eeOsIIiVeTIhEeJ1CbR2MailtnevzWPsfsq8hmQOu3XLL3WyFe6+6/sJRQr6AjShSsrkzpAG2LXobZtvABAGKamQyT8QWCcQJikS2XJAAd4XkFTJuxPidfogk9HHUCsJaBFSQe3cA6xMqE5fhBKieGpk4C5WJ4yOjoXzJniuSp91+VjcofdqRzXODC3/proErAfhYQnxKfCjE7hFQ0dJulAaOzl+ur/RaoTeEyQUlREUp9WIcGivCVpg8u9htzLSNBIjg61BAhFwuDyJijKUFiIo8mSACIlTDDjG8iQ05osYpTGPScco6UioSKlRcgvpyhFA8giaC+aOD/sqxzYMPzvn+vNHImQPw7AqB95HZpbysbU0J+ZHRlYkfJV1qhB+GsRKJSMBTKUAWybXBFIuBT1ycQC5XfzylroEKD25oKUNMas6suMczyL35wGdNhzp/c/i9juBjS8ShIbMGu65t3kQ4o+pkMJUVM3JF1AnJ09EQlhZRPHECYCzq+iCSy68AUnuaCnJXhszymRx6c/qiA70e45AyQh9KxqqMUhVoIZqFFi2gWUhekIZotSyLOGB0IagwXMRggLDrij2VDJg6rSogQyY/LWRg8qNuUh0WjZu0auzi6/8Uj/DL3db256U/21+nMM94/8iYAd82tAtEQGgEMmGc0m+qmHdEtO6GoTypVChOwJCCr6NFZ+JJB/0GxvcPhs5dlTncMTyocyUtJYzo2MaAOTMplo4GZjtzOg00wphjQMecWMepLbP1j3jviW5ls/n87Ua417XwF8RJAG6y5DgF20cWR3Zj69CwqXsfAXgFwSjlqk0sTy5gS0U8scCZLePxhcmAe2I++JsgUsXjcD1HzObJ4iq2akPcYmIcN4lhxA9UNGoAtvAYByB+gcq9ZQH39pifRu5tU/DdbBBO+iljKOjmlg2M8r0f7E17aftuYMD+4e0zOOGF93DvXZvqXZGL5YkmMUSrpGiy4GIDBCoHOA1SIlA5bRGgNFqKsPVVyRAiKkrclLEnJVBr/9TLveueEnCgec+GbeTLmuH1KfK0CPg0sj5Vo2lbnx5zQnGJptKnUhcOi8XRcGmij3I+VQgT/z2HThyZdd9/ZuaN9hNGm37BOy/KJ5GdF/R6VWAR48+EBVFGyluUYPuoKxRH8BcqG55Y3haFhxIUo4LTDfQ/5vltf7tC8bLk8yO8wkceSVb4ystVAQnbjwmSNF9Mo2NRIUmjuy0Yn9qs26+A+X07zWItG7AEL/jhYP6EjwLeSTRZmdemwbWBnyQJwA8mHpx88OaUiilp4mY/3VDIc7CMVlFPBeiUjOEAunwA3SMidCzgx+QLNVLNpsHwU0onjvLllj2v9+vU9r7hm63PtL8ZySOsePaD95HlRnm5PG1M3IGupDaWwnUFiE2xD8UeU3Q7BBuNtHHdcORjDOi84o9oXHdgw/A93qPudLj6KJugagTyZBF5xQG7rvV55YwC8JUKgAIXBAB0XhnRzauRR4VOwrDNfvuOhIuePx30FvdGpr2TwbvAFBxpIrUzW8H4oZW/UA6sXCrc0RIooN5KdcECCejzJsBvoEScmD5DOz4S7DgiCXvjSIlMEa6en0QhscT0lwpKrOppBIbFtAGqbhRgWCM/+Jfg2g5vw0kaP+qUGZapHizmC1Kwx8H/o6w0pmPlq35hXH23b36L1l4IWB0ePBAHlT4XsI6sHPVpGGbvJxPA3UkeWwQ+zo4VKEYLBGK2YrQEjfYqpiqJGU7kIZHYhlzVwHPNiEc9V3eS5wpmgLtAI/VoCb+cDd5DplC+J+VbtW28/Iney9WcOYMnbflltssGL5ORyN3Ue0M4Ynn6krj5pAXvVQrBiqAywzlAXxYJNNqGNEfAEoCQhx6qp3t+67jb5anvpsv9eH3yPWfjN0k44F5qoNRI5cFEdIm1ABOQGgaYMvgamhWlUCmXSClRSkxKDepzf4/ftqPOtaaMnNayotNE+ybFBZWRfGBS2MQJJXVFoEH1kAmdHjq3jMf96WkdOGmDneHLlmPxi4lGCBiR/tyKR92+eF2EAgliynjwK58dm6o+YZ3ZCnRhD8biys0l1/EVUlbEnEvqcZOX9jBKBTHOAUrLaA3A+B5VuO0NOGC0ugqUVlSji9uieg7jTEkwHed20yQA79gheons2CkvV7OiOgYA+rr6FAyxKWYgG0QTuas12k6yQQDC5MKRL5Qp19faUgL1e6I1L5f7njNraVCD3W0jTPEqyx+7mayyykjlARZz9PAH24ODA9Kf5A4wL+myQQuARTMCBiSqRjaXlIvr8DMdWHR/SnoSN5wwZ5UygEF4qZzX1KnxV3hnjqUWcA4YBn2bbr/Hsn6wWCGQAWZwUqQy4KqqPauWSzTegecijyU78Oj18thKzPTVAlsLcpjYmphT03uGZUl0JT21bBSjD0x8/r5Vcdjs+1+7NF7cb3GNGUWWK6qP8qmW/fJdkemFGkVTFo1R7Ne81ojMHZa++1eL3nYfbxSEX9lVZQMqJa3iiRX79VS34vIG4wQy+AB2PE+Z2COSiBPYQoUcs4joF6F0OTuOJwZOPlueLJWKYLZhrAQQhViGVLIY3goNqhg5YCscAz6CXHRl+yVCvYosiA8KG1KWpgiXfRWSBLh0pYoewGdgBJEk4QsqGEAQDzswwkZeECd8oKIrCzBhbzNguL4fhYXOh2H3pqpIabQ99CE52c2CO+nFji2pB6+v0OImDXEyVVI1ZQCEYjbTLel5AyfZcjPJRDPlEbTAySM7Hq74IpihgIGPUkJmbhAxt/++3Zz5+gF/HJ05KaZy+rySigKicmwTEypAbnRIYWuS6NExOJ4dJUsWOCOzGM8toVxdLzi6u7qzJ7A9XN2p/SvDLYKcTcscgtO3HbZa7djxK375NEz1IPLyqRqtKljHZmRdUa5O5IPoaWRlmylTXYFJgFwrSyZn8J8W3J9YO8P2SK+tmZeO9OG9wm+dVm/KK9waQLRMEBVTWG6IltFoX8kBn/WhETDuntc6WbWx9Ft5y7jw1qoi/LK/IfpgEjQqQlWAgygbWnCAstFoo6mN0kqVWXBN0OGnLMms3ekANzf/xP3AtmlztZFYrgWE2IwIgTmN+m11WTR+G8ennVOp1zWf3Ad2m66sfNsBv9aHxBZSiQhYdLLPZkSDcydsPUMM82Cx+/mowVMkyiTJCYllK+WarLcSD4DSjpa8MqlGrKhfDByhnG1oWmwu0U0qAvhGbCW5SUaYeqzYxoFV2bDKyTSKeXe5cdTmlIC5+skng/fenIVfvekHi7uALySv3qgo5blQRMVYSRcKORmzjS5XOwvIrvc2jVyousrpyxckyATU/uXFHHMHo9ELObPOrMz8+9eHdnhnyR+5kewsode1PTvh+5dsZXr/nK017SypJFMDRwkOWSjhYylblIzYumCH6+FuBZy9w/9KOxDz4m+8rGIPIMuqilIVzIhgZAarZphBSodVZ0XtcljhGiKWKID54sXBE5aO7l4gZAWRRZIz28MrLlEi4zuz23vJR8oUyC/U3up0O5Pp41YO9J963uNxYkbpabxdg18QqUilyKVQI1UFs/K3MDErZosuzBz4KM0OZik3yiGzxMmyWDnDDMr4YpXe47eSXpOf2IpfTLa7U5lQubKhgzuqyG0AO4qI7DjmwenbeptmXiqqyRm8ra55nd2PDLsUOq/PuVBr9919ajbsBQAc24oCcIsCAKhaNPJEMVOGpDxRAjB6h2ly5zAHzvql9QZ8NX1YQjBlyI0Upkx5vSoAKN7CAMDmMVswR9OMReNo/mcnzukQ1MqJc2LNEK2eOCceZ9fGifN8mhPnA5s4c1Jf52E8MKfjgcY53UYMLNBqTjexRosWlwaJqlQLjHi0nYkR47ZjjLCgYwQ7oeXe6XNm+C48uZW79Nv+sfjX7SMQ8VKpGUEIK+g8gwY+7NFCmYAtg09CywpR4k7MAKIYCAl3PXa5mBPzyCqbMw8wPzbiFNyyBwygKLfA8h6BYW5Jh7lx5JJRG5KH++e9+Srowt6Ejx0t0Jg1FPwjE/JEFd+haFIW7YZLBeJALjsJfUbFQlpinSHGYZF3AAgf0GA5sGQ9ugNQRMqDAC5WxDpSaMvkijZTFr6Csx8uqfCF8fHJcgE7LpEnFgtElC9+26XTk5P3srwP5Q69NMYh4Bx+vclf+QTyehNG0LaRyweQPIKQpFF5nfkwL2Z9jXiddYBylahKin358qVUk6iZjWcMXOtKFvFk7ERhQqII/KVWC+eH/fxz+omJoRt//FxkO+3XSXwAF4k+hBzAqShVwR1vRu6UrNMB7pSWsko1Caabc5KEcrkQ+IJxODZhKoSSOZJ1W1fe2Lo6ZHfdia/s0p8dwjNH+USK/I0ySlUwJ2cdE3MidIE5kD+ahNddfJLgVyI8AcMBcbZMII5LVW4AebElUt5IuF/kgfxW9gnqGdU7+66smaMtd96M339Kd3RPxB/pj1J7PvlIP45aFcxjMTIvf21NR9tlm3qPcJt6+uVw0KuMg/JEoThVDFwnwD7ALrEEnmrzAD+JJKMRIvzVHZKSeCnKC9RLW6E3l998/sV3zjb7L0tlpQmENLNEqrQN9HJVcC5mLRPnLGucc/AmPkvDdZL6ZeskjIpwJZfTO8DewL9g9953V0euq4NXhLQ+UxlF2xxxd0V9COinniW5VW6IIkT91HosGj+1sf7YyBMHP4YfNcr726HzWGfcW5n7JcsVkiQ2WvUd76ZCTOlOA7XxEQFJl6OZB/AZyGZ2gkCSJFDIUtlS5QPlFsHiOFEyXxAs7iMQo6cH6J1XYiVMprGS+ECgm8Mq31KJTBEgFCkEqoLXFZ4NbTmsoo0A+yyqXPkMuFe2kXa3hjKGCsSwUUgweCrk0RvV+j3vzAuHwKl5oi31G3RYgBdL7KlksVRRqjnZBZ5IPgaR86bSIxFOHJZ0o0b5qA2j1FwY5OiZjK4ITDPP7K6PGr0L3r/ed0j7loTo5z+awgSsiDpCG6e3GbEq2lCtOhfrO2GIhlzwQ9DZuZ9zv9RIgHp82EVfd9/SOohtI1pVIywwwD4K/19X3e3B38HCKkzWp1NjOhpuEwv0Vlu47d6SKdwuaV7V4fbajU3kj2bVD1o6Z/XfJi8PL9WBcNuyJZPzIm2hAzFDfn5+NYTbxcs5R+/FNA9Y9PfjAoHC6aVOhNtF9kzccbfXAe5US7h948saS97TN36TjFat+H38/QidCLcz2IxrIc11gDmsmgy3i2c+t1jLfua34/vZl6OGt5+pU+F2RHPGcNuupoM2HQq3s4I9T99s0cl3R1+LcPdjQ0fUcLhtacdosZrVNOeqNNyefbH16043jP3Wvmtf18jCPF8nwm3Eh6ANt4EiRP3UBqz/D8JtYguJGg63c9oyhdvejtUTbg/gm7r1GOIVPLnZ3QGtG+/YpfVwW8vVRJGC2G2ZQshHjlUVbu8r8pwsuvw0cJOog4Tb7p+hWg+3iTpCC1gBOWLAKqfN/6lw24pOjelouE3sbFNt4XbiHqZw++yuqg63TaZvvJYxoL9fZvjCXy3G6a3WgXA7eg+T82K0RwdihgcPHlRDuN0+y3F9195twucltK99rtPrAzoRbhfsZuJO4m4d4E61hNs3s7i2O/JWBWe+upv6JMreVCfCbRtG5gBtUvPMYdVkuG0SvLPFtf4mPplpLR7k3/zVS6fC7ZRdTMxzrBnm6Wa4fbfrWstfBx38JrrP2dnKotmWGg63b+1k4tz0nTXNuSoNty2cWtp7tooOmTXz4PweqfJNOhFuIz4EbbgNFCHqpzZk/X8QbhN7L9ZwuB2zjynczt9bPeG2r5PfkuF9UnvNXRZz9ejDxm+0Hm4TU8G1EEJG7GMKIVn7qircfr7gfgOFIqrXrpvT/7XY+9t9rYfbRB2hBayAHDFgFbP3/1S43YhOjfn8GiV/rZgQvCuh+a8IWcwsQlyrarNEUVoUfg1dWcpm/jIeUGN9wEtI2ISnVPCINLErrAFXEjdCwFfdxDhSiggc/wENDkm4ewBBmuRLVWEGFq50I6krpgYC9soTU1C/l40IqaoKonGk9GqFwPnl1nj+yHyhX85Ax7BUVoeOjODoVA8iWJjREiJqRTU1z8IkHXeN1FizSF6SVAS9EICaXKhIxaKzQNpatQW/vf2ruFNd/4X1Zb8av8z8gxE9Q3/lYynWOFCCtv0TpMSnGxNEQOh0wGNEZFyDknDmkXE8EVI/n76McGurqfEtzs8L2dRrRlD/wtaWzIKNPJDCkUculyfYxN7SWhDsDFcmrpW46ALXhCyVVbBm0ViF5G+HOuzMiQpZ+jN68IzuK6fjHUZ/YYJQwY6Mk8HDchp0120ZlpyEnKeTo7cialAuRMrmM51vJHKKUSgIw6vQqS+6CWuEPQVexGy4AfIFqqNrsCKJAXCO44UpZV9RB3YtUBWFNkWELzle7SNoLXYMsnjsG1lKzlW052YrDuuYE5C5MX5kmRvYqxWn0wEnLJKxoWO2X5sLbp6TH3JzAla/U3g2xreqMOsjSOJJ2cqzovKK981to7wP5aqyjyCPLRaMhpcQIVAeGq6QtSO2emcYIYndeHJFcYXpC/MArpeozH4EjFLmalRYzhzhNgxRZHA41M0S98uSAgdeCNw04dHaGVknH2ixoj+x630lVV0MgCcHwlOXStWlAFUXMU8jG26mHA/TQXKTFp3EZwOlgTs/h9zl+7gZ4c84K+8nn3FGr5eHT8TBqy8tL1zkrhu1KqL3tyMNtIAPixEfID41YQqMkCo9o5RA9GAR/2hWac4siidLECiYmPZ5SO/t+/tYhezvzxkyd94HfDFNA+X9ZKah17XtVkGuxMxl4oqljnJFo2U5C0ThSQV8VPlSMiakd0mv85/ucDNFIX23t1uMP/1jEIrcT2YMel3bjLF0RdUJXI8jdY6OcOOwHOdpVpjDVoUBrIUaJxKWh8f38XqmYedOcef8/JTA6XblHT4C8FM+gBwBYISqQCR/LhMiXedidr0xi8au5y8I+Tioe7fgqR9/KoxO3sGXSUe/seJdeHqoirvjDTh7dKIwLpEtEMdJkqQ8uRx2CmGLwAyCfj5q/isW8LP+SugSsafEN6PVu7dDZve4STVeskwqr2tQ0p09By3pTmrT4w3r9cyubCW0pqirAY29ULlKCwv0KkdC+eKil3tN7PtGha9SjM4PbzfqMF746BwbFaGajT+sdm0JMXT3pehmw26HYKiRxuqBxQXKsi+4MsQiyWiBXNkjAO6Fw5/LfEr22DDqlt9Ee16jVWdgexMEMBsqwOBmBAAMncxN6CazzhTaIEqTlgpt/IcdfGgXgIEY5s5iKrSROAvD3FbnMSfWq9cS5mb631fsDQv0WfJ51e/Wo1P/qmzrbJg5vJIOc3eAuftKDPOmdJiH7Qu4dI5V6Jc2sHF34cte9fChfSjcb5SKhHFIlUmy8aJD2jYU+GDAJVCAO0XsJNxTKmSbpjUebZu960LIrLE868LXw9lMwyLvoOHpFVUbcD1pBYBzNuVOGUyvXH7KTFWVFfNWMRtugjSQw/ESfpMhcjmYj8nAAP7ZuXpHjf0P/GMdaubUoAij69HQTZWt10gyYqS8Tv9g5XiQ4cKPMAXLzQKEMqDnhcBNRlaI8Pyi5I+rYbpgwt5FAdkLGv7ddtQQfIN5PR/y7PAhzQ49wuxo9vb4vSUOC4KXj0gcsX3kpjWVLSMK2JkG2enuQxV9wH2GFafUQNIrByS7SNiqla8RSknLHMctePgifOOc1zPfHhXji1Pp+ZJR8i0XpT+cTzY6X3tu6NEZn+xfGdVfpgWUgFgzoJSx/BQqgypZYvItbJRJCtAZrQBARI1Yo20DYfdrRGJg20BSj6cgFwQpVJ82o9On2QWPBkx7+jX4QMGeAztGPOYSqoTzxAIRuWEgnRp19GFL4R1q6QlssUQhULacUAhS0JaM1G4u95LN6RUF9QJWHvs9vuGu9qUUQyFhy6JCFVmT7QO5CC+qF8onCKfPjkQHE5um3MnDkjZEX+fTrvAb9ZULZFFg+NjXtvaXJMeKBDByjBuBtIPgCxXou4NZB1cHnqRtIPBRtT5MXEx04LBKYgAfPf1YadP8TEJ5sgShmCuIxwmFqfJyH5jsqX7dWHk9SiJVv0pc6XXgJL2JOWWBgBghk0hhrWTlqAyxUSkzTOElbOPYFG7SBov5sKqyan4bw4twyULtEmK/ROh+tNJIwhRSIU/kBzuEqFhjEKkAQWKS6nf9/jKetExzKEXVjk5Udcbd+uixkOP5riRol1/OgWtDWiVpyd0iyr8WXNyiWCYXNyIWUw/NdR5zYs9ZLWFObDmtBcwzApkwtwzEMGfTYe6xrs+pQXmbAnLXWZw/MeETvl9SnUCZJFmKx7wuhrmvRL0Pqh7drKZwFnzYCfC50AwGynhyeaJECnQEyhB5rWB/DLB+ycP8OhSmhuwy9Mq3+ihrCUiYK0iUX0CqhZKIMwaQarOomwkDkj5KKu3e5u6769Y+W+o/n1rr6UUro2D/YTjOQI1KXbzoQ/iGLl9b+e8x2fH++MSFMgoIyaaEwGMWxmMlu+zp2KVDFtSz3SGum1+XgB1ngjv7jNg5T+sWlDR/CrvfG7KEt8E3XzriUd9//nSpGQta1JrDKpgOS5VWmQW905ozeef0/w4L2oJOVHVGm48I8OhrsGuV70SzKbMn3D/XUEvanCj/WtDm3jOZtDlrJqbNW+o85tyo9MFblusHLI39vMH64JieurswF5HChHnRaAzzVnSYf48ddKaDycbQ9Ydr/2Ql/lxIVVW94jsbdqECnhym4SHrzcqGWcBOom36KrZ3cdj+7eKYaTY+U89k3vLafvioJnXeK5q1DttC2wLkCqj2LkqcgGfSRLN2tKpmd0lKACjf7OTURZzo0XvDZ3b4O3BEHp/gDOtSZmEETJCGAJX4UKyzw5QOAJBmvS/Lre/fSa/xuzl+Uv+9n7wT86/Nqdn6/rDhIQKAEdVGA2wZDQBA51ZrurmlowuwaY4Zm1vazfc92PZA1JKBj22qYQEWSkzXbLoF2CIw4aYv/d8CLMqf7SNa5S4YNZGTO8j/4Mt9yX20sAC7qF5pWGf+uNAVr1p8uCsP7a2FpBzHbLqlxQJAvbW0qhdgZ9k+DPf8bSdny4ZJDZMGy220sABLzOTQAkpArBlQ6rq0ChdgiYvuNboAm+GMSgzlAux0FwQpVJ860OlTnfEPJ3D3DDyTlBuwL6nLsrn9m1tXxD+kCB6r3j2cvoPJPQzagUHeRuchH9H/ivmyUW17ZW+0dHhR2HOmdiBPTEoN6nN/j9+2o861poyc1lIba1oJjGtaCRjkjjoPOdFoaAdyoptXScil8DDAEjrIoRuXvwSDvC0d5A3j9+dlnzrHWb71yZjzTcfl4LOGOClSkYRP0eyyDg3CDugdWNyjTNmWJ/GQRH20/3sFM7kW9nk5bsDHhLCZbq9cv79IXkw5NHJCE0qo6NEs2OfiMNTOVO4Z3DxzP/wfxkMC5UAo3+0vqwDr8N2XA/ZOG/D5exfOMi3GQ1o+MAqT3YogQJTt52zgfvRhjRpXduojAKKB1MHgC2C6n0QuhHQ2GJ9QxAaSopITNk8GG9xLkoRxlCj+afCulsWakIDsGVNONeicgJcQY9X3kLv1lZG0furKEZEYBrgeHdKJ1orkztKYVFcwQ9EFnWj8MnYpEnkKdhJvhICdLEXWQWJ5sC4QbVu/3NrDWq/cIg9ZarkxYdasrZaEyjPoYykqz2AUrWfMuqDC7k/FvSxXRNhJOcQaAmeP9aDFjhgKiEBSgrXM+VBc+pw+IdnPZdF222fjdyv+o463WgDLnREsIOqo/WnHorE//ZrXGpG5w9J3/2rR2+7jjfC5/RYcuI0B84XpVuPoCnXt11PdilkiIJrgRwAGTA5FW9nzRBJxAoi95OjqjCu+1b2cHceDiaRsebIURByAQ7ESQAT3Kx+ZLIa3wj0XsapXvfKiK9svEXYCR/g7KGyIWpttYBkUkgR4WE09Q1UxWsJOgov4FbONpTF3rj+83yoks/eOYVkX/jBhhI18jJnwgYo6HLB6zDG0kBj5GDOwlSlHNbKV9cpsJTogypcd3p5jEXBjedA2ru3om9sL62nRWBI1UCWNJVJqDSIUTTUl4FKQzTGNjGULnDyi+30QMxQwugjYS/Hj84jxV0J3XA8/EN3DK6pmO4YCVM4eZUIFyI2OVh0q7/hSx+B4dpQMloaCsxjPLaFcXS8glaQmwApS1K2H+y2YPWZaQV/u/tyuP9Z+LrqKY5lJmOpBJLap06qCdY6MrLt1REfdGablpGYRSDdUYBKwOnnCeKjeGdbok89d9jBY+SF44j3x/thj0wkbY8jzyEpIeVnbTIElGxEtE0TFFJYbomU0OunkEAWNFUBklEBpFzUApnFp7SLXdn9wNmVOYGXOekWIINEHk8M0jFAV4CDKhhYcoGw0ak/cRmmlyiy4Juj0mrcr76RFUvCcWg9mp3SwXIQPUVTL/uQQpYxUFQg5MiIE5jTqtzmxaPy2c8t43J+e1oGTNtgZvmw59gjeG+UCH40d6c+t+MKBr+pgGMxvwDxhECHGg1+B35XKBtjKFMo2xkDZovIKfS/UdRtfIcdJNvaXc7G7qX/eH3mvbfNDGlKPm+xFYxRNwsDP6BExkqvkDT3nT5otKyADUMOAutrNzh6e3Rr4B21e+E9f3uGplwh1LuDdFHUukMvleUpE/aeF819sCJCUSgjZsHPQJ40Of9sgAGFy4cgXypQdmKmN7c3Ny5/ONpsYkNaAN7Cg5Mlu/LT0x24mT8syUnmAebh/bBf+97JeK5frbdP7dT5eC4ClfWICDEhUjThRSpsBP9OBRfeHfCacqcSLKcJLBq0qSz+gcIh9FzijobjRmMknTeojZ58BMzgpUplAVQYLcWp9fCMdo9tWzgEmsDYpf8bRlFO2AenmI5aZtFRM1AJrH31kYm3GR93xjzM0O0hel6umzymZaWVs6Nwm28F/UeNp2/u2OYRvaqHPpSqyqbyq9SOWrqhOyveBvCDGt67IFEMNozOLxjD6XrO+P6rLLu9tg4bazOp3GJ/oaQW3DhRw6RNWthbAWmsCDU5Pu/lJkgDkyg0M5DH8sscgwWHZoWk+EJIKWcQn9t14x1xncbes2eLxRmDhWP6ASeyg/JQGiwru5wHoxVQJSTFA+I/9UdnD1D5cNVDgcgNMzITehkTMdsQOAgP0EMOK/KTUaXK4Gi0ZLeBTG5FryTOsbrjzQvct6d5mf7ZHO7yOQWqqUBw1R6+Xp2MyA9q1C4n8LWjR83CP84M9O2hhZYINYdanyurJaovAXNkl4dZq7FetbsVJxHJBXDIiHjDLgXp1c/R9R9bPXk6+Kw9HBg9OW9IDh6Vp2XPJ4S+OqG2VwHZGYRtMBdstFwQ2VCW40KmE8+YtP3h0loROff82xPXq7xxi4SGpiBcnYIcli0QUuoDOYXbB7hPD+6DMCsWjeCIhXynko4Uw/xCEKbKKa4IdZ3xGfbe1CTr67NG8rpb2DxjGSVUgSY2sgZcsPUe3+ZYD0T1b2bnfCBo1pIyCAh77h0oSIkadWHPp5J9br/QKWDT7xLoBH58H491n5EFk91l5ubzpPOnzIZb5Ef3w/ENd9S7vC1ynBZchBiKXTuUywM14y3O07nMFkbNVISfDiRoULersutOPp6WyuAG7zhi2vdZz1nd82XNUQKi3dPBUbc9iiBaQJAa0pGer1cHCBmoUlSoVqOPQUu1cjWsIcGkFIlf4GblrYNAw6OQmCGSESnzwT2UVdyPEQELGgkeAoDpVyWpKLhMNU2UmSWVrMbmis6CEKs0MFrgBs0CjhTAbZTkU6CsgtgoTfT51gZDQEIerWzN6bU+euPpG/FdCRQXkrSg2JpDLVQEFIuK0UAARRw2VK0vX82+I2lI7+TfE3DUtpDylnGFKeep6BoPcTechn37yVN+jf5lxt6Y/md/1xVcn7UA+9odDmMe9caGH+usdithsXawFyG9dYYI86woGuTsd5BqfnLTAIK+Gk5PEaEzt5CTRPVM7Ofnh+pOCNQ2KuTnPng9Jj97yQu3k5KpDHayu/6wbeFivVsEEu6zvaicnpXnclVssunHSGs31CW49YTQg1WFRuyuAZICSiIICSIYoKauZ2P3B5MSgaTZbXfSeXntAOooJhZdS+sR7XV6efrGds/nRlhhPx/3ftHAU04OO/y1CCl3u7zAJ2KjPj73xwhLP/wbKxX4/kUQO3UVkA6fi9UpbBAjhAcxEeGJR+QAkpIRxpkYHgWofHHG9jucv75w3Cx7tdBtwvdwhksCh+pAGrUa6ngST7BbV2jXMOux6QqO1a1vlbhvSWUGCHGqWwKxA+rygdtP/PP1YKA7PX2pW17hJg98rs9dWtcvYRXB/9CRqdkkl9o7BBgInKP1wOqwaqlIi1LGirr7I72ZR0r5N8MIl/Yd6xte5p7tnqiBKQGYYUDp2XLMzVc4R2LxCJhuCGTblYKiH5Z7Rb5UkjTYqaczeH753WEb/+H5NrWtwPxcWtUKEiHJDDp64unVCMze2nWr3EEKkhActtAgsEE43UVewGR7d6F/5v8FrrBQ3L14JTtKBXUsI0vQTTCB1PaHZvm5rf6HyzVVLVWUio6z4SaugNp9k3/i+zDb0gMWihp7jF7fC7yJizyXvIqooVYFO8XEmdLKOY45RexaNYXzVL4yr7/bNb9HaCwGrw4MHkhfiyZaQrnWHPX4/V5XqNlqCrrJWzBDOnND6x5sbsQGLzCLefIywpRgS9d5ABWF7BBRT/ikA2wWqBShYcpF1qgq2aTcZiq40SZrjm7t5eavzD4ZPwi92IvuxNGYdRyx3m4qg4iqpxVmwxzEEK4JKxmDjgohTGtk6cwQsAZhp9FBl1w7ZsNuzb8DiBZ/qfYg6LsZrIg64lxooNVI1uwQQJhYjTPmFGh4gLncLjbjXXGNbaFDTIDICt9BIh92krgg0qB7qQKeHdL+VQMqnRvZO0qyQtRNmGS77OqN/lbcSkAKxOfaarpVAGlwpf6X1VgJvPz02bfHbJe+dX3PrW/jXa6rFVgI/D/isGLhorX+2cenltbfTjSq7uwVn1Wu6ouy5sFPXa223Emgm6cyW1eH1mtjgdt9usXe2arWVwI2WbT5zfTr6bG/WsXD/C9k9LeBjyYgPEB+dLFqv5VYCDi4zxpbO2uA/74Cevn2DKa1rtJUA5Ir0FRNX2DrFlZKjGFe030og6uDx+76Gj31mG3kKkro6Pq7RVgLerqg6oSycnwYL57+u4lYCnb38Tuf2nsiZt37qfPm2xoTDj9XeSgAicuwVEyJBrzC73pFFY9f/21oJ/HjSqtvFN5167fOMdBm5OuZjFbUScH/J1Erg2IvqbyVwYbD3ZUloP87BDps38Y+f+6LlVgJaNv5IKulLplYCAMMabiVAtOc13koAAYy2lQAADJ3Mnegms85sXBGlSUsVy4jbHFrYuSooZtq5SinGMO9Mh7mOVlVq3nzF+TkdHwfNX3m2cGfg94VMw9JSVaVHIMj++p6uqhLcowh6/7+qSih/ilILu945UBQ4xau9uYHI/bkWqirdWHZ27iP7VuHLf9S6lxdjUek1EzA7it/T1QuKBtSs91VdVWmhaPWVtRc3hG0ftdW1Xcd4fy1UVZrWqYg9ff8TvwWhNwRRPusru/sNUQpiROnruyqsqkTMeq/RqkrIgvd7uqpKji4IUqg+7fJfpk+XhrziHtvSlbtgr1PTlQN7O1eTPs15y6RPS/75nz5F+fO4tP3nP+/NDNi4xCNtx+MDm7SgT9+srds0/4Fl+M6Y3vz7ti0KtaApMt4yaQrvt1WtT/uNnBc8yjfZf2Ynu1prurmM1YI+JS4SaAElINYMKOX8U4X6lGhDa1yfIhJDq08BUqg+7UqnT3UmJiBOJ52s3wVDgqw3TCFB9BsMck86yDVOZjPHIK+GZDbiNolaMhtxbUUtmY0Y0KklsxEjDbVkNqLRVEtmI0qDWjIb0UMjZaxBrUgpYvbGx53cQ975FET9ODa/TqOuWshY66Y1JptWI5OJZdrUmEysUqPGZGKGmxqTiXv+JJ7o0/GkyWDpivpd3gYv0t9vOtI8eIkWeNKdjic61NChuA3n9L8ZPf0OLvNxixv/+THFULTcEmmNfdJU/p2ZPou8n6Z1XZ26veZaIkU8PlXFLZEOcR//dzR06EEnqjpjln+fk2V09u3PgOnOV/P+WD8xUUtLdUT510ZzgSeMpUyfYHbZS+cxj28Y+U1v6riAaXr7ZGL7kOm6uzxafJUJ89yrGOa/0WGusZk0Y1WfmXzw8uPGOemNgrYfH/HUcuuyTWpmkii/amaSOGPUzCSRsWq+UNoe54dnW57nbD695FJ31xZWar7Qrk2+M/PCHnC3J35pu2xDx1kk4wq1PqUghWcVTEqpHeazZlhC/VdG6f9qwbj2pOOkceSSURuSh/vnvfkq6MLe9B5f3g7d+AsF/8iAqqx4VcAm2JahmB0uFYgDuewk9BkV2xA8k9yh4/sJaaGHHqy/fd0odSLjsMhV9wgf0OTk9ne06l4RaWkGRGZpX0lbhExpEs2Uoo1Vn4QlBJJhmc5EnhgYOcoXlwuHRQ7swvedPdJ/aJKi1RP8hqC/8gnkDUGMoPUWFbB5OIQkjSpxIh/u+H2rkcSJOnEAWpXSKCkpKdWk2B8bzxhYXypZxJMh+4wi6L5Q8ibr5Pas0Su7hx7Navhvp/dbdhGKqKIPoSiiilGqgjvSb0zcYesCd4A2KtUku6g5J0koR8oWx+HYhKkQSubs7ivdVzJoVvjEk+7+tie3jMMzR/lEikXcMkpVMKfoKxNzgDapeeZA/qgzB7NMdMzp4pMEvxLhCRiOHNwqEMelKosuerElUt5IWKPRA/mt7BPUM+rd+XUDdqX88F3f5Z82j3Z1wtdBqBul9nzyOXYctSqY587IvEdfdKdQEL6Qpn45HPQq46A8UShOFQMnGLAPsEssEUPWgZ9EktEIEf7qDklJvBTlBUo+Chc179Z7/V9hs07eWyXpF1BEqIaWSJUWjV6uCs5lfGHinHeNcw7eBHdUNEqVqa9cjxaKE5gVoevduCPLha7B0xPHtnpxzukTXhHS+kxlFK0veLuiPgSMOM6S3Co3RBGifqo3i8ZPbaw/NvLEwY/hR43y/nboPJawU+enXMiJkAlGCQWj8W4qxJQus62ND6w6JFdbDEIKyCYIJEkChSyVLVU+UG4RrMzmChb3EYjR+IXeeb3UeeHoBSeKeuXX33iQfXpiO6axkncV8XTzfuAfqUSmCBCKFMovpnL3aWdDWw4r+gfAPotqtzEDuLS5/9JmvVFGw4EYNsjBSWSMFfLonTfXW7EvrWl4+vXLM39/OQN/7tgIeypZLFWU8uJkYnGzysbJALkgiJw3lR6JcOKwvv6rUaJ7wyg1F4YtGSWQyYQ0PSusTUOG1rW/yVlft87ZySe3N6j8FCZgRdQRWsAKyBEDVtH/VqvOxdYxDdGQC34IOjv3c+6XGglQjw+76OvuW1oHsW1Eq2qEBQbYR+H/66q7Pfg7VOG2D50a+18R/v+oCH/WlGv7vq9I8tn2zt6cL87+zgibNovw25QyFeG3+VUVRfgP+GUNn3T/RK8DtcPbrmI1e6rF0+Za1pFwwcSolKlmecGvainC36zezr0H7y7zmzzcesfM/UkhNV6EP/EXY2uCXzXtgarvONVMEf6JiT0brJ1TL2iL+wqfF722DtGZIvxnfzL2T/j5f6MIf51nkzedPWLlv7TkfNM/j7/pQdjprO4i/IiWoa2iDrRMtRXhnzr07I97TdMCt/ke8Fw+ZwY+G6FmivAjyoa+Q8GvaizCf/i6+4kjm0/75tZZHrrl0/XbOlDOAmlT8JOxTcFPLPz0ZdH4bRyfdk6lXtd8ch/Ybbqy8i2+FJ8pcohPKhEBi0722YxocO5UtkUiLLsfrYUBEJdJkhMSgQ8nFyBLNZrUclhYKJxa3zqLk/Ge0/4E1+sV7WjJVQ/UiBXN7YOd+/ROs1hPAHq5pLbLAN/prNOVPFhlVTYscBXFgvLVDdu12/h4QmTwInnw5PWn3Yor37uL4EIRFWMlXShY9tYRokfZxS4L1sXQO62JC4X2QOcLEmQCav/SbKrpwuzoj73SL92oa3rgWnPCCSnkRooTUsrrVVH29xaL6f3zWad1YLkOkUwNHCU4ZKGEL4xjqG0TNS7W1OXH3pCJNhMzH3f2rIOXVewBZFlVUaqCGdMZmRFTM8wguj8sTXYsXEPEEgUwX7w4uHbq6O4FQlYQWSQ5sz284hIlMr4zu72XfKRMgfxC7a1e7vLcPH/2Y9+556SX03yCJuPtGvyCSEWqiKL/ZRmpKpjVlZFZljoxc+CjNPJWG5YtdIuTZbFyhhnkdK5zAbufu9/8wsX7R6bf/FKZULmyoYM7qsjhUc8iUl0oD86W96zTGnmpqCZn8LZCo+tzDVrMDd8x+OGeP6TXdtZs2AsAOMZCAbhFAQBULRp5opgpoy8ykfpDPzDmsyt305/d/7Vt1HN2jR72hQBEsRgkoF8z1mnU0fRj/Xfl4/S40vzawpVHfdaP2zopacTYzdWWj+Nc+zRDPs7gWiTPUsv5OKOf1Wv4Z+x2792f389fPjojRAfycVpBSGh3N3/UqhGlj08quHHjRjXk4/y+7o2P2a1toauehPI7lI7ophP5ONdqMXFnqy5wp1rycW4V6rU5ayLnZk4obd2/zdODOpGPk87InMG6wBxWTebj7DDsorfgrxifXbY2Pn/Z9mypU/k4HRmZV7dmmKeb+TiSjJ39PsR3Dy+YExE/9NYg2xrOx3mqx8S5Q3o1zbkqzcdZkhSa7ffCI3iecMIVX/dzxTqRj4P4ELT5OEARon6qP+v/g3yc3x/kDtg4pVP4xPjn91iszNgazsfpqH+aIR/nXm3axVKt5uPENwtdqLAe5J3+Luum7/zYDK3n4xBjcy3kmDhD5GhzTPT1SQulWsrH4f6exR1lkey9f2loaOsWdWtrPR+HqCO0gNW92kxY7a5drTq3pvNxOHRqbORRoZMwbLPfviPhoudPB73F75T0ToZnJwNlPGki+YSpBtsXrfyFcik8PabazUl1UZ4yZfNgzbwE+A2UkrdSmJS5e60rZ32d7FuHfvXbSzs+8k6OOpEkf8aRQIWFqx/FopBK4rmnCkql6mnExkltOKz856dYrEZ+8C/h/OfwNpxDW5+fMosUiADDBPxgoNdTsMchbFWyMoCOlRqfSXNUyXbVn0mzmJ3aLb1TPd8jhRb7uobVmqV2Jm32hw9N027fDkxPfDaoWUvDcLUzafM83vF8NweGbXH9t42lvv0StTNp56MPhNxxXuy7pyh+juNFt1lqZ9LmWYa2XRKYEbCm1e1h2e0Pl6qdSbs0JOYep9Xn8M3fJsyo73/HTe18frewK2cWOxQGZfTvLVvSbFqeWrOZeY95p6PuSDl5okbdDkRu8gAkI5S0tNlj2/hpPXw3p0rur8hxhGftjFFS+z/X/toYH8LZaDVr0GrjO1MByQQlHZVffZBsci10xsqiCR5nGuwEJFOUtMAz+e+FYx8Gz+ct6NrAQR4ASHVRUv36LVp31GP3ypvy/Gpw/NAZgGSGkqaaRI3oGcIP3PygsInc3/MyIJmjpGHD2Bv/juwQMH9uzoSXo/5cAEgWKMnzQsihaSERYdOdpNZDxh4fCUiWKKnttvj42x0u9sqrZdBrVfSvUECqh5JcTz063MrjpPfsMVGxV5cvuwhI9VFSUbN20/eOuBcw+bevTa7MNhkHSA1QUtCBoJSlJQlBeY+Tm2XVurMfkKxQkrR5e7Owy7t9so6WXBk8oFECIDVESX9HHi29e9XY56Cd0ONbryNDAakRSoq7eMO47ZpszuHmb9pO+cdzMiBZY4O/+jQ+eOpP7szfurD8h5zqB0g2mLBFW808stTQZ9+OS89O947/G5Aao6SOfcNNRxz2Dtv1+681KyZm8wCpCUoyi1trdWFCbOCRSdvPL9BvOwWQbFHSyw4l32JePQpbPfHBvjMRc7sCUlOU5Cvp+HXlq0T/iRktd7/9tjMWkJphXL4j+HZ53jHflYYTXk04dnYmINmhJI8r5o1S3h4IX3vaZXyTus//AaTmKGlre+tXJ6/X8c1o0VFs/ek8fC82Sir2K7QqPrXYd2u34c9qNTwsIx22tGfRHLZcWr9Ts2Kb537TvK2avB14cagWDlsG0qmohvH787JPneMs3/pkzPmm43Lwi4mcFKlIwqfIIKBrTOqA3qHK+URKrcuTeCIRUEJoFfsKpgwQFRTl0MjrnCihgn5JGogFg4xP03QhjXDmsEqMSN4vYxOIsoxK5UAo3619nbp7nW2LubM+XIgz6T3ylxYTKrXs5MIitd7GdHt6NjB10FijbIBOfYDDJEPW7vgCWKZXIhciKRRgfEIRbLqskhM28KDYPBhyxVGi+Hdc00u/DVjiN9nerO0tz99b4LdAVd9D3gItI2k7koVwAYlhgOuskU7sV5PT9TRsG+qCTjR+GbsUiTwFiF9GCNjAAVG1YaLfK/311E5ScGN9SOanL4/te55KIayWo4+lWC3HKNrmnqULKuz+lBvYroiwk3ZMNQTOHkvswRatBUQgKcHq03DP3k/ZV3xnNzs2ZvXYr4mVTyPSAliIqNOCBUQdtT9BrP+dPtDm6QOih15tpw8yTU4znD6wMtHIVlbw9MHD9JQNKdenB+2t42DXvLXNBC0aS6IG0sLpg9kQIdpkbb6JRsbyPz19sHqesN2qtcKwPVM9op80bL+qxk8f9GBEBciNju6UVN/pgyl38pz3PU3tNW9tpvmqi5ErdOb0wWtjJtYVGuuoO6Pl0wfPG50WL9ni4Dcz+ESdRWtPXK7h0weIlqFNHwdaptpOH5yZnL0l9IeR/8I7H1u5P4920IHTBz0YwbEy0Sznq1KnD4b329C2f+p335UpBg/qdn+NrwFSc6cPkDlNixCY06jfFsyi8dvOLeNxf3paB07aYGf4suXYI3hvFOlZF+nPrfjCgS++ZSTqCYMIMR78CvyuVPW+ikDZovIKfS/UdRtfIceJuH5JPW6yF41RNAgDFa1PK1u7kFwlb8CBj600W1aoUG9JyZRpDrZeEt/1BX81X8fe2IawyQ7vpthkRy6X5ykR9Z8W+raIIEBSKiFkO3FY/q012juzQQDC5MKRL5QB8QV0amN7fuCWiSbjXDkZgwpj77U+jq8RbOyP3UyelmWk8gD7p9/cU/sHZARMvNpcdKNNSGUPtEPAmjICBiSqRpwopc2An+nAovtDPtJpxMBLU4SXDFrVd9aO1xmdUjgH7ROOb9od/6U+chgHMIOTIpUJVFt3iFPr4xvpGN22cg4wgbUyi3lznjWeETq3w7MhV3rnH9QCay+0YmLtuhpiLZV/nKFZA7jy+5cGupvdrPPM2Xe6RZ2gr+37p9VY/1KWK6qTYP9SKSm+dUWmGGoYe7FoDKPvNev7o7rs8t42aKjNrH6H8aWBrWDJTQVc+oTZuAK4PyzQoOuZm58kCUCuLPyJPIZf9hgkOCxrdsYHQlIhi0jctit/wCR2UH5Kg0WFEgsAerEvRRO0GCD8BRaVPavnw1UDBS43wFK+0NuQiNmOWAMvgJ7yEB/8SanT5HA1WjJaQHMC52qAo22H6EUBc5vnzRTtCbXA6xikFypFizj0ern5F+b9rDsZ9fDb0c355zpZx/ZaWJkohjDr+1K0/cpqi8Bc2SXh1mrsV61uxUnEckFcMiIesIUE9epm7c1JKX2GngzMu+7Xdz7vYhw+q6DsueTwF0esihNNCGyDqWC75YLAhqqEEDqVcN685QePzpLQqe/fhrhe/Z1DbBgsFfHiBOywZJGIQhfQOcwu2H1ieB+UWaF4FE8k5CuFfLRQkciWgDBFVnFNQNylZxgnVWNjNbIGXrKlBd3mWw5E17yyc78RNGpI+0MFbNcHlSREjBKAnSfWjUoovhq24M2YwLNPDI7h3WfkQWT3WXm5vOlMzErQgstgBJFLp3IZYEHlR+a07nMFkbNVISfDiRoULUr4FgWsTn508VLwIStX7ujjb17iU7VRAaHe0sFTtd6Y3BGRJAa0Msyr1cHCBmoUlSoVqOPQUi1nxzUEuLQCkSv8jNw1MGgYdHITBDJCljD8U1nF3QgxkJCx4BEgqE5Vspo6eZhgmCozSSrJ1xhXdBaU+FAlFbohs0CjhTAbZRtT6CsgtgoTfT4lFJP825vcMwnwKzi0W5awZLw+YWMCvhXFxgRyuSqgQEScFgog4qih4rJoDJXO1K0nakvttPCpgrL1VuZo0jpl2fqPZhjkoToPOTE3TjuQ2xx0aXOtND5k1a0ZVu2/XXiqBcgLGzBBvq4BBnkYHeQaZ2VaYJBXQ1YmRRIllpVJkUSJZWVSJFFiWZkUSZSqrExyEiWWlUmRRIllZVIkUWJZmUODWrxsePCZ9wY+l9ffau40UsobFF5K6SOmX2oh5S2cjv8tQgpd7u8wCdioz4+98cISz/8GysV+P5FEDt1FZAOH7JQb0My2FgFC2LInEfa4UT4ACSlhnImmIVRse5+YclruEEngUH1Ig+NRH03BJLtFtXYN20EqTDVau7ZV7rYhp0EkkDUAD/ALfV7QQ9/fr9hnzvCetpgXc+bEhQ2V2Wur2mXsIrg/aoqa3RLSAXsQVuebUvrhdFg1VKVEqGNFidJt47wpD++14Ezhjv076d0OlhbTIib2Dft0dkNKwCbJjKDpvqkntICSghGlrqbkxQcmP805AptXyGRDMMOmHAz1sNwz+q2SqT8OdOcJHnKW2SedsVypuF2D+7mw/SIiRJQbcsdAGFxoqpkb2061ewghilOrWQEtEE43USdW+rw89efyrUFTeMevWIwvma8Du5YQpOWMIClMNdvXbe0vVL65aqmqTGSQjUV6BWX668zh66P+DF66JPCvq+y1+Ip7RthzybuIKkpVoMNlRKeVKeYYRbBoDOOrfmFcfbdvfovWXghYHR48kLwQT7aE+jTg2uP3c1WpbqMlGpWNIx6wqOjeQEU7H8OeCmYAtgtUC1AsANutulWwTZvavn8Dg9Rdvgdn6+++2m7eCfxiJ7IfS2PWccTytDhRxVW2Yy7Q044QrAgqGcsBrjnLTCNbZ46AJQAzjR6qn43PX8u0zvde/KxB6LKeInxjdmMOuJcaKDVSNbsEECYgNQww5dfVzNiVv4VG3GuusS00qGkQGYFbaKROwlJXBBpUD/Wm00N+bS64eU5+yM0JWP1O4dm4GXEdOoknZSvXaSjWy+lc8zbK+7DdHuRcCo8tFoyGlwQyYRxqICukloiHuxhGSLVSrkau6C4ZLErABrheovLJ02DOE1sjRWWObEMpF3fBcCjfcoxT3pkrp7cF56xvc37Jxi7ueBcJeQDZRVJeLm/OEc+5VXZ3C8CzG8JTl2rO5YKQZTZbo2wSM+V4mAp9jV82dcfl84t8DqZxTl+Krj0Av/unvJ+8+4deLw+fa7nnJgiWzAg43OxF5+lPxSIt4MNnxAeIT01kGBghiRujlED0YBH/aFYJ3CyKJ0sQKJiY1mlF4+yevdeG7rOut2Y05yAhLUR5P5lp6HWtJ9fCBURGrrxurktcKTmKcUUj82WBKDypgI8qX0rGtLvkdXfPt+VBc2wiVtqm91qOZ0wocj+ZMeh1bTPG2xVVJ3CZkRSvpsH6zGzNAjJbFQZIYCESlofH2ZPNB4a/G+s/ycZYKn1WexQ+q9ZP+QByVi1GqApEejAiwmJjdr0Pi8au5y8I+Tioe7fgqR9/KoxO3vmA57HyGyueDNNDFWHgDTh7dKIwLhG4lfBsIU8uhxUNVFkxqPmvWPBBPKdNNV6yTCqva5In2hzNEyVlv3iDqK5H88rugDdFXQ1o7IXKIjXwCJNyJNTdXlcEmE75p9Q/Z4DbhcObZ+INvyGdY6MiVLPxR1JJIYbuVDka7HYIhhpprB5hqEQpy3LiDmrBfCC5cn0AlgKEP5f5lOyxYeMpESXa8xqtCgrjWgQwGyrAYC0mABg6mSPpJrPObFwRpUlLPa6J2xxa2LkqsGPaucqywzCPosM8bF/ApXOsQr+0gY27C1/2qoevGoX0k5eKhHHIsTCyIqVD2jYU+APAPCnAnSJ2Eu4pFdKTxMoUTMMiF7PC0yu6cAOD7JYAztlUCzdwjyKt5Wkz1Wok5jlh9sQkGOpSHC/hNxkil4P5mAwM4J+dq3fU2P/AP9ahZk4NijC6Hg3dNBxRLyQZMVJep3+wcjzIcOFHmAK3ZgFCGdA5MDsBSWbC84uSP0+zhlyN/HQseMrK4NgRz37HN//T8yHPDh/S7NAjzI6udaN7nHTvFryp2/AFCc8cFJVdMwGzowiy050qeyEaUHNbnlYDqbyVJbtIQZwEaGhNUBrgOPPI98/J/puDvn/I2bL0Ch4lXzJKvuWi9KKk+MDHdiu8MwduamL0s3CgFlBKY0QpuuVpVAZVssSY7aKsFwgdowoARMx6x9sw5aPINgy9XhUL3ojEfKVaaHJ0QZBC9Wnf/zJ9SiznU0361LkFkz69Zv8/fYryp77Rif0zm80IW/O5d48VNxKKtaBPiWWatKApWrVg0hQ/7Ktan67mbpjc+Norn1V/Zy0uODpguRb0KXGRQAsoAbFmQGmrfRXqU6INrXF9ikgMrT4FSKH6tB+dPtWZmIA4nbSTzNZJr/G7OX5S/72fvBPzr83po4WQwNGeKSQwUkHenw5yjZPZzDHIqyGZjaIGHqbqKWrgYclsFDXwsGQ2ihp4WDIbRQ08LJmNogYelsxG9NBIGWtQK1KKGLF6nhYy1qK1xmTTamTyf1ZHkqKoIsZk4p4/iSf6dDwhli3UAk8G0PEku+DRgGlPvwYfKNhzYMeIx/hzfnUieGKBiFyglU6xOfqwpfAOtSrTbLFEIVAWF1IIUhRsZXFWytcm1l2kGEpFtJ1pZJxMIhL1gRYLXlRvyErQhHvvTrrBGzDc9+gfpzz7/qj1nU4TGvWVC2RRYPjY17b2lyTHimCuFqwECwv/8IUK9N2BhwF3OZ6kbSCwBCvVS1qUduCwSpoABerpx0qb5mcSypMlCMVcQTzOAJoqL/eBPTvUrxsrr0dJpOpXCSVgezlw0v9pctoCATFCBs8NKoTKURlio6KaUDLe6GAxH5bdwuDVM4YX4daL2iXEVxehZYWVAQHsBCLkifxgLSg1Q6SQCXhJqt/1+8t4UtU9qKgOpBNVnTHLxCqgWlqqI8q/Fuxyui2TXebbYnZ5kM5jTiyvqrvLozFWTJh7W2GYD6bDXGMzacaqPjNJUTcXM5MUdXMxM0lRNxczkxR1czFf6FXdetmxv60MmtuYF92838hrar4Qd3FmVouoFkFrvwzq67fE0ZNkXKHWpxQkYjFeLRjXIXSc1NGWY8Siw9XWckzUhqnl2HKHqm45Ful0avqJp06h2aMattmzLx1faLVmWo7x2zA1cOnRRgf6JhUXF1dDy7EXb3bFzs9rErik6/xhR0p27tCJlmNWjNx57aAD3KmWlmPSK1G/Nf/h7JNtkM1zs/t5QSdajhU6MDFnuS4wh1WTLcf2f5j7Il3+yq9g+Eibz5kX8DnHNd1yTMHIPG7NME83W44d79vB4cH5pX7bG28/lBA8C7+jV/0tx1oxcu5H65rmHLypylqO9dzb+HmTM2P8Dm08ZtWq0zZ8ZbqaajmG+BC0LceAIkT91KEsGj/1v6nlGLEtRg23HJvuyNRyzN2xmlqOfVrUw+32t+C1nDST00bTP2u95RixuJkW2milOTK10Yp2rKqWY+Pe7fNd0HhkaPqK5Lsxi5s/13rLMaKO0AJW7oxYGTn+n2o5NoxOjf2vCP9/VISf2E2o2orwF7dlKsKf2LYqivDvrSdv2m3ztJCZCa1bXJtS31eLp821rCPhgsmjtkw1ywvaVksRfuOFs/1X5T7otZk16dqdUQmuNV6EP4MRFSA3OhM7aHbwR3tF+P/50exwY7u/Qmdd9XJZZHrujM4U4fdmZJ1NzbCu2ovwW98T1pcf3h04N/aXXbOrPW/WcBF+RMvQVlEHWqbaivAH2ppn3z3eO3CraML+a+bf8Nq5ZorwZzCCk9i2Govw65nfL7WSBIfMbpGXcsFu0B4dKGcBEfJmRAjMadRvi2HR+G0cn3ZOpV7XfHIf2G26svJtB3wdAeQQn1QiAhad7LMZ0eDcqWyLRFh2P1oLAyAukyQnJLJVTWM1qeVA7LBIO1py1QM1YkVz+4AjNNsJ4PsE4JtLdJOKAL5P21X2YJVV2bDAVRQLyleve/liyHD/wwH5Q1bzLi5fZF353l0EF4qoGCvpQsGyt+lOdF3ssoDsDnbSyIWqq5y+fEGCTEDtX976988ln76LQvPmbd81fXl3MeGEFHIjxQkp5fWqKPvbkfH96zrVtLOkkkwNHCU4ZKGEL4xjqG0zdufSyY7PzUKXpH+4PvxAsQAvq9gDyLKqolQFM8BkZWDGoXY64f6wNNmxcA0RSxTAfPHi4Nqpo7sXCFlBZJHkzPbwikuUyPjO7PZe8pEyBfILtbeanbe5aKXbi/CNHQr3t05w2oK3a/ALIhWpIor+l2WkqmBWJiOzRDXDLMLMgY/SyFttWLbQLU6WxcoZZtAd1lID82d6YUfeHHXe+9VxZmVC5cqGDu6oIodHPYtIdaE8OFvCnDTzUlFNzuBtneUeFDXqviZww4Y6Y2+LI8fWbNgLAGiKAXCLAgCoWjTyRDFTRl9kYvvd7tZX7rgFZv4cEpo9TtGGYMqq97AvBCC/HQMA/VLbYY4mj/XflY9DbMxdbfk4012Y8nEKnKs6H+fLs9ih/xb3DNtnMUqPe2Rubx3Ix0lzYdrdjHbRgaSCP//8sxrycTJu7l46KCAueEPEgE5WFy6E60Q+jjsjd4x0gTvVko/T6sui/uLlet4Lc9zOBJjF79CJfJxHzkzMAdqk5pnDqsl8nHqSPb0TjM2DNp0LStS/8NsQncrHyWBkXmLNME8383EeLurjZHf0UMC8bTt/WzTmWpcazsfxZuScTY1zrkrzcWZ04R9M6fGEm2vqljB16oxNOpGPg/gQtPk4QBGifmos6/+DfJyt7a1fnbxexzejRUex9afz/Wo4HyfDlSkfp6tr9eTjNNhidD36QWjIMq/X1rkPW83Xej4OMTbXQo7JdFemHJMY16rKx3FfOuVm9Lws/1U7s1cM2mnzXuv5OEQdoQWsujJiZen6fyofJ45OjY08KnQShm3223ckXPT86aC3+J2S3snw7GSgjCdNJJ8w1WD7opW/UC6Fp8dUuzmpLspTpmwerJmXAL+BUvKK/Qqtik8t9t3abfizWg0Py2jHR97JUSeS5M84EqiwcPWjWBRSSTz3VEGpVD2N2DipDYelDwtzNfKDfwnnP4e34UypZXfaLFIgAgwT8IOBXk/BHoewVclKPh0rNT6T5qiS7ao/k9Yow+5y609/cyfdcYhw/jrpvdqZtObzwoa1dTPrtalBR4s3ua1/qZ1Ju1H68513+52cjTK9uGWRGUfUzqTJ+/Eu1TMsDDnYOzx2ZfHoMWpn0nbdCJIMPNAxdOXw2wl+XcN4amfSHm6YE/jV+U345IeB7NRVj1+rnc8fxZLs+2w+kLt7Vi2bOn+s3qXWbKbbonOt/86d6r3tb4NNDVMyQwDJCCVlhv92O/Hqi4BF+4sK4sJPzAEkY5R0rcESzqrB/pzl+4ea9R55+SUgmaCk0EML3w9/EB624bPs/rrzEfaAZIqSgkxKZTx3HmfOWpmT54j3qwGpLkoyqT8k89/8mJDdJ/wnFSbd3ghIZigpffzdCSN6Z/pu2tmocGz6E3gMzxwbYdwcg+h6+/zXiurVffs9zQyQLFBSu+kDBie03BmyLuXU3KBV7ccCkiWmkAco7ofIF4TP+tuuj/lZV4hhPZR0d1m3kfGbB4astx7sMm2ZSRYg1UdJJ84OP+hQMCB4gzyF7Sm6DbncACX1H92p5Q9u06C0hoH6cwMtWwKSFXbX3seRq3/2C1h9P2pQ7hUFRL4hSrrvGmN4YynLf+Ha7jP/bb0oHZAaoaR585Y88PjSOGS7ufsMUfGI0YBkjZL2fZ0x88nZHoGrD0SFThq0ZRog2aCky04zmsuanPA78OQlN+z82QxAaoySxnqlWZ8SdPU9FN723Dr5/Z6A1AQlTX0Z4dh5+Af/mTlu3bdZ/3MPkGxR0kV/SZ87vw4ELLa03ZCzP6A1IDVFSXn91iy/MvO19/IJ9lHFiy9CYWuGSZSBaN6Te3Lv9Ea9f3T91S4FkOxQ0priFV6d0lsGb6v/xXfshHQpIDVHSc9W305M4XwL29cuzmv+mkmwugQbJZl5bhrnfO8650Bqo4QjQ1+8JR22tGfRHLbcPHPZm3v2KWGThiyd9/Bx5kMtHLYU0KmohvH787JPneMs3/pkzPmm43Lwi4mcFKlIwqfIIKBrTOqA3qHK+URKrcuTeCIRUEJoFfsKpgwQFRTl0MjrnCihgn5JGjxV40HXhTTCmcNq6qFZE4iyjErlQCjfzcDrxQHXlc5+ay9ta29vd1CbCZVadnJhkVqRB92eng0Ilv09NMoG6NQHOEwyZO2OL4BleiVyIZJCAcYnFMGmyyo5YQMPis2DIVccJYqO/fMHPjj50LdgcWKzsQ61P+K3QFXfQ94CLSNpO5KFcDVlhOuju07sV5PT9TRsG+qCTjR+GbsUiTwFiF9GCNjAAVG1YaLfKx3X6GLxlA89QvOntmrwbJC/FWG1HH0sxWo5RtE29yxdUGH3p9zAdkWEnbRjqiFw9lhiD7ZoLSACSQnWpl9fB26P/oM7a+cFzrmClvmVTyPSAlhNGcECoo7an3gWjf353+mD/+j0AdFDr7bTB8faM50+8G5fFacPXFIbPvVVzA8uuN6mvuPHgGAtGkuiBtLC6YOC9kzJ2hntq+X0gc2CgG6HmqZ7758U/U9w5s+IGj99kMiICpAbHd0pqb7TBxMft/s3z2mf715ZM4cFzfr31JnTBzaMrCvx0FF3RsunD/ghW91N0q4GT5M9y2/7kj+xhk8fIFqGNn38/7F3HVBNZF8/uqgogg0QxBI7KsXeCwFCDUXAXiMJEA0EQxRQVERUFFTsiKjYEXtDRAXXgl1xbdgVu66Kbdfu995kJmQqZBmS7PdfzvEcmctMJr/73n33vfu79wIro7XsgytDJnmkfm3skZ6//9mJzs2P6EH2QQgjOA4dtZh9YDe4RifRpXmuW+YN3fPNthjf21h32QcWjAiBOY36bcEcGr/tzEqh4EeP+q5xmxpXe9l8ci7eG0V61vk7C8p+cOCIbxmJesJghxgEfgV+V7R6X0VgbNHxCn0v1HWbUibHiXh+Sf3eZC8ak2iwDXzug7Z2IblKDnCM+lRAb8nN62ae/J783Ds+tvvN+TkX3xKC7PBuiiA7crk0T4lo/1jo2/IAAhRONQi57YCF89EodmaBAISNC2uRRA6GL5BTL7YBI/sVH+jU2WNBw7+b/x3dMBU/LZ2xm8nTskRUGmC7L36eFLO4uUvCvZcJH/MaWbIAWDIjYGBE6cSJUq4Z8G86ceh+yCmdhgy6NEJ0yWBVBQUxY9+1ve2z4k3B2Wnpj17URZJxgDL4UeFysSp0hzi1PEd/68FtyucAE1S7/nbenFXHDnvF/bnNfMqvgN0sqNaBUbUWOlItlX+crFkDuNL7l75Iruy63eyDy8GtQ3q9eiE30Vn/Uo4dapNg/9Jw0v7WDpli6MIYwqFZGB2v1r87sdteh+3DRlokDjyCLw1sCktuKuDRJ2TjimF8WKxB1zN7J1kogFxZ+BN5jKjkMcjmsKTZmQgMkjKtiMSwXekvTFIH5V9pcKjQsDsA/bkjRRO00WDwP+5W3lw9nkANFHjcAEv5Qm9DFsa1xhp4AfSUSXzwf0qbFgFPo2WRYpoMnIdTZ64f1zWbnxNbc+zZy0mFeBuD9EKlaBGHXi/NxrSo9andqO/dHDfcnNf48IH1FiycTJhCmA0cKdp+pbRBYC7vkXBLNfWrTrcCZWER4sAJyPCALSSoTzcz+y+pc/RRLdc5BunzB7zg4CuqG5U8l7z9xQkrIqMJgW04FWyFtghsqEmQ0JmEcybNP3ToKvOa9f6tp92VaXxiw+BwqTBQzPWeIJVS2AI6h9kWuy8M3gfHrCRsolAqESkHeaREEcKVgW2KvOyWgBilZ3hPqsbGamINvOTe3eiCb+kQ3a7lnfvmcFFD2h8qYLs+aCQhYjQ9Hy/4drlTnTezifeYbqu9X+PdZ+RBZPdZebm06UxkJbDgMnSGyMVTuQywoHLNbrTucxmRs1IhJ8cNNTi0KOGLu2FbI8HvD+/Mu5aDIut3WoynaqMDhDqkg5ey3pjcGhlJDGgd7qpVBwt7UcOA6HCxOg7N1Tg7dp7ApRVL7eDfRNi5uo2CTm6wWE5gCcOf8hpuc2SBhIoFjwCb6milqqmzKAgLU3kmSTn1OtoOnQXFPCpSoT0yCzQ6CLNQtjGFvgKyVmFDX0QJhaHxsoif3i8Eh8R7fW+bvnhICEzAb0URmEAuVwQUyBCnhQIMcXShGsuhWaj0pm490Vqy08KnAsrWO3RlKlvPVUE+Tu8hJ3Lj2IG8xflpX8Lq/nSafn96+sOimCYsQF7ciwnygl4Y5FI6yDVmZdbCINcCK5OCRImxMilIlBgrk4JEibEyKUiUGCuTgkSJsTIpSJQYK5OCRImxMmf/NttVmHnNOXdHQR2zxxdHkChvcPBSjj4i/ZIFylsonf6beZ6wvbu7hstmA9GY6y9q4/VfT3nY7ySVRUB3EQngkJ3yqjSzrZmLBLbsCYE9bpQPQLaUcJ+J0hDKFt4nUk5LfUUSOFR/pEF6FLczmGSFVGfXsB1keieNzq6tlNE2JBtEBlUD8AC/0POCLOUDMxOHRzjseX5iqvkw+97libVV7DF2AYyPdkaX3WJSgj3YVt/pROmH02FlpqJEqGNFiZLRpW++BgMHOy3OqrtgdZXUhizSIqYP8P50elOUyxbZHLcEx+hjLKAExgwDSqJOmjVpt/HF5hUy2RDMsCkHt3oY94whVPK988SfcbnuWc6d4mZzJSd0GM+F7ReRQUQZkDsKtsHFnTRzY9uqoocQokC1mhVwBcLZJkpwFkzt2TL11QbeIolpM65VvVF6ELWEIJ3uxARSeifN4rotnSXKb646qioZMkhgkd5ARTZ4OnCl0R1BQuDgy/N/X3ERH0XEnkuOIqokFYFOFCM6vp0wxyiMQ7MwvhroLTCw/+K0dP15l7U+7kPJB/HkldCABtym+HiuiuoWKdOobBwxwaKssYGydj4Ghml4FwDbeaoDKA6AzaBLBYRpL/aY6ZNrN8h7+bUndXsZtCSU7kPisTTLOk5YmhUnmrjydswFdjoAguVLNcbSgWtu00Wjtc4EAUsMZho9VA7Vl4YOdTsl2CC4NDHHbt0AvCXig3upgVITadklgDAZMMJ0p7Nmi13pITRirFlnITRoaZAxAkNopE7C4XYINKgdktHZIafW5+17zLgvSHdZ+07Rw7IR8Rw6VBjOVZ7TUJyX07nmrZX3YdEeJC9FyA0TR8JLYrkkEF0gy2SWiMldDG9IdVKuJi5rlAwMm/aeANeLVD55LEB9l4dGhsoECUMpD3fB61CXCehjtsTgR0+n2XWC97n1HYb/llWQB5BdJOXl0uYcMc+tvNEt2E0ZwlOTas5lgC0Lx1MjNomx8n2YCn21Hfhr27MXjXlLCsYNaDlg3Sp89E95Pzn6h14vDZ96Deob9nl8QbAx5/uwWrP7tmcBn0IPJnzA8NEFw8AQIW5MVALRm0P80awSuHGAUB4sVjApTepwcnvPwl8O2QYffmRUbUOozqa8n6w09Drr5FqglQRGrYzWK60U52Fa0Wj5qoUYvHCxCDW+lIpRLDXLm2Q61/3I94drr6ePscIrxgu5n6wY9DrbinGwQ80JPGYk7Vdj7fmcPz0025BZqTBANhZSSWl4mIQEXRy/7DxvG0d48jV/QTSeVeukfACZVYsJKgKRXR5MiCg8sHU9nEOzru9a5PlxWK+e7rM+/lAYHr/1Aa9j5SeWnQzTW7XDwC/g3MgQSWAIcCthbqEwIgJWNFCxYtDlv2ybD2KeNtX7ksek8romPFF3lCdKYr84gF3dLvfyRsAboq4GXOwlyiI1MIVJ+SaUX3yq65RYD3d3182WD28Nu22BD+RWo3NsVAItL/4IlRRi2J6Ko8Fti2CokcXq7Y2OKGVZTlyiFuQDRSjPB2ApQPj/Ep+SO9l7CnVpG8J6rtOqoHBfiwBmQQUYrMUEAEMn83i6yaw3gSviaGKpxzUxzMFC5MrGnSlyVVOFuZwOc+8DLhfPcE44xQ617CV56VEHXzUK6ScfLpUEImlhZENKh7SVF/AHwPKkAHdKuaG4p5TJThIrUzC9FrmYFV5e1oMbsMkWeAM4k6gObmCM4qNXvrHqNBLznLD1pIY7tKU4XcJPqoZcdhdhY2CI6PT8SnnVnXPe1PcyblevAJNXopEb+SDmhTRGDJXX6R+sfB/kdeGfMG3cGrlI5MDmQHYCQmbC64tSP0dONrtw/IOfyyb5ojUWFpPxlNRKPPLs4JFmRyXC7OiaZd4/2aOH19yGzWa5He0aU94zE1hGAKqzPRV7YTCQNvTOVwOptJOlxv7iQBmw0Jqg1H77hnSjnuaO23Jneva6lNkXj5IjGSXHUlF6NUC+aUOQreOOAk/RhSV/hLOAEhjWDCid98pHx6BqLDGyXZT1AqFjVAaAiKx3/BqmfBR5DUOvV8SBNzJiPlMdNFnbIkih9jTiX2ZPieV8tGVPBYz21PM/e4rqp8OB6i9yOl7gZaYOWTensGFTFuwpsUwTG/ZUwGhPBRVtT1PqPY7fumeR2wG5ZdWxGZXasGBPiYcEbNhTT0Z76lmB9pS4hurengoY7aknZk8VdPZUb/YExOnEDpmtSyXLd/Ocwp2zPjmE7Lo6z4+FLUGaJ9OWIEYF+QQ6yDUms5lgkGuBzEZRAw8z9RQ18DAyG0UNPIzMRlEDDyOzUdTAw8hsFDXwMDIb0UMjMdagVaQcYsTqeSww1iaypmQjLSr5n9WRpCiqiCmZGPMn6cSATifEsoUs6CSSTiep2Q+GzH782T0ne3/O7nEP8ZuqKr7CMLGUXKCVzrBZ87jh8A61KtPcMJlCrCwupBBHKbjK4qzUbB1C3UWKVymLtTPyD5TLpFI/uGLBi+oNWQmW0OZa41jrO91dExLezvActIY2t9lwQIRYHgBeH/vYls6yCWOkkKsFK8HCwj8iiQL97sDDgFGOothNBJVgpXpJh9Kt+JzBfGBAezhxYmc71fASyoMlYQJxEG4BNFJe9oM9O9SvV1deD5CFq18llID1aMV3G8TPr4WA6CuHeYMKifKtqmFvRTWh5MJI9zARLLuFwVupOrwIQy9qlxBfXYqWFVZuCGAnEIlQ6gRrQaktRAq5WBiq+t1gkFwYrroHHapRdENVb5ZlYhVQlo7qiOOfhXX5M59pXS7kY+tytN5jTiyvqr/Ho0m9mTCX9sYwn0SHucbLpDFHe8skRd1cbJmkqJuLLZMUdXOxZZKibi7mCxWmr+jzcfZexx1J9QxChdW6q/lCnYvldYyMtjgfKt45LtvqRmXS4gqtPnVrSEIxXhYW18l0mtTTlmPEosNaazn2oD9Ty7Ha/Su65diHVSYfu53Z55PUefi3zLih6/Sg5Vhhf6YGLrv660HfpAcPHmih5djKJV4jTixI4aW5vpqQ8yTqm160HEtg1M5ofdCOVlqOHfxaL/Zt0A6vfTVfXu/ftw2evqqrlmPdGZVTWx+Uw9Fly7FrfflH9x2ozEudOe/XzmC3fXrVcuy5L5PyjvrqT6Egnbcc+54beqnZ1Vlem/f4dki/GBSn45ZjKYyaC9e55uBNFdZybOeIZit+v/CX+97RjZ7t/7DLQC9ajiE+BG3LMWAIUT81hkPjp/6bWo4R22LouOXYdz+mlmMb/LTTcqzD0rN+spo+/Jz47J7zr4bdYr3lGLG4GQtttD76MbXROu9XUS3Hhq7MMu6/qZ7PbEObkWYb121iveUY0UawgNUGRqxi/P6nWo5NoTNj/xXh/0dF+IndhLRWhH94AFMR/jv+FVGEP39hm/uOVUNdDvw57vPagAX4duvlyzZn2UbCA5OAAKaa5TYBWinCP3BO2zPmG+u6zekvqlE3sXctnRfhN2BEBYwbvdk7aJb4w14R/rpG8zL6u3vwt4VmWo7bEII/ttdlEf59/kyqS9KN6rRehL9TQEN+8DBfr7jqqz/WPTLGScdF+BErQ1tFHVgZrRXhX5gqsIp5nOqWM7Tql2V1ruILZummCL8BIzjA2GivCL/prGZfag9Y6T3P9/KnTvLn+HI6uivCj8xpWoTAnEb9tqkcGr+Nz2vb7lefq7yMe423/LH6LaGOAJLEFy6TghWd7LMZ0uDcpSREIim5H62FARCXyyYEh3BVTWM1qeVA7LBI+7bkqgdqwrJy+4AjxBkI8C0C+GYQ3aQCgO/gAeVNrDIteS1wFcWC8qt/Wb+mXi1JL/elL0IOXS0YgGf0/qPeXQQXimgYy+lCwbK3nwfQdbFLAWO3YIBGLlRN5fQViYPlYmr/8kxcz2PvCp84rUswy721vtiVkCGF3EiRIaW8XhFlfzMYv3/sAF07S6qRqYGjBF9ZIhNJAhlq2/TNcJ8xx9vfY4mpwit265JE/FjFHkAeqypJRShjMKMy2utGGUT3h6NJxMLOM0ymAMuXMBCenVq37wO2rGBnEWrD7dAnMEQmF9lwO/aJGC9XIL9Qe6v+M64V5p9pzl845NmL4ptnZPh1DX6AvyJaStH/skRUEcoyZFTWgwB9mDnwURp5q2YlB91hE+RjIhhmUNxdIzP7MT5O8YfSF/u+79qyPFvl8m4d2qOGHKZ6FpDqQnXgbz02QDMvFbXkDN7WMfM5IsPqRbwDSTOzerl9nqnbbS8AIBkDoJACAGhaNPJEsaWMvsiEc97j2rMO+Tgn7r05dE+j/g10muwLAWjBBMDA1wGYozmN8+/i4xAbc2uNj/N9EBMfx2ZQRfNxuFsjJ+/PK3Rc/+T3P98WTjmuB3ycj4OYopvnB+kBqeDUqVNa4OPcGlUpu+uAkc7bbyv21gx+E6UXfJwNjNqJ0QftaIWPk+fDGd3Kx9gtsUnsrqYrRgzVCz5OAKNybPRBORxd8nH6X05+cvSUk2dseqfEg7t2GOoVH8eAUXl3Bura2dUjPo59TauntbblC2Y8etJ07uEePXXMx9k3kElzSTrXXIXycWw2ia473VjtujRz/qrkEXvT9IKPg/gQtHwcYAhRPzWW8/+Aj/N07c2QKP4X7wNtA/ssXBcXo2M+jsEQJj7OtsHa4ePEXkqbuuRUumtS1JIh0gMdt7DOxyHuzVngmHwfzMQxuTq4ovg48094riyaMNwla0Nw65+/Hc1gnY9DtBEsYLWNEav4wf9TfJzpdGZsfJ6kncQ70+lAro/02eNh+Da+Rv0nwNxJV7kwPIScYapB+KKFsyQiHGaPqaI50bbKLFOuENbMC4afQDnyjHtsibG5c42fE20enDvyBf37kSM56kLS+KvuD0yYj3oqFsWoJOY9lXFUqp5GbJzUms8JcQOj0twJ/iPkf45tzXcLdss39hdLgcLEIndg16OwxyFqVaoyjk6VGuekWavGdsXnpC0e/zXyt0YDvVcmre47fdqpfmo5aae7LDp8v5orb3tXs7fdem15o5aTVitojonh2fO8OT3tk190ahGrlpPm0vPX739+3e61qu6B+Xen94tQy0l7UP/c6NB9bXmZv7ew/rxiyR61nLSWsl7vKs+YxktfmC0JzHv0Ui0/v8XOpwZX/jrrOm927veCqz3XqzWbMUu94jP92iiP2Yc8f2bmfukIRIao6FDNicXZfc7w9/V7ZC2IjO4MRNVR0atppvaLG3V1SJj993Tep60bgKgGKvo24/N3t65LnBYftH168G+3QCAyQkV1TzYunp61WZBocM2134CbO4CoJio6m7q42rdOIrf54mpHXqd3/g2IjFHRF487HoOmZXrsrrZ7y9lT+84BkQkqSk5/XnhSfs1tXYLowZ/G2+8DUS1UVF2yYXVc7nefNfv2Ptl75S58jdqo6E0Dl03zj8Z5pI+8U/XRChv4WXVQUetnhttq5WZ6LO4UL16efC8EiOqiopP+JjeKO5912FJH+nxowYpQIKqHikYlbZzL6WPreDjv7bx7ftY3gMgUFcldz9/b7j3TcbdnrWV+X+rVBiIzVHTm/LE0xdmW7slFee1erUkfA0TmqKhKaK+84uRdrhkWjXMm5vYKAqL6qGi49ZyVI5et9Fm7/FZY/ZMfTwORBSr6tHx9/8/vP/ms3uZm6zes4XMgskRFrg8GHfO8luE+6363U5967OsFRA1Q0eZi++m752xwnb7q54r2bQLhXVaoaEG2kWHHbZe8ZzwZ233k8NMmQNQQFb2THHz7qtdZftzcTh03/pjjCkSNUNEjK5PGt64VO85q13Rvv1d1jwJRY+x7dZjR89OJON4++3iztoODlwFRE1TUrf3dQVaRFt4LJ/d6devureVAxEVFjk9CY+Urz/vMnLa17aHbTS6Qki2bcmiSLdOKO943m/eAtzCwScfnSz/YUJgNTZMtZ9CZKLOggztTT57hp20rmnSuYUw6/jCRHxUulYkoGAR0jUlboXeoOJ9IqfWIUKFUCowQWsW+jJQBooGifDXyOScqKKNfEgv2glEj6bqQ+sI+biM1awJRwqhUvgg1Hz95aY2NOT28d1y6FJq67mUWi4RKlp1cWKQ2fCRdTM8CbJbdRmrEBujiBxwmOXJ2JxLDMr2yCAlCoQDvJ5HCpsuqccIFHhRXCLdcgZQobuX12LjKSu6d07laTsrNmNv4EKjqc8gh0BIR2ztZCBeXEa7PI/QiXk2m62nYNtQWnWiiEnUpQoQKsH8ZJ+YCB0TVhok+Vpo/U3Dmd+t1vJ1PHdPfOTovJ5yWo4+lOC3HJGxrr7YtOtidKQPYdshgJ0VMNQSuKUbswQ6txUQgKcGqvLC2ze0qVb1W+HCyr18QVik/jYgFsLiMYIGhjq4/8Rya9ee/7IN/lH1A9NC1ln1wYhRT9oHzqIrIPrjwpNjidvVmXqu/9u7WqOY5ExYXS6IFYiH74PAoJrL2klFayT4obHgx+nlnqevKttJBx16HHtN59oGUERUwbvQ0UqK97INlGxf+9fHTUJclj1KPyr5F4s9VdJl90JBRdR9H6qk7w3L2wdBU8wipaxXBnOZDayRue9Zdx9kHiJWhpY8DK6O17IOWjQV1kiIEDkcm3v5Vc6ChVA+yD6SM4DiP0mL2gXmkfYcpd+64Luy8/7zRQoMjepJ90JARITCnUb9tJofGbzuzUij40aO+a9ymxtVeNp+ci/dGkZ51/s6Csh8cOOJbRqKeMNghBoFfgd8Vrd5XERhbdLxC3wt13aaUyXEinl9SvzfZi8YkGmwDUyajrV1IrpID0IDF5AroLVnkOE16bfxW75lVTq8cmfPeghBkh3dTBNmRy6V5SkT7x0LflmQIUDjVIOS243NCJmsUO7NAAMLGhbVIIgfDF8ipF9vMU/ys6VOmOM383fPy+tu3puCnpTN2M3lalohKA+zIJf8736o4ea7q0XjPqPZtTVkAzIERMDCidOJEKdcM+DedOHQ/5JROQwZdGiG6ZLCqEWaKUQlP7Rx3rrUq/H756du6SDIOUAY/KlwuVoXuEKeW5+hvPbhN+Rxggmr93bZwRvTO8dx73aVt2CwvBxZUWzyJSbWnJ+mPf5ysWQO40vuXfqjmvyTNyNk13sG+2YqaB3x01r+UY4faJNi/NJy0v7VDphi6MM7i0CyMjlfr353Yba/D9mEjLRIHHsGXBjaFJTcV8OgTsnHFMD4s1qDrmb2TLBRAriz8iTxGVPIYZHNY0uxMBAZJmVZEYtiu9BcmqYPyrzQ4VOCKAejPHSmaoI0Gg/+5qLy5ejyBGijwuAGW8oXehiyMa4018ALoKZP44P+UNi0CnkbLIsU0GThnj2+M4Z5J8lh5WbymneeoJ3gbg/RCpWgRh14vzcZU+/7TQPx1qPMC3rveRQ/55eVfwI2cBYTZwJGi7VdKGwTm8h4Jt1RTv+p0K1AWFiEOnIAMD9hCgvp007Pei+NmThs81tQW8e0ShtfDswpKnkve/uKEFZHRhMA2nAq2QlsENtQkzKYzCedMmn/o0FXmNev9W0+7K9P4xIbB4VJhoJjrPUEqpbAFdA6zLXZfGLwPjllJ2EShVCJSDvJIiSKEKwPbFHnZLQExSs/wnlSNjdXEGnjJDiK64Fs6RDewvHPfHC5qSPtDBWzXB40kRIyaVOWzyuHP9UN4yyr9OvqtseQp3n1GHkR2n5WXS5vORFYCCy5Dd4hcPJXLAAsq1xbRus9lRM5KhZwcN9Tg0KLuczjjUdGTazNcF93x/8T7lfMVT9VGBwh1SAcvZb0xuTUykhjQOhqoVQcLe1HDgOhwsToOzdU4O3aewKUVS+3g30TYubqNgk5usFhOYAnDn/IabnNkgYSKBY8Am+popaoptUxcmMozScqp19F26Cwo5lGRCu2RWaDRQZiFso0p9BWQtQob+iJKKNqkG4RulM10X5GV7T8tas1OQmACfiuKwARyuSKgQIY4LRRgiKMLVQKHZqHSm7r1RGvJTgufCihb7xzIVLa+hQryOXoPOZEbxw7kb6VLVlc3HOK0r+jr6Nb2wz6yAPnHECbIr4ZgkM+lg1xjVmYtDHItsDIpSJQYK5OCRImxMilIlBgrk4JEibEyKUiUGCuTgkSp6ppEJlFirEy7B/36zBtf6LJr2KxYy/5ePBLlDQ5eytFHpF+yQHlLpNN/M88Ttnd313DZbCAac/1Fbbz+6ykP+52ksgjoLiIBHLJTXpVmtjVzkcCWPSGwx43yAciWEu4zURpC2cL7RMppqa9IAofqjzRIj2ohBJOskOrsGraD3DBao7NrK2W0DckGkUHVADzAL/S8oGn7Gp0ddcLEO85tZ5O9h7cuKU+srWKPsQtgfFSILrvFpAR7sK1+MJrSD6fDykxFiVDHipoDsm53VjvPzS5zT096596z+jQWaRHTB3h/Or0pymWLbI5bgmP0MRZQAmOGAaWQ0Zo1abfxxeYVMtkQzLApB7d6GPeMPlQyMPns6gutF7huvzfe3erFw7c6jOfC9ovIIKIMyB2F7RdHa+bGtlVFDyFEgWo1K+AKhLNNlOCs6ia48b7XUe+Ua7Hz+Gu6z9aDqCUE6fxoJpA2jNYsrtvSWaL85qqjqpIhgwQW6Q3U0RWSh9ntQ92z/zpsmnTx4lR8FBF7LjmKqJJUBDoxjOgEjMYcoyQOzcL4aqC3wMD+i9PS9edd1vq4DyUfxJNXQgMacJvi47kqqlukTKOyccQEi7LGBsra+RgYptFjAGznqQ6gOAA2wzEVEKZN7Oqx6fw4kWDtJd+rPZy5q/GHnUg8lmZZxwlLs+JEE1fejrnATg+GYPlSjbF04Jq3H6PRWmeCgCUGM40eqsGpTXvP8xnoHPdg9P7k5t3wrNfqfHAvNVBqIi27BBAmQ0aYHgg1W+xKD6ERY806C6FBS4OMERhCI3USDrdDoEHt0Dw6O+TU+rx9jxn3Bekua98pelg2Ip5DhwrDucpzGorzcjrXvLXyPizag+SlCLlh4kh4SSyXBKILZJnMEjG5i+ENqU7K1cRljZLBYTMR4HqRyiePBaiPnqiRoTJBwlDKw13wOtSFhj5POR+84i/H9SbnpEs39KmLd5GQB5BdJOXl0uYcMc+tvNEtAE8hhKcm1ZzLAFuWXRM1YpMYK9+HqdCX3cOPsza3eei8eeU+g3Hb6l7CR/+U95Ojf+j10vDZO+qde3H3y26xguiRsxeL/2YBnwRGfMDw0QXDwBAhbkxUAtGbQ/zRrBK4cYBQHixWMCnNtbokwmvSdV7e/XD7LhcWFuCVpryfrDT0OuvkWqCV7oxaqa1XWinOw7Si0fJVCzF44WIRanypt2NN8yq3GFedt2b09TuLllfFx3+reiH3kxWDXmdbMQ52qDmBx4yk/WqsPZ+TNlGzDZmVCgNkYyGVlIbH0/zRsoN/1hEkmLyq3qpbd3xqWzUn5QPIrFpMUBGIjGZEpMVEbF2fz6FZ13ct8vw4rFdP91kffygMj9/6gNex8hPLTobprdph4BdwbmSIJDAEuJUwt1AYEQErGqhYMejyX7bNBzFPm+p9yWNSeV0TnugElCdKYr84gF3d6AnljYA3RF0NuNhLlEVqYAqT8k0ov7jVnJstDmxcK0j4Ff45q+Z6PNe9Gp1joxJoefFHqKQQw/ZUHA1uWwRDjSxWb290RCnLcuIStSAfKEJ5PgBLAcL/l/iU3MneUygRJa7nOq0KCve1CGAWVIDBWkwAMHQyL6CbzHoTuCKOJpZ6XBPDHCxEru4omCJXhxUY5sl0mHsfcLl4hnPCKXaoZS/JS486+KpRSD/5cKkkEEkLIxtSOqStvIA/AJYnBbhTyg3FPaVMdpJYmYLptcjFrPDysh7cwNJL0QDOJKqDGyRGEZ1vrDqNxDwnbD2p4Q5tKU6X8JOqIZfdRdgYGCI6Pb9SXnXnnDf1vYzb1SvA5JVo5EY+iHkhjRFD5XX6ByvfB3ld+CdMG7dGLhI5sDmQnYCQmfD6otTPJmGNzTVWP3XZv7mg+nQ7aVecfirxyLODR5odlQiz46T7309qzjdwzN0713B3m/yk8p6ZwLguVGd7KvbCYFhDNjpfDaTSTpYa+4sDZcBCa4JSh40OcbOmLXffPnbX0jThzDF4lBzJKDmWitJfJr2aO32+7rzi++pL1aZYRbGA0gZGlGKi89ExqBpLjGwXZb1A6BiVASAi6x2/hikfRV7D0OsVceCNjJjPVAdN1rYIUqg9Xfgvs6fEcj5asqe+UUz29HPkf/YU1c/co+5rii8OcN+1xsrF7NO1lmzYU0KZJhYshVsUk6XgRlW0PY2XrH/du8M016WPLM3M3Dr0YMGeEg8JWEAJDGsGlAoiK9CeEtdQndtTZMTQ2lOAFGpPF9HZU73ZExCnEztkti6VLN/Ncwp3zvrkELLr6jw/FrYEgkimLYGNCvLFdJBrTGYzwSDXApmNogYeZuopauBhZDaKGngYmY2iBh5GZqOogYeR2Shq4GFkNqKHRmKsQatIOcSI1fNYYKwtYU3JRlpU8j+rI0lRVBFTMjHmT9KJAZ1OiGULWdDJUjqdpGY/GDL78Wf3nOz9ObvHPcTn+VXxFYaJpeQCrXSGzZrHDYd3qFWZ5obJFGJlcSGFOErBVRZnpfzaxLqLFK9SFmtn5B8ol0mlfnDFghfVG7ISLOGbM/XOt3jg6bxk4R/f25+1oWVSGw6IEMsDwOtjH9vSWTZhjBRytWAlWFj4RyRRoN8deBgwylEUu4mgEqxUL9GA+rbicwzGAwPaw4kTO9uphpdQHiwJE4iDcAugkfKyH+zZoX69uvJ6gCxc/SreChv4teLvqDw+vxYCoq8c5g0qJMq3qoa9FdWEkgsj3cNEsOwWBm+l6vAiDL2oXUJ8dSlaVli5IYCdQCRCqROsBaW2ECnkYmGo6neDQXJhuOoedKguoxuqerMsE6uAsnRURxz/LKzLGeOZ1uWE8di6vFzvMSeWV9Xf49E0CRPmMRIM8xQ6zDVeJo052lsmKermYsskRd1cbJmkqJuLLZMUdXMxX8hwUd7L1KV7Hee++3Sx0+ObDdR8obZjE7N+z3/jkf3Yr39YwdsWpMUVWn3q0DmhGC8Li+sKOk3qacsxYtFhrbUcS57C1HLsaExFtxxLaXXNcOjmmW57uvqPm/+4ySo9aDmWMIWpgcvoKXrQN+nmzZtaaDnmE+l3o6n0vU/876vmTJLNMtKLlmPdGbVTWx+0o5WWY0srZw++PPWiZ+73LpdC/G+N04uWY89jmJQDrInulcPRZcux0ErFaf6iHK+8F4smhSw+OEOvWo6lMCovXDfK08+WY1fuFrl9/+bmkyW99del9ZPX6LjlmBuj5rg61xy8qcJajvEC040C2ilcE371bGdqOdBJL1qOIT4EbcsxYAhRPzWVQ+On/ptajhHbYui45di2qUwtxwKmaqflGLeO3/i/ow7yd37luPgJRq1gveUYsbgZC220NkxlaqMVM7WiWo7l/bzfwvVlS5cVxZuHF7gNWMl6yzGijWABqwBGrGym/k+1HFtJZ8b+K8L/j4rwE7sJaa0If9VYpiL8SdMqogj/eOtfB7+bBXjNbXfj5IugLXgSWfmyzVm2kfDApHIsU83yO9O0UoS/6EeboCwbU6+9xjOme9Xa1FrnRfj3TWNCBYwbvdk7aJb4w14R/mGP1lhy+oZ4ZA3ds6dZFZt2elOEX8Sout66UZ3Wi/CHpUQ0qDavpsPCYbcPru58KEXHRfgRK0NbRR1YGa0V4bfPX9P6wR+DHRctmbZx0cSsqnpQhB8xNrTgJE3TYhH+NzVMhy+UFDrkRvbJ3TzlynY9KGcBERIxIgTmNOq3pXFo/DY+r227X32u8jLuNd7yx+q3nfB1BJAkvnCZFKzoZJ/NkAbnLiUhEknJ/WgtDIC4XDYhOISrahqrSS0HYodF2rclVz1QE5aV2wccoUI4PYsAvhlEN6kA4BsfW97EKtOS1wJXUSwov/rvnT5XbXfqkdOisRe9OlTbiu+y+I96dxFcKKJhLKcLBcveXo2l62KXAmNOsRq5UDWV01ckDpaLqf1LM9tbD57y0x1nG236PedZ4jpChhRyI0WGlPJ6RZT93cb4/VNide0sqUamBo4SfGWJTCQJZKhtszzziSAn9rNXmtizqMn7gU3xYxV7AHmsqiQVoYx4RmWE60YZRPeHo0nEws4zTKYAy5cwEJ6dWrfvA7asYGcRasPt0CcwRCYX2XA79okYL1cgv1B7q9W3Z930mDjXIX5Uu9kGk9z749c1+AH+imgpRf/LElFFKGs4o7Lc9GLmwEdp5K2alRx0h02Qj4lgmEETfjZpN3LWWu9Dlaq//P1Gjwfl2SqXd+vQHjXkMNWzgFQXqgN/wMFYzbxU1JIzeFtHJAaTNrba5H7E7GaTpmmxA3W77QUApGMAFFIAAE2LRp4otpTRF5loFrZiWrB5FYfE9nVPiARtH+s02RcCMJYJgEzvWMzRXMX5d/FxiI25tcbHuT6diY8TNr2i+Tg3X+WP2X7Lzy39daP95rsm1dUDPs4f05mim7nT9YBUkJeXpwU+zrhmR1KXTg4U5LzkcNq9Ss/XCz5OJqN2lumDdrTCx4lrmFDvps9p570ukjV7BQcN9YKPE8eonDB9UA5Hl3wczuO/Q258Hum1+tWdSpJawxfoFR9nKKPyXHSjPP3k4wxs3z1u5iGFa1aecdSPXnYvdczH6cioucY611yF8nHMQjv3Hp+f47Bm8MS+l8S9hXrBx0F8CFo+DjCEqJ+6mvP/gI/Trf3dQVaRFt4LJ/d6devureU65uMMjWPi49jFaYePc8l8xz3njbvdE/JykuYMkp9nnY9D3JuzwDEZGMfEMXGMqyg+ztDD1+vbbJrrvrrhzRvdHnw6wzofh2gjWMDKjhGrBnH/U3ycNXRmbHyepJ3EO9PpQK6P9NnjYfja9Eb9J8DcSVe5MDyEnGGqQfiihbMkIhxmj6miOdG2yixTrhDWzAuGn0A58hyfhMbKV573mTlta9tDt5tcoH0/ciRHXUgaf9X9gQnzUU/FohiVxLynMo5K1dOIjZNa8zkOsDCXuRP8hx+VQ8e25pv2VuQb+4ulQGFikTuw61HY4xC1KlWZTqdKjXPSrFVju+Jz0oYH1un9LOgkf+GDD+fWd1wvVMtJ43674nvvY13XNZYdMt2/zT+glpNmbDQ98vpPBW/N8LFdTeIbKNRy0nYcN7vzM63QbfG6XY2nHhvsp5aTZjnqUPfxvdNcZ/eMOSSRNstTy0njDQ5/fnct32Nekd3+qd1OBqvn59uEb46dEOO8pHG3KmMXTeSrNZsZZPLq9baOLz1WDBqcfXPR5OtAZIiKDHd+P7+vksQzxzK20ebcwd+AqDoqqjpkwN9Oa3P5+56eShgbsDMMiGqgojZ3vVc/mRPpszH95/dhb9qdAiIjVNSozdcP79+NcYlf5TDK2OTtayCqiYruFb3fGPF3IH+5v9HI3fc6wuICxqhI8OTZ8C0b4r23ndu4rPL5kNtAZIKKZvuYtL/tms/LWWoQtvJjlStAVAsVTap6cllc56MuaQsvcPcP29sWiGqjom4v8qPH+gd6b9rz/GubHvYeQFQHFVWqxd92t8F21+mu9QuvFm3JB6K6qKil25Ci2i5zfVLDWnt459S5CUT1UNHtrtF5nQZGOs0a7Zdo03zVWSAyRUVPDqbOPLnA2H3666bH362ush+IzFDR7kv7ZzVI6MxfsexVXO+qz+FXNkdF/c9kPo9XNPXYH7Xh1ckYgS0Q1UdFj7pO7OVww4u/x2q2afU2+6cBkQUqenUpwG3Mb/0dc9a0/ulwXgYHmyUqqhnz/kVK/2lec4+2HXs+a9ZGIGqAinYtqzs+4tJmz/hRBms/xJlDkRUqahJyp2df447eazssm3ns2kn4WQ1RkWv8wVZ7b7l5zbcy21u9yjoDIGqEiix2Br/Zemy9Z+auz2camPVKAaLGqMjp0ZyojfHbnDZa2PY5UKffbiBqgoo2KczrfFo+3yNZsaJZvcoZ8DW4qGjLnpd3fvIHC9bNS7Tuu67nCVKyZVMOTbKlyNTCuP2l+16LRo/YcmGgfQiF2dA02XItnYkyCzq4M/XkGX7atqJJ5xrG4IPT1fhR4VKZiIJBQNeYtBV6h4rziZRajwgVSqXACKFV7MtIGSAaKMpXI59zooIy+iWxYC/YM56uC6mvDZ9jEq9ZE4gSRqXyRSi/20hHgV99UWXehvuO9Vr3afmKRUIly04uLFLbNZ4upmcBNsvN4jViA3TxAw6THDm7E4lhmV5ZhAShUID3k0hh02XVOOECD4orhFuuQEoUAx99cth10tA7JX/Ec4c7333xIVDV55BDoCUitneyEC4TRri+ztCLeDWZrqdh21BbdKKJStSlCBEqwP5lnJgLHBBVGyb6WKl/m/XHvpvle+4ouDZ4cdGxvoTTcvSxFKflmIRt7dW2RQe7M2UA2w4Z7KSIqYbANcWIPdihtZgIJHXNodoxi6pu+puXdTGVM3jg0+Ty04hYAMuEESww1NH1Zx3nv+wDNrMPiB661rIPHsQzZR+ka7ZWljH7oPieYuzKX+/dDlll1K0WMSyExcWSaIFYyD64E89E1j6t2WL5T7MP3IveL+y/6obzvnmTWx6fJFquWxoGzD5gRAWMGz2NlGgv+2BW/OPM/hZ7vGIHfOy3J/T9Mb3JPkhiVF2UblSn9eyD1j5fPkxJs3TJ6bTSquDtmhE6zj5ArAwtffw0hZdSUdkH63+ENvu4eYfTvEYmaQ3vxeDPA3WUfcAITnq8FrMPOjb4Mu9Mtw2uh6ZbmFb1HvdTT7IPkhgRAnMa9dvWc2j8tjMrhYIfPeq7xm1qXO1l88m5eG8U6Vnn7ywo+8GBI75lJOoJgx1iEPgV+F3R6n0VgbFFxyv0vVDXbUqZHCfi+SX1e5O9aEyiwTbw8SK0tQvJVXKAFcoXVUBvyReB1r92dFnmNsPjzy4Lanw9Swiyw7spguzI5dI8JaL9Y6FvywMIUDjVIOS243POL9IodmaBAISNC2uRRA6GL5BTL7YPHG9e3/fxhiBDIJxRNT7kDX5aOmM3k6dliag0wA4cv57S6Uqi18xKB9u/OdpAygJg2YyAgRGlEydKuWbAv+nEofshp3QaMujSCNElg1U9verUVEH8cZ+9M64unlNTllcXScYByuBHhcvFqtAd4tTyHP2tB7cpnwNMUO2g+Lv1GgY946c5H+s34+nzz2z0MGJUbYyOVEvlHydr1gCu9P6lL6e1Smnd+Zb7nBEKv53zQmN11r+UY4faJNi/NJy0v7VDphi6MG7g0CyMjlfr353Yba/D9mEjLRIHHsGXBjaFJTcV8OgTsnHFMD4s1qDrmb2TLBRAriz8iTxGVPIYZHNY0uxMBAZJmVZEYtiu9BcmqYPyrzQ4VJg/G4D+3JGiCdpoMPjls8ubq8cTqIECjxtgKV/obcjCuNZYAy+AnjKJD/5PadMi4Gm0LFJMk4FjFWF/dHeHw45LauT9GG0wUIK3MUgvVIoWcej10mxMouDmx+8TO/LWPXp3d/nWvsNYOJmYC2E2cKRo+5XSBoG5vEfCLdXUrzrdCpSFRYgDJyDDA7aQoD7dTD/+m/GbgjkuWw4dmlcQP6oLnlVQ8lzy9hcnrIiMJgS24VSwFdoisKEmYSOdSThn0vxDh64yr1nv33raXZnGJzYMDpcKA8Vc7wlSKYUtoHOYbbH7wuB9cMxKwiYKpRKRcpBHShQhXBnYpsjLbgmIUXqG96RqbKwm1sBLbjybLviWDtB9P6u8c98cLmpI+0MFbNcHjSREjJpr7Hh6Q8rPzoKldz+fetC+Lw/vPiMPIrvPysulTWciK4EFl6EBRC6eymWABZWrzqZ1n8uInJUKOTluqMGhRQnfkBlW7Rs83OOTOCZpbcysVpF4qjY6QKhDOngp643JrZGRxIDWvVladbCwFzUMiA4Xq+PQXI2zY+cJXFqx1A7+TYSdq9so6OQGi+UEljD8Ka/hNkcWSKhY8AiwqY5WqppSy8SFqTyTpJx6HW2HzoJiHhWp0B6ZBRodhFko25hCXwFZq7ChL6JetJ5kvY/dft0l2Whj4xMPniQSAhPwW1EEJpDLFQEFMsRpoQBDHF2oNnFoFiq9qVtPtJbstPCpgLL16bOYytYnqyDfrPeQE7lx7EAurjxyX72vxa5xBgX57bMq72EB8qg5TJCHzMEgz6CDXGNWZi0Mci2wMilIlBgrk4JEibEyKUiUGCuTgkSJsTIpSJQYK5OCRImxMilIlBgrc3HauWspghGuOyZ99pL6j69DorzBwUs5+oj0SxYob1vo9N/M84Tt3d01XDYbiMZcf1Ebr/96ysN+J6ksArqLSACH7JRXpZltzVwksGVPCOxxo3wAsqWE+0yUhlC28D6RclrqK5LAofojDdKjkmeCSVZIdXYN20H6ztTo7NpKGW1DskFkUDUAD/ALPS9oUJ3iqX6Ojl5bbx8M80n/q7A8sbaKPcYugPHRmeiyW0xKsAfb6rCZlH44HVZmKkqEOlaUKJ0wkE6/b7fIJ/PH1tpBHYsaskiLmD7A+9PpTVEuW2Rz3BIco4+xgJIvI0odZ2rWpN3GF5tXyGRDMMOmHNzqYdwz+lBJYuiRtks9nARxdyaIY8Li7XQYz4XtF5FBRBmQOwq2wVEzNXNj26qihxCiQLWaFXAFwtkmSnBqxZ/p2Tf2l9Om9Hv1V9b3MNKDqCUEScQIku9MzeK6LZ0lym+uOqoqGTJIYJHeQNkEr+3jW9jPdUOdQat2teUb4KOI2HPJUUSVpCLQ6c2IjvVMzDHK5NAsjK8GegsM7L84LV1/3mWtj/tQ8kE8eSU0oAG3KT6eq6K6Rco0KhtHTLAoa2ygrJ2PgWGygy78eaoDKA6s8kg+gCp/mPau8ET/Si5Sl71RfypGZSXUwx92IvFYmmUdJyz1CJlg4srbMRfY6bYQLF+qMZYOXHPzWRqtdSYIWGIw0+ihivKs7BbzfA0/r/XmNrXbTB6Ft0R8cC81UGoiLbsEEKbKjDC90XCxKz2ERow16yyEBi0NMkZgCI3USTjcDoEGtUNb6eyQU+vz9j1m3Beku6x9p+hh2Yh4Dh0qDOcqz2kozsvpXPPWyvuwaA+SlyLkhokj4SWxXBKILpBlMkvE5C6GN6Q6KVcTlzVKBoZNQjLA9SKVTx4LK6sla2SoTJAwlPJwF7wO5bf8+qJHwmbLCNdlC+063N/9k9CxEXkA2UVSXi5tzhHz3Mob3QLwxEN4alLNuQywZQlP1ohNYqx8H6ZCX+PSxk/PSNzgseRSmGFuYrvx+Oif8n5y9A+9Xho+s3/ZPduY8dN58c3Hy7xvDdzEAj7DGfEBw0cXDANDhLgxUQlEbw7xR7NK4MYBQnmwWMGktNsN34xp+zDNa8lm+wNOr5tn4JWmvJ+sNPQ66+RaoJXOjFrh6pVWivMwrWi0fNVCDF64WIQaX0rFLJz+4EaL4FGCrUuXj8iY32ACXjFeyP1kxaDX2VaMgx1qTuAxI2m/GmvP5wQla7Yhs1JhgGwspJLS8Hge9Liby+s8x5n5joX2E/5wwLNqnZQPILNqMUFFIOLGiEjbZGxd38ahWdd3LfL8OKxXT/dZH38oDI/f+oDXsfITy06G6a3aYeAXcG5kiCQwBLiVMLdQGBEBKxqoWDHo8l+2zQcxT5vqfcljUnldE57oApQnSmK/OIBd3ekF5Y2AN0RdDbjYS5RFamAKk/JNqLtFPWxpOeGnsUvqtMeLN+4yPYIffHSOjUqg5cUfoZJCDNtTcTS4bREMNbJYvb3REaUsy4lL1IJ8oAjl+QAsBQj/X+JTcid7T6EeSoT1XKdVQeG+FgHMggowWIsJAIZO5u10k1lvAlfE0cRSj2timIOFyNWsBUyRq4kqzHfQYe59wOXiGc4Jp9ihlr0kLz3q4KtGIf3kw6WSQCQtjGxI6ZC28gL+AFieFOBOKTcU95Qy2UliZQqm1yIXs8LLy3pwAzbZ5pCqmUR1cANjFC8X5hurTiMxzwlbT2q4Q1uK0yX8pGrIZXcRNgaGiE7Pr5RX3TnnTX0v43b1CjB5JRq5kQ9iXkhjxFB5nf7ByvdBXhf+CdPGrZGLRA5sDmQnIGQmvL4o9ROwyDljWaWVnvEHTpyeHGSFHzaVeOTZwSPNjkqE2bF6/hPLw2fb+uQMu9p4iMHo8nZt4oDZUReqsz0Ve2EwkP5cmK8GUmknS439xYEyYKE1Qamo9dhPuVbbneevXJz1suClMR4lRzJKjqWi9Nl4191isa/L+lNzToZuLh7HAkpgWDOgdH1hPjoGVWOJke2irBcIHaMyAERkvePXMOWjyGsYer0iDryREfOZ6qDJ2hZBCrWnO/9l9pRYzkdL9tRhIZM9Nf3PnmL6idk4aIf7hz2eS++Mmvy9bcxjFuwpsUwTC5aiN6OlsK5wexo6vnla89y+jsuuh4cV9rHdwYI9JR4SsICSKSNKnIq0p8Q1VOf2FBkxtPbUVGVPd9HZU73ZExCnEztkti6VLN/Ncwp3zvrkELLr6jw/FrYEuclMW4IdqjOV3XSQa0xmM8Eg1wKZjaIGHmbqKWrgYWQ2ihp4GJmNogYeRmajqIGHkdkoauBhZDaih0ZirEGrSH2STKiexwJjbQ9rSjbSopL/WR1JiqKKmJKJMX+STgzodEIsW8iCTvbS6WTZ80+rbAckCQ6e9fnd9Vd6M3y5jpI8VLximGJO5iUli8JgTSj0ATXIOa11XHz8vHgB1s0mt+/pN6WZjU+bMvmVxNKNVQWywHFikeomuq9ArjhSIisrPb0VnxOXCGxdVyeac86gRAr/0gCFi8K/RFwWgn+Z8iM2Z+3Cwe5Zm7d4Ozxpd5st/5Gx2nUJFtyJQrlEOEZKzRnqH97l7PJFOQ5Zq52Mujw7k8OM/kD0UVwfsqPkU6qjRKypWc6VKhZob2oi6iiRs+BaIdojOkpM/qRpiaNUMtApUbs2zrLZhwkc5z1TWt25vvuv94yo0TlNVMd95Q2IdEAhOepAAUl4BwQS1Ibso7MhqdkPhsx+/Nk9J3t/zu5xD/G5wlV8hWFiKbnIM535sOZxw+EdapXquWEyhVhZoEwhjlJwlQWeqUcnoXYrxauUxWMy8g+Uy6RSP+j1woslaePF/Qhj1Nve7LLl3kCHXQvXOfaYvG8v3Rg1HBAhlgeA18c+tqWzbAKcGYFSWE0aFg8TSRTodwe7FBgpLYrdRNAjVu6bpEcweJPnAT32cOLEznaq4SWUB0vCBOIg3KAwUl72g31/1K9XV14PkIWrXyWUkfZoxb+xYF5+LQREXznMPVZIlG9VDXsrqkVZLox0DxPB0n2q0V4dXoThW7VLyH5fipYmVxp/2E1IIpQ6wXpyKtVU9VfIxcJQ1e8Gg+TC8BIDohyq++mGqt649sRKwiwd9xPHPwu+/Z/zmHz7O/Mw85Cl95gTlxP9DbGcZ0wOOqxKDjpAh7nGrrYxR3uuNkXtbczVpqi9jbnaFLW3MVebovY2tp8yjx3XsUt/a7es1HUN6zduUFVtPzXpy8vMovUzBIcedL58ZrP7FpKDDq0+5UAiFvRmwUHPptOknrYtJBYu11rbwgeLmdoWRi2u6LaFopYWnWeceuuzrWO1gDtdfhPrQdvCO4uZmkCdXqwHvdcuX76shbaFrYeuzBLF1/NKMx38vqFF6my9aFu4j1E76fqgHa20Laz58Umf3+4f58/8I/H+wRUG+EbPumpbmMSonCh9UA5Hl20L48427fxjBMc796TdujppG/H1EXXdtlDEqDxf3ShPP9sWyq5cWFtcUMspt774k28Li9Y6blvYm1Fz1jrXHLypwtoWPr6ReO7Dgode+z2Spk+dOPaqXrQtRHwI2raFwBCifupBDo2f+m9qW0hsraPjtoVhS5jaFjou0U7bwnZmAqd2Ht/4GYmBFl3Sufh+3Gy0LSQWSGShFd/YJUyt+AYuqai2hQf2r3sQeHOR8+FT3YsNG8sMyj+FCVgRbQQLWDkyYmW35H+qbWEOnRn7r5HHP2rkQexIprVGHo2XMjXyuEe2nSw08nj18OiZ91+7e2YF9Us6+251EYsVK1i2kfDApMFSpr4HVZdqpZEH3+ONz9c/Fzgceb3tZm7dFvj68bpo5PF+CRMq97RrDRn3DpolD7LXyCPtc9LZeecqeSdNj/lyqMGwSXrTyOMso+qydKM6rTfymHyqbgfjb5cEcY1GhhvNjjHRcSMPxMrQdmIAVkZrjTymJ9e6svPAdPdNBs/b1rjAu6MHjTwQY0MLDjA22mvkwRnb/82XOVuc1/TNckueXD9LD0riQITOMiIE5jTqtx3i0PhtfF7bdr/6XOVl3Gu85Y/Vbzvha5EgicDhMilY0ck+myENzl1KQiSSkvvRejoAcblsQnAIV9V4WpN6MMQurbRvS66coiYsKz8YOELFcHoWAXwziG5SAcA3bWl5kzNNS14LMoiUWFB+9V5HgmxXxd13yl0XWdhR9ju+2Og/6v9HcKGIhrGcLhQsnf3nUrpOmClg7BZq5kLVVE5fkThYLqb2L32fdUgo+vM3ftq34qG97d6cJGRZIjdSZFkqr1dE6fATjN9/11JdO0uqkamBowRfWSITSQIZ6mMdtr2wNbd9gs8Mt/Xvo6NHWOLHKvYA8lhVSSpCGWmMykjQjTKI7g9Hk4iFnWeYTAGWL2EgPDu1bt8HbFnBziLUhtuhT2CITC6y4XbsEzFerkB+ofZW7yb1DX48Zj9/+5DECR7bax7Cr2vwA/wV0VKKHroloopQloJRWaP1YubAR2nkrZqVHHSHTZCPiWCYQS+y3j0bEbPIY3q/9TtfJu45Up6tcnm3Du1RQw7TxQtIteU68Adc1tBLRS05g7dVzPV0PWa9zWfu2Sn8zQ/9Z+p22wsAyMYAKKQAAJoWjTxRbCmjL1Szbef3dZea7uanNgx5U9DqTT3CUqbdggEQgDgmADKDlmKO5mHOv4uP4/RoTtTG+G1OGy1s+xyo02+31vg4b5Yx8XFmLatoPs7mn14v3UyqeC7ysOv4rvaHQD3g47xcxhTdvL5MD0gF2dnZWuDjFA38Ih+6otB7VdSAZ2lfvGrpBR/nGKN2duiDdrTCx+lU7JTk++aw58alxwpD/9obrRd8nFRG5czSB+VwdMnH2eB/cesO7xj3hY3WpTiErnuoV3wcOaPyRupGefrJx3mdfUhWZWQbh7iiY6+3df2VrmM+jgej5rrqXHMVysfhJsninowTOK6q0zRvpIdlil7wcRAfgpaPAwwh6qce4fw/4ONsUpjX+bR8vkeyYkWzepUzNuqYjyNfzsTHcVmuHT5O/3s1fl/S7y4/Y3x+v4F9BINY5+MQ9+YscEzCljNxTIYuryg+zide42nmg856zVv6dkng97RM1vk4RBvBAlYujFh1XP4/xcfJpTNj4/Mk7STemU4Hcn2kzx4Pe4uPlPSfAHMnXeXC8BByhqkG4YsWzpKIcJg9pormRNsqs0y5Qlh3Mxh+AuXI27Ln5Z2f/MGCdfMSrfuu63mC9v3IkRx1IWn8VfcHJsxHPRWLYlT+w/xo1dOI2e2t+RwLWNzP3An+I+R/jm3Nv1F/Qb6xv1gKFCYWuQO7HoU9DlGrUpV5dKrUOCfNWjW2Kz4nbTO/s5Wp3VWnpeFTAg9Uck5Ty0m7npK1O+YPOX/ffseoIlFCkVpO2rXa86RzLV87H34nlvdNO9FHLSfNq8Mj//S2S/grDsRvH1qU3UgtJy0hevW0ITO4Xkmn7UZ1+tj7m1pOWqMXJ5dJ8q34eYeq357+cluBWo2PrkuXcgTN97pvOTJ4XsF7V0e1hlXzcodO4p519d4+eXnwpEO3PgKRIfbAoPXdm29Z57qrYdP3cTV+uw9E1TGRbGVOw8YzHBamXqvLO9JECkQ1sJe3HFkQ+iTMa3P7gC2K2bdrA5ERKtrh/6fLp9+jvRM2jvrW9+uwRCCqiYoGjZTN/5wVyVsnFHTfKNsHi2EYo6K1q1rcmbZ+oPOMZe1aezWoGwJEJqjojldy5IE+RwQzR1+/V7vLgr5AVAsV1d97+mqs7023xGHb7nU8mlEPiGqjIlnN1CPH+3TnbWgT3PzT7obmQFQHFb0L61N71YShLuv3vvGoW/vmViCqi4o4KdZehQFVXTYeP5HoM2jWCCCqh4q2VloyObzaR5/dVq3cdmY9aQFEpqio55o6Jxe0TfKedyfo4tcpXo+AyAx7jYf9uJGvGzvvS6gWeLvPoV1AZI6KfgVZv205NoM3a1aMx+uRUjcgqo+Kjgg5y9ed6+I216/JU+8esZ+ByAIVjZsWM27nwQmes3cljXjw5FpPILJERV2evN4Z65HnNXforI5rjz1/AUQNUFHieIX38Bl1BDOHTti2KC7FB4isUNHvVV9eqhZrKtjT+ZthjezxhUDUEBWZjvZo1qlHpsvhHw/kTSXOS4CoESqamjc1e1my1GPx8ROWZx+chcg3xvQlabih+YYb7od/O/WL98ATDoAmqOiCm+9x6ce/vROajbeUBSQsByIuKno040XU1JfVeatOn89tlnjLhZRs2ZRDk2yZdnGlkW3cdI+tt74Nv/TL+D2F2dA02fIonYkyCzq4M/XkGX7atqJJ5xrG4Ldl1fhR4VKZiIJBQNfcuBV6h4rzibRriAgVSqXACKGdMMpIGSAaKMpXI59zooKyVsgAe8HvKfk0nYx9bficghTNGsmUMCqVL0Lt/7ddPPKHsK7XzBTuKO6BG31ZJFSy7OTCQtefU+hiehZgs/w4RSM2QBc/4DDJkbM7kRiW+pZFSBAKBXg/iRQ2bleNEy7woLhCuOUKpERRmPbiGH/LJ6cU6T1ZlVsNV+BDoKrPIYdAS0Rs72QhXAWMcB1O0Yt4NZmup2HrYVt0oolK1KUIESrA/mWcmAscEFUrN4ZuXAdN/QZ9u+18pPOAdt0e3+ETTsvRx1KclmMStrVX2xYd7M6UAWw7ZLCTIqYaAtcUI/Zgh9ZiIpDUPYsHNuZs67raO+l+rfs9m77klZ9GxAJYBYxggaGOrj+/c/7LPmAz+4DooWst+2DTCqbsg6AVFZF98OGv0VEfrl7zXnjtiuuh5nWfs7hYEi0QC9kH61YwkbXnr9BK9oHcqaZ74lNv/oLb1YIW+85prvPsg0mMqIBxo6eREu1lH/xcO2HR2H4mTlkmd/c/XLmghd5kH/gxqq6vblSn9eyDKwMaDjGMmOh2ONm+7dZz8+N1nH2AWBla+jiwMlrLPpi/3Mlg1ZDZjrncYdIuy1bjCyboJvtgEiM4QSu0mH3Qu/FE78Rre1zmGgyp9mZg1HA9yT7wY0QIzGnUbzvGofHbzqwUCn70qO8at6lxtZfNJ+O1boj0vfR3FpT94MAR33YW9YTBDjEI/Ar8rmj13qzA2KLjFfpeqOs2pUyOE/H8kvq9yV40JtFgG3hnM9oeiuQqOQANpG2ugP60davZnJOE7XJcf3rN0pwqvnUIQXZ4N0WQHblcmqdEtH8s9H4qhACFUw1Cbjs+58RmjWJnFghA2LiwFknkYPgCOfVi637ySN8XG3bxVnV6nnfWOe0Yflo6YzeTp2WJqDTA9v7eqn5oQC+fhYa7zhp3zStvzXsI2C5GwMCI0okTpVwz4N904tD9kFM6DRl0aYToksGq8p7e9hk+8IRrirvNosYxRR/rIsk4QBnkkstVeY7+1oPblM8BJqh23/efa9485bmk5vaNvTapxQUWVJvAqFqFjlRL5R8na9ZEsvQeyIpmj8YObWbpusbQb1Mzh5w8nfVA5tihNgn2QA4n7W/tkCmGLozHOTQLo+PV+ncndtvrsH3YSIvEgUfwpYFNYclNBTz6hGxcMYwPizXonGjvJAsFkCsLfyKPEZU8BtkcljRMFIFBUqYVkRi2K/2FSeqg/CsNDhUC0gDozx0pCoyPBoO/e1p5c/V4AjVQ4HEDLOULvQ1ZGNcaawII0FMm8cH/KW1aBDyNlkWKaTJw3D1u8NuFRvGWWUYpPnR6i2+zXBXpp0zRZhK9XpqN+Sv6yIXQ77OclvRpP6b19xUfWDiZ8IUwGzhSlL1OaYPAXN4j4ZZq6ledbgXKwiLEgROQ4QHb0FCfbgb17tGtielXn1VrVk4xys/Ft6IzKnkuefuLE1ZERhMC23Aq2AptEdhQk3CCziScM2n+oUNXmdes92897a5Mwx9zG/uJw6XCQDHXe4JUSmEL6BxmW+y+MHgfHLOSsIlCqUSkHOSREkUIVwa2KfKyWwJilJ7hPamao6uJNWmiupIu+JYO0M1eWd65bw4XNaSFqgK2/IRGEiJGnVJiZHH28cfKgoOfbwbNEk/siHefkQeR3Wfl5dKmM5GVwEbrVIhcPJXLgBRUXknrPpcROSsVcnLcUINDixK+ZXVd082Tq3guzzwY0Gdo5gg8VRsdINQhHbyU7VkM0cpmRGvDSq06WNiLGgZEh4vVcWiuxtmx8wQurVhqB/8mws7VbRR0coPFcgJLGP6U13CbIwskVCx4BNhURytVTall4sJUnklSTr2OtkNnQTGPilRoj8wCjQ7CLJStkKGvgKxV2NAXUULxNnfW0jCvN24H3j140bD25SaEwAT8VhSBCeRyRUCRzQgFGOLoQnWSQ7NQ6U3deqK1ZKcNWAWUrQ9ayVS2fqAK8nz9h5zAjWMH8s7vxqRNPljXY9Wafh/P1hKX99QIQt53NRPkdqsxyE/RQa4xK7MWBrkWWJkUJEqMlUlBosRYmRQkSoyVSUGixFiZFCRKFSuTTKLEWJkUJEqMlSn1PV1QvUYDp7UeYbMafBZ8JFHe4OCl3oQS6JcsUN5O0+m/mecJ27u7a7hsNhCNuf6iNl7/9ZSH/U5SWQR0F5EADtkpr0oz25q5SGDLnhDY40b5AGRLCfeZKA2hbOF9IuW01FckgUP1RxqkRw1MBZOskOrsGraUNU/V6OzaShltQ7JBZFA1AA/wCz0v6GtQ1eNrZC2csw+P6X4srHhoeWJtFXuMXQDjo6nosltMSrAH2+rOqZR+OB1WZipKhDpWlCgN+zgp71IlOS/nUVornwOHKrNIi5g+wPvT6U1RLltkc9wSHKOPsYCSOSNKn1eQDx+Y/DQbX2xeIZMNwQybcnCrh3HP6EMlwT9a98tNa82Pu9RlpZFni1o6jOfCFq7IIKIMyB0F2+C+qZq5sW1V0UMIUaBazQq4AuFsE3Wyprd9t29/7PHIbrV1TSXBxAV6ELWEILVlBMk8VbO4bktnifKbq46qSoYMElikN1AT6/UfN+SPxV5bOx5I/M63xTezM8SeS44iqiQVgU5lRnTeqGK6Zzg0C+Orgd4CA/svTkvXn3dZ6+M+lHwQT14JDWjAbYqP56qobpEyjcrGERMsyhobKGv3dGCYPkLYzlMdQHEAbKc1W+rKFqbNTRx25frNpy577QZEWCyxqYk/7ETisTTLOk5YmhUnmrjydt0GdroYguVLNcbSgWt+R7O1zgQBSwxmGj1U98fuG13NNN999clRj3b8lZ+Mt0R8cC81UGoiLbsEEKbTjDDtS9VssSs9hEaMNesshAYtDTJGYAiN1I083A6BBrVDZ+nskFPr8/Y9ZtwXpLusfafoYdmIeA4dKgznKs9pKM7L6Vzz1sr7sGgPkpci5IaJI+ElsVwSiC6QZTJLxOQuhjekOilXE5c1SgaGTexGgOtFKp88FqDusFEjQ2WChKGUh7vgdSi/5aRL9uYuhesd5o2vtCpn+87xeBcJeQDZRVJeLm3OEfPcyhvdAvDEQHhqUs25DLBlCdmoEZvEWPk+TIW++FN8hQWL1wpyAyeKXZol/IaP/invJ0f/0Oul4dPDa3zRj7RPXgf73DmXcuzVOxbwCWDEBwwfXTAMDBHixkQlEL05xB/NKoEbBwjlwWIFk9K+Ri/22Znt4rXQ77NxWspzPJW8qvJ+stLQ66yTa4FWbBi1YqFXWinOw7Si0fJVCzF44WIRanypS5KkRA/uGurhOGNd1cHGnTmH8YrxQu4nKwa9znqPaDvUnMBjRtJ+Ndaezxm5UbMNmZUKA2RjIZWUhseXT12NB/NMPBN+frJtbN+5KZ5V66R8AJlViwkqAhEHRkSabcTW9XMcmnV91yLPj8N69XSf9fGHwvD4LXzkCP3EspNheqt2GPgFnBsZIgkMAW4lzC0URkTAigYqVgy6/Jdt80HM06Z6X/KYVF7XhCe6AeWJktgvDmBXd3RDeSPgDVFXAy72EmWRGpjCpHwT6u3tky9V7N7UdM30532+s2ID/jS2Gp1joxJoefFHqKQQw/ZUHA1uWwRDjSxWb290RCnLcuIStSAfKEJ5PgBLAcL/l/iU3MneUygRJa7nOq0KCve1CGAWVIDBWkwAMHQyn6ebzHoTuCKOJpZ6XBPDHCxErqZuYIpchakwv0CHufcBl4tnOCecYoda9pK89MDTu02QfvLhUkkgkhZGNqR0SFt5AX8ALE8KcKeUG4p7SpnsJLEyBdNrkYtZ4eVlPbgBm2wTSNVMojq4gTGKok35xqrTSMxzwtaTGu7QluJ0CT+pGnLZXYSNgSGi0/Mr5VV3znlT38u4Xb0CTF6JRm7kg5gX0hgxVF6nf7DyfZDXhX/CtHFr5CKRA5sD2QkImQmvL0r9jOtaP7/K5aeC5AG3LZ/uT5uO008lHnl28EizoxJhdrSusfYtp8l4r9V3+wXmXSo+Xt4zEzA7akB1tqdiLwwG0r825auBVNrJUmN/caAMWGhNUApYb2Pa1ecv7wVLrqd3irjsjEfJkYySY6kozXln8+7aqkTPOFvbjGHbJpU3uxSiBIY1A0oXN+WjY1A1lhjZLsp6gdAxKgNARNY7fg1TPoq8hqHXK+LAGxkxn6kOmqxtEaRQe3rxX2ZPieV8tGRPu29isqc1/7OnmH4GuJwYO7Nxd5cDLhNrXxo1RM6CPSWWaWLBUnRmtBTcCrenPY1W2SbfmOKZGjIso9dqgzAW7CnxkIAFlGoyovR5YwXaU+IaqnN7iowYWntaU2VPL9HZU73ZExCnEztkti6VLN/Ncwp3zvrkELLr6jw/FrYEWRuZtgSbVGcqBXSQa0xmM8Eg1wKZjaIGHmbqKWrgYWQ2ihp4GJmNogYeRmajqIGHkdkoauBhZDaih0ZirEGrSDnEiNXzWGCsXWZNyUZaVPI/qyNJUVQRUzIx5k/SiQGdTohlC1nQyR90OknNfjBk9uPP7jnZ+3N2j3uIz/Or4isME0vJBVrpDJs1jxsO71CrMs0NkynEyuJCCnGUgqsszkr5tYl1FylepSzWzsg/UC6TSv3gigUvqjdkJVjC+DbLvB+2OO6dtGjeoiMP3j2js4SGAyLE8gDw+tjHtnSWTRgjhVwtWAkWFv4RSRTodwceBoxyFMVuIqgEK9VLOpRuBXY864AB7eHEiZ3tVMNLKA+WhAnEQbgF0Eh52Q/27FC/Xl15PUAWrn4Vb4WrerbiTzy/Lr8WAqKvHOYNKiTKt6qGvRXVhJILI93DRLDsFgZvperwIgy9qF1CfHUpWlZYuSGAnUAkQqkTrAWlthAp5GJhqOp3g0FyYbjqHnSoXqEbqnqzLBOrgLJ0VEcc/yysy4/XMa3LV9dh6/JVvcecWF5Vf49HFzES++NUxP5rdJhrvEwac7S3TFLUzcWWSYq6udgySVE3F1smKermYr7QMpcvDXrF8Jz2HeINWzx8H0/NF+rn6uBePDTRJedqUf3UNcHrSYsrtPqUA4lYjJeFxfU6nSb1tOUYseiw1lqOFWYwtRwLz6jolmP7WycfKYjxdlvsd1ohG5TE1YOWY1czmBq4HM3Qg75JZ86c0ULLsRd/OtWoteFPj5wz/VMOTOlorRctx7YxaidFH7SjlZZj35/sdbc/YeKyu1ZxP3FKDp7KqKuWY/GMygnXB+VwdNlybN25azF+a/p7rah8ZVnI3wkd9Krl2HBG5bnpRnn62XJs2ovEpKpD7vNn/BzyrPmqfI6OW451ZtQcV+eagzdVWMuxoyddW1hZVXLPSx+/songzx560XIM8SFoW44BQ4j6qTc4NH7qv6nlGLEtho5bjgVtYWo51nOLdlqOGdibP567+TgvznzLgfXbnuL5wGy0HCMWN2OhjdaYLUxttLy3VFTLsZe1BybWeiTz2HzLpGjhlj2zWW85RrQRLGDVkxGrVlv+p1qOFdKZsf+K8P+jIvzEbkJaK8JvnslUhP862XayUIQ/vK97u7OtL3lmHWgn25XnvofFbHOWbSQ8MKmbyVSz/CfZRlZEEf4jnxvm1uC19Mys1bXtioNZ+CKzuijC/3ILEyrXtWsNGfcOmiX+sFeEf8L9Sa9HSG0Eay7PGNah+SB84Q1dFuE/xqi6HbpRndaL8Hda+abeoBpzXBbnCYODEnpa6LgIP2JlaKuoAyujtSL8iZur3TKvVEuw5nryg+rZfcz0oAg/Ymxowbm+RYtF+KfLNjxcUrmRa+zBnRv61Y44pQflLCBCxxgRAnMa9dtucmj8Nj6vbbtffa7yMu413vLH6red8HUEkCS+cJkUrOhkn82QBucuJSESScn9aC0MgLhcNiE4hKtqGqtJLQdih0XatyVXPVATlpXbBxyh53B6FgF8M4huUgHAd0lmeROrTEteC1xFsaD86gXvgjoHe2T47D91pkXk6cv4RnX/qHcXwYUiGsZyulCw7O3jTLoudimw8VemRi5UTeX0FYmD5WJq/zKiQZeeVYPuO+Scu39w3KZq+KOUqs7IjRQZUsrrFVH29zDj98/I1LWzpBqZGjhK8JUlMpEkkKG2jeGxkZE2YZ+915te/vPs5BZ38WMVewB5rKokFaGMJYzKiNWNMojuD0eTiIWdZ5hMAZYvYSA8O7Vu3wdsWcHOItSG26FPYIhMLrLhduwTMV6uQH6h9lYrv8qpXXXiZredit9uyZ8cccKva/AD/BXRUor+lyWiilCWlFFZg/Vi5sBHaeStmpUcdIdNkI+JYJhBiUYZP7M/VPY80KW2zSrH483Ks1Uu79ahPWrIYapnAakuVAf+gDOZmnmpqCVn8LYu2L16Vjfb0ycpcGj4MdMm1XW77QUA7MIAKKQAAJoWjTxRbCmjLzJxIe9Qp6a3znhkz6j6rdmn3BWEpUy7yb4QgElMAGSOzMQczVucfxcfh9iYW2t8nKdbmfg4U7dWNB/nnsGFiw0W9HDZnPF2U/t9E4P0gI9TtJUpunlxqx6QCnbt2qUFPk6tv1rcfFurp9fmLwkugUFjn+oFHyeHUTub9EE7WuHjREx+a7/hxFqftE1dhvX+27CtXvBxFjEqZ6o+KIejSz5Ozu3V2aPt3jjMrmdUu/j5rji94uOMZVTeQN0oTz/5OH8a+HyLNarrPDPN/Pu5jdU/6piP48ioOTuda65C+TivPYaFnIw665FoerAo5WOfTnrBx0F8CFo+DjCEqJ96m/P/gI9zwc33uPTj394JzcZbygISluuYjzN2GxMfp+827fBxWq3I97eZNoq/7Hq7xyf2/JbFOh+HuDdngWMStI2JY+K3raL4OP2NWr0e8qanR65lQo8D1XkfWefjEG0EC1j1ZcSq7bb/KT7OHTozNj5P0k7inel0INdH+uzxsLf4SEn/CTB30lUuDA8hZ5hqEL5o4SyJCIfZY6poTrStMsuUK4Q184LhJ1COvEczXkRNfVmdt+r0+dxmibdcaN+PHMlRF5LGX3V/YMJ81FOxKEYlMe+pjKNS9TRi46TWfE5NWJjL3An+w4/KoWNb82fW2JBv7C+WAoWJRe7Arkdhj0PUqlTlXTpVapyTZq0a2xWfk5Z1xbrpj2tTXdbaLTv/6e3ScWo5aWv6nrCpn/yb4yFhs22PGnpaqOWkTZ0Yx+1Wtaf7HMeOO3IEAVK1nLSXz4wOtl3yzXXvK5HH5I+titVy0oavaVWba7nFc+6P34q8L/wpUctJc/15aoVkUrFPUmHdTC/TR2PV8vNvdlsmX/iymiBxqN+2NKcJqWrNZjIfzVnrvWsPb+egqPatInyOAJEhKuoTmjFj6vuXruti/jjZsrZBChBVR0VLJ6afDGhq4pgnT7P5PtxnExDVQEUu9TdvsU//5pIyK/HytntLfYDICBU1Ulh0fndDzku4+5vZPs+uMJG9JirqXv9KpXp/yAV76vUNN3uabApExqio/zyX4pHhJ/jZg5Z/3fyrfwIQmWDfq/EfK9zc73lvOVu5helL805AVAsVRd2z3sifWp+X/XDJt6cL958Aotqo6I+VU34ZH0hwSTAWBtQb0n4WENVBRbULe08WJ1f2ydsfNEFR88QjIKqLit6+fWryfIOh08IuxebvVjf5AUT1UJG3R0j6tK0R3muvhT5fcOXwRSAyRUUOrfg+Tzss5+0cMaKrQVDATSAyQ0Wv6jxZ0KnuAveMv694Xf2r/i8gMkdFdQumv0x68bvPokF34yWHPX8DovqoaMnmnicP9mgrWGu2vfJI40prgMgCFdnFJ60fc/yX29y32Y7df/yxEYgsUdGQfq87Kpp1clmadOfHvCNmUMsNUNEMP5OOdfeYumUOW259pYbiCxBZoSK3xfLTp5+ucZ312nD2nYZnzwBRQ1QU0KKWieyDB+/AjYOHzTkWEMNGqGi5SX7f7rM6u2Z/WnBIGtwgGIgaoyL39J5/Ls/t7LOwONdv4sgdC4GoCSoqqlprqmmIOy9VUXlY68Ohk4CIi4ou/DFqaf8qj7228g657l2+RURKtmzKoUm2bCG+/myr3QXv2BFHrgzJez2XhWTLe3Qmyizo4M7Uk2f4aduKJp1rGJOOP0zkR4VLZSIKBgFdY9JW6B0qzidSaj0iVCiVAiOEVrEvI2WAaKAoX418zokKyuiXxIK9YMx2ui6kvrAD7HbNmkCUMCqVL0L53VZFvxkprzTWYVno4phWky1qlydKVLFOLixSG7WdLqZnATbLou0asQG6+AGHSY6c3YnEsEyvLEKCUCjA+0mksOmyapxwgQfFFcItVyB1js/G8KPnBW8cV039Xdi897hb+BCo6nPIIdASEds7WQiXLyNcvbfrRbyaTNfTsG2oLTrRRCXqUoQIFWD/Mk7MBQ6Iqg0Tfaz0bNWbE8YL2rnvedXCvMEAey7htBx9LMVpOSZhW3u1bdHB7kwZwLZDBjspYqohcE0xYg92aC0mAkndevXBvvr1ph1wPjJ4+SaDrUPXlZ9GxAJYvoxggaGOrj/3OTTrz3/ZB/8o+4DooWst+6DZDqbsgyLN1soyZh9USph+PWbfWt6+VYKcQdYbd7O4WBItEAvZB413MJG1a+zQSvbB0eX1Wo54b86fMXBznwE/k6J0nn3w13YmVIp0syaWIVKiveyDgiz++Kshcz0P3/m+8tWCm7v0JvvgIqPqcvTVnWE5+2DzoKCPB6dH83dOfbI4YXkyoR+S1rMPECtDSx8HVub/2LsOuCaW5x8VFcWCYK+xowJi70oSOqEoiL1ECBANCSZgL1ge9t472EGf2BVQ9KlgV54VuyL2hoq9/Xcvd4G72zsSOZL8/T0/H9+TW+5y+c7szOzO7HcMdvqgE082ZP/kDuJJ2XujWtU/S86qG+f0AWZsGMHJ/NuApw8WlX/DDxaGeO6tUH7sRe+KZiZy+uACK0JJ2rjtPo8hbju9SiL+0aGK6+TNtUs+rz82hRyNYj3r/JzEum8cCMktI/FIGKwQg8GPIO4anbevIjC2uL7C2AsP3cbrdg6Bsn+Jfm96FE2M6LEMLH0Ib+1CC5UcgQTOJBdCb8nTT7vXsW5203FmkeKXGkmqtKMk2eHdiCQ7djm/SIlq/zjo21ICAhSOUkJ+M2feu2S9cmdVMYAIvbAJkqmA+oJxtLN1EHU9V/F9pMehhXVe+HbtMZc8LZ2Im+nTMncoP8B8x2RIJw9OFcaXq7GimvDdIg4Au5vMBhjQKKMEURqfAX+nFY/pD/1IpzmLLC0wWbJY1Ss+l2qn/2rgtEC1PvJTndpPrLDDOEAYzqPCVVJt6g4LagVCP5veTQoWAFNEKxhu2Wp431rO8z+tmx0x5JE3B6Ldzyra9UYSLSo+nq9fA7j8+5e+H3BqZPSobOftLZvOK+5r19Jo/Ut59rhNgv1Lw2nrW3tsiuGO8QGPwTEKr1S5M6LdHse/+w2sOivgMJkauCKk3IyAW5+wGlcK88NSPbqeNRcpwwDkGuJP7DFBuY/BFoe5zc6CgJLo5BGpabv8X5gmDuRv6bGpkL4TgP5UiGiCNhgo/96dBT2rJxDnAQVuN0AqXxhtKBV8G6KBF0BPc4gP/ktj09RwN1o5UspwAqfv14aLvlSLEywo+j2114Wbt8k2BuuFimgRh1/P18Zc++vRq637HLcdvF1mUu1R8RzsTJyDMJsJEW2/ljfBYC7olnDDPOLX7m4FKhVqaWAkph6whQRD17lG1/yKtmvvtTVNei/z3tA25KqC3OfSl7+kwcI40YTB1h8FW4YdBhtuEjKZTMLZcvXft2ir9Ip+98bT/vJEZ2rD4HC5JFDK946UyxG2gClgtiPuU8D7oM7KFCMkclmQRslHyiJC+UqwTFHpbgmoWXqW90Q1Ns4zrEeUPHgnU/ItBqDbusBzvzJ0alj7wwjYrg8aSYgYEoD2N1x7leq6UBBfwXKfd7na9cnhM/YgevisuZzfdKZWJXAQMvSHyE1FhQyQUNltJ2P4rCNyNbTIqUiqBlULnbeOfzvswRq+d3TRUUPtc3wnkku1cQVBp3TIo5w3JrfBNIkFLf5OgwZYxIua+48Ol+bFoX6emh17TxDSSuX28HfU9q5ug2CQGyJVUaqE4Z+CGu7KmIOEggWPAIvq0RpRI6VMdUwFmSQFlOtge3wWZAtQRYXNsVmg10ZYVU0bUxgrYL6KUP0gJBQXq5YrN/GWSrBwWoZTz1PFf1ISE/BbIRIT2OXCgKI1KxR8raN6yGNwVCbDW0+1lty08CkE2vrMBDba+ksJBORZJg85tTaOG8gldX951Rk20XWbW4mqNVo4XuUA8qTdbJDH7yYgf8QEud5VmeUJyA1QlYkooiSqMhFFlERVJqKIkqjKRBRRElWZiCJKoioTUURJVGUiiiiJqszMVXW+tdzd1Gtjv5CzM/d52dNK3qDyIrWPWn7JQcnbYyb51/M8YXdnV2mXLWZBQ649syTL31qz2S+SK9UwXMQSOPSgvATDbKvnIoMte0JhjxvNA7AlJVxn4mUIuqX3qSWn+b4iDRzUL+lxPOoSTC9loPauYTvIhTv02ruuocm2YadBlFA0AA/wA3Nd0NfTao/eW6u6bb7vMPaRR+qAguTaCncbOx3mR3fgbjebdsAeLKt30hP+bFhV0pZE5MUKiVJYstvzV9v/Fh20drVu3z2uLodlEZN6en84tXmUS5xyhtt04ehjHKC0kBWliB36NWm39SXmFTbZMMyIKQeXekTtGXOqxP/yiRVOb4e6LR8YHN375e2xRsznwvaLFxjzuUfBMjhJz3xuU232EEIUmIezAnogkm1CZy09/Zzu/lVKPKmJ07wLneJ+mkDWEoK0mRWkhTv0y+s2dJJpvrl2qypXZbDEIrOBetT9a9Nhj5p6JVi7/ft97doochaReC49i6gdKQx0JrCiM3QHERg94TE4xhcB3mKz5l9ESzacc4n1ce9L34ine0IzBnDrkvO52lK3kUq9aOOoByx0zQ3o2vkYGKZwGMKfQ21A8QBsTgmFkKZdeiI7IrrtFNe1K/tWE1++dpe82YnlYxncOmkwPytONXEF7ZgL7LQcguWL0rEYEJr3TtDL15XDwJKCmcYMVc/UFRUOre3tcjhiuxv/tA3ZyZVyBveigcozZOCQAMLkxAqTQ4J+zi7/FBo112y0FBq0NJiOwBQarZNwuD0GDW6HnjLZIVHjc807TLknjnGJfRvRoVot6j50mCScr9mnQeyXM4XmjTX3Edke7FyKhK+QjoSXpCpZIO4gdTJL1MNdLG+I2inPM6xrlgzy/CYCXC+gYvIogLoiUS9DVQ5LQ2k2d8HrIL9l7Trr+i+y++Qe7XdMeX3wrdXkEAl7AD1E0lzOb85Rz7kVNLsF4ImH8JRBzbmtYMmyNFGvapKymvdhI/qaXWxGwPpnEzz39HjewuXBmCLk7J/mfnr2D7+eHz7h3cb8u7b1AadZ1h6r9tV9EMYBPpNZ8QHqY4wKA3OscGOEBojOPOof/ZjAy/pLVCHSCDahdTw2qvGt4yW84i5Fqtb0nPiKLDTN/XSh4dc5L64FUunLKhUXk5JK9hFCKnq5r/KYwQuXBuHGFymYtjO3PXIutlB4wCJpy/2jQyVkwXhh99MFg1/nWjCO9rg5gduMtPVqVHNn3uxE/RZkNbQYYAsLuSw/PE4n3/u61Om5y+EvqcOtmvxsTq6qFWkeQK+qJQYKAxEFKyK+iYRff8Zj8Os7F3rm9OvU0T0650eE+fGb78ky1nyi7sUwnbUrDLID548MlQWGgrASni2UqNWQ0UBbFYO7f90WH9Rz2qj3peuk5ro+daKJeJ0orfrFEazqXh8saAa8Jh5qQGcv05DUwCNMmjdBfnHn2w9vDw166Tj/dfXrxaskklupl2QKbLQDBnb+WCkpxNABVaPBb4phqJfF6uyNa5SGlpN0UAvWA6k1+wOQChD+Ozem5I/1Ho9uoELx50ZlBYXrWgywqijAIBcTAAyfzM+ZJrPJJK6o2sRRj2tqmoODzNX2g2yZq9VazF8wYe59wOXCad4JUVTfap1kzz0qkFmjsH7y4XJZIHYsjG5ImZCu4QXiAeCeIsCdcn4Y6Sk62UkqMwXba9HJrMjjum7cgEV2Z1gyOxu1cQNzFJbJaWW1u5FE5ET4k9Lu0JaSZAk/qSR22T2I0IE+QafmFjlSyinpdRWvss2s04nxIgzjFj6YeaHpiLnmOvODNe+DvS78FbaFWy0XmQrYHFidgBUzkeWFlE/gV8eYGhXbecWKuz9M8905gySfIgL67BDQZkcRyuzoM7Voqx1zzT0PVIwMcB8w81VB90zA7GgPxemAql7oDUYbJKflASm/naXaftJAJbDQ+qB0aNHa3XXf/XKcP6XBuIuiGHIFYhEhHSVhvijVe/AyuWzpL6LDtfc/HvrE6R4HKFmyovQ9KQ3XQa0usVa7aPgCYWCkA0DUqneyD9M8iu7D8OuFseGNacxn1EaTjR2GFG5PX/4/s6dUOh8D2dPgJDZ72jHpP3uKy2fTiAYLWtnwxTPPdm6olL0cyoE9pdI0cWAphiSxWQrvpMK2p89WOsvmjp8uXthyyshqqfEzOLCn1E0CDlDqyIpSo8K0p1QfanR7imkMoz0FSOH29BWTPTWZNQF1OnFTzNamSLW3c0ThTvs/OIbuvDKnBwdLgqxEtiXBFe2eymsmyPUuZitHQG6AYjYEBx5h6hEceEQxG4IDjyhmQ3DgEcVsCA48opgNwYFHFLNRIzRaxRq0ikgVo7LncVCx9oYzIVsYUMi/xyOJIFUkhEzN+dNkYsYkEyptIQcyyWaSycqD9/tMy/rsnnRwX9KuYQ/I5/yK+0oUUjmdoJXJsNkI+OHwjjws03yFMkKqIReKkI6K4GvIWZFfm8q7iHgVXaydhV+gSimX94AeC17M25CVYgk9MxztzEtOFs7bPjrzmEN3ayZLaN5TLVX5g9cnPrahkzJyiBzWakEmWEj8EySLwL87iDBgliMzajNFJARVL21TuhEwkfuBAe0g4kVNE5X2kqhCZAqxNJjkAC00l3vAnh15r5fSXPdXhue9SqGA9WjkfPzS/rTyGIi+KnhuMEKmeauSxFuhJpRKMtJdEQRptwh4i5SCF2HqJc8lLFaX47TCmgUB7AQik8hFkAsqjyOKUEklYdqfzXqpJOHae3BVfcukqibjlqksoBxt1VH1nwO/bHWAzS8XPUD45XcmjzmVXtV0t0d/shb2v9YW9r9nwlxvN1mWZzg3ieDNJdwkgjeXcJMI3lzCTSJ4c4lYKNn+zM2zjXLcpv/VeIKIX35hnlho49I6zdVrhC6JgWV8zReEZtOcK7T66OUKhYyXA+eawyRJE205RiUdNljLsRKH2VqOrT1U2C3HPH4+s36QHiBYu2a2fV27dZEm0HKs6GG2Bi6vD5lA36Rjx44ZoOWY67Zqx5Z/thJuPxmf1nW4K6WZi5Fajt08xCadNFOQjkFajk0It9+5L+eay3aHcQmpPxODTKLl2G5W4aw1BeHwjNlyrNLcFSe//7PfJWXjoTOXW34fZFItx2ayCm+EcYRnmi3HOkxLvWb+0lUwL/26bY766lEjtxwbwio5b6NLDt5UaC3HxrTqPDM7o5f3xnnjntR5FFLSJFqOYTEEY8sxYAjxOPUDjyFO/f/UcozaFsPILccWH2ZrORZ62DAtx9q0/rJOeDzIe8m8Zds2vL5Ezmlz0XKMSm7GQRut+YfZ2miNO1xYLcdSKzcUN8iJdtkYVrT4P8W2byr4FKZgRbURHGAVyoqV/+H/qZZjH5nM2H8k/L9Fwk/tJmQwEn6nFDYSfrOUwiDh333s1Ohp/u0cJ513vT9xcuoSDk+bc2wj4YaJYwobZ7ltikFI+G/Z2vlPGuXumFhr6NqfM8eRmRWNQcJflRUVoDcms3bQ7+APdyT8tSIPr+3vusFrhmp5E8/Jl0eaDAl/9mE20d02rCMjRGdwEv5H5bPqTRrbVzj7WIk163f36GpkEn7MyjCyqAMrYzAS/p8v1f3H+X1xXZJpW+1Y+vUjJkDCX5UVHLMUA5LwF3Opu/zVQBef2IXdYiosUCSaAJ0FRAib04wIgTmNx22feAxxm7OgabNfXa4Itt6tHXdp7Rvy1q8FdogvXCkHHp0es5kz4NwmN0Uiy70f58IAiKuUkSGhfG3TWH24HKgdFhnfls56kGdQ19o+EAhVPgLwzQT4bqWGSekA32P0MEnPg1UVc18LXMWxQH71Gburni9//rUw+px5QpHnpV4XvHcXJYSiGsYChlCQ9tbqCFMXu+VAd3/qF0KV0UzfIGmISoqOL39uSS3iaSPw3NBRHbPqk8NZygkp7EbECSnN9cKg/X2ewvb9rxk9WNJqph6BEnxlmTJIFsjCbZPhxz+2Ka2I12GPaSdsDjbvT9ZV4gF0XdWOFIYwjrEKY4dxhEENf3j6ZCzsPRXKCOC+JIFw79TGoQtYsoKVRZgtv0WXwFClKsiW37KLergqAvsBHa1Kli0b9LZ9ae/lE30e1jmV4Uf2a/AD/CJGyxH9L3OHCkNYK1mFFW0SMwc+Sq9otVLuRrciUjVEzTKDDqROdyz+5qJrwsv1NY8/+FiuIEvlgi4dHHBDDo96ptN4oVo49/ykZ5SKW3KWaGuJtMqbMw6xwiOJh3y7t+9yy7jLXgDA3RQcgAwEANC06BWJEq6MmWRCfPVywqWxy733xRfPOvXoUoBRD/tCALayARA/O4UIND/z/n/V41AbcxusHqfiUbZ6nO1HCrseZ/HFa6lnrezc9zq4DvNxH1bHBOpxLI+yZTe/HzGBooKtW7caoB5n3TLLVX7de7glX13ttflBl+MmUY/z9AibdK6YgnQMUo/jM3Z0y4RRd9z39P808+i7TvtMoh7nKKtwtpuCcHjGrMe5eSyxzgpektuMtKOZkT5xASZVj7OcVXhTjSM806zHcfo471PK6gDHA0N6u6TdnrnEyPU44ayS6290yRVqPY7ftFeZsl4rHJc2rJ480LLvT5Oox8FiCMZ6HGAI8Tj1C+8PqMfJLFF+QsVQd8HKiKL9Gh8KG2PkepzlR9nqceRHDVOP06xfdkDHSQni1f2TrMdVKzqa83oc6tqcgxqTxUfZakyijhZWPc6M2PTbB28sEcy/tHHA4U8LjnFej0O1ERxgJWfFqvfR/6l6nK9MZmz4EVkzmXe86ECKj/xJVr835ExJ90h4dtJVJQkPpZ8w1SN90cBJpg6Hp8e02ZzRdppTpnwJ5MwLgZ+A1LzzlwYt6V48y2ubINl1z7K4IMb3o2dy8g7S9K+UHzBhPnmPYiG0knruSUet1D6N2jipsTOvPSTmqiyCfynnP4c2dvZqezCtrJ9UDgQmDXIHdn0U8ThMrBpRfmMSZau93sKOzfq4pSREec3MTrhOsfJAfCqlXENUrUfzv7bOo4B+BWpSoPh2JP4ovIclrIcaplDCbpbBfL16j2yw27kow36G4xy+f7TviXk32d4Y4ZdI43pQZkdVSOXxTggRNU1HoRUtn1oINU3+VzfXfrheLkqO/6kYwusRwmFNE8cdNPgAocEQIdhBg9aa1rIphlBBu8DVFZF1CF9Qe0P9soO5CXskijXHjf1cpfFr4d4XB+4+XVKJ3HS8BIOiENe5DiOjbHGg+CgnA+nJj1qm0ja89QSqei8p3P7BECLPOzRCP6tsPJzW4r77Aucj851LTM8gb9fhD6Nv1xEDhYER35INI6oyFf0NjLD8Fl7KAnDKV4smd1uSsPqWU9yK1xPKeG39Tp6L8GGItoKay4WBz/1ybPg4lkvFDf93JsPf5EeVqjv4xZz3CbO/SWuHkA2/BdZvkamelmkdUstLKlFHqjT1rJoEjMa6Q3Zb3Yx77Q1dzpwNC3XZu2HHjTW8NiLGt6J77jyD+pj1igDHY0IEua0lMOsx1jSzrmcNRikh7NkCAUB+31l1/Y9MX3TWe5P6sPt6dTMnamMENb0oSnM1P/tONXpc2HcI1XIBgpL1YBMMKkb7jixOoXaylCn4YiRGhydNifk2zsljRuLT3UsbhO62wspawHd3HgWWbtogGAufe9u1MGo6L70ZjhMsm6LhdN8Wwwmfmj/wqUSbmmYtcgTlTqa7bWjb9maRhPrHi4llQ4ix2Kdrag5qESBOKDFP9vNpafKqHE/9aYpOdJ+3fFepJlLTlL9oqFz0jsviinRvcErsJ4q+tHJQyc4Wp5nfjL4LmndUD410LAOQPoSavPehHCz0isn42pgsBA0Hmge93d0xx8faOW/al1PTJptnbbohmiMAjF8GD9HorMpNMcD02sur5kTRF22vM3TT1FLnN50S3xHEj3Hrf27xPyGUtLNhK6hibHE0LFETFfpQgAY+UX/yGHzo0qcf1tj1nC1OPOPzj+uvmHrkauxc80TfymPaXqmceyJFwZdqH1CabuqKC+yEzVroNDNLR69PK1P2jcfm7vaWvT3q1WB6TXrReO6YHvvWUVVTNb0ZkTyd/CqpBebpXP4jKil2QW/3/VvivB0fNbtF5emkjhuCp9M6FyswIVQyyRA5ehpceTLZ+/sYZ6+5C+wvNij5ajtZGgH4rfzfoumkukoO+iIOhtJEElDaAINytEqqHjSdOmPEa15ixYAPbh7RU+L/VXQXtmfA6LdIOqlmiAOMgE6zYBRVOVUfks6KuSSduQYAidKWByuqjb/R3jvx4oRQr2bpfxmVoHOwHa4rSILO3vYYSrhB/cVkUCtnznGy6nhRFNvm4ZGEUyOdEN4UvaVYQZNvQMDJK60ZItH+4OkJGh0QurJf84FwyzFQKYf7bFB/gXhCpAqsCwPm8tCF1ZmtzKxL3Un2mrtu8VAbH7e2Bii102bqqAks4OF3Fk+F2zPQ4+GigOjpL4oiQoOL4Xcofs/YHq98tthcryMzPtR9YW616jcofguK+mCAuuMqKupF/mTUp7VJ509PzBQt9Lom9RdsemoE1KGuf86mol70T0b9WfbTpJymaxwX942rbv7jRF8joX6/XhoF9WJ/Muoveqo2bwy2E+5I9ww6v/hSuJFQ7+xFRd3sT0b9Y7lO9UWfrzmt+L72YsnxNUYZCXX+aCrqxf9k1D+X3XknW+rrsuHkjNSwLdnDjIR6zAIq6iX+ZNRnvLV9e3XNLM/JdnZb+20f42wk1OdvpqJe8k9Gncq7biTUDyZRUTf/LdQ1VScGR94qd48f7w6NXiV9q9Zm48CWvR0Px356KD5tq0S8O2KVhF0uFLvelho5lmJC/edfuzda25sJ9/evunJzuBeKvZiMeunCR11n6uVPn7O2nK+Z7RbdVfHv/HqXUBzQv0O9XNqr7cd/19RzS/DI6DawwZXzOm6wsEnEN4wqkdJ/pESi9tneO1X/rHN82rILnezrVeRIIsGV/L4UiR7nMq3IAZWirud0DiQSdZUqEYs/UiIvylRYOaTrWre51SS96wQMv8KRRGb3rjgzZUVJwYFdFx6ndQ9+xIFE+JWovqLMHymRjJgVXXKm7RHumG1tFiYp2Z4jifzbbEYdVfVjoqTM52Lvs6fmcyCR3l2oEin7R0rEfOGR5yuX7BHOfPvhQqusG9U5ksiHZRu6f373wWftdje7Hv1qPuVAIqFDqRIp90dKpHLUsJZtutu47V+5vmaV2tVLcCSRFxf93YYU6y5MWtf4p+M55QEOJNJ2JlUi5f9IiSx1+VK90ziBaG+yoN+i/nsFHElk2MRxwxISIz2n7Zw94P6jqx05kEjOWqpELP9IiVCbUHAkkd8s/2aTSN89VIlUYJJI94f3fErKL7iuS0wpOnF/XTLlY2m/UFlwBB/Wj5HFAs/aMZVy1/AJDobl9xK5PLdQCy/pQ+K6vJbC4e6UULdpVbfbFcm6cpfpFRDg6noUq5kz79RFvP6RVo4dbgtGLxS0bq8sVk4YoYTHBYPRCmR9ZXL37TPCvPZe/Me8a3J1cuEZunZPB/0ZeceG98OjmXDtYT/3/lHLOhcwPQ2PrRyEWB11RKSno8Bo6MVUvZiSNBJUYlqBxGV7ZLmFHYcHijZXTrBo/nLsNdoxymDdgClgQhp+86qs3xxoiQkcocQ0UI9z5RawtxZbu7Wmnzp92mLZ1W395IMdGje/QM5JYJ25DAX/qAts8NsYB34aK1JBjyVoZgRk+GOq8h37vZF3i9vjvA71KnLIN77K09+0FAU9wWqXxxTQzmjA+g0wIXAHY2XCDmagW73nlZIfO24OEkt6VZw7rXAcTAOrNBYHs7FCQcn5dHAwxdcsta7+y0M0r83lv0f9W70uNw6mWHzYqB4Dj7smXBX1XCA5H8iBg6kJsWKc5zkV9KPiy9fBzOgX4jEsQOWRULzn4pQnCw8a0cGcq8D2zYGW/IkOxvXVjeKr71bxmj1IpDyxqGRT4zmYcazw+xsHfiM4mKrJdo2v/Ar2XJcxo2LLL+eyjOdgtKYA6WDAhMAdjLUJO5hpxaa5SuKvOqXsSK9QKevCgMJxMLM7sjmYMh0N4GD2NapVNnNfG8c5LUc7FNsQdp0bBxPffXGFow/Lu84wi5nb8xkvkQMHM7Uj2zzv35FjB/P6V7dO0/p+E+zyuHDyU2LwayM6mNas3xxoyZ/oYEpLom0fuEz3TnRQDCnfKs6IDiarAxv8hzr8rziYBucmflFY/RRNujcp5kHmuDrGczBaU4B0MGBC4A6mIpODiVkwJ/Klx2fXpcMrq1fOtCVb9xIusE1ChO4HdtppbuCrlWFSfhDQAH6kGpIbhcslgdJQpTwIqAdGdhCM/R5GfBQhCVHrdHDnV6fGt95erSLYZvUkumjW+YolxMrAYdIg7U2oV6cX/Guu63ouqqkzz8ELLBJ3IqkOAMQOnogDPBAi6IMRB3jgX+oBHu+/7nb1O/nCcerZvVHmb32uUA/wTOkVO/FmeH+35UdjVjxePrsrMV6Uhz6no/MBH+oHIw74MFot2CceFyM6VXywbJi4eRenlI9LGrxqtm54QaTF+dQ5CuRq6YWfd6MZM3hcMlxs0O0Y4kUtFJFy+SA1+A6KEO2XLZH7M+Zyxzp07DEecdCISVZWLrmzLTBSHhGpQp8zOuSzK/vCnrmu0VEzLy/xuRLLKrKSIs2T6EQIxEBhCC3dk01oYDIawwOZiUUagwpvmaid95hsiDnK5GzqwbeEcalMoZaqsP4q4CNIBhMpq3G9/V7wzqU4L/l7kOeV8lVbUmVV0isyAp4K04JPOV8KP9WB7qUc8j0wVvz1jEhBn5lu07sL+p1XujkWMJ6FQp3vwSbUbHfagTG2U3XlcGUH/jsCmCgkeIJdoY1KV60pnjIobHPvq0HrWBXdDFo6Ou8AdpVzLgt73C4dFSBcumNzTMVxl17pD3Dpm/5qZ7u23w3h7toRlmdqX5luIJfOn8Dm0vnj/nPp6BOW1TeNWXBgslN0naOuqV33dzU5l86bwGZIBo//33PpUYKsJVPG8MXrTxadf2zTHbEJuvSj49iEBibj/4pLL/Eyoo5je1vRJLsxM5fvX3fFYC5d7D+1/7bVZi4rhnzcXCV5TDcOXHrUWDah3h/DuUs/0en2gGWSzcKd4cPu93x90c6kXDpmlxhdOlBx3KVX/gNc+p444cwE77viHaGfmqza3HqWgVy6eQabSze//p9LR/fk+PrLWdRH6rNJcjnl1NK9C0zOpX++zmZItl7/33Pp/Udtnlih5niXbZeKH53TX1zBBF16b1ahmRtWaMZ06WNn9F2blNrCc/oLnxdNeRb9DebSf/OMC5tQD15jE2roNc5d+vq6YdFBN2cKljhmRbWPHb3DpFw6ZpcYXTpQcdylV/kDXLp46eLl9fzruW341K+naJlNBwO5dMfKaSwu/WiltP9cOkpa0eqyDzOmWHtv6PZk/uXwQd1MzqW3h3JlNCSWlQ2aRTQJl36zZezQC9aTheu/mE3zcr7R0ARd+tNKbEIDk/F/xaUHjvygsC1RVDx1SUazjLD5Vw3m0n/zkCSbUJezCjW8UhrXLn3/rcnXJH2GCo+cSe3Q83vRrybl0jG7xOjSgYrjLr3qH+DSW2erKlhYxDklZycMO1jjelEDufTvXdlc+riu/7l0pLSytx4+PPT+Sc/lPTzHpY5va2VyLj2nK5shOdf1f8+lX5utdnI+WsJlwVkP1Yq7Zz+YoEvfyCq0cYYVmjFdepWGxxMSDt5wi5YM6fVRvvqGwVz6b56yZxOqP6tQbbty7tJtr9aOsrnd3nX69DdTPHutq2ZSLh2zS4wuHag47tKr/QEuvenQWfv/SXvtcTCrR3dF+psGBnLpZeRsLn32sP9cOlJa5Rsqd47Obiye1+JgpeDKl1aZnEs3k7MZktvD/vdcuuWklp3N9zcUTpPeHV62m299E3Tpe4exCW22YYVmTJfe7uiSSXWfKX123ZV93vVXv+oGc+m/SdPCJtQgVqF2Hsa5S3992vpcg/ueTosXXPrucMb2uUm5dMwuMbp0oOK4S6/+B7j0MV+ex2dumCJOvt/639Nb3OMM5NJfz2Rz6Ttm/ufS0QHYisG3vy7YJFxkXdmp2EkVu38whkt/PpPNkFyb+b/n0u0zfOv9/DrVbWM/24HfnJ53N0GXfoxVaDsMKzRjuvTht+Mm/ORlekW3U2w5uKRrPYO59N/k+WIT6kpWoUbP5Nylezev9G+1PYGOOxesF3YYu3ePSbl0zC4xunSg4rhLr/EHuPRuro7u2X1nuSRdyayycl3IBgO59Lvr2Fz62nX/uXSktA4kn3iX1bGt419Dbfp3Gn3rkMm59Jvr2AxJ2rr/PZcuaXHh+WSJk3DWuHELBMcasZ8SNY5L380qtLWGFZoxXfqqlmPubHy3zTvJQ1D7SmDSDIO59N8kimQT6kxWoY5Yx7lLn9pkqfeDBse9Zy+cs/Dw/bdPTMqlY3aJ0aUDFcddes0/wKVvXFqnuXqN0CUxsIyv+YLQbAO59KZ72Vz68z3/uXSktKTy2v5b0ve7pbj+0+JNrcQ5JufSG+1lMyRWe//3XHqEvHsbm17/OO2ZaV/ih13/fibo0n/uYRMamIz/Ky7935QX1oefxLjPOnz99ZneD8sazKX/JtMwm1CvsQr12B7OXbpnhqOdecnJwnnbR2cec+hubVIuHbNLjC4dqDju0msxufQWG3uk9kuIc9m6sfzZYxM+LCXzSLmqlJHhZI9uo50OSlUQmWCphEgpB98IXmoAfoT/RzY7EvBD4HNhzx1XlUStDlWGh8MWPNibqou6OxHq0zhx4o5hqX2cpiyobJbc5PZAMES4ud2tJkQtvZQs3t9a7l4j7acbGCJmzx5Fxyzxo4ai9YtKT1wa+7UZGCqGDz09/eW9+fsQt6nJ6bZtz+fIwZAZPrS+wYBOztFvnWJfvh829tvJOmCoOD70eKzP9OSWTTzmd3xovbFj3RgwVAIfWlBtcqe4fcU8d6k9Svp3O34EDJXEh/r/U6PFzXt2HjEbUio/kg1oDobM8aHjQ28O37vvm/DwZ8sn5xyH/QuGSuFDk6p3vtT52FfRrmZFFQ9inPuDodL4UOKl5ovHp/Z1mXZfGVVz3QyIhgU+dLDS8wVPJAcc51uVPzev4Q1zMFQGH+qYrtotOKQSLQv4bJE45PRpMFQWH7o39MS7226jHDcWX3z3r3UNx4ChcviQ6OQd22J/W3hviN0yq/1xqypgqDw+tGXuti+Pq333iT298KIkZsUBMGSJD7msLJrW6JC7V+L33Zv+jh0Jv3IFfOjU1tlv1shPOe6Vtznffm3Pl2DICh86+4/30mfDrvhM69dwyyNR855gyBofcp9To1qSSz/XxTlt7t39+PgSGKqID513npZwvWhj8cy38uTajY80BkOV8KEXFR7Na2U1z33rp8teVz5W+QWGKuNDrn8d3jPpqatgcevidfbc/QxFWQUfWlhTdv9TjzHOs/oGHJQ39L0IhqriQ+vmPRqRVGOv465p1X+WirfwA0PV8KE6l26NiCrj6T2nf5c7o/tfnAyGquNDSzo9HtKx8kfx7gGzOsVXu3IGDNXAhy49XOc48Ei8x9wQ0evTWTvgA2viQ6/iY6r/GFXcKWnekQ4VHE5PAUO18KHND7qP3Pu3t3D/leKT+U5doPbWxofGnx0sXXWvt3CKsEnl5bJt78BQHXzo/eNfm6t1jhNsLdPx3MtlqbFgiI8PPTu7tPvlfc6CJVfik/ukBJibuzsNIlmjuuAv0ijWbHlhj7SNm+fspRXFIQnJ5RFmg2YFqXaNR9g1jYmqzWSiKgUnJqxMPe28envmmLM1x8WQIwvnUeFyZRCl5zKcuUxci43wO/gSTVdk4EwhA2GYRC4HRohoAmav0yqDaqCQr0YPevABXe28jTPP4Riw85+FiIb1vrbOPLNjNCZGNq9niXVvhnGEVPMiyO92xHpJQOXBXb2Weh7+llrleoH6QlPCggOp0x2Lv7nomvByfc3jDz6WK2BYEAMAsoUAdUaFBVVB0FD1mF70i216SIFqqGUApCBpoDIsXKmWwXE+eD+ZHGPpJPSEL1EBTYpQhskCkSgOS1/3TN73iPf2xncvOg4aTCYCLqX9HBqSeYa4jhsgXGascGX/YxKkgUUKShpoh0+0oFxxRYSCoDlMMkzKBwFIRKiUP0SilmoMAVJ+iZtyzKtH33RevansgtvCfzqR5Gfuhz+WJr7cEa6lZ2mHK7sTSnrL7TFlJwFXRH/g6gaA5YUM/CaM0SBKUiqQSLDer3uZs6nPDtHs9kuiJ0r/aUAGi3gmHSztSGGAZcYKFlB13P/UYfI/AXWKDlu8y1KYGCt/02m8uRvpW5V3hiShkggpXyxVhESE0v1QSQaME4tobyU8EVBN8E8ABngAP1gSGKFUAWOjBCtxGVBdOfYB9vgH4eNqfqBEwR8i5asjw8PlMiChIUowCO7XPDJSAW+Fu2gKuNSRy8aAX8Eu2vNFoRJFiBSTbz/vAfxwYmcKeoYIZUiIHMwOacRIqVSB/U7ESCU/DCiBjr6RGqGzwkbTCeov6CjwcGDbrkGBm4kQe3A7ga9cqp+vrJDrK/EXQvdOOpG2OqzmFJfD62PXFmleLJZDZ0m1QAV0lvMBQpcgQr1RU8IRWP8U/ZxlPZI+Yt1rNaqHAyZj6F8r3FxU6LQuXhD1+XDLpCKL+eQ9Bwa1IK5zbSggKvGsqAC9MTKPcQke8ed+N324jFu7B/P9VZFSW2wWk6UlU+e1CzYO9g78CfwW9g5NkCJLC61+Z8OFUPfV2+YNnzCwfiMy67i39kE0seUdKwzRTWYVncI4oss/nCnBYnhq+SrBwgS6BCg1dbg0UBYMzbvGCyDFM6rR6uBbLVa6Hv67uNW68cdKk40Q9jy6EdJc5loo4Xa4lXFDCYXXHLMytCiFDY9G/tBZAURGSDV+UQ9gTkwp8frY4ls+ia1G/lg24+Zq8jINfzB9mUYMFAY48azgLKWAUzQfcBprvFSuB9cHnQZWpXN2y065RbX84n2r86+55CWKNl9FX6LkDhUGQpNZEQJzGo/b+Exx2+lVEvGPDlVcJ2+uXfJ5/bEp5GhUDGI0vp+TWPeNA6FIJdVEa3J4Lx4JgxViMPgRxF2j+QBbVQQ/HM4oYGxxfYWxFx66jdeNrIuyf4l+b3oUTYzosQxMSQcY30alKx2BBCak67etgL1AHgyQ325e63/nZCT0d4vy77Ns3slb5NZIxf3g3XQjpbmcX6REtX8FzTYAgJLS8b6GNCXkN3PmbU6nRUpsqbWqGECEXtgEyVRAfcE42tmG7lMtex422XvL7LZNN4VcDSZPSyfiZvq0zB3Kt89S1YNXdh97L1yTU61YQMv1BWYvAIAtZAUMaJRRgiiNz4C/04rH9CebFlSZs8jSApMli1W9UmaPxY9kO/eknm/GXfzL/6qVuwJYSiAM51HhKrAEz/OsEgKhn03vJgULgCmi3ZI6bvSiVW+F+5Ks/EfVbP6YA9EOZRVtgJFEi4qP53fTK9QqI85jz5HCfDUze+L8FDevqKMbXC9IbqRTe0so6Ks7zVWuHSPPHrdJO1E5v5322BTDHWNdJscovFLlzoh2exz/7jew6qyAw2LSt6kI28pGwK1PJ1lwsFQlBVCo6U6yGAOWzUXKMAC5prkt9pig3Mdgi0NNWyO4sQRrfnTyiNS0Xf4vTBMH8rf02FSYmgpAfwqU/z5V+QdDorXUgrZCEojzgAK3G5ThUhWMNpQKvo1Gx9V8gB7mWLF/aWyaGu5GK0dKg9BOZMeSAVUCzbO9DwXXio2buKE+2cYEYP1t6DYGv56fjWn64k2x8od+uE11aTD49T+zr3KwMxEFYTYTwpw2dbOuCQZzQbeEG+YRv3Z3K1CpUEsDIzH1wNpvIbFcFLktweGYj8uiE8NrHHziepuEpUXuc+nLX9Ig1yaBb4vD1h8FW4YdBhtuEuoxmYSz5eq/b9FW6RX97o2n/eWJzqTvVraHFCsx4XtHyuUIW8AUMNsR98E6JUxnZYoRErksSKPkI2URoXwlWKaodLcE1Cw9y3vSpEAe1iNKrpjKlHyLAeg+PVHQuV/ZHWv5BnddpWqsTg5DDAnArj3ff4zZtNcjKsznnv9rBbn6pDj2IHr4rLmc33SmViVwEDJYQuSmokKGdEg8dIIxfNYRuRpa5FQkVYOqhYTP7LzZ3l4Zj5yTaxQtnqjcdJQEXxlcQdApHfIo5/VqNpgmsaB15YRRigzN/UeHS/PiUD9PzY69JwhppXJ7+Dtqe1e3QTDIDZGqKN3X4J+CGu7KmIOEggWPAIvq0RpRow99UhxTQSZJAeU62B6fBdkChFx9m2OzQK+NsKreGLYwVtC0isRVPwjdHqJ8v6XHV+1x31p/wpY69g2GUBIT8FshEhPY5cKAAlNxRiiAiuOOqj6To+KH1N8/fc4M4aLj28UrviSOJX8fGOSNJjsoBlvMtK6zFgAdU2nC19F4SRoSWKq1RLwIvQImXxu8ZERMqn/dcsIjqtW23/v7bC6gDYZ2Y+kJooknFXJLEDlEayFvYPKQU2vjuIHc3WzTz67jYwTrjwV8WFZyyT0OIFecZIN84EkC8oacVWWWJyA3QFUmooiSqMpEFFESVZmIIkqiKhNRRElUZSKKKImqTEQRJVGViSiiJKoyb5SsaZ+0U+I05UaXhzuKH2xGK3mDyouuBKGUX3JQ8taISf71PE/Y3dlV2mWLWdCQa88syfK31mz2i+RKNQwXsQQOPSgvwTDb6rnIFEFYciAQfwC2pITrTLwMQbf0PrXkNN9XpIGD+iUdJ9lOEC1FHweTLAO1dx0OVuQux/Xau66hybaBQDJcpcSyCkpYFchcF9Rue91+oY9KClIavH5QXRK9syC5tsLdxk6H+dHjuNvNphqko2BZHXQcGYczYVVJWxKRFyskSllvSxdt9cTHZ82MG+6BJ8/FcVgWMamn94dTm0e5xClnuE0Xjj7GAUourCjZHKdvPrDFaba+xLzCJhuGGTHl4FKPqD1jTpV0e9PS5kOxl45L0reNv2h53MaI+VwHW1yJkAk5eLZNcVy/MLapNnsIIdLAE6QMg5VPwAORbBM6GHh94N/r5Yd7rDtzssKmd+O+m0DWEoLUlxUkl+P65XUbOsk031y7VZWrMlhikdlACU613DH48w7X3ceX7nYRfCNnF8yJ59KziNqRwkCnJSs6tY8TgVFjJsf4IsBbbNb8i2jJhnMusT7ufekb8XRPaMYAbl1yPldb6jZSie+y6uYIqQcsdM0N6AjbfWCYGsAQ/hxqA4oHYPusn6vTLU37anm09enLPd2X9Bl4y3f5uZnkzU4sH8vg1kmD+VlxqokroBXnATvNh2D5onQMY8ZE7zkxgVUOA0sKZhozVBdjvnvPOfjKbeP4ZSP79YskrwRLOYN70UDlGTJwSABh+nycDaYsPZ1d/ik0aq7ZaCk0rJvoCTyFxqfFjvYYNLgdsmGyQ6LG55p3mHJPHOMS+zaiQ7Va1H3oMEk4X7NPg9gvZwrNG2vuI7I92LkUCV8hHQkvSVWyQNxB6mSWqIe7WN4QtVOeZ1jXLBlQmyEXAK4XUDF5FEC93gW9DFU5LA2l2dwFr4P8lmV3q38skXT33hvfu5bHt3AzcoiEPYAeImku55tBp5xzK2h2C8AzEMJTBjXntoIli8cFvapJymreB9cJJDp/WTQYMC2loU+i5N2dqSPnbyVn/zT307N/+PX88LlWqX7rvUddfVKqHmh16X5wQW0SxKctKz5AfYxRYWCOFW6M0ADRmUf9Qy8bYavFLesvUYVII9iEZqVIOFByxSCv+Z1Lt7r0PpZ87qqE5n660PDrnBfXAqmUY5XK1/OmJJXsI4RU9HJf5TGDFy4Nwo0vUjCDTze+O6peNa+9M9+f7XuwXyJZMF7Y/XTB4Ne5FoyjPW5O4DYjbb0a1dyZ53hBvwVZDS0G2MJCLssPj9iT81e07m0t3rS14s8+nVbWoDA+aB6AYHzABwoDkXqsiJhdIPx6Eya/vnOhZ06/Th3do3N+RJgfv/meLGPNJ+peDNNZu8IgO3D+yFBZYCgIK+HZQokarHTzVMXg7l+3xQf1nDbqfek6qbmuT53oebxOlFb94ghWdevPFzQDXhMPNTTcFoHyyCB4LJeveRPkF/800nZCY/czjlOnX7y3/ea7NLLyMQU22gEDO3+slBRi6ICq0eA3xTDUy2J19sY1ykmjUXkPasF6ILVmfyBUFhIK/50bU/LHeo9HN0eh+HMKBwj2MXRVwq9zXudmhwNWFQWYgz0GGD6Zm5p84oqqTbokrorw898CpaQ5OMhcDT7Plrny1WLejAlz7wMuF07zToii+lbrJHvuUYH0Vct5RcojZOFyWSB2LIxuSJmQruEF4gHgniLAnXJ+GOkpOtlJKjMF22vRREEZ13XjBiyysy8COGejNm5gjuLERQQdGOFPEHRg8JOodGBUOi8qHdhv031Rb0TQfTHZplouMhWwObA6AStmIssLKZ/Vjf4+9fPEWPedHRKbbW5vNZgknyIC+uwQ5Ms9tD744JElb6oIk27WShra8bxrQfdMwOx4CcXpgKpe6A1GMy6mIXi2mECq7ScNVAILrQ9K1yq3KhfYYrJwcfjz8JEVB5LJBIoI6SgJ80Vp/KCUtou6DPZe1ds+xir0+C8OUDrBitLOizSGJtZqlx5SNQAGBkY6AESteif7MM2j6D4Mv14YG96YxnxGbTTZ2GFI4fbU9v+ZPaXS+RjInlZntaevL/xnT3H5PD0k3huw+oDLtMEdJBkP68zlwJ5SaZo4sBSVWS1F0UK3p62qFy3bYFU/1xVb4pYd+nyxNAf2lLpJwAFKry+woXTzQiHaU6oPNbo9rcxqT19rF/h2Jr8moE4nborZ2hSp9naOKNxp/wfH0J1X5vTgYEmw/ALbkmC6FnJ7zorZyhGQG6CYDcGBR5h6BAceUcyG4MAjitkQHHhEMRuCA48oZkNw4BHFbNQIjVaxBq0iUsWo7HkcVKw150zIFgYU8u/xSCJIFQkhU3P+NJmYMcmESlvIgUwcmGSy8uD9PtOyPrsnHdyXtGvYA/I5v+K+EoVUTpZJKRbDZiPgh8M7cIIXdYQyjK9QRkg15EKQPZU/Ajs2hvzaVN5FxKvoYu0s/AJVSrm8B/RY8GLukc/sbhRLGPfB6Vjc0u1uS+MDv8d3vZrFZAnNe6qlKsjPSnxsQydl5BA5rNUC74MR/wTJIvDvDiIMmOXIjNpMEUlxBgPq28iZF3UWGNAOIl7UNFFpL4kqRKYQS4NJDtBCc7mHLCSUdL2U5rq/MjzvVbIVPtm9kXPcxLNp5TEQfVXw3GCETPNWJYm3Qk0olWSkuyII0m4R8BYpBS/C1EueS1isDgtktJfK+EFWCYlcBLmg8jiiCJVUEqb92ayXShKuvQdX1RYm75apLKAcbdVR9Z8Dv5x2ls0v7z9L+OWWJo85lV7VdLdHd7MW9q/XFva34sxNluUZzk0ieHMJN4ngzSXcJII3l3CTCN5cIhZavujW9OgzfOFfe/5tH+5SpHyeWOjHxIAPk6xtXbZaTrPIGhx2meZcodVHKhKVjJcD59qaSZKl/JaN2Bw51Cnh1WdpO37cOzK9HZ748wL/UQFTqTsrYHUiZajg+4RLFa5ifhj+DN0SglTSYdbXorPuUX5Bj5PbSf/irHvptK0ZsDLr8S8tRchWJlFLo9oE+ySkEIiENJ2hEgVwcsgvPrfLkSZF+40QLul37cnyVtOHkxOCTpon0BOCxADXi1V4QmE/hCQKVTixE2b8/jVK4UTxQACt1mgkJSX90ofsj08WDOSXipRLVFieUQ7DF3TlROO2bTyHDXZb02vpgJ4Hn5K3Ecz98IcgSFSJkcKQzlxW6YwxBekAa/RLn+qiOs5hMjVGWxxIEhNhQpDCqTh9ZW95x6aeSbvcX+yf/tKJLBzNExGbuLkjhSGcYFbh9DAF4UD55BUO4ZmYhNNOEAY/EpMJeB01uFWqCBytIV3swleGS4ZDjsYW2E+5v4GeUe1sv26LK39dkNjm0Zw9s67vIp9j98/zfPo5dtJoYQivK6vwmhpHeDoQaZrlI8EuuRJUh8oUoxUgCAbiA+JSKBVQdOBfcuVIbBD+6ACHwiSjNBeQcnx+oaYq3LuY8MCpgLOrpv17ncKGFooqi8YvF4bkKrNKrqjRJQdvghkVvUplrDT70bChEashHB8osNn9bL37hmeng1alxO8lG0LGmCl3hPMNb3s8hoArjlO0sKo5ZgjxOLUNU5xazWys37HkHJ8j5gmPGrUda0vO1Ik0Gzm+KukImXQkvXcbU2VbYwFkHVLn2QzCCGRDpMowaYRqND9c80B1eXdNNZe7oodUga9fmINXalsMtnelZxXJ4+UCwH/ClaoIF5k8QvPBqHCfcTY0cea5XQLYL0dlG+eDkLbmJcaqN+Rq2JXABjs4ib2jThF9/NJnlyz3t3afH1HJJnmYVQ5ZLYmn0tVSO5LfOplKblbQdTJAzgki54iyI77NnHkOl/QqdK/knyeE4StHSFUqGUPPiquuVVc18X4gjMuafO7TDIebBZ/C1HIJio3gAKuarFiZXzKozSX2MUviSy74SzDYuRNz55e5FI/4iItCB+Gv4phvo3pVc2JhQPwq/H+ZvGEP+Q7tcrstkxn7j4T/t0j4qd2EDEbC//kSGwn/Qbrt5ICE/23lrBVHfgx1/Nu9/N6xzyeSj7sU7LQ5xzYSbpjkXGLjLL9Pt5GFQcJv0/XdObtYG6+Vz6vUL5IlcTQ6Cf85VlQOGtYasq4d9Dv4wx0J/9Foqw4lV3VzPXRy7qwmJTeQMxTGJOHfyCq6+cYRncFJ+OtKru46Pyfdef7Dc7NG2l+bZ2QSfszKMLKoAytjMBL+k2/dr4lelvSZMX+qebtnOatMgIT/HCs4By8ZkIRfPLb/38rhZsKDJS3KiRK2kPlkjEfCv5EVITCn8bitHVPc5ixo2uxXlyuCrXdrx11a+6YVmUcAO8QXrpQDj06P2cwZcG6TmyKR5d6Pc2EAxFXKyJBQEMOppdhWjT5cDtQOi4xvS2c9yDOoa20fCITOXAb4ZgJ8t1LDpHSA74jLBT1YVTH3tcBVHAvkVy8+f/r7K30eu84NaDrkuGWouuC9uyghFNUwFjCEgrS3aZeZutgtB7q7+7JeIVQZzfQNkoaopOj4svHc+T0bTK7lPDXr5M1SddPcKSeksBsRJ6Q01wuD9nct6/efednYwZJWM/UIlOAry5RBskAWbptH2W/Lv4jZ7Bxd1nFWp60byNXn5sQD6LqqHSkMYYxgFcYQ4wiDGv7w9MlY2HsqlBHAfUkC4d6pjUMXsGQFK4swW36LLoGhSlWQLb9lF/VwVQT2AzpaHdXZ7s0/r5PEq9pmvB2568xGsl+DH+AXMVqO6H+ZO1QYwvJmFVZHk5g58FF6RauVcje6FZGqIWqWGVTjjt8cyb3t7lPOLnZ/fvJm04IslQu6dHDADTk86plO44Vq4dxz22X9olTckrNEW8HWrXpW+FxPuDVpfK/AH+NrGHfZCwBYSACQgQAAmha9IlHClTGTTKxeOF6xveQL17+3PO2cIU10orgywx72hQD0ZwMg3vEyEWi2/39Wj0NtzG2wepxTV9jqcQZfKex6nEorXZP3VbH3Wdyztv3aHhnlTKAe58QVtuzmzismUFQQGxtrgHqc9qtWu88efMF57yJLdfskvq9J1OOsZpXOdFOQjkHqcdI7FW9S7Phjt0VlxxSLnbe2lUnU40SwCmewKQiHZ8x6nBNXYrfYBLl47E+XBMQt3JlsUvU4YlbhtTeO8EyzHude+LaQYi87eO+d/MX31rYui41cj9OAVXKWRpdcodbj/Btj537ufRPHuZf9FZm8tD4mUY+DxRCM9TjAEOJxaoc/oR7n/eNfm6t1jhNsLdPx3MtlqbFGrscRX2Wrx+FfNUw9Dr/46OWPPW2Ffz/7XiYs9ZWa83oc6tqcgxoTt6tsNSatrxZWPc7DIAHv2ZwqXnM7Vbq+1uxRJuf1OFQbwQFWfFasylz9n6rH6chkxoYfkTWTeceLDqT4yJ9k9XtDzpR0j4RnJ11VkvBQ+glTPdIXDZxk6nB4ekybzRltpzllypdAzrwQ+AlIzXt2dmn3y/ucBUuuxCf3SQkwZ3w/eiYn7yBN/0r5ARPmk/coFkIrqeeedNRK7dOojZMaO/OyzgGtrCyCfynnPyWNnVs9PJdW1k8qBwKTBrkDuz6KeBwmVo0oOzGJsnLmHCerjhdFsW0eHkk4NZK8F1REiBZgBY11R8iMV1ozRDpkhTsD2uErrpg8qIfkf4PJQ9fooAiDlBxARCaH9BSwRe5RAY56ZybUf/61e6O1vZlwf/+qKzeHe23K9/Rl6cJHXucTm9TTexyd2PzNecMmkXKnqBLpwiSRmAVzIl96fHZdOryyeuVM2wHkPVEXWDwTQY/IGJeXmhv4auD1Nf0uI9Uw5MV6tYUq5UGQjhGWBAZjv4eFwxGSELVOMQj1iGQJsTJwmDRIexPq1enbuZrrutKAAjDvQjB3ChFFfZBUfe0pBP0ShAiu4xD0S/AvlX7J+6+7Xf1OvnCcenZvlPlbnytU+qUpvWIn3gzv77b8aMyKx8tndyXGicOov03PRP1gBD0Tk6QtIHsALkaktGbtOd5h+LZgcZT32PTSaf52BZEW93T4kEMIytUSFfLcByFP2imjNJ60gP0dB6nBd1CE5BqM3J8xUzPWoWOP8QiWKCZZWbnkzjYQEEVEqhgC18xRDRuOGuGdVGaboNmA9LWsIisp0jwJwXWMDxSG0HazCm2tYYVGmGAzsUhjUOEtE7XzHpMNMUeZgr16Tnjra5lCLVVhVXfgI0gGEymrld1bvhrQ+LLHomzzZ89fBs2iyqqkV2SEZIhcS2DBoyS74Kc60N2VQ75cX7/prtiEOpNVqCNO0bi+WBso4Mou1fCzIMGj0qSwKroZtHT0Nh3YVa5VPMoet0tHBYhO947NMRXHXXpXJpfe/eE9n5LyC67rElOKTtxfN5pcK+sXKguO4MO+smS3Dv0VU0/rGj7BwXApIpHL8farMtg4D5J32yMBtr/frcuc4RkuO/tFR1Xr7iVgegVEvKTrthTQjP4hBDEFbVvK1pl3O7igdWRlse67YG6q4QujyRemehzsUaypd9SlastufKtal9rgBfkV8w0JPa2fHa8k2uixzjLI2X56f+sCzjG4hPeHWB11RMyxKDBqG6Jf1ZhGgkpMK5C4eKpbNfQqe99rl2zHsS1pDe7RtpSDdQOmgPMJfnMz1m8OtMQEtpMxDdQjx2YBeYbYqKeO2UvsRZ+EXrPW9O/zq+jdF2S9hHcbCv69wWzwzzYO/LQKsYI26tbMCFjtDL4JUiJv5IvXljLvI9qb+XVw4+b9cn7TUhR0N98ujymgOZjBdtiEwB1MNxN2MItWn726XDzAdceYz15yv+EVCsfBrJzO5mD6TjeAg7l4Qh1kduqR25SpJR7N2P/NnhsHE3O8WNnX6TNc4pKT56RPHdSGAwezdDrbPJ88nWMHM2dl5XW/vgW4zvDyPDtu0CBPIzoYBes3B1ryJzqY6is/FP/48ZbrdIdOd7qefDDQeA7GhRX+lsaB3wgORlp04F7rr9muk83S0xz2F91tPAejNQVIBwMmBO5gHE3Ywch9T6WXKl1dFOuhiK7+WZxTOA4meg2bg3FZYwAHY7W39RGb2ns94i/6D/tuJ47lxsEEd+7Qrk7Frz5r1q0ab5GW4sGBg5m8hm2eK9Zw7GBmVGwtun95h+uydX23lfC+tNKIDqYv6zcHWvInOpglkipD1h595b61+56GC7JLPTeeg2nJCn9t48BvBAfT+u2Q1WMTrTzWrOuWc6a8dKrxHIzWFCAdDJgQuIMRmLCDyVxV51vL3U29NvYLOTtzn5d94TiYnF1sDmbvLgM4mCSvVL/aY2zdl4wsNqfprqd7uXEwIxpd8yvarr3X1jTpvcx7Q7lYwWTvYt0o2sWxg+k6LOBE5w7nvFcWH/N6nU//HCM6mFOs3xxoyZ/oYLpvbjJ7dYaF85EW3Tpuqzirv/EcTAwr/LONA78RHIyk7i+vOsMmum5zK1G1RgvHq8ZzMFpTgHQwYELgDkZowg7mRsma9kk7JU5TbnR5uKP4wWaF42A2p7E5mOA0AziYbeNt/U9NmOq5cO3rXV9fLL/DjYNZFLktweGYj8uiE8NrHHziepsDB7M+jW2ez03j2MEMDv/U66PnX47ba+Y8sLq70MmIDmYM6zcHWvInOpgx7xo0LPL5rPOGO2ue3Pi12tV4DqYHK/xdjQO/ERyMu9mmn13HxwjWHwv4sKzkknvGczBaU4B0MGBC4A5GxORg9O6pYKOVXuH3VKhxt/bbf0ZNEi/9/u7TssiUlDw9FeyPJzx0rlxXPEtgV3tuS8HMPD0Vpk3YU/OaOsBjacCOntUSbs3O01PhbmiLZwNW3fdM4hWLSasQtDBPT4Umrg+CXvCsnOY+3hBZURbwOU9PhcdjfaYnt2ziMb/jQ+uNHevG5OkvtaDa5E5x+4p57lJ7lPTvdvwIGCqJD/X/p0aLm/fsPGI2pFR+JBsAe1mZ40NOfWwW9Ws+xH3DwaTwwNvrYAesUvhQqyfxk2IyvByT0lULHHJcvcFQaXzo8+xjyQMGtBD+PWlAjYDts2CvCAt8iN/nVwPnplfdl+2ZOPHas6nbwVAZfMhWHpd4d+FJ9/htD/cuOuyVBobK4kNTV6zdlLqwmGj+1got3GxdssBQOXwofV7LhUWfrvGZvmWrnW+trm3BUHl86M6m5t7fi5x23ffZrM+3i1t4YMgSHwro8nbuzfetvKJ8WlmW/dr1HzBUAR9abPUx/p7knesG2wrNvqQXGwKGrAh4A4our3BA7bN0ZtzdrQ6tIPLWxAPnl0oYs2CFR9w19+ffkxPqg6GK+NDCJlVmfXtQwXl5r6xZjU7VLQWGKvEYW3FUJh44YWL4CS8bYcKVH7WLN8qeCIaq4ENK8ZdV6xff8lj5769HDc2LTwJDVQmh2HzuPmjJDZ+lvZ8X6bPnagcwVA0fCq66qHSrabZuM11iNo+Y5V8aDFXHh17Ve1M2rNp6l53tNz6Jf7RyBBiqgQ9VUd8/2r7NZs+oIZKEDd9LVAJDNfGhePP0b5d8hjnt8f6a07hPSAAYqoUP9ShbJDzSYovzuo+2LcwyRKPBUG18aMc3/9gmDmcdd3Q4u/9lsfOzwFAdfGjteHvvnDvB4k0fX5wO+dR0FBji40Mb65xLOfMxRrCq3CLJ0oRVb2nNQuryGJqFHJamzS5/YZ1oo1nK6ho9buxCmA19m4U4MZmoSsGJCStTTzuv3p455mzNceT2VyWdR4XLlUEIBiymALgRfgef4CyVKWBYGAYCYmCE1NKQMKnOlFdUA4V8NXplIz6gazGXjTPvbgZs3Yg6veULwuPdGXoxglrmMoJqXgT53aJOp30fwe/uM2lfEcETwdtFHBKCcnxIKwYAdDODiZOmKmz3lKFXTNymhxSoBnb2PEgaqAwLV6plGAUYeD+ZHFs6EXrCl6gg660yTBaI1pDM1b86bfX23Pdr3j+j5eP9yRQ+2s+hU/jkDnEdN0C4drPCtTbDJCI5Ot2knpGcHT7RgnLFFREqieCHSYZJ+SAAgXQCQySQi4OR66fZk4ybPY+9E27paj7yzMpO/1LYHvDHItgeiBGupWdphyu7E0p6y+0xZacx/ugJXF2CmI4gXZBSgUS3BC5Z/vi9DlaiXU8HB9TrNfFpwWnwOABrNytYQNVx/+PM5H/+Y8/+LfZsaoRuMPbsqTfY2LOdbhQGe/bJL80uyB0thbsrBN/b3utoIIfOkmqBOGDPjrrBRjYsv2EQ9uzEjPufvNv5ue6fspDXO8ezr9HZs3uzogL0xkSZPvLbYOKOPXvhDUerofx7LslXhh65sWv9fpNhz3ZgFV1N44jO4OzZDWXxxwWXvrrOOZryKPLOPL6R2bMxK8NIfwysjMHYsz+tt6ksjfYUrJsiP9rxvBk5hWEc9uzerOA43TAge3a5nO/L2sS88ombd6GH0xqvoSbCnu3AihCY03jc5sIUt51eJRH/6FDFdfLm2iWf1x9LXpybi0GMxvdzEuu+cSAk2Az5sKMzEQmDFWIw+BHEXaP5AFtVhIYnGhhbXF9h7IWHbuN1Cpyo+5fo96ZH0cSIHstA+ROA8W1U1s0RSMD2iX7bCtgL5MEAHSm1rJBZrJ/A6UDCKn/ZwNmtKNkkeDeCJAq7nF+kRLV/BT1SCAAKfYKfgKcpIR8ehnqiF/dLVQwgQi9sgmQqoL5gHO1swxSV6gasau6x5OiT72F3T8nI09KJuJk+LXOH8m3IdO2m+JXVMtclr2KeLDiV8Z4DwBxZAQMaZZQgSuMz4O+04jH9obckMWeRpQUmSxar+jzWrWdUptJ9d5/p9Ta6ptW2wsjkgTCcR4WrpFrqGSyoFQj9bHo3KVgATBFtuWUzNk1wPSNcMfRKSserEV4ciLYqq2jNjCRaVHw8v5teoVYZcR57jhRmBfcFd4Kvl/Bc7Tr9zIgpDYOoCT8EsZ3mKteOkWeP26SdAkTOb6c9NsVwx+jK5BiFV6rcGdFuj+Pf/QZWnRVwWEz6NhUhAUkE3PqEbLJSyG8kVdOdZDEGLJuLlGEAcg0NCvaYoNzHYItDTa0J3FiCxB46eURq2i7/F6aJA/lbemwqtLwNQH8KlP8+VfkHA+WvfLug9SkCcR5Q4HaDMlyqgtGGUsG30ei4mg/Q0zShgP/S2DQ13I1WjpQyMMiXWZVqJ3Dt6zI/oFRP0ZCeFmQbE4AVHdBtDH49Pxtzs+JR34UvH3luivIRLPfeGMHBzoQ9hNlMCA+uUzfrmmAwF3RLuGEe8Wt3twKVCrU0MBJTD6wmCr2K+NxluPfNWc5TBwwVxI2yIdNbWuQ+l778JQ0WBiM/Blt/FGwZdhhsuElwYzIJZ8vVf9+irdIr+t0bT/vLE51J361sDynGI8H3jpTLEbaAKWC2I+6DZCSYzsoUIyRyWZBGyUfKIkL5SrBMUeluCahZepb3pEmBPKxHlHzsFlPyLQaeUrpV0Llf2R2rw4O7rlI1RoaDIYYEwLt4vSJeJZp5zP065NWvuVO6kMNn7EH08FlzOb/pTK1K4CBkSIHITUWFDOlNnXnxtxjDZx2Rq6FFTkVSNahaSPiud17oUTwwy/Wv8pm7Xn16Q2n9jSsIOqVDHuWclMYG0yQWtCbfMgqTkLn/6HBpXhzq56nZsfcEIa1Ubg9/R23v6jYIBrkhUhWlJA7+Kajhrow5SChY8AiwqB6tETVSylTHVJBJUkC5DrbHZ0G2AEWK2RybBXpthFX1xrCFsYKmfhdX/SAkFLUmfi9+o+FX4QH/RMUl215tKYkJ+K0QiQnscmFAsZQVCqDiuKNyZ3JU/JD6+6fPmSFcdHy7eMWXxLH5Mv8x2GKmdZ3OLH5Ua6kLix8vXxs8qXrnS52PfRXtalZU8SDGuX9BKVlh4uIWUVlNhdwSRA6ttZB7mDzk1No4biBP2x4d0ePFaaf5P2rmjKk27xoHkNe8ywZ5mbsE5J6cVWWWJyA3QFUmooiSqMpEFFESVZmIIkqiKhNRRElUZSKKKImqTEQRJVGViSiiJKoy25Z7EPXu2jKXVWnmrx56NrSglbxB5UVqH7X8koOSNzGT/Ot5nrC7s6u0yxazoCHXnlmS5W+t2ewXyZVqGC5iCRx6UF6CYbbVc5EpgrDkQCD+AGxJCdeZeBmCbul9aslpvq9IAwf1S3rQ+7e+CSZZBvLECDywqF+av4Ym24axmSuhaAAe4AfmuqCm/opEUc2ZHrGq1IdbApd3LEiurXC3sdNhfvQm7nazaQ2iwLLa6iYyDmfCqpK2JCIvVkiUakvjW9dq1Nk7+VrFaz9qvr/IYVnEpJ7eH05tHuUSp5zhNl04+hgHKOXcYEPp2g365gNbnGbrS8wrbLJhmBFTDi71iNoz5lTJXzmbcgbI7YXz7XzltUdNExsxn+tgiysRMiEHCWxr3tQvjG2qzR5CiALz9FyDHohkm5Dg/FoY92Hq/hrC/assQ4OCt4lMIGsJQTJnBSlHz7xuQyeZ5ptrt6pyVQZLLDIbKPWH7nF3M596LTuwN+uzm90hchaReC49i6gdKQx07jPmdCE657Q5XS8mx/giwFts1vyLaMmGcy6xPu596RvxdE9oxgBuXXI+V1vqNlKpV9tj6gELXXMDOsJ2HximS1CpzqE2oHgAts03CyFN6/x81Cbp2q2Oq/m8YWc8u5I70Flg+VgGt04azM+KU01cAa04D9jpCxAsX5SOQRbuJP18XTkMLCmYacxQNegqbTl4jb9oY/UxjxfVLt2GbImcwb1ooPIMGTgkgDBtZoVp4U39nF3+KTRqrtloKTRoaTAdgSk0Pi12tMegwe2QN5MdEjU+17zDlHviGJfYtxEdqtWi7kOHScL5mn0axH45U2jeWHMfke3BzqVI+ArpSHhJqpIF4g5SJ7NEPdzF8oaonfI8w7pmyWBTrUcA1wuomDwKoJ6epZehKoeloTSbu+B1kN9S/LPbl3NVZgtS6vyUHjg8mHIOCXsAPUTSXM5vzlHPuRU0uwXgKQPhKYOac1vBkuVzll7VJGU178PWqHZD10gHr0nvBUtuJLfZmDo3gZz909xPz/7h1/PD5+LJOrvCTts5LRy2J2WRvEI3DvDJymLDB6iPMSoMzLHCjREaIDrzqH/oZSNstbhl/SWqEGkEm9De3NhX3cVzvdvkYUODF7c/3YAsNM39dKHh1zkvrgVSOcQqla0mJZXsI4RU9HJf5TGDFy4Nwo0vUjCju42oFdd4hvvmvbOe73PfUJQsGC/sfrpg8OtcC8bRHjcncJuRtl6Nau7Me52l34KshhYDbGEhl+WHxxSbpbWaz7B0O5I4rFXV8s+aU9o6aB6AaOuADxQGIulZbIjsziL8ug+TX9+50DOnX6eO7tE5PyLMj98kRyn4J+peDNNZu8IgO3D+yFBZYCgIK+HZQolaDTtyaaticPev2+KDek4b9b50ndRc16dONAuvE6VVvziCVZ0v3a/rmQGviYcamgYWWJNFeIRJ8ybIL747+cW0O7sOe8e9uu05ceKNVWTlYwpstAMGdv5YKSnE0AFVo8FvimGol8Xq7I1rlKatPOmgFqwHUmv2B2Ara/jv3JiSP9Z7PJohmuLPjdrVHq5rMcCqogCDvUR9tZPZ1+QTV1Rt4qjjFzXNwUHmqlwWW+bq50MC8+5MmHsfcLlwmndCFNW3WifZcw8yoXo5L1IzOrohZUK6hheIB4B7igB3yikt7XSyk1RmCrbXojdjJY/runEDFtlrHwM4Z6M2bmCOQvUY0fOL8CeInl/wk6g9v6g9u6g9v367pxf1RkRPLybbVMtFpgI2R58WhAubbxlc96ml9xLJkU3blllMILcgFNBnhyDfBkPfD62a3mFCZ4+FD4ue3FJa9q6geyZgdqyE4nRAVS/0BqPRj9MQzbSYQPqdRo2rG0UfimhczPGIveT5z1IS8lajbo0aqShNef6wz7fuX11m3Vw058GscVygpGJFaeBjWhsm1moXTb9rGBjpABC16p3swzSPovsw/HphbHhjGvMZtdFkY4chhdvTHv/P7CmVzsdA9vTUIzZ7uvrRf/YUl0+TbSJ7uw27vGNvzgr+52XSBQ7sKZWmiQNLceIRm6XY+aiw7WmHSh6Lxzet7xi9xWrz2LYbUjmwp9RNAg5QWs2K0vRHhWhPqT7U6PYU0xhGewqQwu2pn8mvCajTiZtitjZFqr2dIwp32v/BMXTnlTk9OFgSuDxiWxK01ULuz1kxWzkCcgMUsyE48AhTj+DAI4rZEBx4RDEbggOPKGZDcOBpKQbpHHhEMRs1QqNVrEGriF70UNjzOKhY68mZkC0MKOTf45FEkCoSQqbm/GkyMWOSCZW2kAOZBDDJZOXB+32mZX12Tzq4L2nXsAfU+iGJQiqn96dnMmw2An44vAMneIFt0fkKZYRUQy4EW6SycdhSeRcRr6KLtbPwC1Qp5fIe0GPBi7lHPrO7USzhBovXd6qHN3FKcpGqNxWdp2KyhOY91VIVbMJKfGxDJ2XkEDms1QLvgxH/BMki8O8OIgyY5ciM2kwRSXEGA+rbyJnXNBMY0A4iXtQ0UWkviSpEphBLg0kO0EJzuYcsJJR0vZTmur8yPO9VshWu69/I+VuTzLTyGIi+KnhuMEKmeauSxFuhJpRKMtJdEQRptwh4i5SCF2HqJc8lLFaHBTLaS2X8IKuERC6CXFB5HFGESioJ0/6MERNr78FVtZfJu2UqCyhHW3VU/efAL0dksvnloEzCL/c2ecyp9Kqmuz06mLWw31db2N+HMzdZlmc4N4ngzSXcJII3l3CTCN5cwk0ieHOJWCgzcfDTdveripfP7NCFtzgjK08sNGjhPxfiPFM9Dgx92LiheHwQzblCq49UJCoZLwfOtS+TJEv5LRuxOXKoU8Krz9J2/Djy0qg8nvjzAv9RAVOpOytgdSJlqOD7hEsVrmJ+GP4M3RKCVNJh1teis+5RfkGPk9uhT3HWvXTa1gxYmfGe0lKEbGUStTSqTbBPQgqBSEjTGSpRACeH/OJp1SP3b7hmJ1i7sMvZbU+ti5ETgk6aJ9ATgsQA14tVeEIhCEIShSqc2Akzfk+NUjhRPBBAqzUau3fv/qUP2R+fLBjILxUpl6iwPKMchi9I2fi98Xh40HOs15LFlc0/b5TcppCo4g9BkKgSI4Uhnc6s0rExBekAa/RLn+qiOs5hMjVGWxxIEhNhQtCF9EdEN5rtP+Ox86Fsfc6uDeTUmLnmiYhN3NyRwhBORVbh8ExBOBC6vMIhPBOTcNoJwuBHYjIBr6MGt0oVgaM1pItd+MpwyXDI0dgC+yn3NxjKs69LOou3dxX8veJLvPWCJWHkc+z+eZ5PP8dOGi0M4b18wia8DBMiCiITaZrlI8EuuRJUh8oUoxUgCAbiA+JSKBVQdOBfcuVIbBD+6ACHwiSjNBfQnCLp6sbbX5VyX/9XkZ01jm4YSeutgyiLxi8XhuROsEpup9ElB2+CGRW9SmWsNPvRMkUIuyG8G/TJ4cCpNj5bywwcUyRxEjl6NGeMmXJHON/wtsdjCLjiOEULq5pjhhCPU/sxxanVzMb6HUvO8TlinvCoUduxtuRMnUizkeOrko6QSUeSw1SIKVNlW2MBZB1S59kMwghkQ6TKMGmEajQ/XPNAdXl3TTWXu6KHVIGvX5iDV2pbDLZ3pWcVyePlAsB/wpWqCBeZPELzwahwn3E2NHHmfYTYL0dlG+eDkPYMPaQlFsjI1bArgQ12cBJ7R50i+vKddzerX6uj+5Z6DmkjTxchc4+ZE0+lq6V2JL91MpXcrKDrZIDcO4icI8qOwDZSd5/qVeheyT9PCMNXjpCqVDKGnhW8fe6jldIxrovmD/pYYdb7FgWfwhSsqDaCA6zOsGK137ChDrGPWRJfcsFfgsHOnZg7v8yleMRHXBQ6CH8Vx3wb1auaEwsD4lfh/8vkDXvId2iX2/2ZzNh/JPy/RcJP7SZkMBL+zc/YSPiDnxUGCf+kmB5PKypGuO1vsSzFt/fWTRyeNufYRsINk/XP2DjL5z4zCAn/glcBvr3ebXVeyE9/9HbFuNNGJ+Efw4oK0BuTWTvod/CHOxL+slXUb1eO4TluaD10e/9g++UmQ8Lfg1V0XY0jOoOT8C+/Hvxg3rqePtv8tszP8Zjx3cgk/JiVYWRRB1bGYCT8pTbElt3RLdR16mzP4LbXxZdNgIR/DCs4wc8MSMK/ptqUkjXvVXeZZv267qroUKUJ0FlAhHqwIgTmNB63DWCK25wFTZv96nJFsPVu7bhLa9+Q6d4tsEN84Uo58Oj0mM2cAec2uSkSWe79OBcGQFyljAwJBTEc7HKtDNaLy4HaYZHxbemsB3kGda3tA4HQqOcA30yA71ZqmJQO8G3wvKAHqyrmvha4imOB/OqnRg2QLposcFt2ymfHZ7d0s4L37qKEUFTDWMAQCtLeRjxn6mK3HOju4Of6NcLWTN8gaYhKio4vPVo7lYl9eMAran3Fk4ca/1xGOSGF3Yg4IaW5Xhi0v2LW79/+ubGDJa1m6hEowVeWKYNkgSzcNkse8I5a8hZ57lVm9mu+6yOlzxzxALquakcKQxgNWIVhaRxh0Jpj65OxsPdUKCOA+5IEwr1TG4cuYMkKVhZhtvwWXQJDlaogW37LLurhqgjsB3S0+rh7Ve/rHg+ct0y/s/tIx4hvZL8GP8AvYrQc0f8yd6gwhPX9GZuwnhp9mUHU1egVrVbK3ehWRKqGqFlmUPwH3557Z8d4pPgGzVTn9O1akKVyQZcODrghh0c902m8UC2ce/Z5rl+Uiltylmgr8uWCJS/nRPssKv8t1CLJQWzcZS8AwJEAIAMBADQtekWihCtjJpn4687c+BJ2353Xx59pMiXgTQuKKzPsYV8IQGk2AOJfawPNgf/P6nGojbkNVo8z4gVbPU65F4Vdj7Pz1pqhD8pmex5c1G9gelZ2qgnU46hesGU3B74wgaKCFStWGKAe51G/LWqzlk4eG+/8267uwidZJlGP48EqnbamIB2D1OPM8qnt+X6PrfuuCVkf1jxSzTWJepx6rMIpZwrC4RmzHqdcmGV0rX/fOC4vkz1li7lVlEnV43x9zia8x0ZfJppQPU5IkyI86wkNvNZnzZ9jEzbttpHrcS6xSi7F6JIr1Hocxx/t3kyt39E17q7148bfkq+bRD0OFkMw1uMAQ4jHqYP+hHqctePtvXPuBIs3fXxxOuRT01FGrsf5+oKtHucCPaQtlHqcZInV9VPW1q4J3VKOPp+6RcZ5PQ51bc5BjcnHF2w1JpkvCqseJyLjia/1RG/HZWYhnb99fhbGeT0O1UZwgNUFVqySDBvqGLseZzCTGRt+RNZM5h0vOpDiI3+S1e8NOVPSPRKenXRVScJD6SdM9UhfNHCSqcPh6TFtNme0neaUKV8COfNC4CcgNW9jnXMpZz7GCFaVWyRZmrDqLeP70TM5eQdp+lfKD5gwn7xHsRBaST33pKNWap9GbZzU2Jk39yHQysoi+Jdy/jOosfNfcx6mlfWTyoHApEHuwK7/H3vfAdZE9r0dFaWLoiKIYOxYQNS1lwVC6E2w7NojCRINBJMgIhbsFXvBjg1FRbEr9t67q667NixrW3uv371TAjNzZ0hgSPL7f8vz+Dwyh5lM3nPvOefec+57hpCPw9SKq1LCpkqHvDRf+7YXRMtb3D+w6WSSL40FA63Airh1R+hMYIWLKIesCGfAOHzFF5MH/ZB8EZg8dI0OSrFoyRNEZNUg3Q9skXvQm0C9HxvqP8ZtWVXJw8xnR0/HhZkJobRiJcTpS6uSR17nE5v003t8ndgs2rzh0sje23SNRLNpJGNmWuLzoE/+8wY5qBdObtyLuifqB4tnNMyIjHV5id8gVAOvj/e7TFTDkBfr1RarVEghHSMsCYzB/g4LhzWS/mqdYhD6EclyIcrogTKp9ibUqzO3c/HrutKAAjCn3oG06T6Ioj5Iqh5yB0G/BCGC6zgE/RL8R6dfCht3u2PUiWdeY89sS7V4HX6VTr80ptvykTcTegakH8xY8Ch9akdSTh5GLTI9E/2DEfRMbJq2huwBhBrROTDLj6vazFoUtF3p3fr2rv2tiqMt/unwIYcQ1GsFVMhzF4Q8mjtGaTxpDfs79lGD7xDfP99g5P+OmZoUz7aRwxEsUWy6svfLn20gINIkqtCB61P/U790tjnjNTF27GGP6h2vc6rMXIQ/CcF1TAhKQml9OZUWYlilkSbYLESEG1R4y0jtvMd0Q85RtmCvli/R+loer5apsKo78BEUg4nU1cBO23oPe7zUe6/LvmZBwVVX03VlHpqokfRTaAksBLRkF/xUT6a78iyU66uI7opLqa05lVrnDoPri7OBAjHYZTg/C7pFAI0mhXOgm0FLx2zTgV3le4inehB26aA3otO9VxNsiBMuXcrm0jvdvxNurjjvv2z3/tIjd9QcT62VjYqVx2iEsK8s1a1Df8XW09o5PCYGLkUkCgXRflUOG+dB8m4PJMD0hoNsr4CIl3TdlgIjo/MtkpiCsS3VWCyofKu4dWS2WPddMDfV8IXR9Pg1N235evhg0MyRWU//MX+VTW/wgvyKhYaE9KbrxZxjcAkfAbE66IWYY6lA2v6WflVjuAaV2KhA4tIjIL31nQmbRGl/R0SPm76+AWNLOUY3YIo5n+A3d+P85mCUmMB2MjYC9cixWUOeIS7qqS7hm1OrlRkrGtNLWe3k9ps51HEJ7zYU/AJO+J//bRoVYsVt1I3PCFjtDL4JmqqD1nG3iJaiuLv57gVMAcPB9HXHJgThYGRsDkZvPh83rfZKns9HM/PgiH4nW3vvq56WvCCpZkoBPp+mi855zVnsFJp+dOzjf7dNtC/A53PKY8JvJ2JWh89sMW3gmT7WoQX4fI5W2FtnkKM8fG0p0YQ3d8SLCvD57HYu659QPc9756blE+N7/TG9ILchs/MvyW2I6PxLNupFdP61IEQLqvbu2Ts3wye1y1+Bj/74CIkZLQlRuX3lV9vHdw5ZUuvs249hweWByIoQ1bLx2/Bi3+zg3SPjRkvsqsUDkTUh8u10LGp4/ZPeM6qv++IzYf13ILIhRDl3hzZwaH/ZLyvq13uKub06AJEtIbp3dVzVVOv3gcuazDk91ulZABCVJ0TN/JQfmuxd4rNkaNJB/yP+W4HIjhCtiR1RLe1E1eCV9mtG1pnRvQIQVSBEZeK2H3Oxey5e+rV3Ro9D5j5AVJEQvfl72+W1MQNES/6Ne1l67bb1QGRPiD48H9d5h3OHgJ2SyIHjYixVQFSJENXo+GL7mpPpolUfZjRNuZqRBkSVye81eJ7L0PGa8OWWV5svmPIkGoiqCFhpoBwI0fovQ2PrzggSrav466m/JJMcgagqIbqbuK9jTE8/vxlPHEcd6PutOhA5EqJRdw+WutuwpdeyrvVanqgyeBAQORGi74vWN1zXeIjXnn7H/7z59fU6IKpGiB680WTeazsxaNy8am+7D/1jCRA5E6Lmjod33X/5OmTRpAGzo7KPQKCqE6LYuz+Wjh12wDtrfvs6fzZ+3gCIXAiRrFXt2W+7+IRuTuluv7LRvrpA5Erqa3sb8xu3vvqsvhT9plb1BEjaWYMQ3RfXDxr6SCVetCw3u/2HBVOBSEhOh6i3i5KjAkJ3erqM2dB9RH0GUVVNAQtR1QPF75Ia520C5n7+263tdKuLPBBVxbCZqCoxuzctPHZKvHhD3tAz1YdlUJeu4iEJCqUUcfqCLQCuR9whJM/LYm3q1HEgIAZGiOgAqONxC7qBQr4ac1VNCHRdSLiBZdULSBuMyhxGwIbsL/RroJl/GhV/EeR3+6f6wnZPHsYGLL/45Yj9kBobeTyMynOCEDb4+eUFWz20I1iVCl/oFRO3iJSBoYHVPUllsMWRUi3Hjp+A95MrsKUTOU6EEhU8ca2Mk0ejK9WGpjQsVXN40JrFre/KDu5YTi0f134Os3w8X8R33ADhsuGE69O/JhHJMY866hnJuRMTTZqvLk2sRCOMkwyUCUEAom1hzV5nbpGjPDS8xmb/TfvMjkWHKmrQKg2JxyIqDUkJ39qr4E4Mdl9k8b8HNtgZ1eZ6AleTPBRFFvzJ6EAiwfJs2Uuscm4cMrmh78mTnWdSLXWRjmDxAJYNJ1hgqBP+pz+b//mPuaFIzA30CN1gzA23X3AxNyzVz1fqyNzwssNvf9kdrBSYO1c61OnDufs8Oku6BeKBueHmC66D7sf1c5ZFZW7o4rqu0Y5LA0LHfq5p1shhTaLRmRu2cKICxo2JVpkWtsHEH3ODz4OyLWbF3/da4V42RPqgbX+TYW6YzKm6wcZRncGZG4SlMjcoJ/cQbXL8Hq08POmFkZkbMCvDevT+OCJKKSnmhhNDhHaD5+4IG7ejWsDKaXnrTIC5YQsnOEtfGJC5od44y7tuK6VBUz+8jb798RC1KZvxmBsmcyIE5jQRt8WyxW2nFklCvrep6j8609X8ae2U/dRoNATEaMIo3xDdNw58tM1wYTcBMhIGK8QY8CuIu5KFAFuVBucoAMaWGK8w9iJCt+E6BU70/Uv0ezOjaFKixzLw+DeiLS4jVPICGhj/Tb9tBewFCmCA/HaZgiu9D5295Tf+37lttw1924+WTYJ3Iw4oYJcLi5To9o+HnreHvxHVV4xBKGwkFmz8plfdsSMGEDku3KRyFRi+QI52thZNrIVbVz4OXVX1ucrKeRiV1tjSl7yZOS3zRYUBNtru3LLLNs/EW3M+mB/o3KouD4At5AQMjCijBFG4z4B/01zA9sOkw7Lg0KU1pksOq9rE/Mzcp5LSgRvTN69KvXX9pz1GZAKUIR6SoJJpy56xoNbbJ8rttwbFC4Bpqt0TkV5bPDAyeFPr1+/GrMlx40G1Kk7V9jaSalHx8Yxf9Qq1bEIK2HOkMkfc7Xo74NQQr/QaFyJTsm7spSf8EIeq8Ku8t5X2IGxSDqqoJMcDm2KEY5SzOUafq1VvDW611Su7R2/HKV33UckDKsPiVw3c+oQnmWWwtl6mR8f4JiJlHIAcL8HFHiPNfwy2OMxvFA+LSnXyiPS0XeEvzFAH8q/02FSY+hqA/tgH0UC+Lxj8Ca+LW5/iHVIAFLjdANsgwWhDGS90I5ufA/RwAiT4P9ymqeFutDJJxsJe8kdWl7SWDZ+Jlh6z/7u652Kqty3XFSs6YNoY4nphNqbap9sNkj76hW1b2LaeddMum3nYmZgIYTbzQbRMT2+AwVzcLeG6BdSv3d2KVsarZdGJ2PDAaqLQ3FrCu3/vuHwkYNcYB6/AD/eoDQ+t85/LXP5ShCXBBoPB1hMF2w13DDbCJAxgMwlnytd+27SlMnT8m5fBHldGiinfzTZShtUwCsMSFQqELWALmN3J+2AhLDZm5fGDJQq5FB/kSXJNrFAJlikq3S0BPUvP8Z4MLVDFekTJ1V+zJd8yALqvXhV37jsEYnV4cNdVpsYKsTHEkAAM8Rj/vW3nUeFTtz8tVevkje7U8Bl7EDN8xi8XNp3pVQk8hAyOELmxqJABNqMye80aPuuInLMWORVlqMGhhYTvw6bBdrNXV/IZ0/rFb19821KDahtigKBTOlQp7wXRbthI4kDr71dGqWK36JycICuIQ+0CNTsewSCklSk84N+oPfwD+sAgt79MRSuJgz/FNdwOmIOEigWPAIvqZFzVSC3THVNxJkkx9drXg5gFr7xRBzKbYLNAr40wxzAMWxgr4PW7xNCXIqFoOGLR0NU314WPaWVV7sDg8Ju0xAT8VojEBHa5JKDAhjgrFGCIE45qIJujMpmef3RryU/74xJo+bf0FVfLv2layBUmDzm9No4fyEeZlWs+q21M4CJNuxV7nzn/ygPkg99yQR7zloQ8jreqTDsScgNUZSKKKMmqTEQRJVmViSiiJKsyEUWUZFUmooiSrMpEFFGSVZmIIkqyKrNDmuyD2WKR37yphzRHrC2WMEre4OBFjj56+SUPJW/xbPqvFXzU/dZmK781ZtJ+155UoOq/Er7ZL1Io1TBcxBI4zKC8HMtsq+Unh+2OY2F/YPwB2JISrjOJMgTd0vv0ktNCX5EBDuqP9KCWmfYSTLIbyBMjYEUe9lKvvWtnPNuGMWkooWoAHuAX9rqgztN+DH3U6XlIepxbZo2JeduKk2sr2W3sizA/+pJwu68Y5IRgWa14iYzD2bCqoi2JKIgVEqXZ87vG/HOtvte6Bm/nrus/NoDHsohRXcLen8wc4pelnBQw0Sf5MA8ohXGi5PmSufnAFac1jiDnFTbZMMzIKQeXemTtGXuqpOGUT6U2dvw3ZLT1WRdVb9s3RsznejYmBhEyIQcPTw9+qV8Y21CbPYQQRRfg+4QeiGKbkOAcS/HN7fe0SsDMiK0zU6+N6WECWUsIUj9OkMJe6pfXresrx7+5dqsqf8hgiUV2A/Wy97oWbn7ZQWu8rFe5hXWhFS6Sz2VmEbWSkkCnLSc69V6SgZGSzTE+6xoWYtbks2juyrN+y8MDuzM34pme0IwF3JrUfK621C1JqRflPv2Aha65AR1huwsMU2MYwp9FbUAJYGti5gZU8dO0vzjb9fiz70LvsQ1jKgY1e05tw2yN5WNZ3DpFWJgVp5u4YlpxAbDTbhCsCNQYgwwQlV/p5evKY2DJwExjh0rze501ZXeo/af+2WpLN7taZ6mWSAzuRQNVQGTgkADCJOCE6bmezq7wFBo912y0FBq0NNgYgSk0ISN29MCgIexQApsdEtU/26TNmDshGX7LX2vaOLnQ96HjJAlCfJ8GsV/OFprXx+8jsz3YuRSJMF6WBC/JVPJowkHqZJboh7s43hC1U15ArGuWDAybAV8ArudRMXkqQL3hF70MVXksDYVv7oLXQW+H/xyeutb7vc+u121dxW1vU1uelsUewAyR8MuFzTn6ObfiZrdg9y8Ijw1qzq0FS5bIL3pVk9ji78NFkv7ri5tj3R1bB6bWO/ZX0IIKWdTsH34/M/tHXC8MH6ereU8HN98UOsq/oUWP3j0G8IBPR058wPAxRoWBBVa4MRgHor2A/qNfFzXbzhJVf5mGS2lPt0hrfVmTFZ7TceBVV2X3SKrS8PuZSiOu815cC7TiwKmV0iallVcHSK3o5b7sMIOXIJMSxhepmFtJiyftbbVRtNSx2eDgViMvUBUTit3PVAxxnW/FeHkQ5gRuMzLWq6lNxIKAL/otyJy1GGALC4W8MDwi1tY46T5oSkjW9tAte83s99AohfAHICiFCEFJINKQExGbL6RfH8Tm13NmBb/r0a5t4Ph33zUWR26+peoY/0Tdi2Haa1cYVAcuTIqVR8eCsBKeLZSo1ZANUlsVQ7h/3RYf9HPaqPdljkn8uj51op+JOlFG9YsXWNWt+1zcDHh1ItTAyZMwgl94hAl/E+QX93g+IyJOeS90ruuG9/7mnVtQBx9bYKMVGNj5Y6WkEENPVI2GsCGGoV4Wq30YMaLwliaUg1qwHkiN7w/ANgrw//kxpTAlbDgSUbo/N2pHFbiuxQBzRAEGeawBYMRkVpl84oo+mnhim6SnOXjIXMV+5spc/abFXM2GedhOv/OnBEdFqd2d2smfBlWkMm6HUohQmYaUDWnnUBAPAPekAXcqaHSqOtlJOjMF12sxicCpcl03bsAi+9NXAOdU1MYNzFGc/YrgmyT9CYJvEn4SnW+SzhdJ55ssMp8k/UYEnySbbXLxk6uAzdGH/vZ5xe+u9Sw9vKf1bnCsQ27dP6n0t97M2eFdKLndl46xZRu2eh6++NWwvHsHXZcVd88EzI53UJ2eqOqF34D07tfjCCJHNpCKQhL8/dSd7A61XEKn3rFdETylFvV8tW4kwXSU7rauPeLhN2lg7omnijoNfxS3hhOidJYTpV1fGRSAnNUueK8FGBjpABC96p3qw/BHMX0Ycb0kNryxEfMJtdHk5o4hRdhTzf+YPaXT+RjIntbitKcfvvxnTwn9yHwkVcZpngfNWh+T1aCcx1Ie7CmdpokHS+HKaSmsStyevrCdJV7wOiR4WdNOb8tnXR7Bgz2lbxLwgNKHL1wo5X0pQXtK96FGt6eunPb0g3aBn2jyawL6dOKnmK1FKafXaaIE3x3vvWJzrqZF8rAkyPjCtSSYoYV8MG/FbOVJyA1QzIbgwCNNPYIDjyxmQ3DgkcVsCA48spgNwYFHFrMhOPDIYjZ6hMaoWINWETnE6Ox5PFSsJfGmZGsDKrloPJIIUkVSyfScP0MnZmw6odMW8qCTIWw6Wbjr7u8THnwKzN21PXfzwHvUc35lIyTxMgWzNwqbYXPzFibAOwp06BLGKzUynFwI0nNzcdjSeRcRr6KLtbOOilYpFYpI6LHgxfwjn69+pVnC7T1+vL6TVS58pvr0oBcTnFgrqS26qGUqSABOfmxdX2ViPwWs1YJddCDxj1SuIb47iDBgliMvNZOmErLNEYM1t55YMPojMKBtRILUCSKrUImqvzw+RBZDcYDW+OVI2O+04HVL/HpnZULBq1QrXLlrPfHlUR+P22EgRqjguUGNHH8rc/KtUBNKJUkKjJdC2i0S3lKW8CJMvRS4hMXqCqIlE74ggF1U5RKFCHJBFXBEGpVMEqf9HSMm1t5DDNVkk3fLdBZQnrbq6OOfB798/iOXX97/kfTLQ00eczq9quluj+ZyFvav0xb2p/DmJm0FhnOTCN5c0k0ieHNJN4ngzSXdJII3l4yFYjpWiro3vpZoz7ih31YfrhFeIBY6PCb5wI0dY7zHdT/f227Y49sM5wqtPnp/jEbGy4NzHcamSRNt104nHTZYu/bD37natXf/XtLt2o8PXPg+vU2Y38wj5g2P9/s9xgTate//ztX8dt13E+g5vX79egO0aw8859r2+e/p4Uv3PVgR1WYRreOokdq1z+PUzmhT0I5B2rWXibiUp94S67VEEDdle1LmYpNo1x7PqZzupqAcgTHbtZ8NP38193QP750xj8pFDjxG7Utr7HbtfpzKa2Yc5Zlmu/b9Ntm1HD0Xe0/eu1b252ULarcqw7drd+XUnJXRNQdvKrF27W1kH6us8HAO2T575ZiOEZuo3BDGateOxRCs7dqBISTi1OFscer/Urt2elsMI7drj/jB1a69zg/DtGuv9CF0+aGZoYF7P/jH1V9VdiDv7drp5GY8tCAP+cHVgrz1j5Jq115hTE7VueMXhq3q1Lp5suuAXby3a6fbCB6wqsOJVYUf/1+1ax/BZsb+I+EvEgk/vZuQwUj4BT+5SPgPMm0nDyT8f3T09pxZq7Xf8hHOCbLV6VR68uKdNufZRsINk28/uDjLHzNtZEmQ8K98dTbrxo1GASs9nrXxWCluY3QS/qucqBw0rDXkXDvod/CHPxL+GNurv77d1zR0XO3Fu+ttc6W2rjcmCf8GTtWlG0d1Bifh7zhr0G+fq1f23ZA0/nmkzTVaVsXgJPyYlWFlUQdWxmAk/Dknr52WdBAF51Rv8O3ihXrUzJpxSPivcoJz8IcBSfjbHvt5YN8fM303fFrawzbLk7pMMx4J/wZOhMCcJuK2kWxxm9i7YaOfHa56r73tmnV56cvmVB4B7BBfglIBPDozZrNgwblFfopEnn8/wYUBEFcpE/vHghgOdrlWxujF5UDvsMj6tkzWgwJCXWv7QCB0GYZJeQDftfQw6SLAd8TP4h6sqpz/WuAqgQXyqy9W96iVnvNKtPSwXZMqvROoFNdF6t1FC6HohrGYIRSkvT3/k62LXToYu7k/9WuEjU9fqay/SoaOL+uuWSjwHl4xZOqNDY6bj8QIaSeksBsRJ6Tw6yVB+5vJ+f1n/TR2sKQdmXoESvCV5UqpPJqD2yaihdmC5IvbfLddrnhfk32hFXWskg9gjlWtpCSUMYJTGQOMowxGc2x9MhYewfFKDXBfkmi4d+rm2QEsWcHKIq6xsGmH6FilStpY2KyDepBKg/2CjlZvRl986hQWHrDo8a6g6Qebr6L6NfgBUZpkBaL/Zb6oJJTVlVNZPiYxc+Cj9IpWq+RvdMcnqvqpOWbQmEmarMC8+UG7Gt4emvGx4r7iLJWLu3TwJAw5POp5kcEL1VTcZetP/aJUwpJzRFtrWt3NPHFMIVq54vSJwOcd5xt32QsAWEgCcAMBADQtekWipCtjJ5mo2yzgqGWL9V57LHsNnjpSs5fmygx72BcCIOUCYF3ATzLQTP0fq8ehN+Y2WD1OrOAERz3OL4ITJVyPs2JzRM0vEx6HTRg1c+vqFqlrTKAeJwZCwprd7Ck4YfyigpkzZxqgHudG+qvN9o2yfCY4lWr23SZtqUnU40RyaifAFLRjkHqcdjWmnn5/VRi+c9cfp9p87nTRJOpxOnIq5xdTUI7AmPU4sbHXMtv4rwybvSVo0pkOYedNqh6nIafyhMZRnmnW4yzY5tF6RYP3fhtiDi0e/LVFXSPX4zhwas7G6Jor0XqcFbO7NT1lLwydt3PHsbZzVlwziXocLIZgrccBhpCIU0f9X6jHuS+uHzT0kUq8aFludvsPC6YauR5nHcSetR5nDjOkLZF6nK9pY05VUgWGZl7cePJ11bMi3utx6GtzHmpM1kLkWGtMllKR47Ee530V9YcAs6Vh2zovaFqu3pJk3utx6DaCB6zmcGI12bA219j1OKPZzNigA/JG8rB1op37wxX/POjxkpop6ZQIz076qyQJscwTpnqkL+r4ytUJ8PSYNpuT7I6fMhVKIGdef/gJ6JaRUW8XJUcFhO70dBmzofuI+qzvx8zkFBQyxp9lFDBh4QWPYiFGJf3ck46jUvs0euOk+mLBo0/HBQIHEfxHO/8ZU1/c8+Gn47ZRMgVQmEwaCOz6EPJxmFpxVY5hU6VDXpqvfdsLouUt7h/YdDLJl8aCgVZgRdy6I3QmsMJFlENWhDNgHL7ii8mDfki+CEweukYHpVi05AkiMs1XokXuQW8C9bFsqP8Yt2VVJQ8znx09HRdmJoSuLvT0pVXJI6/ziU366T2eTmwWcd5wacThHV0j49g0kjEzLfF50Cf/eYMc1AsnN+5F3RP1g8UzGmZExrq8xG8QqoHXx/tdJqphyIv1aotVKqSQjhGWBMZgf4eFwxpJf7VOMQj9iGS5EGX0QJlUexPq1Znbufh1XWlAAZiPIJg5PoiiPkiqnvkOQb8EIYLrOAT9EvxHp18KG3e7Y9SJZ15jz2xLtXgdfpVOvzSm2/KRNxN6BqQfzFjwKH1qR1JOHkYtMj0T/YMR9ExsmraG7AGEGpHasnrWPu3vrCZh+2JfJV0dWDGvONrinw4fcghBvVZAhTx3Qchz/p1RGk9aw/6OfdTgO8T3zzcY+b9jpibFs23kcARLFJuu7P3yZxsIiDSJKnTg2upynZbn2qcGr73qVNVG9uoBp8rMRfiTEFzHhKAklJbLqbRMwyqNNMFmISLcoMJbRmrnPaYbco6yBXu1fInW1/J4tUyFVd2Bj6AYTKSuloXL3DsNXxicGffcfMCi233pujIPTdRI+im0BBYCWrILfqon0115Fsr1VUR3xaXUWZxKHfGOwfXF2UCBGOwynJ8FCR6dJoVzoJtBS8ds04Fd5XuIp3oQdumgN6LTvVcTbIgTLn08m0vvdP9OuLnivP+y3ftLj9xRczy1VjYqVh6jEcK+slS3Dv0VW09r5/CYGLgUkSgURPtVOWycB8m7PZAA0xsOsr0CIl7SdVsKjIyNb0hiCsa2VGOxIP5NcevIbLHuu2BuquELI7+oj539i0W3nwZNm7p3kP3xLxH0Bi/Ir1hoSEhvul7MOQaX8OsgVge9EHMsFUjnvdGvagzXoBIbFUhcHNzePRvWzS54T/8V0oa/f/vB2FKO0Q2YYs4n+M1Hc35zMEpMYDsZG4F65NisIc8QF/VUK8WudK+rs0SzA2b83N4qtCd1XMK7DQV/d074/YwDP6NCrLiNuvEZAaudwTdB8/3QOu4W0VIUdzffvYApYDiYvu7YhCAczAQ2B6M3n4+bVnslz+fTzbVzo+TDu72X/zuyU5W3v4YU4PO5+u3aX1/dBolzpQ1stgdaPSrA5zMi59q8pet+C5qhqTjpRdNXgwrw+UQ3EvR58uNv76VXr8q39el5pQCfz6zsRvVnJFwKmn82oPyhe/VeF+DzQXT+JbkNEZ1/yUa9iM6/FoToztFqTe26Tg0Z9Xn9v06nHx4BIktCZJFSdvkH+fPQrNV95Vk7FRANK0J0r80hp/ZlbnqlldcERA180gKIrAnRlYHPlvzdNU+UNiio177rrueByIYQ3do8+3TjZReC1vv/Imj+19U7QGRLiLJTfs7zCpf7jGrc/MzP2QHJQFSeEAVEtJJ6nleL9kufZk2+3nENENkRopQmFoqkO9MCctt/u5+eI58JRBUIUaut0iv/vN0Qkno3fsHdY2dcgKgiIZr8+pzrE1m5kIxTZ/7O63fDFojsCdHZDtsvfs2tEpbevMXF+Jd9fwGiSiS8dUeUWnnsUtD+M/PqvN/2+CgQVSZE5V7efdgia6Boe9Ubmz9da9YdiKoIWGmgHAjRxLUPX26OnBy4qdeR3jekLn2BqCoh8pt5dcCvd2cHjndbluK8oN0pIHIkRGPT1EdX3+3oPfFSQF/VkRN7gMiJEHlM3hwTljHAd7V76Q29etS/BkTVCJF4y/Zz7xVPQibUbGsjmtQVMkQ5E6LISmbrzv99STTjTIMzN1vWewpE1QlRZdfWnhrlKZ9lTaZV2fntCRwbLoToy9JhHV/3/uaTtvOxcIdZzgogciVEbXLkkXcbDPWdIh1RZV5rh4NAVIMQ2ZRuIN5Ufqjf+CnxNw8uqAQ/S0iIPru2PTNrZl2/NdNtAr7suBDBIKqqKWAhqrJaVvdct65NvJb30Uyfty9XyQNR1UQ2E1UlZvemhcdOiRdvyBt6pvowKmm8uXhIgkIpRZy+YAuA6xF3CMnzslibOnUcCIiBESI6AOp43IJuoJCvxlxVEwJdFxJuYsGrUicEgk+ozGEECI9vlmJkDjkbaOafRsVfBPndSr31V8/v5iFa+7rzoE6Lxpfl8TAqzwlC2ODnBQQIWQ/tCFalD0oxEoRcIVmLSBkYGljdk1QGWxwp1XLs+Al4P7kCWzqR40QoUcET18o4eTS6g53jjsOTV+eFjzsafn/AYgm1Daml9nOY5eP5Ir7jBgjXTU64LpYySl1G4Ucd9Yzk3ImJJs1XlyZWohHGSQbKhCAA0bawZq8zb3M/7nXFxR9DN7w4nbvQTEhtZmcRRTwWUWlISvjWXgV3YrD7Iov/PbDBzqg21xO4muShKLLgT0YHEgnW1BUTf7V/IQqbVerhuG2+jagnJIt0BIsHsG5yggWGOuF/JrH5n/+YG4rE3ECP0A3G3CAqfYKDuaF2ab18pY7MDc7vU7/3dT8jyl19pvuUQxZuPDpLugXigbnBGyLEetC9VWm9nGVRmRsEtVO2zR1xy2vloUajs/qsuGJ05gZ3TlTAuDHRKtPCNpj4Y26o8G/390dvvA/fkD3PXfChMzXlb0zmBidO1dkZR3UGZ26o2jvbvUlCtveC2+bXmvemHe81PHMDZmVYj94DK2Mw5oYLmQdyZvZvFZ7942HwjdVCKq+OcZgb3DnBqU0Dp7DzcsViboj3+Oz3IO1w+NK2u75WGVPqg4kwNzhxIgTmNBG3TWaL204tkoR8b1PVf3Smq/nT2in7qdFoCIjRhFG+IbpvHPhom+HCbgJkJAxWiDHgVxB3JQsBtioNzlEAjC0xXmHsRYRuw3UKnOj7l+j3ZkbRpESPZWAryxN4W1xGqOQFNFDVUr9tBewFCmCA/Hb/OvRvlbanY3hG5IIt47+Z9aVlk+DdiAMK2OXCIiW6/eOh520LCFACahAKG4kFjSz1qjt2xAAix4WbVK4CwxfI0c520vvtLx98O+a1tZK8csOt/lQeHktf8mbmtMwXFQZYbv3rM/7q29M3516Zia1PHTnIA2A1OQEDI8ooQRTuM+DfNBew/TDpsCw4dGmN6ZLDqtq9eLDF5VTbgHVju7R4veNRtj1GZAKUIR6SoJJpy56xoNbbJ8rttwbFC4Bpqj21MfX0vYF/heaedndrPNDWhwfV2nKqtoyRVIuKj2f8qleoZRNSwJ4jlTnP922SxfM2/kskG+6/CdvpQ0/4IQ5V4Vd5byvtQdikHFRRSY4HNsUIxziFzTH6XK16a3CrrV7ZPXo7Tum6j7prXRkWv2rg1ic8ySyDtfUyPTrGNxEp4wDkeAku9hhp/mOwxWF+o3hYVKqTR6Sn7Qp/YYY6kH+lx6bCwjIA9Mc+iAbyfcHgn1qG9eiOjjtu3iEFQIHbDbANEow2lPFCN7L5OUAPJ0CC/8NtmhruRiuTZCzsJVVdsn980TwVT1Ze+3xv6ntq7qRcV6zogGljiOuF2RgX/1t2AzZuFK2Of/5C2nD6Uh52JtIhzGY+iJbp6Q0wmIu7JVy3gPq1u1vRyni1LDoRGx5YTRQSy6bvDl6d8mKb/+byghrdL7a8Tj2Rkf9c5vKXIiwJNhgMtp4o2G64Y7ARJmEqm0k4U77226YtlaHj37wM9rgyUkz5braRMqyGURiWqFAgbAFbwOxO3gcLYbExK48fLFHIpfggT5JrYoVKsExR6W4J6Fl6jvdkaIEq1iNK7leGLfmWAdANKfbcdwjE6vDgrqtMjRViY4ihB6EkooMo08Vv7tXxif4Lp7lQw2fsQczwGb9c2HSmVyXwEDL0hciNRYUMsBlV1zKs4bOOyDlrkVNRhhocWkj43k5ZmetSb2PArtmv+lf+Ue536jF3YoCgUzpUKe8F0W7YSOJAy6eMQQMs8kUtOicnyAriULtAzY5HMAhpZQoP+DdqD/+APjDI7S9T0Uri4E9xDbcD5iChYsEjwKI6GVc1Ust0x1ScSVJMvfb1IGbBK2/Ugcwm2CzQayPMMQzDFsYKeP0uMfSlaFrOg5aTWr9t4jOzwu0/v3+scoGWmIDfCpGYwC6XBBQhnFD4aB1VGpujMpmef3RryU/74xJo+Ve7DHHgH9nyz1kL+TSTh5xeG8cP5DFznLvJJ+/1Suv48dFjc/FHHiCfbsYF+QQzEvLpvFVl2pGQG6AqE1FESVZlIoooyapMRBElWZWJKKIkqzIRRZRkVSaiiJKsykQUUZJVmRP2hdS2m9TYb9a8P5tFfN61lFHyBgcvcvTRyy95KHmbwab/WsFH3W9ttvJbYybtd+1JBar+K+Gb/SKFUg3DRSyBwwzKy7HMtlp+ctjuOBb2B8YfgC0p4TqTKEPQLb1PLzkt9BUZ4KD+SA9qmUUwP3ADeWIErMhT9EvzO+PZNoxJQwlVA/AAv7DXBR0N6uyQMGNW2NTnDTo0GdvudHFybSW7jX0RYLWgNOF2XzHICcGyejIz4c+FVRVtSURBrJAopR9xm7Q3933o9tLzmle7PvoMj2URo7qEvT+ZOcQvSzkpYKJP8mEeUErhRElRmrn5wBWnNY4g5xU22TDMyCkHl3pk7Rl7quSnfYbT/E19Q3a7qa+dy2mrMWI+17MxMYiQCTl4eHq6nvnchtrsIYQougDfJ/RAFNuEBGfD2+kHwz6V8c8t23jBtcGjPU0gawlBGscJUoqeed26vnL8m2u3qvKHDJZYZDdQn7Lrz1Ek5AVkZj3zCvL7m1aLRz6XmUXUSkoCnUGc6PTX5nRnsjnGZ13DQsyafBbNXXnWb3l4YHfmRjzTE5qxgFuTms/VlrolKfWi3KcfsNA1N6AjbHeBYXoKYTuL2oASwCYQ+rk63dK0M2/ufPK43MqwMd9/j2o65MBO6mYnlo9lcesUYWFWnG7iimnFBcBOP4ZgRaDGGGSAuK2fryuPgSUDM40dqqeJj0KqpvsHjG36JmX8+aFUMndLMbgXDVQBkYFDAgjTVU6YTuvp7ApPodFzzUZLoUFLg40RmEITMmJHDwwawg7NYrNDovpnm7QZcyckw2/5a00bJxf6PnScJEGI79Mg9svZQvP6+H1ktgc7lyIRxsuS4CWZSh5NOEidzBL9cBfHG6J2yguIdc2SgWFjaQFwPY+KyVMB6k/M9TJU5bE0FL65C14H+S2DSk8/MeXn5sDxW2vtfBub3ZAaImEPYIZI+OXC5hz9nFtxs1sAHnMIjw1qzq0FS5bv5npVk9ji78NFkr5pYJ4wq461z4bNl46UnnjiPjX7h9/PzP4R1wvD59GJZg0iKk3y2pOS5Wvxb/Pi7ptAfN6ac+EDho8xKgwssMKNwTgQ7QX0H/26qNl2lqj6yzRcStvbvezEY3M2+a8JX5QzqMW3YKrS8PuZSiOu815cC7Ryh1Mrf5iUVl4dILWil/uywwxegkxKGF90z4Un2YLNHZb7TMs9NbVllXBXqmJCsfuZiiGu860YLw/CnMBtRsZ6NbWJWPDJXL8FmbMWA2xhoZAXhsfSFPHe1um/BE590b3WsLz5UhqlEP4ABKUQISgJRJ6YcyFy05z067PZ/HrOrOB3Pdq1DRz/7rvG4sjNt1Qd45+oezFMe+0Kg+rAhUmx8uhYEFbCs4UStRqyQWqrYgj3r9vig35OG/W+zDGJX9cjA77TnKgTZVS/eIFVXRbTr+uZAa9OhBo4eRJG8AuPMOFvgvzilhvUURPeNfDeExfXrKa8L9W1mbMFNlqBgZ0/zO5uhxh6omo0hA0xDPWyWO3DiBGFtzShHNSC9UBqfH8AtlGA/8+PKYUpYcORiNL9uVE7qsB1LQaYIwowyGOdpZ3Mc0w+cUUfTTyxTdLTHDxkriaac2WuUrWYz2XDPGyn3/lTgqOi1O5O7eRPgypSGbdDKUSoTEPKhrRzKIgHgHvSgDsVNDpVnewknZmC67WYROBUua4bN2CRfRF66KmojRuYo8i1OMHkmyT9CYJvEn4SnW+SzhdJ55ssMp8k/UYEnySbbXLxk6uAzdGH/rbzhEO5t44fFi2MfbvnaJkNVaj0t97M2eFdKLndK7XrCLPQAeFL/zX/Hn7s4Yni7pmA2XEeqtMTVb3wG5AetTiBIHJkA6koJMG3Qo7L+s0KDZhpeTqysWvrdUUgCaajlPz7vTSbiqsCDwz63LhnFVlxazghSrmcKOVYnKBTAHJWu+C9FmBgpANA9Kp3qg/DH8X0YcT1ktjwxkbMJ9RGk5s7hhRhT+f9j9lTOp2PgeypjNOehv9nT0n9TNm1Prhp8399lk+vYKb+8/5NHuwpnaaJB0sRzWkpfi9xe5oyo2fH15PcQ5b7388dsWpPXR7sKX2TgAeUwjlREpekPaX7UKPb02hOexqutafzTX5NQJ9O/BSztSjl9DpNlOC7471XbM7VtOKSRcAlQR0LriVBdS3k6bwVs5UnITdAMRuCA4809QgOPLKYDcGBRxazITjwyGI2BAceWcyG4MAji9noERqjYg1aRXQOl8aex0PF2gLelGxtQCUXjUcSQapIKpme82foxIxNJ3TaQh50spBNJwt33f19woNPgbm7tuduHniPes6vbIQkXqZg9kZhM2xu3sIEeEeBDl3CeKVGhpMLQXpuLg5bOu8i4lV0sXbWUdEqpUIRCT0WvJh/5PPVrzRL2K6J08lqE2t6zagVK3hcLZGVd9mii1qmggTg5MfW9VUm9lPAWi3YRQcS/0jlGuK7gwgDZjnyUjNpKiHbHDE2peuJBbPLAQPaRiRInSCyCpWo+svjQ2QxFAdojV+OhP1OC163xK93ViYUvEq1wuUD64ltZ5U7YYeBGKGC5wY1cvytzMm3Qk0olSQpMF4KabdIeEtZwosw9VLgEharK4iWTPiCAHZRlUsUIsgFVcARaVQySZz2d4yYWHsPMVQXmbxbprOA8rRVRx//PPjlPeW4/PLWcqRfXmzymNPpVU13e3QzZ2F/lrawfwlvbtJWYDg3ieDNJd0kgjeXdJMI3lzSTSJ4c8lYKPes55k5a8+IN/8xduh1Qae6BWKhRX9uW+D9pHXgzPLxzVcHDx/BcK7Q6iMHEp2MlwfnupRNkybarp1OOmywdu3bLbnatY9iUsnw3K79YfcKpUunDg9NT26SNndn744m0K59qyVX89ss4xBmUHtOr1y50gDt2vu4142KmXxavHDCuG6DXcTzTaJd+zJO7cw1Be0YpF37pePV1y3UTPaa9D3GLPKNxUOTaNc+hVM5o0xBOQJjtmtfaXFLsWdnrtdW2Y3DdxQV7EyqXXsSp/LiTIgoyOjt2h1udheWHXRbNPdOmdOHgkY7G7ldezSn5n43uubgTSXWrl0o+71Cw33ufgvbJ5itKX//kkm0a8diCNZ27aO0ZE/L2OLU/6V27fS2GEZu1/7Nkqtd+yNmSFsi7dqVvhd6Tl70h++UWjHB/1qu2cF7u3Y6uRkPLci/WHK1IH+lH22iHu3a/6rYvPTyPlt9t7RJL9WghWx88acwDSu6jeABq0ecWP1tWJtr7HbtGWxm7D8S/iKR8NO7CRmMhL+zFRcJ/y9WJUHC3044st5h4WrR3EP3vu8w63Sbx9PmPNtIuGESacXFWR5gZRAS/n+O3mw7IOdb+Jqy3xKPHOkdaHQS/o6cqIBxYzJrB/0O/vBHwh90+sytFK9zXgfmWjh71Pxy1mRI+Btyqk5oHNUZnIS/Wrslitx97wMnNeu1b9D1ax9omU5Dk/BjVoaVRR1YGYOR8A9RLP/z8+OD4St+RluNCo+eaAIk/B05wfnFyoAk/H836WG57ZcfQYsulsv4ciiZuvQxHgl/Q06EwJwm4rblbHGb2Ltho58drnqvve2adXnpy+ZUHgHsEF+CUgE8OjNms2DBuUV+ikSefz/BhQEQVykT+8eCGA52uVbG6MXlQO+wyPq2TNaDAkJda/tAILQP4psH8F1LD5MuAnxnM8MkPQ9WVc5/LXCVwAJdLNR77sdLzSoHrztyq3PKaQtao7Oi9O6ihVB0w1jMEArS3u6xYutilw7G7mb9QigbfPpKZf1VMnR8KR3uofr2tabPjiVHniVuzI2nnZDCbkSckMKvlwTt7xrO77/E6MGSdmTqESjBV5YrpfJoDm6bES611m28IvCbFH3QYWnn4XWoY5V8AHOsaiUloYzZnMqYZBrhj0CfjIVHcLxSA9yXJBrunbp5dgBLVrCyiGssbNohOlapkjYWNuugHqTSYL+go9XRH0cIVsTMC14+MN1vzvI+y6h+DX5AlCZZgeh/mS8qCWWN5FRWoknMHPgovaLVKvkb3fGJqn5qjhnkPG3GxGEOfwfumTdoyezK45KKs1Qu7tLBkzDk8KjnRQYvVFPx+mw9o1TCknNEW9vVEQkNXR39U5ft8fdtVuGUcZe9AIDlJAA3EABA06JXJEq6MnaSiWMv76anSc0CZv1R+17v6XeTaa7MsId9IQDjuQDoOkQbaK74H6vHoTfmNlg9TntrrnocC+uSrsf560Vn8aDu30Nmyzb0iu1VX2UC9Thtrbmym57WJlBUMHnyZAPU41hN3TPRp/1Nn2Xj6yf+XUNyziTqcepxaqe6KWjHIPU4+weI43rf7xo4qc87Uc0P6jiTqMex51SOhSkoR2DMepylsVGua2olhKRNnXy2gZ3rR5Oqx/lhxaW8d0YPdk2oHifvymrPFO9pPpsne8cPOu7UyMj1OE85NXfX6Jor0Xqcnx/3+zeo18p7tn3r5MnSq5tMoh4HiyFY63GAISTi1JX/F+pxbEo3EG8qP9Rv/JT4mwcXVDJ2Pc4Ia656nFhmSFsi9TijRx6K/fgyRbRnllfTsXb13/Bej0Nfm/NQYzLMmqvGRGVdUvU4Fbe/UZr9IvNZuPp8W7t2UaN4r8eh2wgesIrlxKq3YUMdY9fjrGIzY4MOyBvJw9aJdu4PV/zzoMdLaqakUyI8O+mvkiTEMk+Y6pG+qOMrVyfA02PabE6yO37KVCiBnHn94ScgR95n17ZnZs2s67dmuk3Alx0XIljfj5nJKShkjD/LKGDCwgsexUKMSvq5Jx1HpfZp9MZJ9cUCX0jM5SCC/2jnP+X1xZdF5idso2QKoDCZNBDY9SHk4zC14qpczaZKh7w0X/u2F0TLW9w/sOlkki+NBQOtwIq4dUfoTGCFiyiHrAhnwDh8xReTB/2QfBGYPHSNDkqxaMkTRGTTLIgWuQe9CdQz2VD/MW7LqkoeZj47ejouzEwIXV3o6Uurkkde5xOb9NN7PJ3YLOK84dLIHTO6RtawaSRjZlri86BP/vMGOagXTm7ci7on6geLZzTMiIx1eYnfIFQDr4/3u0xUw5AX69UWq1RIIR0jLAmMwf4OC4c1kv5qnWIQ+hHJciHK6IEyqfYm1Kszt3Px67rSgAIw/ctC2nQfRFEfJFWvXxZBvwQhgus4BP0S/EenXwobd7tj1IlnXmPPbEu1eB1+lU6/NKbb8pE3E3oGpB/MWPAofWpHUk4eRi0yPRP9gxH0TGyatobsAYQa0eSDX54Orf9qk3ju24PnvnTZs7M42uKfDh9yCEG9VkCFPHdByNOurFEaT1rD/o591OA7xPfPNxj5v2OmJsWzbeRwBEsUm67s/fJnGwiINIkqdOB6sqF40Yr7FUNz3vyhGNg6619OlZmL8CchuI4JQUkorSmn0uobVmmkCTYLEeEGFd4yUjvvMd2Qc5Qt2KvlS7S+lserZSqs6g58BMVgInWV9PrzizFrPoRN+aVOZs7iEQK6rsxDEzWSfgotgYWAluyCn+rJdFeehXJ9FdFdcSnVhVOplcoyuL44GygQg12G87Oga6ZpNCmcA90MWjpmmw7sKt9DPNWDsEsHvRGd7r2aYEOccOlr2Vx6p/t3ws0V5/2X7d5feuSOmtTzIFZRsfIYjRD2laW6deiv2HpaO4fHxMCliEShINqvymHjPEje7YEEmN5wkO0VEPGSrttSYGQ00hJTMLalGosF1mbFrSOzxbrvgrmphi+M/KLBnnsXZC4+EDauU26dcV3GUtmGzFi+YqEhIb3pejHnGFzCN4BYHfRCzLFUIK1hpl/VGK5BJTYqkLjkeDa628D1rM/4ShtarMv7YsfYUo7RDZhizif4zatwfnMwSkxgOxkbgXrk2KwhzxAX9dTB7b2HVJooC5jVXDj4zrb2x6jjEt5tKPhLccL/0bD9vUn4GRVixW3Ujc8IWO0MvglSI/SOu0W0FMXdzXcvYAoYDqavOzYhCAeTxeZg9ObzcdNqr+T5fERpW7t7uX0P2lk3YFS38+XUBfh83F/UFSSnrQ1becHub808h6wCfD4t67UfEbf8gNfWi86PD66tX7YAn8+p0JQpWY8qBs169nKFZEfE3wX4fFadW/HYecSM4LXbm465X+l4ywJ8PojOvyS3IaLzL9moF9H514IQNZtfOXD91h+iyS4/DnndS10FRJaEaL65X2JrH3ngNN85tU9/PD8biKwIkdW01WERfbxD54/dez9i5GQvILImRHlDwpYlflwUutMuvVf7lx8g+6INIZqxZsWBlHBb3/1TJyf0694sEIhsCVHbMtf9Kn54Hjyp7LkLmc36ngCi8uQDV9+/ODH+Zti61VVav5S2sgQiO0IU2/j3Lu6qpkELrpV+G9djwlAgqkCIGiRYVekj3O+fLf5uMeJO/EQgqkiIVE29IgTul/33lz7nP8LnbhoQ2ROiVt9GjfItJw4evSzE68volvOBqBIherJOYStN6BGaMenTObN/u74DosqEKOboE/M9A7/4jk24/e5Gr5n/AFEVASsNlAMhutKj4Xeb13O8clatiJ639uFWIKpKiF4/O3ok2Gpk8Px+Povtms6GRIqOhGjYjqmxIbad/Dcfjpd2ayu1ACInQrTNseyjurcTQ+dnX6s+4uL8Q0BUjRBZj/ir88AF14M316+3p7nfJBUQORMih4dPGpyZ+TJ8ttqqYqRXhRlAVJ0QTehuETIu+Vfx3LRBr+NHfDYDIhdCVCvK/dSep0N8lvX6sGu2Y2sociVEv4mm/T7M7c/QbUOFFSrkOi4AohqEKKCBZs69IdV85gy81Dy7UvITIBKSk2j3gaNXMoeFZre66hPX1vEMg6iqpoCFqCr2tXJvi2pnw5fKJtfdMKH2KYTZ0Jeoah2biaoSs3vTwmOnxIs35A09U31YBnXpKh6SoFBKEacv2ALgesQdQvK8LNamTh0HAmJghIgOgDoet6AbKOSrMVfVhEDXhYSbWHDHBtIGozKHESA8PmWjXwPN/NOo+Iugm9Xb3Jt045cIv8WjfvnY5NR9KhV98Q6j8pwghA1+btmw1UM7glXpFRu9YuIWkTIwNLC6J6kMtjhSquXY8RPwfnIFtnQix4lQooInrpVx8mgkir2fvNowPlQYuKjOkjcdohIeUcvHtZ/DLB/PF/EdN0C4TnHCdcDGJCI55lFHPSM5d2KiSfPVpYmVaIRxkoEyIQhAtC2s2evMra5sPzzX77woPfb1pje/eFelVRoSj0VUGpISvrVXwZ0Y7L7I4n8PbLAzqs31BK4meSiKLPiT0YFEgrU4rNqAfS8X+85dYvng5K9bqTyYRTqCxQNYpzjBAkOd8D/r2fzPf8wNRWJuoEfoBmNuaGbLxdxgb1sSzA2OFheXHT8WF7Zs8eaab5cebM6js6RbIB6YGzxtuQ6617M1CHPDUvPLa8eddBDlZte7W7mxZUujMzdU50QFjBsTrTItbIOJP+aGC8E2gS2/xgetrbQzdeW4KT1MhrnBglN1P0w1nOGZucFq+Orupy3mhmf8OPplyR0Pao84wzM3YFaG9eg9sDIGY25o6Tw79cX3r+L5cyXm/2aN+mkCzA3VOcGxtzUgc8Oi38rnjVjW0H+JY+be2pHrnpsIc4MFJ0I/tHHbBra47dQiScj3NlX9R2e6mj+tnbKfGo2GgBhNGOUbovvGgY+2GS7sJkBGwmCFGAN+BXFXshBgq9LgHAXA2BLjFcZeROg2XKfAib5/iX5vZhRNSvRYBtarTLTFZYRKXkAD5Srrt62AvUABDNBF8XO2/n1HNtJ/2yKn3PYDYl/TsknwbsQBBexyoZESzf7x0PO2TmWi+ooxCIWNxIJqlfWqO3bEACLHhZtUrgLDF8jRzvZI1O6seqd+C1mR2GNiVsqjH9Rp6UvezJyW+aLCAHt84m6dmgkzwyY/Ej7b3Wl7Qx4Aq8AJGBhRRgmicJ8B/6a5gO2HSYdlwaFLa0yXHFZ17PN3FyuM8w/dV6XLq8wVW3rYY0QmQBniIQkqmbbsGQtqvX2i3H5rULwAmKbafqrkOt9nvA/Y+myS0x2VQwgPqv1WiUu1byqZTnw841e9Qi2bkAL2HE1ZtsLCfpLXbK/t4xYP+3Pph930hB/iUBV+lfe20h6ETcpBFZXkeGBTjHCM2WyO0edq1VuDW231yu7R23FK133UQofKsPhVA7c+4UlmGaytl+nRMb6JSBkHIMdLcLHHSPMfgy0O8xvFw6JSnTwiPW1X+Asz1IH8Kz02FSaVB6A/9kE0kO8LBn9K+eLWp3iHFAAFbjfANkgw2lDGC93I5ucAPZwACf4Pt2lquButTJKxsJf0W+95uNLY3T454w7NDz9eg9qWuFxXrOiAaWOI64XZmOEhf55IO+cVMHnwxuBmgtu7ediZmABhNvNBtExPb4DBXNwt4boF1K/d3YpWxqtl0YnY8MBqopBY7v5rxR8+Iz97TfW6+OzyhjHVqCcy8p/LXP5ShCXBBoPB1hMF2w13DDbCJGxkMwlnytd+27SlMnT8m5fBHldGiinfzTZShtUwCsMSFQqELWALmN3J+2AhLDZm5fGDJQq5FB/kSXJNrFAJlikq3S0BPUvP8Z4MLVDFekTJncqzJd8yALrtij33HQKxOjy46ypTY4XYGGJIAOqOfD/xrLif35J/J1pMjO1DK8bCHsQMn/HLhU1nelUCDyFDOERuLCpkgM2oxOVZw2cdkXPWIqeiDDU4tNCNXOoPnRfmOyhw9bNqE74oF/WhHnMnBgg6pUOV8l4Q7YaNJA60mpY3ShW7RefkBFlBHGoXqNnxCAYhrUzhAf9G7eEf0AcGuf1lKlpJHPwpruF2wBwkVCx4BFhUJ+OqRmqZ7piKM0mKqde+HsQseOWNOpDZBJsFem2EOYZh2MJYAa/fJYa+FAlF/7yxrr0vXfJa16TZpohvGedpiQn4rRCJCexySUDRjhOKplpHtYnNUZlMzz+6teSn/XEJtPyzL8/V8s9KC3mOyUNOr43jB/Jv8itPrOp18l37SDk/QDj8IA+Qj7DjgnywHQn5Zt6qMu1IyA1QlYkooiSrMhFFlGRVJqKIkqzKRBRRklWZiCJKsioTUURJVmUiiijJqsx5x7Nd6is+++1opcg2z8nZxCh5g4MXnV2hlV/yUPK2hU3/tYKPut/abOW3xkza79qTClT9V8I3+0UKpRqGi1gChxmUl2OZbbX85LDdcSzsD4w/AFtSwnUmUYagW3qfXnJa6CsywEH9kR7UMpNhfuAG8sQIWJEP0C/N74xn2zAmDSVUDcAD/MJeFzRmwbWv08zTRFll/jr5qsmaCcXJtZXsNvZFgNVEW8LtvmKQE4JldTIz4c+FVRVtSURBrNCpjHt2nhMDv3mNae2cff3hhXk8lkWM6hL2/mTmEL8s5aSAiT7Jh3lAaQAnSj1smZsPXHFa4whyXmGTDcOMnHJwqUfWnrGnSoJO3fqrY4uH4XtG/rPufmaVf4yYz/VsTAwiZEIOHp4eoWc+t6E2ewghii7A9wk9EMU2IcHJrhtR5xfX3SFpE9WZqjEZShPIWkKQNJwgDdAzr1vXV45/c+1WVf6QwRKL7Aaq5fM0q382/ek3La3h0RZVd7emZhHJ5zKziFpJSaDTlxOdrrZkYLSVzTE+6xoWYtbks2juyrN+y8MDuzM34pme0IwF3JrUfK621C1JqRflPv2Aha65AR1huwsM058QtrOoDSgBgO2Ifq5OtzTt1Jbnrden/eW3/dL6h5c++felbnZi+VgWt04RFmbF6SaumFZcAOz0dQhWBGqMQQaIc/r5uvIYWDIw09ihGjHo2uibVrf919kf7pTe3bUt1RKJwb1ooAqIDBwSQJiOcMK0W09nV3gKjZ5rNloKDVoabIzAFJqQETt6YNAQdmgbmx0S1T/bpM2YOyEZfstfa9o4udD3oeMkCUJ8nwaxX84WmtfH7yOzPdi5FIkwXpYEL8lU8mjCQepkluiHuzjeELVTXkCsa5YMDJtP9gDX86iYPBWgfsNeL0NVHktD4Zu74HWQ3/L68z436hweEpjdt/WxrxfyhlNDJOwBzBAJv1zYnKOfcytudgvA8wHCY4Oac2vBkuW5vV7VJLb4+3CRpGevT9tzZEp10UbnrLM/4kOoLEfE12Vm/4jrheEzcOsX+cVLdn5pNy8k5tmaC3nAJ48THzB8jFFhYIEVbgzGgWgvoP/o10XNtrNE1V+m4VLapwnN9zX/53f/1L4Od6Mq32pGVRp+P1NpxHXei2uBVs5zauWoSWnl1QFSK3q5LzvM4CXIpITxRTPhBxyy8XvrGj5v4IYDQ7MGlaMqJhS7n6kY4jrfivHyIMwJ3GZkrFdTm4gF/9jrtyBz1mKALSwU8sLwGFz6xtnRs277bvh1waGqX9p1o1EK4Q9AUAoRgpJA5AYnIqfsSb++nc2v58wKftejXdvA8e++ayyO3HxL1TH+iboXw7TXrjCoDlyYFCuPjgVhJTxbKFGrIRuktiqGcP867sLRzmmj3pc5JvHremTAM+2JOlFG9YsXWNWlM/26nhnw6kSogZMnYQS/8AgT/ibIL15mnNPEoHk/gkeVe7bCt3S76tTBxxbYaAUGdv4wu7sKYuiJqtEQNsQw1MtitQ8jRhTe0oRyUAvWA6nx/QHYRgH+Pz+mFKaEDUciSvfnRu2oAte1GGCOKMAgj3W6djLvMPnEFX008cQ2SU9z8JC5SrLnylwptZjvZMM8bKff+VOCo6LU7k7t5E+DKlIZt0MpRKhMQ8qGtHMoiAeAe9KAOxU0OlWd7CSdmYLrtZhE4FS5rhs3YJF9AJbMTkVt3MAcRVYlBN8k6U8QfJPwk+h8k3S+SDrfZJH5JOk3Ivgk2WyTi59cBWyOPvS33h5X87YMlfqPqvFgxsdtn59Q6W+9mbPDu1Byu4iGwTcGPDrrneuf+qjmpRZNirtnAmbHPqhOT1T1wm9AurXSCQSRIxtIRSEJdu+lHLm0bf3AjP1pq6bOrzmsCCTBdJTqZPVSr7l/WjxX2vJQ3X7DrHhAKYsTpWWVGBSAnNUueK8FGBjpABC96p3qw/BHMX0Ycb0kNryxEfMJtdHk5o4hRdjTXf9j9pRO52Mge9qZ0552/M+ekvrJej8mo/L1W2H79p7o5ZSkOsmDPaXTNPFgKSI5LUVAidtTl+jDreetveO3Wv7s36DfN7bgwZ7SNwl4QKkjJ0q/lKQ9pftQo9vTSE572lFrT3eb/JqAPp34KWZrUcrpdZoowXfHe6/YnKtpkTwsCSpV4loSWGshz+WtmK08CbkBitkQHHikqUdw4JHFbAgOPLKYDcGBRxazITjwyGI2BAceWcxGj9AYFWvQKiKHGJ09j4eKtT28KdnagEouGo8kglSRVDI958/QiRmbTui0hTzoZC+bThbuuvv7hAefAnN3bc/dPPAeNRouGyGJlymYvVHYDJubtzAB3lGgQ5cwXqmR4eRCkJ6bi8OWzruIeBVdrJ11VLRKqVBEQo8FL+Yf+Xz1K80Slu9yIUja5E149tcatVdPa1WRzRJadFHLVJAAnPzYur7KxH4KWKsFu+hA4h+pXEN8dxBhwCxHXmomTSVkmyPGpnQ9sSC1IjCgbUSC1Akiq1CJqr88PkQWQ3GA1vjlSNjvtOB1S/x6Z2VCwatUKzw9oJ747ciKJ+wwECNU8NygRo6/lTn5VqgJpZIkBcZLIe0WCW8pS3gRpl4KXMJidQXRkglfEMAuqnKJQgS5oAo4Io1KJonT/o4RE2vvIYbqPpN3y3QWUJ626ujjnwe/vK4il19eUZH0y/tNHnM6varpbo9mcBb2p2sL+w/w5iZtBYZzkwjeXNJNInhzSTeJ4M0l3SSCN5eMhTbvrd/gxNp5gdsuuFqrf6gaF4iFLh+5cbju9JchaUkR1+IOKA4xnCu0+siBRCfj5cG5HmTTpIm2a6eTDhusXfuqylzt2hOYVDI8t2u3c9wx55j8eejKy3+Mbp552BTata+ozNX8Nt04XCjUntOLFy82QLv2ybMHWgalxoUs9Iy8Mv6PU0km0a59Gqd2xpqCdgzSrv2Lol6Ufd0V4m0ql/sdnCKomXRjtWsfyqmcBFNQjsCY7dpnWeckaDZJAha++qt+ysfjVFpiY7drj+FUXk8jcUCZZLv2Iw5dUnu0nRWSHjx+u/uBxEwjt2uP5NRcgNE1B28qsXbtKdXMa6XWig+d5Wd7Ntl+MrWxubHatWMxBGu79gQt2dMhtjj1f6ldO70thpHbtT+rzNWu/Q9mSFsi7doFY/5st/b0Tf+dvef/VV0xaRPv7drp5GY8tCB/UpmrBfkd/WgT9WjX/mlZSo56W+XwTSPzJlb/q48N7+3a6TaCB6z+4MTqjGFtrrHbtR9mM2P/kfAXiYSf3k3IYCT8oipcJPy1q5QECX+3yS6aF+N+8duwdsDlw+e87vN42pxnGwk3TLyrcHGWt6piEBL+7EuP485erO43N/iQ3d5R6u1GJ+F350QFjBuTWTvod/CHPxL+cuOjtzmEXw3IObdqWHR/x54mQ8LvxKk6O+OozuAk/NcedcwNfh8aNG/QxczH/dN3GJmEH7MyrCzqwMoYjIT/kTR1xZUGft4TuyVEmNWtOt0ESPjdOcGpXcWAJPw7nlp0OHiwc8DWQ7uON6/950sToLOACDlxIgTmNBG3HWGL28TeDRv97HDVe+1t16zLS19SG+NYY4f4EpQK4NGZMZsFC84t8lMk8vz7CS4MgLhKmdg/FsRwsMu1MkYvLgd6h0XWt2WyHhQQ6lrbBwKhDRDfPIDvWnqYdBHgO5oZJul5sKpy/muBqwQW6KXTSKnPhu1r/LMtOo65W2kxtadtkXp30UIoumEsZggFaW/XVWHrYpcOxm6GfiGUDT59pbL+Khk6vtxwd2rOj7Nz/dc7BTb5u30mlUuxnC92I+KEFH69JGh/53F+/6lGD5a0I1OPQAm+slwplUdzcNs0/DTTIVtWwTerYURCu3VraGOVfABzrGolJaGM0ZzKGGIa4Y9An4yFR3C8UgPclyQa7p26eXYAS1awsohrLGzaITpWqZI2FjbroB6k0mC/oKPVh+0ddnUc0807883uTR3iKlK39CzhB0RpkhWI/pf5opJQVjynsqQmMXPgo/SKVqvkb3THJ6r6qTlm0PGZHmd6dz4aMGZT5S3dLc2eFmepXNylgydhyOFRz4sMXqim4vWL9YxSCUvOEW0lPpnuvfONW0CW75llgoNfxhp32QsAmEECcAMBADQtekWipCtjJ5loU/bHhr9TN/rldvnFtXXZ7qOMetgXApDIBUDX/tpA8+j/WD0OvTG3wepxGjlw1eN8ZEaWPNfj+LUMn/jcolPw+h6yfhdXnf/DBOpxGjhwZTdrOJhAUcHo0aMNUI8zvM3In3NnrgpettvnSoY476lJ1ONU4dSOtSloxyD1OIsc5z5XXF3qs31L7+9eiScqmUQ9TilO5Xw0TrxkQvU40ac77DwaUs8r2+ehTfXs0k9Nqh7n3ypcyrtv9GDXhOpxXHNXdX9+tZt/6pmv1bf7nqtj5HqcPzk1d8HomivRepwqbQ5sX64cEzjh2eoFLUtPmmAS9ThYDMFaj/NRG6ce+79QjxPQQDPn3pBqPnMGXmqeXSn5iZHrceIcuOpxujkYph6n4t3RMvX1U94rXw1xm77XfSnv9Tj0tTkPNSYDHbhqTCQOJVWPcy5tYTdPj82hG1+2enjuxrVzvNfj0G0ED1h148Qq1LBxqLHrcY6zmbFBB+SN5GHrRDv3hyv+edCDmq+y7pQIz076qyQJscwTpnqkL+r4ytUJ8PSYNpuT7I6fMhVKIGdef/gJaKqc3QeOXskcFprd6qpPXFvHM6zvx8zkFBQyxp9lFDBh4QWPYiFGJf3ck46jUvs0euOk+mJBM0jM5SCC/2jnP2Pri3c0tT9hGyVTAIXJpIHArg8hH4epFVflCTZVOuSl+dq3vSBa3uL+gU0nk3xpLBhoBVbErTtCZwIrXEQ5ZEU4A8bhK76YPOiH5IvA5KFrdFCKRUueICIbTrbIPehNoH6SDfUf47asquRh5rOjp+PCzITQ1YWevrQqeeR1PrFJP73H04nNIs4bLo2ct6Nr5BSbRjJmpiU+D/rkP2+Qg3rh5Ma9qHuifrB4RsOMyFiXl/gNQjXw+ni/y0Q1DHmxXm2xSoUU0jHCksAY7O+wcFgj6a/WKQahH5EsF6KMHiiTam9CvTpzOxe/risNKACzZQVIm+6DKOqDpOoOFRD0SxAiuI5D0C/Bf3T6pbBxtztGnXjmNfbMtlSL1+FX6fRLY7otH3kzoWdA+sGMBY/Sp3Yk5eRh1CLTM9E/GEHPxKZpa8geQKgR3SDgF9cty0vl+c9pmzlgzYTjLYqjLf7p8CGHENRrBVTIcxeEPA0rGKXxpDXs79hHDb5DfP98g5H/O2ZqUjzbRg5HsESx6creL3+2gYBIk6hCB67mS4Q/3/1+WrQs5tahRFf7DE6VmYvwJyG4jglBSShNyKk0B8MqjTTBZiEi3KDCW0Zq5z2mG3KOsgV7tXyJ1tfyeLVMhVXdgY+gGEykrm4OGXpmtjxHvNVm44/h//Ryo+vKPDRRI+mn0BJYCGjJLvipnkx35Vko11cR3RWXUm04lVq6AoPri7OBAjHYZTg/CxI8Ok0K50A3g5aO2aYDu8r3EE/1IOzSQW9Ep3uvJtgQJ1z6aTaX3un+nXBzxXn/Zbv3lx65o+Z4aq1sVKw8RiOEfWWpbh36K7ae1s7hMTFwKSJRKIj2q3LYOA+Sd3sgAaY3HGR7BUS8pOu2FBgZ1bTEFIxtqcZiwZdit6i2xbrvgrmphi+M/KKDlrx/8mfcr+IZ/1Tu1D97C5U5xYzlKxYaEtKbrhdzjsElvCPE6qAXYo6lAml5O/2qxnANKrFRgcSlXd8qZeznx4dtiC33rKn12fOMLeUY3YAp5nyC39yM85t/MWyDaZbtZGwE6pFjs4Y8Q1zUU/vXVa6mGG/lN6HsnX+fK7pS96AwliJDwf+qPBf8j4wDP6NCrLiNuvEZAaudwTdBaoTecbeIlqK4u/nuBUwBw8H0dccmBOFgzrA5GL35fNy02it5Pp99r1RmbYZdDNiWNzl86Lw6wgJ8PvbdLLw7HdsSuLzCfIexaxT3C/D5HEnaePN0mwuBGfIbz9KjA5sW4PM5cn/AzF6LVMG7F763rDW0+e0CfD4f7q1ZtVM1yGtukG1Mlb72xwvw+SA6/5LchojOv2SjXkTnXwtCNN6yddDuES5hGaP2p9xv/8QaiCwJ0Yvdf6Yk+P4RtHVKyC53txajgciKEN2YNS9z56tIr4WrVszvOazlr0BkTYgs6tzrduRaj+Adw2ZpElN2iYDIhhC1G2XTWLr3N9/UC2dkDTY92ANEtoTocamINd8iHwdtq3tt/qAtlb2BqDyJxq+WXQaED/Za+KNn18i/tswBIjtC5H60q8PH8Vd8lt++1nXmbok/EFUgRKWGmYeWFgp8l+bVyXs049gKIKpIiEq39o85+o+n174/qtmOHdp4PBDZE6Idw2zaZJ2/673taPiKpQ+b9wWiSoRolEfYvsjfvgVmp95+17nCnllAVJkQJQVVl5facTz4wLWuj+0+/WUDRFUErDRQDoRo26Y/GwtU4IGPdzpPfhpzHYiqEqIBQ5+VTn6TFzj97rpPQ1XPdgGRIyEanej0+8KnYwM2lorWZH5O9gQiJ0I0Y8wRm07vr4YvvbSwzPT6jYYDUTVC5Lv9nMDsZbvwCZ5vnA9fPVgHiJwJkV/a8xsTv24MGuXlq259cDHUcnVC1PbavDyXR99Cd4iXJQeVKQd5pVwIUdU6G+6LSqn9dvipKu2xd4kGIldCVL/+njeLNv0jmvPyydzfJpaXA1ENQtQh9bIyya+e17bhz0bd6j4fEoQKCVGt0dt7fv7pGH7g99sfJ7kHLWQQVdUUsBBVtXm8YnDzNWu8dk9bf33Zng8ZPBBVnWUzUVVidm9aeOyUePGGvKFnqg+jfpa5eEiCQilFnL5gC4DrEXcIyfOyWJs6dRwIiIERIjoA6njcgm6gkK/GXFUTAl0XEm5iwemqkDYYlTmMAOHxtqr6NdDMP42Kvwi6/17F6LAzbToGrz357Ppc/4lTeTyMynOCEDb4OVmVrR7aEaxK91fVKyZuESkDQwOre5LKYIsjpVqOHT8B7ydXYEsncpwIJSp44loZJ49Gonj6SbxTG8v5QTMDT2yYP6L8XGr5uPZzmOXj+SK+4wYI1zZOuNZVNYlIjnnUUc9Izp2YaNJ8dWliJRphnGSgTAgCEG0La/Y6c0G98dcmdBjks+binO2XHnfpQas0JB6LqDQkJXxrr4I7Mdh9kcX/HthgZ1Sb6wlcTfJQFFnwJ6MDiQRrYVJwjZYVDgRPsthjHRTQi7pSLNIRLB7A2sYJFhjqhP85x+Z//mNuKBJzAz1CNxhzg4sjF3PDd/18pY7MDZqXLWZPenjDa+3t/hd+ez59Co/Okm6BeGBucHbkOuhe0dEgzA21Iu13ZTVYJVp056/WZg9aLzM6c4M5JyrfjeMTdagyLWyDiT/mBo9zDy5ezzgjnqdssKr0kZUbTYa54W1VLtU9MdVwhmfmhpFL4+++W9jXf/WqDr2mPrl+1sjMDZiVYT16D6yMwZgbZja+Xcba83hoVtOKF71m1qUWRRuHucGcE5zvVQ3I3PCzS+7PHt+3+c4NWDbAcuk/VApH4zE3YHOaFaEn2rjtPFvcdmqRJOR7m6r+ozNdzZ/WTtlPjUZDQIwmjPIN0X3jwEfbDBd2EyAjYbBCjAG/grgrWQiwVWlwjgJgbInxCmMvInQbrlPgRN+/RL83M4omJXosAyvWINriMkIlL6CB1676bStgL1AAA/QBhRcJs3z7eXgtcw106nAl+AotmwTvRhxQwC4XFinR7R8PPW/tahDVV4xBKGwkFpStoVfdsSMGEDku3KRyFRi+QI52tuqmc8edvPQmbMqsEcp/RzboQJ2WvuTNzGmZLyoMsEBFwJM+eS2CpytOBXUbeaYKD4B9deUCDIwoowRRuM+Af9NcwPbDpMOy4NClNaZLLp9zbMGDjI4fvHJa1n32T6JdRXuMyAQoQzwkQSXTlj1jQa23T5Tbbw2KFwDTVHvszc88396d/PbXvzXz88iWbXlQ7T+cqr1lJNWi4uMZv+oVatmEFLDnSGW2n7puTZtpvwZla55mj+gn9KIn/BCHqvCrvLeV9iBsUg6qqCTHA5tihGO8wOYYfa5WvTW41Vav7B69Had03Udtq1QZFr9q4NYnPMksg7X1Mj06xjcRKeMA5HgJLvYYaf5jsMVhfqN4WFSqm0ekpe0Kf2GGOpB/pcemgsYJgP7YB9FAvi8Y/DFOxa1P8Q4pAArcboBtkGC0oYwXupHNzwF6OAES/B9u09RwN1qZJGNhL1nTQ1m+ljAzdMua5n9IxGOoh9jLdcWKDpg2hrhemI3xWXA+YcMRK68tjlunD/xtcQ0ediZUEGYzH0TL9PQGGMzF3RKuW0D92t2taGW8WhadiA0PrCYKXaa35uGtmV/8QxaN6jr7+YPxi6gnMvKfy1z+UoQlwQaDwdYTBdsNdww2wiRcZDMJZ8rXftu0pTJ0/JuXwR5XRoop3802UobVMArDEhUKhC1gC5jdyftgISw2ZuXxgyUKuRQf5ElyTaxQCZYpKt0tAT1Lz/GeDC1QxXpEye2d2JJvGQDdesWe+w6BWB0e3HWVqbFCbAwxJAAX1p2Z+SKvrO/Wjh367Dp3cic1fMYexAyf8cuFTWd6VQIPIUNbiNxYVMgAm1F5OrGGzzoi56xFTkUZanBoIeF7s6HBxHmfx4euu73bZfA6iS31mDsxQNApHaqU94JoN2wkcaBV3ckoVewWnZMTZAVxqF2gZscjGIS0MoUH/Bu1h39AHxjk9pepaCVx8Ke4htsBc5BQseARYFGdjKsaqWW6YyrOJCmmXvt6ELPglTfqQGYTbBbotRHmGIZhC2MFvH6XGPpSJBTO8sHVrmc8982de/v+rKjNrWiJCfitEIkJ7HJJQFGPE4rqWkd1ic1RmUzPP7q15Kf9cQm0/PvuyNXy770jCfllk4ecXhvHD+RW/T9crbspPnj+9jBxjXc5r3mAXF6NC3JJNRLyK7xVZdqRkBugKhNRRElWZSKKKMmqTEQRJVmViSiiJKsyEUWUZFUmooiSrMpEFFGSVZmDfIKH9anVKWjGrsEXUrzzTjNK3uDgRY4+evklDyVvV9n0Xyv4qPutzVZ+a8yk/a49qUDVfyV8s1+kUKphuIglcJhBeTmW2VbLTw7bHcfC/sD4A7AlJVxnEmUIuqX36SWnhb4iAxzUH+lBLZMI7doN5IkRsCLv4qjX3rUznm3DmDSUUDUAD/ALe13Q5dvjUyza2/hOSHi9z325x7ji5NpKdhv7IsBK7Ui43VcMckKwrJYyE/5cWFXRlkQUxAqJ0vwydx4G74jyXvJ1xIut5l9r8VgWMapL2PuTmUP8spSTAib6JB/mAaUunCj5OTI3H7jitMYR5LzCJhuGGTnl4FKPrD1jT5XEttl8xu33H2Gj1mT8UaPX5AFGzOd6NiYGETIhBw9Py/XM5zbUZg8hRNEF+D6hB6LYJiQ4g73u3K4R+EycFRjze8iFqoEmkLWEIPXhBKmLo3553bq+cvyba7eq8ocMllhkN1DRN34mnrhfx3fcL23XNzxmMYmaRSSfy8wiaiUlgU4wJzre2lj0DzbH+KxrWIhZk8+iuSvP+i0PD+zO3IhnekIzFnBrUvO52lK3JKVelPv0Axa65gZ0hO0uMExHIWxnURtQAgDbRv1cnW5pWqccv1NXhRkh8wbfTWmyaiQ1OWWN5WNZ3DpFWJgVp5u4YlpxAbDThyFYEagxBhkgdunn68pjYMnATGOH6pXzZOmr5bUCNqY6XXreffpWqiUSg3vRQBUQGTgkgDBt5IRplZ7OrvAUGj3XbLQUGrQ02BiBKTQhI3b0wKAh7NA1Njskqn+2SZsxd0Iy/Ja/1rRxcqHvQ8dJEoT4Pg1iv5wtNK+P30dme7BzKRJhvCwJXpKp5NGEg9TJLNEPd3G8IWqnvIBY1ywZpOJ0AbieR8XkqQD1Iy56GaryWBoK39wFr4P8lqunTJ3RfNiegO3iMrvvJEf+Qg2RsAcwQyT8cmFzjn7OrbjZLQDPPQiPDWrOrQVLlusuelWT2OLvw0WSfrjUwx5tdnf2Wv7VfLP1T1EwNfuH38/M/hHXC8PHcm3nSy+tA0J2NKx9VhK01oEHfM5x4gOGjzEqDCywwo3BOBDtBfQf/bqo2XaWqPrLNFxKe/DlVd9SJ7aGTG0Z1T7r+K2WVKXh9zOVRlznvbgWaGU3p1Y2mZRWXh0gtaKX+7LDDF6CTEoYX6RiRk9pFTnk6J3QnPseT2taNaVuypQLxe5nKoa4zrdivDwIcwK3GRnr1dQmYsFlF/0WZM5aDLCFhUJeGB53S5V+vfPjbv8D3qUa141OoW7HmovwByAohQhBSSByhBORbS6kX7/O5tdzZgW/69GubeD4d981FkduvqXqGP9E3Yth2mtXGFQHLkyKlUfHgrASni2UqNWQDVJbFUO4f90WH/Rz2qj3ZY5J/LoeGfCZLkSdKKP6xQus6sYw/bqeGfDqRKiBkydhBL/wCBP+Juj+L5Wm+ndodjZ4q6TnhMb7T0qog48tsNEKDOz8YXZ3OsTQE1WjIWyIYaiXxWofRowovKUJ5aAWrAdS4/sDsI0C/H9+TClMCRuORJTuz43aUQWuazHAHFGAQR7rMdrJfMPkE1f00cQT2yQ9zcFD5qqfC1fmqrsW8z/ZMA/b6Xf+lOCoKLW7Uzv506CKVMbtUAoRKtOQsiHtHAriAeCeNOBOBY1OVSc7SWem4HotJhE4Va7rxg1YZK+DJbNTURs3MEcxxxXBN0n6EwTfJPwkOt8knS+SzjdZZD5J+o0IPkk22+TiJ1cBm6MP/a0kIMvzVD9FQG61hv6hknZpVPpbb+bs8C6U3G7Ahb/e/1bK02tmqXnz2wzq0by4eyZgdqyF6vREVS/8BqRLXU8giBzZQCoKSfDpnts2VLicK06/ntw5YfA/kUUgCaajFDVm9ZZTT2RhWYL4/9fed4A1kbz/R+UUROwiiiVYQWkWLNgSktCLgl1PjRAgGggm4RDLiR0LdhSxYsXeez17O8/ezga2s+t5nuVO/c9sCezu7JKYJcn9/l+ex+eRHXaz+bwz7/vOzGc+7+fYwHkNeEBpDidKk+swJAA52S54rQWYGBkAEJ31To1h+KOYMYy4XhwL3liP+YhaaHL1wJAi/Omt/5g/pcv5mMmfduL0p27/86ekfVqNPbK3xM8h0i17j37o/qy7nAd/Spdp4sFTdOD0FC2K3Z9e+Xlqm6MDEkN2VW/Z9tCDO1E8+FP6IgEPKLlxolS3OP0pPYZa3J924PSnbnp/+rvVzwnow4kfMptPiRpvMyRJ0p3vRfGbr2RE8jAl+Mo5JfhbPyW4zRuZrTwJuRnIbAgNPD2ZjamBR5LZEBp4JJkNoYFHktkQGngkmQ2hgUeS2egZGoOxBr0isovR1fN4YKzd4c3I9mY08vfpSCJEFUkj0/f8GTaxYbMJXbaQB5vcZbNJ9u77vSY+/Bi0d/eOvVsG51HP+f3QWZ6oUDFro7A5NlexMAneUahClzBRrVPg4kJQnptLw5auu4h4FUO8nX1UtEatUkXCiAUvFhz5fNOJ5gmXDwvLm/D6YNie7gtkqVKHoWye0LabVqGBAuDkxzaUqpMHqiBXC1bRgcI/MUod8d1BhgF3OfLTVtFMQpY5YixKN5IJlLWAA20rEaRNlJQNk2vilImhilhKALTHL0fCeqeFr9vh17uqkwpfpXrhxWGNZGvia52sgIHYWQPPDeqU+FuVId8KNaA08pSgxBgou0XCW8IOXoRbL4UuYbm6iijJhE8IYBVVpVwlgVpQhQKRTqOQJ+h/x4SJ9fcQXfWe1YdlugooT0t19P7PQ1zOrMUVlzNqkXH5vtVjTpdXtd7l0SmcxP6xemJ/Hm9h0kFgvjCJ0M0lwyRCN5cMkwjdXDJMInRzyVzo16wvo5ef/lE0IeHln/8u8x9VKBfq/PhtxSUZZf3Hbpxwok+Xh8mM4Aq9PrIj0cV4eQiu+WyWtNJy7XTRYbOVa59el6tce5+6xV2u/axuV1humWjZiuA7+4Lm/EKdT1mmXHtGXa7it2PrWkHN6Tlz5pihXPugU5lN+v1aOWDL+tWb03p+yLKKcu2pnNZRW4N1zFKu/cyr30rOq+0syvj6S7L8QA2qtomlyrUrOI3TxxqMI7BkufYmuS/nRO+RBh/qMse2RuiBa1ZVrr0Lp/ECLGM86yzX3mnvH99yAhcHLbFTNSy14PUPFi7X3oHTci0sbjl4U7GVa19c3jdIeGhFUO7jbWPKvOr4j1WUa8dyCNZy7cAREnnqA7Y89b9Urp1eFsPC5dqv1eUq136YmdIWS7l2x6itNkp3t4B1H/IWXfjWbxjv5drp4mY8lCC/UperBPkZ42QTjSjXrgs9Nn5Nyl7Jtujl3eSj1lYzfQjTsKL7CB6wOsyJ1U7z+lxLl2t/yObG/ifC/10i/PRqQmYT4fcUconwlxcWhwj/jr13pt37PEKac32/f99zrcrweNqcZx8JF0zchVya5fWEZhHhbzE5rOPBHVUjVvnMHTFiYnmpxUX4nThRAf3GauYOxh384U+Ef67mceUyO9oETB1QO1lXoxpVDNOSIvw2nKb7bJnJg9lF+Ct11NWw26+TrO4//d2Mbw9OWliEH/MyrCrqwMuYTYT/zrJFg22rLQ46cLrryvanX/awAhF+J05wygvNKMI/613z+allO4QtbBbSsO7ov0dbgZwFRMiGE6HP+unnI7a8TSZu0vRbhyvi3Lt11lxa/JrKILPHDvElqVUgojNzNlsWnH0KtkiUBfcTWhgAcY06OS4e5HCwyrU61igtB3qFRda3ZaoeFGo0lNsHEqF5EN98gG8uPU26APBNYKZJRh6sqlrwWuAqgQVabt7dt1XuyZzQdPnZRgsWLVhteu0uWgpFd4wmplBQ9jZTyFbFLgv03SnGpVDl8OEbo4jTKND55YWZ9e847H8qnjW3lniq+6HFtBNS2I2IE1L49eKQ/R3N+f1TLJ4s6XumEYkSfGWlOkYZzaFt03v952/xrSLEmZtOPzj0PrQCta+SD2D2VX1LcRgjgdMY0ZYxBqM4tjE7Fp4hiWodCF/yaLh26urdAUxZwcwiwV3YrEN0vFoT4y5s3kE7RKPDfkFnq2UOJ8S4yz9J1/dfvLOyTx51S94OfkCULlWFqH9Z0FQcxurFaawIqxg58FFGZavVCha6E5M1A7UcI+i3rEqHHNXVAlfWHTTm0r6026ZMlU2dOngTjhwe9bzA0IVqJls30cgslfDkHNnWeZHio6bLlpB9NXzC7j3Zvduy014AwHASgBsIAKBrMSoTJUMZu8hEpQcnQh2yu4fMqVN1R0X5w88WPewLARjABUD3SCGZaD7+j/Fx6IW5zcbHcXTh4uPkMzNLnvk4P7wRu/YWZgVlNvll/Z17zj9aAR+nqgvX7mZZFysgFQwbNswMfJz7i0fGfUlJEM1b1apf1WWvHlsFH0fAaZ2/LROSLcDHGX3MRRLfor7/vsqTfq3p/TzAKvg4L4Rcxsm3BuMILMnHGRuond934enQBYcazbk39PRGq+Lj3OA03nmLJ7tWxMdxmDeyjueR68FTSj1M901Y/NLCfJxjnJbba3HLFSsfZ+t2cZ1Fi7witm/rfT/zanCiVfBxsByClY+Tr89Tn/xf4ON0SLukTvFvJNo+8vnoO73nnbQwH6enCxcfx8/FPHycdm6p70okXg9Li+nW8p8OK1bxzsehz8154Jh0d+HimIS6FBcf51SfN5fHu5+SZoV6PLSvdzWBdz4O3UfwgJUfJ1ZtzDtLsDQf5w82NzbkkLKpMnytZNfBCNWTh31eU3dKuiTDs5MBGnlSPPOEqRHbFw2kSm0SPD2m381J9cBPmQrlUDMvDn4CsufVG7Oj76dvThGHet39MMkjOJv1/Zg7OYUbGf3PLgq4sIjCR7EQvZJ+7snAXql/Gr1wUmOZwBmewneUwH+0858JjWWqmrVPOkQpVMBgipgg4NeHko/DzIqb8imbKR3zM6SVfX+T5Pg8OLTpVAqVA1LCD23ASrh3R9hMUBZvohyyIoIB4/AVX0oe9EPy36HkYWh2UILFSt4gI4snS+QeFhOoP2ND/ev4rSuqeNr47ezrlL0qKWxlkacvyxY/8gaf2KSf3uPpxOZ3jhsui+ypSbfIczaLLJ2Zkfwi+GPA3CGO2uzJ7tQVq9L+kDyjY2ZkrNNL/AahFkR9vN5lshamvFittni1KgbKMUJKYCz2d1g6rJPHaQ3KQehHJEuHqqMHK2L0N6Fenbmci183VAYUgOniDGXT/RCkPiiqXsIZIb8EIYLzOIT8EvxHl18KH3+3Y9TJ56JxZ7en2b6NuEKXXxrbI2fUraS+gVmHl85/nDW1I9lOHkb9bnkm+gcj5JnYLG0P1QMIM6Kr4OTUnVEy5YZko2v8+z13oxuaYi3+5fChhhC0a0VUynMfpDzVnC1SeNIe1nfsrwXfITGuwGEU/I65muHevpEjESpRbLaq7F8w2kBCpEvWoBPXTe5l4xbcXOu3b+Sti9USKgk5TVZGgj8JoXVMNBSH0ew5jVbCvEYjXbBNqAR3qPCWUfpxj9mGHKNsyV49KVH6WpmoVWgw1h34CIrDRNqq+4OPpUuvGRsybvO2IStyBp2l26pMWLJOPlClF7AQ0Da74Kd6M8OVd9FaX98XrriM+qEml1Ff1mRofXEWUCA6uwLXZ0GCR5dJ4ezoNtDTMct0YFf57uJpnoRfOixGVLoXeWFdnAjpL9hCepcH9yLKqM4HLNlzsOSonS5UmcKyUfHKWJ0Q1pWlhnUYr9hqWjtHxMbCqYhcpSLKryph4Two3u2JBJhecJDtFRD5kqHLUqBn/KAXpmAsS7nLBI9MLlHtgFXfBWNTC18Yze88OezZssyTouzhvzlGeYZTC6LasHzFIlNCetF1E8cYnMKXglgdFiHGWBpo/cQsSs3JGsMtqMZ6Bbps/OnlLYbN/lOyfcXChsuVv8gZS8qxhgFj4niC3/x1Da5v/si8BaZZlpOxHmjEHps91Bnikp6aX99x9PmX6f5zxr6qfSqjRTi1X8K7zQX/75zwX7QM/AyGmKmFuvERAdnO4JsgLUKvuPudnsLU1XyPQq6AEWAGeGADgggwL9kCjNF6Pq566xW/nk+1C15uS367Jt5w62SDw68yTxbS82nz9/wBlcUDxQtVnyQfor2fFtLz8f318qUDtZaKp8/u9fHD8V1XC+n5aO5fWRRzZJV0b6lb5+bmTf+hkJ7P4S+21/P2Hgg8FP1HWNjN+NeF9HwQlX9JbUNE5V+yUC+i8q8t0bR2ecOb5dpHBky2T9joWdXxD9BkRzS1fT912IOnR8Rjex/7fMNmYSnQVJZomtH5icvlKc+Dt/YK//K207vjoMmeaKoT3Gj7o9lf/TPaN9F+WenwGDSVI5ruZI2rvLhNp4Cc4EHHatUSaECTAwlUdLtR7Vut8h+7eciPV39dMQQ0lSeahPkrjiydVFa2YXtnZfOd0lTQVIFomiyqV9atdV3/nVuvPSnhnuoDmioSTZ0zjxyt8c/twC1dfEf3aDGyLmiqRDQdcPiYdUQxSTR1uM2pCs77oJJSZaIpLv7RIGFgxaC0z48rBNp1jwNNVYim3Mp5fzdtPFmUVjMvb8LpAPjAqkTTuiyfRUt73Azd9VOO//aHmmGgqZqAVQbKkWj6dMJxxOnDa6TLs2Y0zPQ90go0VSea5M/bdnX3DfHPqnenyqV5YRdAkxPR9C1p7DEXT1/pBoldpf0N4kSgqQbR5F7F72RHySq/qQ62Zb78/Pg5aKpJNJ2fVHnHrarRflOWJ/3aaU7z7qDJmWgq1bR1hODWyLBt3qVaVp6vgXqOtYimzNzP55r4lgo52HbYpN5XtiwCTbXJDvDL7K+nmjuFb3mw+06t684hoKkO0ZRxKqRDxQfr/KcvCppcteWLw6CpLtHU5W25xiEuGtF0ryORzd5JaoMmIdHUatvutXZRQUGLVh0vfTSvjC1DqMpFwCJU1a7WlWqPlzmErsxyvv6o94FohNswVqjqFZuLqha7Z1P28dOyhevzh52tNWIpdeoqG5qkUscgTl+wJcCNiDuE5HlZrEydNgEkxMAJERUADTxuQXdQyFdjzqqJBkMnEpBbVB/KBqN2DjuD9PhZPeMKaBacRsVfBPndBtyZ3l738qfwdcdruMyUBOfweBiV5w1CWODnaz02PrQTmJX+Vc+onNgnUgG6BsZ7ilHAEkdqrRI7fgLeT6nCpk5kPxHKNfDEtTpBGY1W6N7gVGpITfuIvdfKLeq+f0I3Kn1c/zlM+nhBE995A4TrGSdc9+tZRSbHPOpoZCbnQQy0mAJz6eLlOmGCfLBCCBIQfQlrdp7514ODf6pVK0IyR3D5eNcOKzrSmIbEYxFMQ7KFb+tV9CA6uxRJ/vfEOjuDbW4kcC7koSiS8KegA4kES1O9+5qoe+OkM6eKe7wS+Hcw/QgWD2A94wQLdHUi/rxmiz//U274LuUGeoZuNuWGqPpcyg0t6heHcoPH9uNJzV+mB65tUrX7qJnzVvMYLOkeiAflhi71uQ66B9Q3i3LDxFGzkjdF7AqY2yat+76ut89bXLmhAycqoN9YKcu0qAUm/pQbTq/Vldj6rqPf7EEbr5bbvv+q1Sg3uHGarq5lTGd25YZnVWs8Kz/pbliu/4mnJyvOcrWwcgPmZViP3gMvYzblBo3vT60nVEz1n6RctfyXh9VpM0iLKDd04ASnRX0zKjck7559I0h9JnjM2qObzvfofd9KlBvcOBECY5rI296w5W2nF8hDv7StHjBmVZ0yz+oPP0jNRkNBjiaMkoYavnDgpy+GC6sJkJkwmCHGgl9B3pUqBNhqdLhGAXC2RH+FuReRuo00TPKKtn6Jfm9mFk22GDENDGhClMVlpEoiYIHGTYxbVsBeoBAGyG/XWhIdPOPLv9Kx56tf+fevlrRMKQrejTiggF0uKlOi+z8eat7KmhDsK0YnFDaVCdo1MYp37IQBRPYL1xilBnRf0I4Otp0vR5Y6cLW0KH3PEv8uuUpqxU87KXkzc1gWNBUF2KCaG9vUue8sXe0olDfpc13JA2DNOAEDPcoiSRQeM+DftBCw/TDlsGw5bGmP2ZLDq049duzErIvDpVvjrvU/on2ZXRkTMgHGkA1N0ij0tGcsqRX7Rbn2dDMtAaaXxezcutKAk38Epo9Ndzt/f3JPHkxbm9O0VSxkWlR+PKOTUalWudBC/hzNzn02tezAiPf+m+bVezf7Qbe69A0/xKEq/CrvZaU9CZ+0GUUq2eyJDTEiML5lC4x+V6rf+an1NtGGPv2cpnQ/QC2rVBWSX3Vw6ROeZFZAbr3CiIrxXhJ1AoAcp+Bij4kpeAw2OSwoFA9JpQZFRPq2XdEvzDAH8q+MWFRY2wCA/ocfooD8AND5FzYwlZ8iDi0EClxugGWQYLahThS6ksXPAXq4ABL8H+7TtHA1Wp2iYFEvGXjb6+ajzLXSbd297AYpdyuoPqY7Rjpg+hjielE+5kfJgAUe+Q1Fc3U5XScM6LGTh5WJXAizjR+iZHqWGwazqUvCDQuZX7+6Fa1O1Cqik7HugXGikFgmDtRdrDd4qv+qj0133Xz+1Yl6IqPguczpL6WxONRgMNj6omC74YHBRriEP9lcwtny9d81a6UOm/Dn6xDPy6NklO/mEKnAOIzC8GSVCuEL2BJmD/I+SITF+qwy8Se5ShmDd/IUpS5eqAbTFI3hnoC+S8/xngwrUJuNyJI1Ddg235YCdPuaPPYdgzAeHlx1VWgxIjaGGBKA/DsjNz6vdEuc1uf6im+jGx6lps/Yg5jpM365qOFMZyXwkDIkQeTGoVIGWIwqtgFr+mwgcs565DSUrga7FhK+RWfHDPlg8ygwd3BtRWKXWuupx9yJDoLe0qG28k6IdsV6EgdakQ0swmK37ZqapCiMQ/1CnB3PEJDSKlSe8G+0ngGB/WGSG6fQ0Chx8MdUx+2IBUhoWPAIMKlOxU2NtDI9MJkySEy06wBPYhS8EaMOZHpho8CohTCncAxbmCvg/F2i68cgoSg1usn54acOBaw9UHFa0MxRNH+BfSvExgR2uTig6MsJRaQ+UL1jC1RWU/OP7i35KX9cDCX/WjTgKvnXVA/5X1YPOZ0bxw/kwo7/hFVqPlOa4bjJvfy+yGU8QL6kIRfk8xqSkL/njZVZgYTcDKxMBImSZGUiSJQkKxNBoiRZmQgSJcnKRJAoSVYmgkRJsjIRJEqSlfnRpuq7NiNOBqzoX72EvPOTXxmUN9h50bUZafRLHihvf7PZv17IMY87W8r6r7aJGXjtaUWq/avgi/0SlVoL00VsA4eZlJdmGW31/JWw3HE8rA+MPwCbUsJ5JkFDMGx7n045LfIVGeCg/sgIaZl1cH/gBvLECJiRTzFum98Z323DlDTU0DQAD/ALOy+oSZ9Xv/9+t1LgpoVDv9Wc8Lu/KXttxbuMfQFgtaY+EXbfMMQJwbQ6m7nhz4VVNT0lojBW6CM1ru6bHn5sGDyz1+H8ms+1Oh5pEaO7hb8/tWqo/xr1pMB0v9QjPKA0hROlEfWZiw9ceZp7Z3JcYYMNw4wccnCqR3LP2LdK/PtEryjzT6Bsoa3P5DGK0akW3M/1dic6EXJDDh6eXmLkfm4T/e4hhCi6kN4njEAU34ReCfipScSpkhGy9TcTJzU+8/K0FexaQpAyOUGaYuS+bkOpEv/m+qWqgi6DbSyyOyinIUpb+waPQhdUdPonZ+CHmtRdRPK5zF1EfUtxoDOaE50U/Z7uB7bA+Lx7eKiN1ydJ5vJz/jkRQb2ZC/HMSGjDAq4LdT9XT3VLURsluU8/YGHo3oCBsN0HjukzhO0cagFKAGB7aFyoM2yb9kXZmnvTs5cE71hTLuXx62etqYud2H4sS1inNBblxekuzkQvLgB++iMEqzOqj0EFiFfGxbryGFgKMNLYodox4ty1J6kLAtdOSNj+h88HatE/Oxm4Fw1UoSYzpwQQpoecMN0yMtgVvYVG32u22BYa9DRYH4FbaEJG7uiJQUP4oY9sfkjS+JxX27H3Qpf657zVta1Rm74OnSBPEuLrNIj1crbUvDF+H7nbg51LkQsTFSnwkkKjjCYCpGEsEtrhLo43RK2UF2o2dJcMdJsabgDX86icPA2g/snVKEdVHtuGwhd3wesgv2Wz/c98VXYTAja9qzs0aOvVxtQUCXsAM0XCLxc15ujn3Ezd3QLwVIfwlEONuVwwZXFwM4pN4oC/D5dIenhq/7Zfu3QIXve055jWL25QJynE12Xu/hHXizzY3vbLCbfU2qEbN0W//Hd8tR484FOKEx/QfSzBMLDFiBs/4UC0F9B/jKui5tBVrolT6LiMdqrkodEtf+ktnn1i+LeG73+hHq0rjd/PNBpxnXdyLbDKa1cuqzyyKqu8OURaxajwVQFzeEmKGML5omsuDIkKUvgPCBodLp7fo+aCO1TDhGH3Mw1DXOfbMCJPwp3AZUbGfDXNSyawdTNuQuasxwCbWKiUReExr1+Xf6ShHcKXCZfXWvb3uAE0SSH8AQhJIaKhOBD55MqFyDNXMq5/Yovrm2eF/NWnnW/QhL++6GyP3npHtTH+iYaTYdrrZxjUAC5MiVdGx4O0Ep4tlGu1UA1Sz4ohwr9hkw/6OW3U+zL7JH7diB3wk64ET5TBfhGBWd0eZlw3cge8FpFq4OJJmMAvPMKEvwnyi/89511K/r9fgnPnP3TN+9CcSp4rw5bY6BvMHPzh7u5xiKE3iqMhbIJhaJTHah9O9Ci8pAnloBbkA2nx9QFYRgH+vyCnFA4PH4mWeaHFc4tWVIHzWgwwJxRgUMd6j34wf7b6jSt6b+JJbZK+zcHDzlWWK9fO1Qw95v+wYR6+y//8acExSVrvGu2Uz4IrURW3wyhCqExHyoa0cxjIB0B40oE7VTQ5VcP0JmnKFFyvxRQCp7YbunADJtn3YYSeilq4gXsUZ9wQepNkPEHoTcJPoutN0vUi6XqT360nSb8RoSfJ5ptq+ys1wOcYI3+7Vvbr+dGbnwbOern1H822mNlU+Vsxc3SIixS3m3E6qmLJR0sCN946IWs+doap5yYFYHTcheb0RrEXeoLWK24nEUKObCB9j0hwcvoYUf6GuuJ5h2bNGW67ptV3iATTUdr1rvryP8Y/8z+0ZveHciuPmko4gCid4UTpsBtDApCT7YLXWoCJkSEqyjTWOzWG4Y9ixjDienEseGM95iNqocnVA0OK8Kf//sf8KV3Ox0z+NJnTn/b/nz8l7TO/jyLygc160Yrb/V+d67pkBw/+lC7TxIOn0HJ6CmWx+9MD2x/77q3ZPXh2aP6GtKWDXvDgT+mLBDyg1J8TpW7F6U/pMdTi/lTL6U/76/3pF6ufE9CHEz9kNp8SNd5mSJKkO9+L4jdfyYjkYUrQ0o1rSuCuh/wrb2S28iTkZiCzITTwSFeP0MAjyWwIDTySzIbQwCPJbAgNPJLMhtDAI8ls9AyNwViDXhHZxejqeTww1r7xZmR7Mxr5+3QkEaKKpJHpe/4Mm9iw2YQuW8iDTaBBkDbJ3n2/18SHH4P27t6xd8vgPOo5vx86yxMVKmZtFDbH5ioWJsE7ClXoEiaqdQpcXAjKc3Np2NJ1FxGvYoi3s4+K1qhVqkgYseDFgiOfbzrRPOFC5/mZVfuMDMgsOaFq0CzX02ye0LabVqGBAuDkxzaUqpMHqiBXC1bRgcI/MUod8d1BhgF3OfLTVtFMQpY5YixKN5IJFjYGDrStRJA2UVI2TK6JUyaGKmIpAdAevxwJ650Wvm6HX++qTip8leqFuwc3krVY0PhkBQzEzhp4blCnxN+qDPlWqAGlkacEJcZA2S0S3hJ28CLceil0CcvVVURJJnxCAKuoKuUqCdSCKhSIdBqFPEH/OyZMrL+H6Kol2Lqq1YRlugooT0t19P7PQ1w+25grLh9tTMblklaPOV1e1XqXR3/hJPbv0RP7S7FhbnSYdBCYL0widHPJMInQzSXDJEI3lwyTCN1cMhca13LewioPZkhXp7VfHzPuz6OFcqHr67ofGPhbvfDlaSmyLldSchnBFXp9ZEeii/HyEFxt2CxppeXa6aLDZivXfrwJV7n2mUwpGZ7LtV/R7R3yXpovOTRl7pQnj13eWEG59qNNuIrf7rGMYAa15vTUqVPNUK790Z8ZlcqGT/fbFRe0ebsulbpaaKly7Zs4rbPSGqxjlnLt0ZVqf+sQ0k4y/Vqb4KNtQqkrzJYq176A0zgzrcE4AkuWa690tdTzXncHB8+LaN2u0qHuZayqXPtETuONtCKhIIuXa59WL91jjLSC/77Kl/8asFMxwsLl2rWcllNa3HLwpmIr117m0645sXfV4uWjsj8Kl316bxXl2rEcgrVc+0y92NMPbHnqf6lcO70shoXLtZdrylWu/W9mSlss5doHRd0eHD5/acBi5Y9Pl/24kyYHyUO5drq4GQ8lyMs25SpBLmhaXOXan+8Xl/zX72LY+vP9R3SZ+uoE7+Xa6T6CB6z+bsKF1Qvz+lxLl2svzebG/ifC/10i/PRqQmYT4Y9pyiXCL21aHCL8z/9K3H3gpVPQglc7vs5yr12Px9PmPPtIuGAysCmXZnlPpo8sDhH+8uM2pQXtaBm+sWa5858fBGRZXIQ/nBMV0G+sZu5g3MEf/kT4q8xx2hgUW0qyu2Ol3r1rfq5gNSL8vpym87aM6cwuwv/r9Xv/Jm5pI5o+umvktrXlKtB2Os0two95GVYVdeBlzCbCn7Hf6VPyL3PFM0RZX/Pcf69uBSL84ZzgSJuaUYT/9nrP8+PqL/dbXm77+6O5daZbgZwFRMiXEyEwpom8rQxb3iYTN2n6rcMVce7dOmsuLX7dgqojgB3iS1KrQERn5my2LDj7FGyRKAvuJ7QwAOIadXJcPMjhYJVrdaxRWg70Cousb8tUPSjUaCi3DyRCv0J88wG+ufQ06QLAdzkzTTLyYFXVgtcCVwkskF996NtL0kpVu0vnTmu/YJV/b6qeynfV7qKlUHTHaGIKBWVvzzZlq2KXBfruL8alUOXw4RujiNMo0PllUOXSfna+7cKy7ma32Hht3UPaCSnsRsQJKfx6ccj+7uL8/hssnizpe6YRiRJ8ZaU6RhnNoW0T3u5h2XO/3Peb/6WpJu/fSBW1r5IPYPZVfUtxGGM5pzHmW0f6IzBmx8IzJFGtA+FLHg3XTl29O4ApK5hZJLgLm3WIjldrYtyFzTtoh2h02C/obFXUaemVv4VHA8Y5ddnxZd1MKrfDDn5AlC5Vhah/WdBUHMaazmms8VYxcuCjjMpWqxUsdCcmawZqOUbQ2h2iXlPTy4TOvFu1WtC1MQ9NmSqbOnXwJhw5POp5gaEL1Uy27oCRWSrhyTmyrVLKL/V3Px0euE5VWryxUd0tlp32AgC2kADcQAAAXYtRmSgZythFJm7kfQptoG4v3j9p0tZmz4PHW/SwLwRgLhcA3dP1iabtf4yPQy/MbTY+Tqg7Fx/Hyb24+Tgj4gZH/+yQFzZve2b6tSpjB1gBHyfYnWt3U+RuBaQCLUjpi5+Pc6fHr9NWdxkWnLlnrMsd2xt2VsHHacVpHXdrsI5Z+DhJYzfV3JJ2zn/e773ur/o89oRV8HHqcRrHyRqMI7AkHyev5p2vd5fbh6/Mi1j7efeUw1bFxynPaTwbyxjPOvk46aWWugaW+Fkyb+kV97Rr9/0szMf53JTLcm+sYppSbHycie96XZ9zda54zYJdD17YNZNaBR8HyyFY+TjAERJ5qt3/BT5Ol7flGoe4aETTvY5ENnsnqW1hPs40dy4+zlBmSlssfJxmLzrvHpz+PHBz1Ke6TbfeDOCdj0Ofm/PAMZnqzsUxGeNeXHwch3ivxMGrP0rGZge3tamReJh3Pg7dR/CA1VBOrBLNGy0tzccpy+bGhhxSNlWGr5XsOhihevKwD7UQm32XZHh2MkAjT4pnnjA1YvuigVSpTYKnx/S7Oake+ClToRxq5sXBT0D2vFbbdq+1iwoKWrTqeOmjeWVsWd+PuZNTuJHR/+yigAuLKHwUC9Er6eeeDOyV+qfRCyc1lgnCoDCXowT+o53/HNRY9neo60mHKIUKGEwREwT8+lDycZhZcVPas5nSMT9DWtn3N0mOz4NDm06lUONsCT+0ASvh3h1hM0FZvIlyyIoIBozDV3wpedAPyX+Hkoeh2UEJFit5g4xssRtRIvewmEC9HBvqX8dvXVHF08ZvZ1+n7FVJYSuLPH1ZtviRN/jEJv30Hk8nNr9z3HBZ5HVDukUc2CyydGZG8ovgjwFzhzhqsye7/0hdE/WH5BkdMyNjnV7iNwi1IOrj9S6TtTDlxWq1xatVMVCOEVICY7G/w9JhnTxOa1AOQj8iWTpUHT1YEaO/CfXqzOVc/LqhMqAAzB6NoGy6H4LUB0XVWzdCyC9BiOA8DiG/BP/R5ZfCx9/tGHXyuWjc2e1ptm8jrtDll8b2yBl1K6lvYNbhpfMfZ03tSLaXFJgoz0T/YIQ8E5ul7aF6AGFGtOaD+679qiqa0DmPf/qcVOH8OVOsxb8cPtQQgnatiEp57oOUJ6SRRQpP2sP6jv214DskxhU4jILfMVcz3Ns3ciRCJYrNVpX9C0YbSIh0yRp04jok7uC7hZ03BWalHhFcX5uwhNNkZST4kxBax0RDcRhNzGm01uY1GumCbUIluEOFt4zSj3vMNuQYZUv26kmJ0tfKRK1Cg7HuwEdQHCZaMH1X3vWhN16Lt+5L2VKj1e2JdFuVCUvWyQeq9AIWAtpmF/xUb2a48i5S6+s7wxWXUT04jVq/EUPri7OAAtHZFbg+CxI8ukwKZ0e3gZ6OWaYDu8p3F0/zJPzSYTGi0r3IC+viREgvzxbSuzy4F1FGdT5gyZ6DJUftdJlA5cpGxStjdUJYV5Ya1mG8Yqtp7RwRGwunInKViii/qoSF86B4tycSYHrBQbZXQORLhi5LgZ7RTi9MwViWcpcJnBuayiNzwKrvgrGphS+M/KIRz++O2dw4U7I860K53GHxB+gFXpBfsciUkF503cQxBqfwbSFWh0WIMZYGWr0aGscawy2oxnoFEhf7oRElstcuitgkVnXv+KO8NGNJOdYwYEwcT/CbN+T85qCXWMFyMtYDjdhjs4c6Q1zSUz2iZS5Dp0lE0+36V7+bPX8ttV/Cu80FfyVO+MtYBn4GQ8zUQt34iIBsZ/BN0EULaBV3v9NTmLqa71HIFTACzAAPbEAQAaYCW4AxWs/HVW+94tfziXeeEH53ZuvA9P2ZNVJWtyqsbfgx8+y5txFK6fTLeyce/izYXEjPp6+sQV6JfoNEm+MPNY693dKpkJ7PuKTXs5ueqhY+69qkzwEnfmpVSM+nRMSjlVXj9kn2V730k7ChuF8hPR9E5V9S2xBR+Zcs1Iuo/GtLNJVa6jDzwqqciP3794r98vLqgSY7omlpcsrwOeuv+c1YMvxLC8XImqCpLNG0bU0FUe9BQ6SHXo4699H7K3ygPdH000+ew5c8VImy3g2pkfZlbHXQVI5o6vzzmmNO/9hJM/KHT/zFPycZNDkQTZ6vHS9NizoSMev078sex/nNAE3liab+XkfDbtU4Fbph1zqnZkH3xKCpAmmUzytmbvvlZuD+5qFrju4aBF+jItFUrp7/CM/dztKNLcps6ZbT3w00VSKaTi8RPviarfFPS9mU8ccI0Y+gqTLRZHvnr/297WsFbonw7+iW1K0TaKpCNDl2eN9r3/iGIXP8+434dbxiE2iqSjStTIt90ezAZdGhNv1bBwWerAKaqglYZaAciaZ7x7LFNeYvFR0o1aPfW120L2iqTjQ5pNrtKz+nkizbY9kjt1pnYAdwIppC3i3QpDSbFZDZbX+fi68S4WfVIK3ca3dIYM1k0YRW4asmZ8V1A001iaYL2b0PVZbOEe0uFXKzXZ1p00GTM9G0L6Bhk2plVwQszryWuTLeQw6aahFNv/168fHdGuGBOT0vjY93WLIDNNUmmrYOznQWTjkhW3Y7pJfy69l80FSHaLKx7+JdZd0I2YxLNweL35b/HTTVJZr8W273rns9Jixn5diuUcd9boAmIdGUf95D/u+rOeLRty8cfVPh5mmGUJWLgEWoKm7TI99yvf6O2H8v+VyluE8OPAhVVWRzUdVi92zKPn5atnB9/rCztUYspU5dZUOTVOoYxOkLtgS4EXGHkDwvi5Wp0yaAhBg4IaICoIHHLegOCvlqzFk10WDoRMJVJljsCWWDUTuHnUF6nO5pXAHNgtOo+Isgv1uvhMAeMasr+I8/svrQj5NV13k8jMrzBiEs8LPQk40P7QRmpbM8jcqJfSIVoGtgvKcYBSxxpNYqseMn4P2UKmzqRPYToVwDT1yrE5TRSBT7vKpYrmY9x5BZK5rfazp120wqfVz/OUz6eEET33kDhCudE66fPa0ik2MedTQyk/MgBlpMgbl08XKdMEE+WCEECYi+hDU7zzy3TucA9+xOkq1z/+k7dVmFGzSmIfFYBNOQbOHbehU9iM4uRZL/PbHOzmCbGwmcC3koiiT8KehAIsF6Y9/x3/GzfCSb1pQdkXWxXIzpR7B4ACudEyzQ1Yn4U4kt/vxPueG7lBvoGbrZlBveenIpN1w0LlYaqNyQPLmkRnLgiHjiHVf5Fd9393gMlnQPxINyw2tProPuj4wLlt+r3FB1fKl6O+e0DTq0Kv7Q+CNzqf3DEsoNv3OictEyMdEAlmlRC0z8KTec+fKk8oAJD8NWtjg808PvSDurUW44yWm6A9aazvCs3JDsUMX7eZXlYZPWvc86UankZwsrN2BehvXo/SNEllJcyg21T2RtqLpZELE7w+59pdofqQQhyyg3/M4JzkVPMyo3pJdxnrIuo3NEWtzwklJp55ZWotxwkhOhA/q8rTJb3nZ6gTz0S9vqAWNW1SnzrP7wg9RsNBTkaMIoaajhCwd++mK4sJoAmQmDGWIs+BXkXalCgK1Gh2sUAGdL9FeYexGp20iDEif6+iX6vZlZNNlixDTwkQ9RFpeRKolg/VIf45YVsBcohAHy2zWIK5WeNP1S+N6RXqEVfafRDu5GwbsRBxSwy0VlSnT/x0PN2wc+BPuK0QmFTWWCmz5G8Y6dMIDIfuEao9SA7gva0cG2dw/b1pOuNRbtvv3w4bThgonUYSklb2YOy4KmogB7cjWm6fisvyUZilqp2+qp9vMA2G+cgIEeZZEkCo8Z8G9aCNh+mHJYthy2tMdsyeFVw1a6p4W12xe0Z/LMVz1KT/GsjAmZAGPIhiZpFHraM5bUiv2iXHu6mZYA00x7pva7P9pPGybJzHF79XxOjql6b9C0+zhNu8VCpkXlxzM6GZVqlQst5M/RRxrr/rEjbvR96eJzzoOiffyu0Df8EIeq8Ku8l5X2JHzSZhSpZLMnNsSIwFiFLTD6Xal+56fW20Qb+vRzmtL9ALWsUlVIftXBpU94klkBufUKIyrGe0nUCQBynIKLPSam4DHY5LCgUDwklRoUEenbdkW/MMMcyL8yYlEh0BuA/ocfooD8AND5fb1N5aeIQwuBApcbYBkkmG2oE4WuZPFzgB4ugAT/h/s0LVyNVqcoWNRL8rUlK3ya5R2RPehozmJJK2qRvtLdMdIB08cQ14vyMYq8qzl9RSv8xye5aiZ8iRzLw8qEP4TZxg9RMj3LDYPZ1CXhhoXMr1/dilYnahXRyVj3wDhRSCznpXt+leSIpDvH5g2Onxn0O/VERsFzmdNfSmNxqMFgsPVFwXbDA4ONcAlV2VzC2fL13zVrpQ6b8OfrEM/Lo2SU7+YQqcA4jMLwZJUK4QvYEmYP8j5IhMX6rDLxJ7lKGYN38hSlLl6oBtMUjeGegL5Lz/GeDCtQm43Ikit6s22+LQXofvYydew7BmE8PLjqqtBiRGwMMSQAZ/tt25SaLwjMuf9WONb/bFtq+ow9iJk+45eLGs50VgIPKUN5iNw4VMoAi1HZeLOmzwYi56xHTkPparBrIeGTdZ6ytfJtu5Apdd8caZ4xgCq8VY7oIOgtHWor74RoV6wncaD1xssiLHbbrqlJisI41C/E2fEMASmtQuUJ/0brGRDYHya5cQoNjRIHf0x13I5YgISGBY8Ak+pU3NRIK9MDkymDxES7DvAkRsEbMepAphc2CoxaCHMKx7CFuQLO3yW6fgwSCu20iCNXl3UNGvek78V3r1U0fhf2rRAbE9jl4oAC6+KsUIAuTgSqamyBympq/tG9JT/lj4uh5N9FL66Sf6f1kDtaPeR0bhw/kB89flvecIJjyIpBF+/PO/w+lgfIOzTjgtynGQl5dd5YmRVIyM3AykSQKElWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrE0GiJFmZdud9ur6qsFmS1ah05pipe5IZlDfYeZG9j06/5IHy5sRm/3ohxzzubCnrv9omZuC1pxWp9q+CL/ZLVGotTBexDRxmUl6aZbTV81fCcsfxsD4w/gBsSgnnmQQNwbDtfTrltMhXZICD+iMjpGWCoF+7gTwxAmbkbsysnGvt2hnfbcOUNNTQNAAP8As7L6hO85rjHs2ZETTth0VhAU1qJ5qy11a8y9gXAFYBZNh9wxAnBNPqNl7IPJwNq2p6SkRhrJAo/fvPob7Vul2WzV0xaMZ+3ZhHPNIiRncLf39q1VD/NepJgel+qUd4QMmNE6WaXszFB648zb0zOa6wwYZhRg45ONUjuWfsWyUDD5/Ma3G4e/As0aMwQe5ohQX3c73diU6E3JCDh6c7eBmXxjbR7x5CiKIL6X3CCETxTeg6scLVtg8W5oknXv99xeuy8ZOtYNcSgtSCEyQ3L+P2dRtKlfg31y9VFXQZbGORw0GdGvHo7YFjYePmP/2x1LdTG6m7iORzmbuI+pbiQKcuJzrV9LloDbbA+Lx7eKiN1ydJ5vJz/jkRQb2ZC/HMSGjDAq4LdT9XT3VLURsluU8/YGHo3oCBsN0HjikLwnYOtQAlALCNMS7UGbZNG+c86G+v26VkaaLU91tePzpDXezE9mNZwjqlsSgvTndxJnpxAfDTcyFYnVF9DCpATDUu1pXHwFKAkcYO1cxRL/dN9bKTTYpu4PZs/Z72VE8kA/eigSrUZOaUAMI0hhOmoUYGu6K30Oh7zRbbQoOeBusjcAtNyMgdPTFoCD9Uk80PSRqf82o79l7oUv+ct7q2NWrT16ET5ElCfJ0GsV7Olpo3xu8jd3uwcylyYaIiBV5SaJTRRIA0yC3RD3dxvCFqpbxQs6G7ZKDb7GoJcD2PysnTAOrzWhrlqMpj21D44i54HeS3vNf74Ml659Nla1OH/9v1RBtHaoqEPYCZIuGXixpz9HNupu5uAXh2QHjKocZcLpiyrGtpFJvEAX8fLpH0Wskv5Ff695NkeeyOWCVavp66+4ffz9z9I64Xhc/h6TtrJVydF75iUM7dZtnrL/CATw4nPqD7WIJhYIsRN37CgWgvoP8YV0XNoatcE6fQcRntwJbLaVMiB0sWnRjsf3F9bDDVaPj9TKMR13kn1wKrZHBaZaxVWeXNIdIqRoWvCpjDS1LEEM4XaZjWpbO1I+KvBEzP2fD7k067qYf9Sodh9zMNQ1zn2zAiT8KdwGVGxnw1zUsmWNXSuAmZsx4DbGKhUhaFx/I+yu2DX9wKW5RRfVJi1jlvmqQQ/gCEpBDRUByIzONEJL0lGded2eL65lkhf/Vp5xs04a8vOtujt95RbYx/ouFkmPb6GQY1gAtT4pXR8SCthGcL5VotVIPUs2KI8G/Y5IN+Thv1vsw+iV83Ygdc0ZLgiTLYLyIwq+vBjOtG7oDXIlINXDwJE/iFR5jwN0F+8WcNRxz3H9TSf/nvy+aGdV9J63xsiY2+wczBH+7uRkMMvVEcDWETDEOjPFb7cKJH4SVNKAe1IB9Ii68PwDIK8P8FOaVwePhIJKL0eG7RiipwXosB5oQCDOpY99AP5lpWv3FF7008qU3Stzl42Llq1ZJr58pTj3ltNszDd/mfPy04JknrXaOd8llwJaridhhFCJXpSNmQdg4D+QAITzpwp4omp2qQn6QrU3C9FlMInNpu6MINmGT/DKmaU1ELN3CPIt4HoTdJxhOE3iT8JLreJF0vkq43+d16kvQbEXqSbL6ptr9SA3yOMfK3rZ2iPl6QSvx2n3u6TLfjqpoqfytmjg5xkeJ2wyp5TalQ7rJ0Z5Bq/VBNy4GmrpmA0TECmtMbxV7oCVo1PicRQo5sIH2PSPDmodvf3p4/wW/+lIc7z7ocuPwdIsF0lBQ9IoPvrWkXMX3jkYPeoy9s5wGleE6U+vkwJAA52S54rQWYGBkAEJ31To1h+KOYMYy4XhwL3liP+YhaaHL1wJAi/Gmd/5g/pcv5mMmfVuH0p19a/s+fEvZ5XnJdTK2RP0qzDnh+VAbYlOXBn9JlmnjwFJU4PUWZYvenpyUHN9f0nBS2OH1/TI3F4u8RXaejRF8k4AGlLy25UHrXshj9KT2GWtyfVuL0p1/0+Wldq58T0IcTP2Q2nxI13mZIkqQ734viN1/JiORhSnCJc0pwRg+5kDcyW3kScjOQ2RAaeKSrR2jgkWQ2hAYeSWZDaOCRZDaEBh5JZkNo4JFkNnqGxmCsQa+I7GJ09TweGGsuvBnZ3oxG/j4dSYSoImlk+p4/wyY2bDahyxbyYJN6bDbJ3n2/18SHH4P27t6xd8vgPOo5vx86yxMVKmZtFDbH5ioWJsE7ClXoEiaqdQpcXAjKc3Np2NJ1FxGvYoi3s4+K1qhVqkgYseDFgiOfbzrRPOFvzQI2X08cGTa78Zb7/p3ve7B5QttuWoUGCoCTH9tQqk4eqIJcLVhFBwr/xCh1xHcHGQbc5chPW0UzCVnmiLEo3UgmaNsCONC2EkHaREnZMLkmTpkYqoilBEB7/HIkrHda+Lodfr2rOqnwVaoXfhPRSObQpsXJChiInTXw3KBOib9VGfKtUANKI08JSoyBslskvCXs4EW49VLoEparq4iSTPiEAFZRVcpVEqgFVSgQ6TQKeYL+d0yYWH8P0VXrW31YpquA8rRUR+//PMRlZQuuuCxvQcblBlaPOV1e1XqXR/tzEvt76In9DXkLkw4C84VJhG4uGSYRurlkmETo5pJhEqGbS+ZCTdcPn91p7XjpOJ/VIT+M87hVKBdS3Z3V8UT5vOAdLnfcxdm5YkZwhV4frZxCE+PlIbg2YrOklZZrp4sOm61ce3QrrnLtXq2Ku1z70RrCkZu0p2VrZvm1kS+sRT3ZaZly7fJWXMVve7SygprT48ePN0O59twWM3T7lmaGb72RPPpeVAx198VS5drDOK0jsQbrmKVce832mQ4u4nd+E5/M2VfiRsedVlGuvS2ncbyswTgCS5ZrPxJ6Rjm4Zoh4z5T+/epXHENV2rV0ufaGnMZztozxrLNcu2TB6OpdKutkizP7njhRLXSPhcu1V+K0XBmLWw7eVGzl2su+7X3MoeVg0WL7zFpnSq6XWEW5diyHYC3XDhwhkac2ZstT/0vl2ullMSxcrn1tK65y7XOYKW2xlGv/kNbswaj+XwM2zUr+o++mbKpgIh/l2uniZjyUIM9txVWCfHGr4irXfsfxcqj/yr4BozscFIoUF/N4L9dO9xE8YDWHE6vJ5vW5li7X7srmxv4nwv9dIvz0akJmE+Ev2ZpLhD+f6Tt5EOEv/cvfY+pW7Bg0+0H6vh13jz7m8bQ5zz4SLpgIWnNplv/N9JHFIcLv5dP7zsvpvf0WSsK3bfDeQ62DbgkR/hetuFDJt3gGWnjHyTIi/NVrJahsI/dKF1SvPnbLyv4LrEaE/wan6c5bxnRmF+Ev895t1IPAbL8Vm2cln/Jq+8rCIvyYl2FVUQdexmwi/A8vPBvr8vFeUKabd2NZhKypFYjwY86GFZz8VmYU4R+6bNu8sU0eSWY1WrOpZIMdd6xAzgIidIMTofP66acbW94mEzdp+q3DFXHu3TprLi1+3YKqI4Ad4ktSq0BEZ+Zstiw4+xRskSgL7ie0MADiGnVyXDzI4WCVa3WsUVoO9AqLrG/LVD0o1Ggotw8kQoPh8MwH+ObS06QLAF9xa1MPVlUteC1wlcAC+dXblOsaciR5fsTuHVNn76+Zesz02l20FIruGE1MoaDsrbI1WxW7LNB3+7c2rhA2PnxjFHEaBTq/HDKvc5Xm819HbHJsphmVXItaiLm0FLsRcUIKv14csr/dOL9/SGtLJ0v6nmlEogRfWamOUUZzaNv8sefImjU1p/qN6X7wlWDsJ6oeuC35AGZf1bcUhzHEnMZobRljMIpjG7Nj4RmSqNaB8CWPhmunrt4dwJQVzCwS3IXNOkTHqzUx7sLmHbRDNDrsF3S2Wv/+SOW2T5NEC4Me+G0NGkpNh+zgB0TpUlWI+pcFTcVhLA9OY9W3ipEDH2VUtlqtYKE7MVkzUMsxgnJ8hpZLT3jutycqdFiGfd5rU6bKpk4dvAlHDo96XmDoQjWTrevT2rgslfDkHNnWhKkug1+Nqxg2v3HiSMd6WZctO+0FAESQANxAAABdi1GZKBnK2EUmWqVVX7e+3qOw3NuRlYdtDa1NC2XmPewLAWjJBUD3Rq3JRLPJf4yPQy/MbTY+zrPWXHycnczMkmc+ju2Rn0ZvDR8XOn/o6p8Ha1+NsQI+zh+tuXY371rG6VNJBYMHDzYDHyel+sxVjWtWlGyt07v5rzH3hFbBx7nCaZ0z1mAds/Bxen99WT32SWTIodUD72ZMWP/eKvg4hzmNs9MajCOwJB+n5KhJ8e3HpvjN9f6YdPjblwir4uOs5zTeMosnu1bEx/mYPDKjVVKsZGzN2VPf9V5X08J8nCxOy02zuOWKlY/j8avzorkpa8I3rDz748xfVK+tgo+D5RCsfJyd+jy16f8FPo5/y+3eda/HhOWsHNs16rjPDQvzcdzbcPFxHNuYh49TU/lt+SG/3tKNpzY1mya4VJt3Pg59bs4Dx6RJGy6OibBNcfFxXGKqOgW/Xho2+fCVZfnSSit45+PQfQQPWDlyYlWuzf9XfBx3Njc25JCyqTJ8rWTXwQjVk4d9qM7ZvksyPDsZoJEnxTNPmBqxfdFAqtQmwdNj+t2cVA/8lKlQDjXz4uAnoAsfnveQ//tqjnj07QtH31S4eZr1/Zg7OYUbGf3PLgq4sIjCR7EQvZJ+7snAXql/Gr1wUmMwnYen/Rwl8B/t/Ke6sey3py1OOkQpVMBgipgg4NeHko/DzIqb0oPNlI75GdLKvr9JcnweHNp0KoVaHb2EH9qAlXDvjrCZoCzeRDlkRQQDxuErvpQ86Ifkv0PJw9DsoASLlbxBRtaeLJF7WEyg7smG+tfxW1dU8bTx29nXKXtVUtjKIk9fli1+5A0+sUk/vcfTic3vHDdcFsloRreIF5tFls7MSH4R/DFg7hBHbfZkd6qmUWl/SJ7RMTMy1uklfoNQC6I+Xu8yWQtTXqxWW7xaFQPlGCElMBb7Oywd1snjtAblIPQjkqVD1dGDFTH6m1CvzlzOxa8bKgMKwHwPwdzshyD1QVH1q80Q8ksQIjiPQ8gvwX90+aXw8Xc7Rp18Lhp3dnua7duIK3T5pbE9ckbdSuobmHV46fzHWVM7ku0lBSbKM9E/GCHPxGZpe6geQJgRaa0Bmr82rK/vHTY78+Cx+3X3hJliLf7l8KGGELRrRVTKcx+kPE+bWaTwpD2s79hfC75DYlyBwyj4HXM1w719I0ciVKLYbFXZv2C0gYRIl6xBJ67nnZ52qhfaO3TW2i6nHz+pVJ/TZGUk+JMQWsdEQ3EY7R6n0a6a12ikC7YJleAOFd4ySj/uMduQY5Qt2asnJUpfKxO1Cg3GugMfQXGY6CPPXtF1vTaUDNk1o2S+y5IJjei2KhOWrJMPVOkFLAS0zS74qd7McOVdpNbXd4YrLqOe5TTqL80YWl+cBRSIzq7A9VnQBHGaTApnR7eBno5ZpgO7yncXT/Mk/NJhMaLSvcgL6+JESPdmC+ldHtyLKKM6H7Bkz8GSo3a6TKByZaPilbE6IawrSw3rMF6x1bR2joiNhVMRuUpFlF9VwsJ5ULzbEwkwveAg2ysg8iVDl6VAz7jpTQpTMJal3GWCPSaXp3fAqu+CsamFL4z8ot331V+fe3hB+J455QeMW7ZcSS/wgvyKRaaE9KLrJo4xOIW/DrE6LEKMsTTQ+iuzKDUnawy3oBrrFUhcpo5P/3ws5wfZtmE+Pus9XEozlpRjDQPGxPEEv/lRzm8OeokVLCdjPdCIPTZ7qDPEJT0V5Pnm+YHbVYP3rbr7e4u359Op/RLebS74N3HCv9Iy8DMYYqYW6sZHBGQ7g2+CluqgVdz9Tk9h6mq+RyFXwAgwAzywAUEEmGZsAcZoPR9XvfWKX8/nlrDqrtVaG+mBto9sSrW/GFJIz+fd47Jhh7IHhS7c2buMo2yfupCeT7gu/GZI2LKQ1X+JkgOCM3IL6fl0rxKdP8T1rN/MqCm/25ypHVZIz+du++z3Dp0Hyg62+mhf0WuxopCeD6LyL6ltiKj8SxbqRVT+tSWaGrW0b9bXMSdo0Q8vc1TbYv4GTXZE09OSeQ2Ob0uSzekZfa3jkTp+oKks0dS45os1US1TI5ZkhsxpE/hbS9BkTzT9vmFN/C2PQeIc+Y2LQy/9XgM0lSOaZtlpj89/uFO8NfGqY/ye1QmgyYFomjqmw+Ps9jdDp/kPyP5XO687aCpPNF0b5BIdWFMXvCCllvNxTeWboKkCCZT9+Np/vgjx2+a8p+YeG2E30FSRaPL93fZSFfuk4Fz/I5KRNi0OgqZKRFP5rj55XR2T/XaOGTrg+fDpfUBTZaKpRcTYf59tGSOZtKdF3uW+DRxAUxWi6cTV85F7f3jqt2GLqP7X1j1PgaaqRFOPsu/eOn8KClg12KPE8NDQ1qCpmoBVBsqRaAo4eOxGu7DxYZnbr2SOz7q+GzRVJ5oS3vZ0zllzS7q+i49zXd9x7qDJiWhS7loWOO9KCfGE9a69zjnNeAWaahBNQz1UXb7IXIK2/dGs1k+XHRaDpppE07DJJ64MlEv8ZoluvF904dBA0ORMNO15kt8ye9k/gdMnR18ZcnvgU9BUi2hqZhO/JXfzdXHGO8cnTbZOfwuaahNN43rmTv/Zvl3oElWVps1K9oP2qkM0xR46Xc398HHR6G0nuqW4T8wHTXVJ5I9fD8+YLAqY9PnOmb3S4fNBk5C8a27Hi8sWtxCvC3WrNK32zvIMoSoXAYtQ1ZzdwmV9nNJD1+yp1TFV4nyQB6Gq5mwuqlrsnk3Zx0/LFq7PH3a21oil1KmrbGiSSh2DOH3BlgA3Iu4QkudlsTJ12gSQEAMnRFQANPC4Bd1BIV+NOasmGgydSLjKBL6+UDYYtXPYGaTHDXyNK6BZcBoVfxHkdxvZZqJvntvqoKnlh2UdXNrbjsfDqDxvEMICP2182fjQTmBW6ulrVE7sE6kAXQPjPcUoYIkjtVaJHT8B76dUYVMnsp8I5Rp44lqdoIxGS9jmbc29VmqrZFzmklerYg/kUunj+s9h0scLmvjOGyBcDTjhqulrFZkc86ijkZmcBzHQYgrMpYuX64QJ8sEKIUhA9CWs2Xnmke3r1w/r/l4yrceDCZ6h0n9oTEPisQimIdnCt/UqehCdXYok/3tinZ3BNjcSOBfyUBRJ+FPQgUSCtaPrUscT47pKp12e2SXz8odBph/B4gGsBpxgga5OxJ8WbPHnf8oN36XcQM/QzabckOHLpdyQYFysNFC5wXbCVfmYVS4BS0fvdtJs2eTJY7CkeyAelBum+HIddB9tXLD8XuWGXX8OuXDx94uhq/tduBM4OY9WJtQCyg0pnKgkWCYmGsAyLWqBiT/lhkdCSXLc8FrSmS2HlLu99Bn11JEllRuiOU3Xy1rTGZ6VG/Ja3p3u6RMdPPufPgfv1+hrY2HlBszLsB69H43IUopLuSH9ZeOvO6ZvlKzzfPwi5FOpwVag3JDCCU6CrxmVG9J/Lr1/nZNImr4lzuPE7RdPrUS5IZoToV76vK0lW952eoE89Evb6gFjVtUp86z+cOoahW0oyNGEUdJQwxcO/PTFcGE1ATITBjPEWPAryLtShQBbjQ7XKADOluivMPciUreRBiVO9PVL9Hszs2iyxYhp4GgxURaXkSqJgAXkYuOWFbAXKIQB+uj74th5EY+Vor3zks8MVJXKp+0mwbsRBxSwy0VlSnT/x0PN21Fign3F6ITCpjJBstgo3rETBhDZL1xjlBrQfUE7OtiOX1BFI9CcC19xvXn2c49p96jDUkrezByWBU1FAXaln134lHzbkFXey8bfrXu3OQ+ADeYEDPQoiyRReMyAf9NCwPbDlMOy5bClPWZLDq/asuSxNyNWXQ2cmh18cMHsi80rY0ImwBiyoUkahZ72jCW1Yr8o155upiXANNOe7be9TtK6eaKxLh9uKR9Xa8eDaXtwmjbMQqZF5cczOhmVapULLeTPkcbcsGJQYKPwH8QL5sQed43fXIe+4Yc4VIVf5b2stCfhkzajSCWbPbEhRgRGH7bA6Hel+p2fWm8TbejTz2lK9wPUskpVIflVB5c+4UlmBeTWK4yoGO8lUScAyHEKLvaYmILHYJPDgkLxkFRqUESkb9sV/cIMcyD/yohFhYftAOh/+CEKyA8Anf9aO1P5KeLQQqDA5QZYBglmG+pEoStZ/Byghwsgwf/hPk0LV6PVKQoW9ZLbdYdv27SwdPCeP1/tbuKfS1WvKt0dIx0wfQxxvSgfs7dkXr2IGzLJRK17p4u3XHN4WJnIhzDb+CFKpme5YTCbuiTcsJD59atb0epErSI6GeseGCcK7QTqfFy+7KetYWM+z8z97fXP56knMgqey5z+UhqLQw0Gg60vCrYbHhhshEtoxeYSzpav/65ZK3XYhD9fh3heHiWjfDeHSAXGYRSGJ6tUCF/AljB7kPdBIizWZ5WJP8lVyhi8k6codfFCNZimaAz3BPRdeo73ZFiB2mxElry+Hdvm21KA7lyTx75jEMbDg6uuCi1GxMYQQwKg/azbvP7ulPCVt5e+3REy4go1fcYexEyf8ctFDWc6K4GHlGEtRG4cKmWAxaiWtmNNnw1EzlmPnIbS1WDXQsLX5+/do+PaOUjm3b6a82qkfR/qMXeig6C3dKitvBOiXbGexIHW1HYWYbHbdk1NUhTGoX4hzo5nCEhpFSpP+Ddaz4DA/jDJjVNoaJQ4+GOq43bEAiQ0LHgEmFSn4qZGWpkemEwZJCbadYAnMQreiFEHMr2wUWDUQphTOIYtzBVw/i7R9WOQUFSI9819kvqDeE6J3DIHptWdQNuYgN8KsTGBXS4OKOZyQjFVH6haswUqq6n5R/eW/JQ/LoaSfwntuEr+KfSQt7F6yOncOH4gfxX1bkzfkrP89vR2Obr5/Q43HiC/2Z4L8ovtScjb8sbKrEBCbgZWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrE0GiJFmZCBIlycpMGGkn3h9xPmBGv/IDug/Iv8qgvMHOi+x9dPolD5Q3Xzb71ws55nFnS1n/1TYxA689rUi1fxV8sV+iUmthuoht4DCT8tIso62evxKWO46H9YHxB2BTSjjPJGgIhm3v0ymnRb4iAxzUHxkhLfMI7g/cQJ4YATPy48Zt8zvju22YkoYaKwavhqxAdl7QkKMVFLIBEZKNrefELNtbfa0pe23Fu4x9AWD1wJcIu28Y4oRgWn2FueHPhVU1PSWiMFZIlHYfuL1j3iKfoMz0itfme8iW8UiLGN0t/P2pVUP916gnBab7pR7hAaXjnCjt9GUuPnDlae6dyXGFDTYMM3LIwakeyT1j3yrpdPn8jhPb9gUu3vKu5dqYz18tuJ/r7U50IuSGHDw8fdPI/dwm+t1DCFF0Ib1PGIEovgkJzouVP6Qn1r0XsTvtVFrPfd82WsGuJQTpN06Qjhu5r9tQqsS/uX6pqqDLYBuL7A4q5d7Awwt9KofPePAhMrnUlR7UXUTyucxdRH1LcaCzjxOdLfo93XZsgfF59/BQG69Pkszl5/xzIoJ6MxfimZHQhgVcF+p+rp7qlqI2SnKffsDC0L0BA2G7DxxTS5jCn0MtQAkAbHWYC1Cmb9O69a2b9G3rfMnKlHeq1iu2rKYudmL7sSxhndJYlBenuzgTvbgA+OnmEKzOqD4GFSBc0WtObGCVx8BSgJHGDlXsqlpjbzwuFb7T9cy82Tkz/qV6Ihm4Fw1UoSYzpwQQpjqcMFVFrLSbtoVG32u22BYa9DRYH4FbaEJG7uiJQUP4ofZsfkjS+JxX27H3Qpf657zVta1Rm74OnSBPEuLrNIj1crbUvDF+H7nbg51LkQsTFSnwkkKjjCYCpEFuiX64i+MNUSvlhZoN3SUD3SZKBHA9j8rJ0wDqLURGOary2DYUvrgLXgf5LV13jj5zs/so0fLrpTLWd75AlS39AXsAM0XCLxc15ujn3Ezd3QLwdIHwlEONuVwwZQkQGcUmccDfh0skfcG+ZQ3CVjuHrv+s7el9P7QMdfcPv5+5+0dcLwqflAdL/m1RY3bIruej3DOHz1vDAz4dOPEB3ccSDANbjLjxEw5EewH9x7gqag5d5Zo4hY7LaCvWdJq1ZuMvAZNnnm9/YkvcbarR8PuZRiOu806uBVZx47RKXauyyptDpFWMCl8VMIeXpIghnC/SMJOi/41pX7urdE+fPgfnrDnrSDVMGHY/0zDEdb4NI/Ik3AlcZmTMV9O8ZAI/kXETMmc9BtjEQqUsCo9S/qNjx+1/G7H/r2aznWeOKkmTFMIfgJAUIhqKA5EWnIg0EJFxvQNbXN88K+SvPu18gyb89UVne/TWO6qN8U80nAzTXj/DoAZwYUq8MjoepJXwbKFcq4VqkHpWDBH+DZt80M9po96X2Sfx60bsgJcQETxRBvtFBGZ17zqZugNei0g1cPEkTOAXHmHC3wT5xUOuvE2rs/pRwP5+c69+2DK4A7XzsSU2+gYzB3+4u/ut00k4gUNwNIRNMAyN8ljtw4kehZc0oRzUgnwgLb4+AMsowP8X5JTC4eEj0QsGtHhu0YoqcF6LAeaEAgzqWAPAiMHc0eo3rui9iSe1Sfo2Bw87V5c6ce1cndFj3okN8/Bd/udPC45J0nrXaKd8FlyJqrgdRhFCZTpSNqSdw0A+AMKTDtyposmpGuQn6coUXK/FFAKnthu6cAMm2TUhVXMqauEG7lHYiBF6k2Q8QehNwk+i603S9SLpepPfrSdJvxGhJ8nmm2r7KzXA5xgjf7txxF/1Ag7uCJ54r01Fnz6zK1Llb8XM0SEuUtxu/eQnKW0rpIo3Tu1/rv/p8yYvLYHR4QTN6Y1iL/QEreXFJxFCjmwgfY9I8KNSW88mhPQPnzQyTOuZ/mzSd4gE01E6Me5viVBZK3D0+cnecxtl1OcBJRtOlD6LGBKAnGwXvNYCTIwMAIjOeqfGMPxRzBhGXC+OBW+sx3xELTS5emBIEf5U9B/zp3Q5HzP5000iLn86X/Q/f0rY55JCcDhjSLvAhfJJi9deChzMgz+lyzTx4Ck2iLg8xXJRcfvTjvabWuXPOBqR9ePkTk9Gn2rPgz+lLxLwgNJ8TpSmF6c/pcdQi/tTrMew+tP5+gm+2OrnBPThxA+ZzadEjbcZkiTpzvei+M1XMiJ5mBIkirimBLF6yP14I7OVJyE3A5kNoYFHunqEBh5JZkNo4JFkNoQGHklmQ2jgkWQ2hAYeSWajZ2gMxhr0isguRlfP44GxJuHNyPZmNPL36UgiRBVJI9P3/Bk2sWGzCV22kAebSNlskr37fq+JDz8G7d29Y++WwXnUc34/dJYnKlTM2ihsjs1VLEyCdxSq0CVMVOsUuLgQlOfm0rCl6y4iXsUQb2cfFa1Rq1SRMGLBiwVHPt90onnChS3zz8tzo2TjOvYqva79xdNsntC2m1ahgQLg5Mc2lKqTB6ogVwtW0YHCPzFKHfHdQYYBdzny01bRTEKWOWKo5jaSCS51BA60rUSQNlFSNkyuiVMmhipiKQHQHr8cCeudFr5uh1/vqk4qfJXqhbO6NpKNv9jxZAUMxM4aeG5Qp8Tfqgz5VqgBpZGnBCXGQNktEt4SdvAi3HopdAnL1VVESSZ8QgCrqCrlKgnUgioUiHQahTxB/zsmTKy/h+iqMqsPy3QVUJ6W6uj9n4e4/APnUt2XjmRc9rd6zOnyqta7PPoPJ7H/nZ7YH8BbmHQQmC9MInRzyTCJ0M0lwyRCN5cMkwjdXDIXmj2+yVqnd/6yvTd1J+dNrrqpUC7k2Stl9qCn78JWDynlVUraM4gRXKHXR3YkuhgvD8E1kM2SVlqunS46bLZy7d/EXOXazzKlZHgu197FxqVGl40XpMteVFrVZrwndXfeMuXav4i5it++s4xgBrXm9MiRI81Qrv3MiPqSlkeHyCaW7zj6rwaVqafLLVWu/Smnde5Zg3XMUq79r9e/vvY53VM6J/dig73r+h2zinLtVzmNc9YajCOwZLn2tnX8PzQvGRcyfXrmyYQzMbOsqlz7L5zG22VFQkEWL9f++8C3Ja+HVA9ZsejJmQMXZGUtXK59A6flllvccvCmYivX/tpua+1yJ98EbKk78f79/KcvrKJcO5ZDsJZrP6vfQAxiy1P/S+Xa6WUxLFyu3d+Pq1y7t595yrX3GH37/rQni4M3P6vul19nvYj3cu10cTMeSpBL/bhKkPv6FVe59pG3UuZnDcv0356ntm1wYMcX3su1030ED1h5c2LVyO//q3LtwWxu7H8i/N8lwk+vJmQ2Ef7Fflwi/D8zfScPIvzRPb3eH1V6hqc10CQeLdtjCo+nzXn2kXDBZKEfl2b5LKaPLA4R/svlLgwRbG8i2z3q8bxL6RKxxUX40zlR+dm83pBz7mDcwR/+RPiPa3ckbX+7LWylzZPfJrZ7uMFqRPh1nKYbZBnTmV2EP6SmOPLn1ArBK5wf/9PJJ9+Sog1w4RXzMqwq6sDLmE2Ef6L4041nTSoEb/iwdXsbzVFqv7WMCH86Jzg/+5lRhP/P/tvKB1XcJpnV7o3P4JoVrlqBnAVESMeJEBjTRN4Wwpa3ycRNmn7rcEWce7fOmkuLX1MFaO2xQ3xJahWI6MyczZYFZ5+CLRJlwf2EFgZAXKNOjosHORyscq2ONUrLgV5hkfVtmaoHhRoN5faBRKiMBOCbD/DNpadJFwC+d9inmAYerKpa8FrgKoEFOnnq9/5z/6HHA5ZEXd3s/4eEphfyPbW76MXmaY7RxBQKyt7+IGGrYpcF+u4/xqVQ5fDhG6OI0yjQ+eU1px+zp9afH5h96ev8wJeu1LK/paXYjYgTUvj14pD9fevH9f2fWDxZ0vdMIxIl+MpKdYwymkPbppb4lEznly7NWtmg29KZk05S+yr5AGZf1bcUhzHucBrjsnWkPwJjdiw8QxLVOhC+5NFw7dTVuwOYsoKZRYK7sFmH6Hi1JsZd2LyDdohGh/2CzlZ/dTk7cMqa8ODxk3Ye6VnJawE1rsEPiNKlqhD1LwuaisNYpzmNdcgqRg58lFHZarWChe7EZM1ALccICu9sEyRt+Ew2Q7qw6RSfpn1NmSqbOnXwJhw5POp5gaEL1Uy27oORWSrhyTmyrZ4TMruNvxsesfDt7Dy3mY3qWnbaCwB47kcAcAMBAHQtRmWiZChjF5nw/dfdq+7CqUHbU2VT7tcKOGLRw74QgAtcAHQ/ok80Q/9jfBx6YW6z8XEmSLj4OJGS4ubjVLjV/GmfqknBcw91Hmv7askzK+DjjJNw7W4Ok1gBqSA6OtoMfJxJ5c+Neng3LXj73Y/T/xj6Ltkq+DhJnNaJtQbrmIWPczRp8ymn9GXS5bVfXIzstNPJKvg4fTmNE2kNxhFYko9TJ+2vT8ee9AmcU6PqL88/hE23Kj5OIKfxOlrGeNbJx7m9a/bj3/6qIDowv8mB47W/PrMwH6clp+WaWNxyxcrHmXvlxDenPTFBuQ13LC9bcUCqVfBxsByClY8DHCGRp4b9X+DjlD9+PTxjsihg0uc7Z/ZKh8+3MB/nlISLj7OVmdIWCx9H0r9Xycipr0UzJ70e2npLwkre+Tj0uTkPHJMTEi6OyX5JcfFx4ir0/7n0gJDwBbc2vrnQIrAR73wcuo/gAautnFjlmtfnWpqPE87mxoYcUjZVhq+V7DoYoXrysM9r6k5Jl2R4djJAI0+KZ54wNWL7ooFUqU2Cp8f0uzmpHvgpU6EcaubFwU9Az7vndry4bHEL8bpQt0rTau8sz/p+zJ2cwo2M/mcXBVxYROGjWIheST/3ZGCv1D+NXjipMYg78LSfowT+o53/jGksCxzb6aRDlEIFDKaICQJ+fSj5OMysuCkj2EzpmJ8hrez7myTH58GhTadSpDQVDLQBK+HeHWEzQVm8iXLIiggGjMNXfCl50A/Jf4eSh6HZQQkWK3mDjOyGiCiRe1hMoN6ZDfWv47euqOJp47ezr1P2qqQwahhBnb4sW/zIG3xik356j6cTm985brgs4taBbpEubBZZOjMj+UXwx4C5Qxy12ZPdf6SuifpD8oyOmZGxTi/xG4RaEPXxepfJWpjyYrXa4tWqGCjHCCmBsdjfYemwTh6nNSgHoR+RLB2qjh6siNHfhHp15nIuft1QGVAA5kwI5mY/BKkPiqoP6YCQX4IQwXkcQn4J/qPLL4WPv9sx6uRz0biz29Ns30Zcocsvje2RM+pWUt/ArMNL5z/OmtqRbC8pMFGeif7BCHkmNkvbQ/UAwoxIa906/fFLcs8t4avHtVso7irvYIq1+JfDhxpC0K4VUSnPfZDyjO9gkcKT9rC+Y38t+A6JcQUOo+B3zNUM9/aNHIlQiWKzVWX/gtEGEiJdsgaduC6qvjvnSMI7/z03tz179eOnFpwmKyPBn4TQOiYaisNowzmNNsS8RiNdsE2oBHeo8JZR+nGP2YYco2zJXj0pUfpamahVaDDWHfgIisNE2ur03K+RkQtGSjZVTfMPutmOMbzKhCXr5ANVegELAW2zC36qNzNceRep9fWd4YrLqHGcRv2xA0Pri7OAAtHZFbg+CxI8ukwKZ0e3gZ6OWaYDu8p3F0/zJPzSYTGi0r3IC+viREiPZAvpXR7ciyijOh+wZM/BkqN2ulCrn5aNilfG6oSwriw1rMN4xVbT2jkiNhZOReQqFVF+VQkL50Hxbk+0oAit4CDbKyDyJUOXpUDPSNYLUzCWpdxlgm7tTeWROWDVd8HY1MIXRn7R3h0yBD8nCyVTttXz76a9eYBe4AX5FYsm3tOKrps4xuAUXguxOixCjLE00KpsbxxrDLegGusVSFxiKqdHbNp2Q5Sp9fxR2T9vHmNJOdYwYEwcT/Cb9+f85qCXWMFyMtYDjdhjs4c6Q1zSU5rq0TUuz2jsv/nM4ZdfT5VzofZLeLe54A/hhF9sGfgZDDFTC3XjIwKyncE3QVqEXnH3Oz2Fqav5HoVcASPADPDABgQRYKLYAszpBfLQL22rB4xZVafMs/rDqbritlhRrChpKJNuwhZe/Kg16YiCWsIYRSz4NUY4MLVw4TZ3MGHE6fhwHkmcTBtp0ARyoW/S/Va3Uv23q2x3TX+81Qv93syFWbLF0F4PUhrRrOMCwX5UaHoDMBbNPM5/8TrnaYtvflxQO2BDj6nXynb/OInmcuHdiF087HJR8WjRbXnp3Ot3xcta/PBIFhN80MR4BItmeUOAvFE53wXgFu5TASpqguOEAUT2C9cYpQZ0X9COZmeKK3zrPrJunuRg+Wt93w99T61pbCclb2ayMwuaigJsRy1F7uKQKeKxYdfTM/cG5/EA2IyZXICBHmWRMIYfiYF/00LA9mPcmTF7zJYcNMajXzNHyU+UDMn8kvLx2dWRJyxKY4SWeTODyzJLZ1jGMsjTe4d4rm/Yd8uw/Qf9OoqyAht2+7BkX7jF6htu9iRcymbUxGmAFzZCiLjWlS2uCfde36n7baZ4dfd6jssTvanlP0tHqnWMEztck6a6+A0gqpHnxjTwnSGpUj5UqUVPnLpeaVSv39G+AdMqbT0b8vcsf9QrILSnseuGMsHdgDOZexwvbcQITxVBeJqRaVx46o5/P1izEHsR5Dd7vHv859ryf4JG94t6OOFlXhfqN8MfwfxmxPWi/G1Mvm3pUMmU0Jygjm1WvL3w3ER/KwIQpUGIpKhRHQhGtfdcZIBinUliFoKHkaDpkfhs798xt9ri8dLRRx6t/80/i1q20EYMbmMOJexqUdjQxygP2NzP5MKG1n3gg2wFHGUZCrBJhAf/XZWJxHkkLTp+/7O+Tqe3n0eG7H3bePScurP7UxMdMXwIM9HBLxeFlbZkcvXw2hWDZ235a8ugd7vas2LVTavAjzgViMYagZ+IE783c6wnYhjJciqPe6IYwuUhzTfg0IF3zvv6+o/Lz+1V/k3rVaY5AhPjxgUPYqTb+CHixg1PrDcTcaPbd+0l4z3P7PvJRo8qetc3ZVSZuKkMCSm7Zx8ntzD/Hw== + + + true + + iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOwgAADsIBFShKgAAAAtpJREFUSEu1lF9ojXEYx59OS5IrF5IkiTVriWgXS5HWlFwQbpRYyr+xkgvFLpQMpRU3SEmjmLWEuZLcKGlpaRe7WNKulnQu1trFWms+39/ved9zzvu+59z5dr6d3/d5n3+/v1aNy2Y7fdgI6/w/xQWzbT6sj4tmW3rNlnvMmqUpdvOS2cfwsYJVcBF2BwXOmK0hZgn/O24qBskOq8DZmES6U5rutgeHCu7BBbgjKIBft4oQc85NeeBwSAlPma10kwIn4bDLBCX4FU74OIAZ3CLHQkFDEfqQ7ZigY95Zi5sStMFl2BVURAm/cWJGXedQIlkZp+uuhZLPYsh1NX7CB3EYQfKT5FhkP1e7qRYkeoqDpp6CgqcVdN5srZsSvICf4zCC+Datgv7dVAsq75EDnbS6ybTp2GYpdMVNCZ7AmgI0sk/x7PQmN+WgJZnRhrkOwDaE7ZPLBCPwQxxG4DNAkd8ui4HTY/jDZQD6RkHgOHwYh/E+0MgcM+1zUzG05jjOuwzA1kuRPy4FHWXdhRNBAXyew791NzgBiXoyybRE/XDSpdAJdUw3SDC7cIfgEemGIPkI/OIygMBvcNClcB9OxWE43tN8f+m6PvaaNeFYc2IIboZL6tJNwhh8pgG+LcToDdst3RB03iVnbvNmN4VNJ8kvhsmz0AT14IX1J3E4mgX3JA+SvYbqLsBPxjw2fik2Qq1/hwQfWlWAzU0fv0L4hVIymoqg8z5ss5mT0Q5VIFym42YrPI6JNwBOB9VJ9VSpNE3ggMsE+6EKpH74vIHpzAtBt3cpkB5FdLsKFjy/2kwVSPcpeWJo6ICb8iDhK7p461L6KkEzLquhzlVAM0lB7CicqnvRvIDelwAVg+9cZqHC1+Iwgu7XwzJNvde+uLkCkt1WBy6lx+Ajl1noUn2Pwwrw76DAHIUm+N/l5ghmoAvT71KbPozjUZdZaHnKcVgL4rbCQWLTd+o/wuwf9N7EUShQvi8AAAAASUVORK5CYII= + + 69d1541f-422f-4fd8-ae5b-1cebcb7501b6 + true + DIFERENCE CURWATURE SHAPED GRAPH + DIFERENCE CURWATURE SHAPED GRAPH + false + + + + + 37 + 0f29d6b5-557d-476d-9fcd-1e35aafe35d6 + 1327e01f-51fb-4c31-b529-4416006b1a3e + 162f3737-68e0-43d9-9000-edca353ab239 + 2a5be90d-6a4d-49c0-913c-d70e26179b8b + 2e2b4494-018b-4b3d-9bbb-fc30e0fbb0b7 + 2f8549e0-84db-49b3-9fd7-857b8fbfa7c7 + 3eb6dcf6-830f-4fec-9aa7-1b584e652d50 + 4ec05b12-4c8a-486f-8714-ddc1a05d9a38 + 53d8da27-6143-4850-b0c3-4f1386b53720 + 5782dff4-9e08-4705-8226-1768e292ab2e + 599673ec-baa6-4810-ab0d-b293bbd9bb44 + 6c12a62b-5fa4-4cb8-880b-d3fa7400b8e5 + 6e52f4cc-ea4e-4f66-b842-f541e2736850 + 806c65ee-b8de-4133-87d0-9b4c6414ae56 + 84ab60b5-0405-4c03-8a94-29477c44ce75 + 95251c39-6e20-4161-97ad-92420e60dcc4 + 971a627c-1390-4c0a-853b-fb1abcf48166 + 9ef3de6a-acfc-4d39-ab7d-19ba384fa423 + a15a1581-bcad-4009-b8f8-bed52caa28d9 + ab6c7f05-12aa-4d56-b76d-a62f99dc474e + b2bd482a-2fe6-41d1-8580-03fe3bbce4c3 + b6a15caf-2993-4a1f-b467-f63b1154d573 + bb37e36f-b619-47cd-acf1-af337ee168cb + bb3d4e0b-5b1f-4e69-b754-6fe5a8bc47a8 + befb5a7c-a7ef-40cf-b5c7-cf2bb32a8ea5 + c40aa5fa-e68d-4bb2-abe6-a2e720c42943 + c8dc7fba-2802-414c-937c-0ee49475db9a + ceed626a-062d-410b-b4f0-75cd654a34e3 + d965eb26-5b84-469b-934f-8d2e6540c7d1 + df6b3153-980c-4183-bc57-d1b62bfa6f4a + e284a31c-8ac1-4f31-8a46-c0be553a3b44 + e3c3b7f6-afca-405a-b0d9-09d8922ada04 + f08a4db8-220e-46bf-93e7-68d63cc48dda + f6a14f25-35ed-44f6-8764-6a7f6d50d3d1 + f6ee1b2e-83fe-4987-9449-6c078a80bfaa + f8dd3c7e-c3df-45d9-8cb9-a5f3d4eaa8f6 + fe56a2bc-596d-45fb-9cb3-e28b207d7009 + 53133e66-86e1-4322-bb85-7afca5c21f4f + a7e4f8f7-1ccd-48f0-863e-6ed19022d27b + e860b9e2-e037-4c18-988a-393d0094d8e4 + a43519fb-325e-4058-bda1-f7e34cc92c6f + 130433e2-dd09-4dbb-8e9f-946a284f4836 + b2a58353-e9c9-4e65-a900-6efa66489724 + 2927bcb1-a8c7-4996-b4cf-1e0b73fe722c + 3d99a0d8-87f4-42b3-ae8c-13046d610738 + 81fd98cd-c9a3-405d-866d-edf2fca2467f + ddb00df8-65f0-4650-a3c7-89c56da7f06b + 4a525765-a9df-4f3b-8fae-c2be3081d0b4 + 1af94696-7c3b-4341-b4bb-415b935cb441 + 17750273-1d4e-4a10-92b1-f4b16af3b73c + 43f684c6-6920-481c-81ce-8a3096268d23 + 9a110ceb-3e62-489e-8e19-61581f5671d4 + a67255eb-66a4-422d-aed0-4b64cd94d270 + 88db9398-ca86-4220-85b3-d1387046010f + 937bac2b-aa3f-4485-8435-a74b05842dda + bae8f0e9-2af4-409d-945a-a91a08fdc45a + 8de15979-110c-49a4-bf71-f92c5c15659e + 16c32cca-03cb-4d8e-bf89-f521eb08129b + bbece122-0a0d-43f9-bd1e-b6e66ae744df + 9c973484-e313-4490-a780-3cac6484f2c3 + cb30ccba-a894-45cb-b1d5-847ad7005125 + 20d03587-b988-43e2-924d-d6655441a5e8 + daca2ebb-26cb-48f4-8885-277e43200f92 + f12cf189-9dd5-4b8b-822d-2da85bac7a45 + 7e2338e0-fce5-4964-bac7-ea6c242afeb1 + 233b0ef6-f843-44d6-99fc-9ecf077d1b78 + 59e3ea83-51fb-46fa-8bda-938de18b7cf2 + 36be5f7d-3d93-4e60-9b58-2ea01268c3ff + aa2a8593-f318-4546-bad9-74c7978a14af + eabf9208-959a-42b3-8af1-f5ce33e4d91a + df2cb580-23c8-45cb-aac6-97ce3b2e2214 + 735da924-e3a7-45ca-9564-36c125627c0a + 326b8016-5135-4828-b69a-a21c171e1a06 + a317f3b7-85e8-46ea-bfa9-b8f70ca5c382 + + + + + + 1276 + -87 + 103 + 404 + + + 1337 + 115 + + + + + + 20 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 + 17 + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + + + + + Second item for multiplication + 806c65ee-b8de-4133-87d0-9b4c6414ae56 + true + B + B + true + 4cc7e1dc-1b86-4199-baab-1a972e890666 + 1 + + + + + + 1278 + -85 + 47 + 20 + + + 1301.5 + -75 + + + + + + + + Second item for multiplication + 599673ec-baa6-4810-ab0d-b293bbd9bb44 + true + B + B + true + 4cc7e1dc-1b86-4199-baab-1a972e890666 + 1 + + + + + + 1278 + -65 + 47 + 20 + + + 1301.5 + -55 + + + + + + + + Second item for multiplication + fe56a2bc-596d-45fb-9cb3-e28b207d7009 + true + B + B + true + 4cc7e1dc-1b86-4199-baab-1a972e890666 + 1 + + + + + + 1278 + -45 + 47 + 20 + + + 1301.5 + -35 + + + + + + + + Second item for multiplication + 2f8549e0-84db-49b3-9fd7-857b8fbfa7c7 + true + B + B + true + 4cc7e1dc-1b86-4199-baab-1a972e890666 + 1 + + + + + + 1278 + -25 + 47 + 20 + + + 1301.5 + -15 + + + + + + + + Second item for multiplication + f6ee1b2e-83fe-4987-9449-6c078a80bfaa + true + B + B + true + 4cc7e1dc-1b86-4199-baab-1a972e890666 + 1 + + + + + + 1278 + -5 + 47 + 20 + + + 1301.5 + 5 + + + + + + + + Second item for multiplication + ab6c7f05-12aa-4d56-b76d-a62f99dc474e + true + B + B + true + 4cc7e1dc-1b86-4199-baab-1a972e890666 + 1 + + + + + + 1278 + 15 + 47 + 20 + + + 1301.5 + 25 + + + + + + + + Second item for multiplication + ceed626a-062d-410b-b4f0-75cd654a34e3 + true + B + B + true + 4cc7e1dc-1b86-4199-baab-1a972e890666 + 1 + + + + + + 1278 + 35 + 47 + 20 + + + 1301.5 + 45 + + + + + + + + Second item for multiplication + df6b3153-980c-4183-bc57-d1b62bfa6f4a + true + B + B + true + 4cc7e1dc-1b86-4199-baab-1a972e890666 + 1 + + + + + + 1278 + 55 + 47 + 20 + + + 1301.5 + 65 + + + + + + + + Second item for multiplication + e284a31c-8ac1-4f31-8a46-c0be553a3b44 + true + B + B + true + 4cc7e1dc-1b86-4199-baab-1a972e890666 + 1 + + + + + + 1278 + 75 + 47 + 20 + + + 1301.5 + 85 + + + + + + + + Second item for multiplication + b6a15caf-2993-4a1f-b467-f63b1154d573 + true + B + B + true + 4cc7e1dc-1b86-4199-baab-1a972e890666 + 1 + + + + + + 1278 + 95 + 47 + 20 + + + 1301.5 + 105 + + + + + + + + Second item for multiplication + c8dc7fba-2802-414c-937c-0ee49475db9a + true + B + B + true + 4cc7e1dc-1b86-4199-baab-1a972e890666 + 1 + + + + + + 1278 + 115 + 47 + 20 + + + 1301.5 + 125 + + + + + + + + Second item for multiplication + 5782dff4-9e08-4705-8226-1768e292ab2e + true + B + B + true + 4cc7e1dc-1b86-4199-baab-1a972e890666 + 1 + + + + + + 1278 + 135 + 47 + 20 + + + 1301.5 + 145 + + + + + + + + Second item for multiplication + d965eb26-5b84-469b-934f-8d2e6540c7d1 + true + B + B + true + 4cc7e1dc-1b86-4199-baab-1a972e890666 + 1 + + + + + + 1278 + 155 + 47 + 20 + + + 1301.5 + 165 + + + + + + + + Second item for multiplication + 95251c39-6e20-4161-97ad-92420e60dcc4 + true + B + B + true + 4cc7e1dc-1b86-4199-baab-1a972e890666 + 1 + + + + + + 1278 + 175 + 47 + 20 + + + 1301.5 + 185 + + + + + + + + Second item for multiplication + a15a1581-bcad-4009-b8f8-bed52caa28d9 + true + B + B + true + 4cc7e1dc-1b86-4199-baab-1a972e890666 + 1 + + + + + + 1278 + 195 + 47 + 20 + + + 1301.5 + 205 + + + + + + + + Second item for multiplication + befb5a7c-a7ef-40cf-b5c7-cf2bb32a8ea5 + true + B + B + true + 4cc7e1dc-1b86-4199-baab-1a972e890666 + 1 + + + + + + 1278 + 215 + 47 + 20 + + + 1301.5 + 225 + + + + + + + + Second item for multiplication + b2bd482a-2fe6-41d1-8580-03fe3bbce4c3 + true + B + B + true + 4cc7e1dc-1b86-4199-baab-1a972e890666 + 1 + + + + + + 1278 + 235 + 47 + 20 + + + 1301.5 + 245 + + + + + + + + Rotation angle (in degrees) + 6e52f4cc-ea4e-4f66-b842-f541e2736850 + true + Angle + Angle + true + 0 + + + + + + 1278 + 255 + 47 + 20 + + + 1301.5 + 265 + + + + + + 1 + + + + + 1 + {0} + + + + + 0 + + + + + + + + + + + Contains a collection of generic curves + 2a5be90d-6a4d-49c0-913c-d70e26179b8b + true + Curve + Curve + true + 877d17fb-a865-4477-84eb-510ff1f13db3 + 1 + + + + + + 1278 + 275 + 47 + 20 + + + 1301.5 + 285 + + + + + + 1 + + + + + 1 + {0} + + + + + Grasshopper.Kernel.Types.GH_String + false + 256 + + + + + + + + + + + Contains a collection of generic curves + true + 2e2b4494-018b-4b3d-9bbb-fc30e0fbb0b7 + true + Curve + Curve + true + 7428efec-7c04-44c5-9681-0bb0a240649a + 1 + + + + + + 1278 + 295 + 47 + 20 + + + 1301.5 + 305 + + + + + + + + 2 + A wire relay object + e3c3b7f6-afca-405a-b0d9-09d8922ada04 + true + Relay + Relay + false + 0 + + + + + + 1349 + -85 + 28 + 23 + + + 1363 + -73.23529 + + + + + + + + 2 + A wire relay object + 9ef3de6a-acfc-4d39-ab7d-19ba384fa423 + true + Relay + Relay + false + 0 + + + + + + 1349 + -62 + 28 + 24 + + + 1363 + -49.70588 + + + + + + + + 2 + A wire relay object + bb37e36f-b619-47cd-acf1-af337ee168cb + true + Relay + Relay + false + 0 + + + + + + 1349 + -38 + 28 + 23 + + + 1363 + -26.17647 + + + + + + + + 2 + A wire relay object + 53d8da27-6143-4850-b0c3-4f1386b53720 + true + Relay + Relay + false + 0 + + + + + + 1349 + -15 + 28 + 24 + + + 1363 + -2.647052 + + + + + + + + 2 + A wire relay object + 3eb6dcf6-830f-4fec-9aa7-1b584e652d50 + true + Relay + Relay + false + 0 + + + + + + 1349 + 9 + 28 + 23 + + + 1363 + 20.88236 + + + + + + + + 2 + A wire relay object + bb3d4e0b-5b1f-4e69-b754-6fe5a8bc47a8 + true + Relay + Relay + false + 0 + + + + + + 1349 + 32 + 28 + 24 + + + 1363 + 44.41177 + + + + + + + + 2 + A wire relay object + 0f29d6b5-557d-476d-9fcd-1e35aafe35d6 + true + Relay + Relay + false + 0 + + + + + + 1349 + 56 + 28 + 23 + + + 1363 + 67.94119 + + + + + + + + 2 + A wire relay object + 162f3737-68e0-43d9-9000-edca353ab239 + true + Relay + Relay + false + 0 + + + + + + 1349 + 79 + 28 + 24 + + + 1363 + 91.47061 + + + + + + + + 2 + A wire relay object + 971a627c-1390-4c0a-853b-fb1abcf48166 + true + Relay + Relay + false + 0 + + + + + + 1349 + 103 + 28 + 23 + + + 1363 + 115 + + + + + + + + 2 + A wire relay object + c40aa5fa-e68d-4bb2-abe6-a2e720c42943 + true + Relay + Relay + false + 0 + + + + + + 1349 + 126 + 28 + 24 + + + 1363 + 138.5294 + + + + + + + + 2 + A wire relay object + 6c12a62b-5fa4-4cb8-880b-d3fa7400b8e5 + true + Relay + Relay + false + 0 + + + + + + 1349 + 150 + 28 + 23 + + + 1363 + 162.0589 + + + + + + + + 2 + A wire relay object + f8dd3c7e-c3df-45d9-8cb9-a5f3d4eaa8f6 + true + Relay + Relay + false + 0 + + + + + + 1349 + 173 + 28 + 24 + + + 1363 + 185.5883 + + + + + + + + 2 + A wire relay object + f08a4db8-220e-46bf-93e7-68d63cc48dda + true + Relay + Relay + false + 0 + + + + + + 1349 + 197 + 28 + 23 + + + 1363 + 209.1177 + + + + + + + + 2 + A wire relay object + 4ec05b12-4c8a-486f-8714-ddc1a05d9a38 + true + Relay + Relay + false + 0 + + + + + + 1349 + 220 + 28 + 24 + + + 1363 + 232.6471 + + + + + + + + 2 + A wire relay object + 84ab60b5-0405-4c03-8a94-29477c44ce75 + true + Relay + Relay + false + 0 + + + + + + 1349 + 244 + 28 + 23 + + + 1363 + 256.1765 + + + + + + + + 2 + A wire relay object + f6a14f25-35ed-44f6-8764-6a7f6d50d3d1 + true + Relay + Relay + false + 0 + + + + + + 1349 + 267 + 28 + 24 + + + 1363 + 279.706 + + + + + + + + 2 + A wire relay object + 1327e01f-51fb-4c31-b529-4416006b1a3e + true + Relay + Relay + false + 0 + + + + + + 1349 + 291 + 28 + 24 + + + 1363 + 303.2354 + + + + + + + + + + + + + + 33bcf975-a0b2-4b54-99fd-585c893b9e88 + Digit Scroller + + + + + Numeric scroller for single numbers + 4cc7e1dc-1b86-4199-baab-1a972e890666 + Digit Scroller + Digit Scroller + false + 0 + + + + + 12 + Digit Scroller + 2 + + 0.5000000000 + + + + + + 976 + -140 + 250 + 20 + + + 976.9166 + -139.8604 + + + + + + + + + + f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a + DIFERENCE CURWATURE LINEAR GRAPH + + + + + + 7J0JIFTr+8dHZW1DSKWaEpGS9r1mBmMbS6i0NxiMGBpLtKpkV1QiVFRaqCwhO3Uj3TYtSrt2ad91b8vvnHFGZ87MOXGdMaf7u/7/26/mnTnOfJ/3fd73fd7n8xw5Iy8nP08Wx/cH8CNFIpGkgf96eHv4ubI5i/1ZXB+2FwdssgFeBpvBH1nwLfzPmbKYziwu+BZpqFmB32RmBL4sD7w0/tGLhNVhhy0SvnCaXI2Wf5a14bL82azlYLsC0C5j5wZcxbkn9LIly8fNPtCbBTZ3hn5xd6jNyovryfQAW4YAr6ampv7gf8qO5cFy8mU589vYbPYPFSOWC5vD9gW+hQ3Xy5vF9WWzfPiXBf/rYsT05f0eOeAfx+57RsSG3pLrasTyceKyvX2hLw/eIqmLFdOTxf/Xy84Opib6+g/ydjTuCgf+fBCfCfx5Pz77fnwu7y+8f+amgX/GbuL9GXM/Nq7lnTUJVuDftwaDV9gOfuRB8r6Wv9/ftvX+triWt92PP9Rytea3NV+kMf4Y+PqOdQK/mv9Z6Jag1kOCt7fz5++NSOS9OQrr74npLReE/oRewfwU7+/QN+L9RtgNHGq5N+g++bf98z281ubvCP1S3neHVOVdAdKH/1lhJZsVhtRu/kV8Q0B2ga4mYD5IXp5l9fVNTB3kbYEeBg4FH/4wAX+681819PJrHkCd+UMA6GzuQGeE+k8n6GUZeybXlcV75wDgnzu1SaRp6kDPmufl5ckfQUrzzs+Qng10Z4FfJQ++IvRr5G2dvBnMQC8/X/h7FUy4Xn7eQm/uZmJKZbAduUwuNASkoJElLfBW8BXZ5vcF8u4Z+rgi1ceH5enoEUj38/CADwWqjZ+LC4vrwvZxG06e3ewxpo3RNwD/bzjZ0M/D14/LmsZh+flymR7DyTZ+jh5sJwtWoL3XUhZnGge4Wk/+pWf/9DfglWWhq8hQ/XzdvLj8l7tbsp3cmCwPsg030IvbycyZ72VSG3ZqLB41m5Eps5n9vUFhhcCIVfh5m7Iov0fpp7OwdgTN1yKTNPBH1+bXBMQCX5dpfh3UqBOkXxeTWT9936h9tpXzMw/RD+7refbkmo/bBe5KmmcreUMvji+TzWn2ozrQVWRoXlzItfINI2Po5eHlx+V7OPB/RfmqAVSyK3hdspcL2YTL9PFx8/IGfB/Zq/lbdTIz4vUe4L/vi4+kHJ3eaBl6ICNBxc7PGGiSgpq4uUqOIf0qLfbrXHHWrP/4CmjqBDX1O7Y4uX4myzQrKnvt4Z5TLYCmzlCTbC/1fBdFRauSs38rcLyDaUBTF6hp+rUGqz4ZKYy069dDi292bgSapKGmCJpRhHyciem2XQ1bV/uHbwOaZPh36NrrVRnzuvX6u/H+pyimTUCTLNSU/3j5yUqZKqtQxwdVod+jugBNclBThifjwBelWMuCer1nCnnpVKBJHmp6OfjD2WmrZxpvMr52lq3gugxoUoCatFmD4lXmhNMLIpfIkvSylgJNXaEm/x5yZwpi9Rnrbs8+bKrfWAI0dYOadm16eNO7+2XjOPtJ7BDNyVFAU3eoSSMyrMtovVvWB+pfr74xLe4G0NQDanoR5Pp5SXqa6XGZeiM3mVgpoKkn1MQ2P0l2sXpO2bJv/PfnqpTXQJMi1NRFWlVXaZg/I+vTY7MjoV8nA01KUNNxl5GnAujTTffO6uG6RlrhA9CkDDXFfZ//0iyAaZFzcnuj8uR71kBTL6hpmWb83ZO0k4yNWwavyYhd1hloUuFfcEf/69eTp1LDqPOUbHa6TgGaVKGmzQrdz5ByjlgdZyeuiS9rLAOa1KCm4fsGRfRebme8P+A+9f71pL+Apt5Q063M2Cvap2XMs4Z225htOUgaaFKHmhYNVrGsJy03CbOq1Bk91vko0NQHajL1cddc2vMRLfaHlGNyv1J9oKkv1ETK2OTkM8+PXvbJ6tSc0Ze0gKZ+UNPlxJxlL2avMI5ihuraGMqUA00a/Jvf2yOHmapJ2XBp3qgCr+GxQFN/qOn2INveEZdDTY+9s8jRv1QOGmUA1HT6RMJnWo8e9Pyzo2znZpWvB5oGQk1/viyP+fa3rFm6vd6zoSE5/YAmMtREfR52arF3luWm6r6Wi8obwuXMjBYLeJBBoGc24/j4MjlOLBM/doszUzJQ/bTX6Lt56pgtL2Ne3aoX4TbkrNhOS+EvkxSovr5ctqOfb7OHh1w330VJ4eaiBnagiyrtveRI6vwwq6Kzn8JsdQPtYC6Kvl+vXPbVS+u8F511GlhfqmAu6ii7Rt58Vj+T9U/u9FxNsfgAc1EZh30mnLQwo4f0lmbQqyepwFyU8ZqKFEpYk/mmhckc2vN8PZiLurRAVqN42W7DvClqH0fPldaEuajyOZ5X53/0MwsZ1SeAHqx1CuaiAkIrV24aNp6SOqIsTU5zVgjMRbH3rylhjb1slhZDmjRDvyIZ5qLUf4wiXXCVNolU6nM0YSKlBOaibJwtDrwI9KBkHNcOjRzT9QjMRdkP1dO48qTUMlHOkxO65ZItzEVNyXk/aNK1WquU0lWaNaMHH4G5KM1A92Fh96LN42t2VNmnDl4Ac1EnI/6IuxrJtYpcfeLm/jU3FsBcFGOnrHpAX5b1oZOsG5Wf1KfCXNTDtPFvBz8ZQE3l7nR4KVu+AuairDa8G2QWV2xWGGs5R+GM2ieYi0oq+vbg0I40Wr6nzKbE9Hf6MBc15jKLMW2mvElwflqY1qq+u2Auinsj/mCR8iTrtA8n/p474sgjmIuat46TPzwyySqB5piY8+OdLMxFGXlr2eYr2JnHXahr2Gg1SQfmoqhN3zjqc3SNd12LemLAVRssNF7V0cbr8JIHs/MXbTDKrLTf821KbQ0O47UTbuNVuwPHq4h1A3+8ilg38MeriHUDf7yKWDfwx+vKGx69nu80MyoILrffd0b76n9Liv+WFK1YUiBnZdiSItiwc0GGphc144qxxqUTqYqwJcXieV/qF1KHGB91mMwICtwnBVtSDNceq37aUp2ewjq5wPMqtQS2pLgyezybnLHP+FBiVNrBL4fHw5YUi48xpE03PjVcp6tXPllp2mUhZzMQzdkgl+04OJvOuDkbtQ50NiI8Ct/ZiPAofGcjwqPwnY0Ij8J3NiI8Ct/ZyAWqa70qzLWKOOuZsav28QOYs8loOhy7sPALI4ZG/Thp9ZpQmLMR4Yf4zkaEH+I7GxF+iO9sRPghvrMR4Yf4zkaEH+I7m+Q7hya73/9Mj9zuNOi5+4qvMGeDHF5CnbcnWudFThA4dN4uaJ1X/6njoK/cJottc6/WjTyYriLwu7oZsf3ZziyyoR/XnyXYh0HDgmYS1Tt1oY8xyU7gB8lsjq8XmbXMj+lB9mBxXH3dyD4sVzD+6SNjynZ2ZnFagi0i5UB2YfRbFFJFoBWhUEvMiQYYxZn3kib475jjlaS6tEoS6QGNRAqiSduw/b18+Wt6kkE+0Lqvsqs3k8v0XMzmePvxAhuykLai5OjJ++1kQANn3t2I/JI31u8pXpjYn55eOKG+dk7YdUGbi/520MvWvN/WHPLlhbhk7AAX4sTiuwBPm1CXUd03WGyrsbk55evGmK7NzUJBrVbqEwToUw3q84ZKIqVQEfrIAa0BaQL6SEH6dELRR9nKz9MRdF4uLf1CpER7utG/hswYZrYzwcZjzq3aMQiJwK8jQiLey7+SCDmB4iCRDqZEQBfqYQMG2Xx8ge9rxPRltowBkqiAowyNC8jhRoINY+E3dbFh+rrxv3nnlQaru5j5sjxJpJ8HEzIcntT8D4Hvg1sKvLQMhqV623l7sH1brERm+pKXsjlLRZur9Ovr8uH9zzMyC5d/KlHabyBoLgvwc8Lman5ZyFyi7CHC6WHZI2wflj0mSsYeso5eXh4sZosDJHVrtoaXny/CschQnZxYPj7wy4v0NaDDA0O3ZG8vNtpA+hj8rddrqyVWiVti2aY+9L8FLCNjw/ugkGn4r+Ntm5o8yJ0soImwzYdcnjsRkEWq7bIMtmdyXAHDkv2BudCLy+u5zq1QqsFM4VKXz1tMQkZZZK3jHPxDQCk56KLCWv1sEYdaOphqAZ5FQK1ObVdL0wb8PMsX8Mn+TA8/VqvlWvrkflPDjcmm2XMz113Vvj0Gcb7Av6qwYPA2cUjGG/yokgGDH1omSZNQlklnkpiMb5N6m6zfP0C2UXNlmWBHYACrIrKdEUN4iSSNIjHNkMti+oJLJA/ws5BHJTuD5yssZ7JjIBlQl+vbLPZwsi/UfZkcZ2gJpb+6VWsn5Bpf9H0Ld2B+Sys1dgBWRQZ7AY1LRK2ZwgCNDfYIrZmwZhpF3g3ANBD57dK/+t/rbxVuknL+5PHa8pRcwSnGDvy08BTT/DLevcwUUIAMKmAgqpclAH2wZo9EphgFQy9gl8nmQKf4Y0joP8hFG5aB1HkG4vdLHWc2t/k0V1ekobwfVSX0YPUxTZd7qZX4TPkvAUPJG/E/LGQsWJM4DBa0B8tgBpIxmEzzHCVorDczsIz1q3VbV56xmh2HSPts7qH1/HPOO1pxfY7mqCnLjARXBAzeB4VXBNDr4rBMfSqWZWJSJb165h/6g5YRWrPJkNDn1m4MmL8XaQvkdk3AFl3AjwtZovlVvO2gkwu5tCxg1eyNdOo1x3gjBJo4+b3vXzNxIiNgYpw4CzKwJs6CdJHBhvZNnE/qPFgrB84w2Vxh8eWmoSylPRMnYiuN3Fy0cysNOoODGVjOwCHj/3devUTLef92vInFsduuvk6H5+0lyLwqh2kwoEcTZl7l//ycX5HzKtZg++W8OobmmyS3NNNqDyUoK+XV89D2zauIkaZ2p++9H0Fb6XH5FP/E21um4jDS3NKxDKcuIcN1yLQ7Rer29Mf2TrSsK5FSatKlFhKddnkeD3XaBQYQNO3yO6fQtGt1nH7hDOmUYdC8PlPYjeZKAt+mh6Wfhy/b24PtxARvXXjyRevv/SwBW7E8gU85MT3IngJXadWsijwhwrotIbkR7a2UU/E4INgBQM4oGti1EXLyvNWByu4t8Qd+rwZl4IVIzUBHIGBLnlfgvWzmzB+Lc52rN0mVyxsVvept2V2vVw2/XQqlvas1r9sKjQa55tfRL9x8P7zbJZGwzx3609lcH18yGxhOZBcvLsJeIu1TM0Bea3y3AZZx3TbFfVk431XAPlJUIZMALyG7vxTCSyGP3NrppUiAOQ+C5jQQFcq9CpjT4UAlTCSpX4g0wI7l5AUsDtui0kD9jxT7i92NNuy9F219oUhOUCWasEq0X6oUk3MgIUhtMyP2GiXo8bCbm3FQSQ5TpYL9lVAfbOlLWP5T3ZblAwgDntG0QiDkzCQ47TVfSnjag17H25825EE9pgnQgox0AB55PKUgfyqH5k+3N3zcOWJWFKPwT+sTJj9SBgtGNo0DvLksHx8hX4q10FMzBmOrvK0Mh8xquQDsWvx3KtGtbS2p9jqDVxpMtl09eLi1bqt8LfLwHO2WhYOxP9taG2ItqCQFxQISjzckkeqR3a0ekFgxVoSP5R9Ki/CxUiJ8bMK3oKLUWAez/AOHrCiP9W51hA/t9VMLsj+Ty2Y6eog+v1X/UCJ1bgTVNOVNr7L7p9ZWCqo9G/oo2VrYOVh3tAutAKzlHQs5hwqktbYV8KzVFueg8tM5/OzIIlWak5F4gX77g0nayT5b6MP9ElvlGKTIuPuEJccgCSooIiQwPcaTAPIJ8mg+IbGgfm7ooyazooK8ouyl9xmCm2gbJoflIegO+FcSpaEOlewNfoI3Bzn5+fh6eZI5Xr7g2QswO/myAnyhsxiRuiKzYUTcinDGiChVnbheHh62oGfn+6/mnzczEH0SaUm0Pik3y4fFtQdun/9rtYy8/MCR4ATMIEvBpAiWM9sX+u7ATAzuLB4E7UfYkU/OCe1ZCitJOomAHWcbkoJCDRUsmVxXNofBchHoFF2bX7Zlu7oJ0kHNr9t7ecNfFewMKcaFlV3IiZU9eSIKInKy/LsSlbTFZS434ziznWAokTz4Irjdgb3EW9OCoayfztzOm+XEZnoYejn//Cyw9/PlspieLf/uMofL9P7pMJq7qgJaVyW7auaHRYfTtv5xmLHjS+FKwf5hy/JgBgp2VTmSyBNDtN7bi0pezuayyFzwSlAWmsiOiszNEnEjrRr/iN6I7P/t9JAJwAJpSVIluFwgkYKQ7qEJmM/ISXz30JXwmiOnD5w0R+a+4qC5XAyW5tWb+Zp3Q9O8zamYXfmadwRKJpzNyN8eishm5Kdiishm5KdiIg0rlGEILrBEdglksiMOGYbd0WyyrJytx7ZKNzxeZu3x9NH81wK/q+tMP3AaAITzdhOeLNuQszDEiO3jDQ4EJtmHxVuKBI7gJy8A/w/YCPgNIrVAZnei3p+QIgKNQsNF3s6L62sN71UiBtE/XNq1XA05H4JLuxRgEKkZgv8JDqJao4LKZE5KZXc+Bw7MT6wAgcs1m7IHmilLWfvTOd/OMqKHVx4z4CovFAw3g9mITJBlFQ4oyaBYbUrLJsjXjcXLFuVdADQfP3mU6QuaFJwSXdgsZ7I3fxOh36pNEJITQLlj4QB5S1Nrd5nAjjvLE1D+L1EHOeAeNGtpm7JGlVqyRlmQRiK/4IjsNRN2nr1kfshypsmKuWPP4Jg3iqQl2ung6wCFYkCFTGlgIh5CITBMl+IhMm8UTSGtn2lKwO6subc4e3kCHe+XqpHsv/lM+VuRsWm4WvLVl7Wqgt2i5brC3eJn06/U69ojPq4sT9c8Wlv1xga3N7o4qAf0IAz1Ktwr2xQSV+Ul9P2UDhhoK31Xi5QrXm5i1bGcsYbrFumv6Bx54yxiewFeR7iTNb+M984tLA/qRVNFnVKcy60kvfEQThfE0qF3y1CHsgOxlBgW0dmYrqdOT1h7e/qeo97ZbfcnYlHExgNLEaDfCKUEtlIRJzbXyQOzb3h7mh+vNnpLLS/Xpc0zNptPEEUUl2Ip4u3OX0qCEMbvCkYgSbcOACOC3LDAiCAX/MGIjytKNkjZ3mBs2BX7ddcCSg1xJzgwy3yJG1aWeYWrWMCIojSLJd2fK5mGPbY8sfLwoi04ghFIAg8HiciuWBIBXejfDkYEhe3wcJT6bpX8doQtpcufFyQMRtSzsOxBYf0fgRFrrz238h1Hp6Yl7FbUnLD+q8TBCJ47Qc1bB9yJpMAI27ph7l80Aq0KJnGepD+3v0IIMILnWVDVAjyLxMAI5GaAMGAEb/CjSgYMfmiZpEhCWSbtXrm99lXDUsODR3S/Xbg4ulbE9Cw6riNK36HQO8GAjZOXh0dziho4/wGdhsVlOzWvm1q3OkLO7rKWTG9vNseVrxT4dXBcTCAx9nbOlGRwMWFTCabMCJ9QnS/Iq/ROsOYbRwnNOI46IZqJXcooeQ5D1NPP3lAT+Lo9jcDMBx9frp+TL5nKdWp9Du4UWxbwFVj+zVEbR6YPi+ztweSwhpO5TGe2X/ORFTDQPVr242A8h0Nmcp1aF7VBFmPAvG8hgyHf0IblbQUXUPycqOVtELC8rfBu0/JWA/jdZGA7adi8hwKXuT9vTOT3zkqZ/tXXlk1Pnr1huOUf2wTja51FfVfei7/qmsgtGg6LuBRQqBRRCWoGx3lCtSkU0Y/W0od4XaVZt+a9p0ihKAvUjD8VbzRLHcziTj/XtEbQn/KuZgNeTdifwtrw9qfkfEgXB1H+1BTwtiRuG0MTts3jqVWa7NnQ9FFWu7PR3qu+B/IinpxAnK3zriQi6ab5dXFosWQZlhbIPvKroASZCncoOsB/oLNhcnx0IXlEimL/ZP3G2EuVRuVzyI929qtWFnT4vEsKO/zml8UhCdkbS5IgL75HV0bz6CO3rA7sP/k7PXbWuEhS0tx4wY5vDYwfa39gdeIg7Mw7o+jay9DLE5AfGHjg4AM/HNA6J40si4N2K8Jj8GdbaykJcNu4CUyJpYnILyIBwmZFt8k1d+VlADUv4kR+uZMm97dz1miaZeSMv6j6pkYwUVV6Nvg54X7T/PKvvDGyjk9707YBbRRBbRpEZfNcbdambbnSzak/GOoY/i1zM6nU3+hIQtOzfswnyyWa35eSBwnQJEqAIXk8AaBx1QttXBHmsB55qo7TYT3SYngc1m/GPKzfxNdcBU3z3zCnElnUS8w5lQYBWDmVNsv/5TmVVTLD+h3P7WKe73l4/TPfrUV45lTi7IXBnErFAKycSsBa4smpNLC/uHM+c7JF+PIpOnJRr9Va5YzFlFPJkwA1pxKQAPIJqmg+gUA5lcgqfeLPqURaUjI5lXVAZ5XbCNhxkrhyKsOvFlSad95I7JxKfjKMGlpXJc6SAVEzEqclA7L/47BkcAjBWjKoh/DdQ2/Ca46cPnDSHLmHx0HzGl8szW18+Zqro2letj9q+sFvmeZ5FVPtq4t9BLfQMs1HlIKiY51pjkQN8bp4eAE+kuPaHEcnNx/IiXbNyHJtom5JeP8Bvf4rG4yu3a4y0liLscN8o1yW/bHS9q4MABvEMKHEHeS0KPc5r1L9/BJJH3n+nJNiKFB36IPWHdoc8OcPQbEH/JGlbnEM7iPhYBz6hOkRlD5x62NeJf3xYf647ItmiDbnOrf4wg7IdUbaQig1GfytIq2ILJvamtRkaVFpLPwuDenYD03Hi/2fP/u0xdIy+Oj2wSOWfBTMhe5i6SUqwQftZGSYPTA0fTzAHaiOJ/BJXXAj2qwOmenhBTg3JnTS2roYG/LRDsL3Jgylg6+2sh++AWP1RUA//CqKjQbjaopFbYqrdeeF111ZXsCelBso8isV9ln616beRYalWe8X7DC7O1Hw5NgE+qjwyXFLy692dsiu186xWg8mXoIaUUSFbXnHdEVty+rh9xHe/pfXGUQfgl0dMii9Vs4qoWbv0GON/QTPjGUsvUQy8vzXf+XQ9M8HcOi2BhZBKvbSXRmk3TiIpIgpUkUh8Yp+8H+GUNoUH+3VMsidsbu6zjuD/lqs69YJGg6lQ2ZkX2l3V8cjVMrry6aizFSXy+vLbTqhatbCBXzkHK8/OwOGFe3JzJNUFmk9ZkQH3n9rvqbXd8E00ZarCKeJ/mwSS+AYUw2g00KzhwYJZfbI0C+cPejSZ8NtVzzq3txprEPEqJoTih3mzms9E6HdUuEKSkd24Xp5klcGBK5YDayRPL29OGACTevmD+Tzf9DuTjhe+bOtlWo2AYMcjFmSehqKOD4ngQUQjwvNJXzeXmQEDLqFlQGw7y3yW5pRlv2wo+cxIp1LclVVv8Qom3F8WVygpwjHfTuNcBDkexx+XluY74E3/sqjnjpTE7c15JhF4qtlWXU+B/q106OCPAkYVCTtEdU5nYGp2buAONuGN+VtmQFbLBv4K8seuUPKDnxVRMnzJ5v1mjI9SdB2c7FsN7cNtnO4ExhoGRBFy6AOTJQ6O6W9CRKg7ciYtgOGAmFs17ZM1xbbrfiV7T4M6KPGLl/F2J36REqFMzhC0HbzsGw3D8t27S0HAiYZH8cyjgGhjNOmpYkiZB3sNCPk4k9wZdl8CeGVJfQ67rNwLuTo5ESBTepAq2lB29Yk3SERMOqyZeikZH2X0zY+eOXb3cLDfd9ItN4pqEDNcSwFHI7z1yH9SSjrkOzFjCcLgrPNw5UWj9moViRYuUnGjgU+07T1+9h+LWsQH94nwQ0/FJBr3cID+XRBUbcjLHDz6609bwIkA6ET0mVR+Xrg5tUgr001p/s218tq/p5kkCJ0Y0HfX+R3VHjXm6s+65PxzuIdecsj8j5KsPq0DTjj5KPl8deBM04ecZzamxltqYg5xM6X5U32Ya9g8c7xWEwnN7KPHy+cz/ZnQeYSaaBXI/zWfjd1MdlWu15FLaDwi2D0BLyscPSE96o4zBOUh2UeA8Kah58mj2aeAT8hJSgn/tcjZ4OZmwVbe7XxsZH2e0gOFxGP7mwXsIR8QGk7l3Kg5epzsSwXkytpy/GBJaGVAsrhF9q8qWSH9PUijYfc6Pwyr/4X7l4s+3qeMwTxT6H8ZDAhDBht0Hw6gIQyn+p+661+lNzZOI/25m/WAFfB5zF1ZQDWJjcvB1qfadnfksX0AaFacHRAvCev0IEHcLXWTavIJ/Oi3pXwmhrW2EodA8BHOWUBOp4UlXXpDaaAZYnc0behz8nzAsagAKL72pf05DkLelrk640KHLnOVzAbrgv4lUQVZfX5tZvAGf10A6RyA6VKEJX+o3GcJxUqwiZyn/XTrYKlKXlelSFSI9WGv5/MtjNnxMa/9dxH8e6LHI9SQuOxg9e3ivmQOKJOu3iwNiAONB4Hoo1HAiUGIacY3BODhHqrXFj2iIN3V1plOOYdoEWrdJNMYlABYMeAYy3xUjEkBoXm51cuWnYMj8QgknBiEAnfYmtktK46qNPG+UPzrllEOT6jup3nCGYndLdk+viQqc6AHYRSW0Hhu6B1WWCNAUbByZ7g55nQ53/OHy2OolXzCPJZ7Ri3KNSVBZvbcEDklgP0nU+iThrBPJWC7PbOJQNhSf0+zbV84Vrpi44E7NiZfnDaZJNM2ibL+FPViFN03hWFl6LNL/9qjkE65nbOMWCIwAGUsI5KEq5j63ycJ2GbokW9YUV94UqJFArpgySa8z8xH9IiTFQQTwecUnLazUb3ZkDjCriOL+AjyFzelxE9KezcVDDkzcAMo9IRXeaN/fbqviCyaANdoVkO4aWw0BvEIRjQPTAEc8vmz8GD0BxbmzNOlPmCd0DGCTJVAlZdD3kKBquuh4xTwarrIdfasAcdI1cAsAcdIz0r7EHH+i+3hUdsD7fY/kP5S88hFxbDHnS88tnMt6OitI0Oksa8ki4KDYE96FhxwIEzhRYfqBvrj6ZPXXF7LOxBx+NjZlFClV5b75TPXMacUtgf9qDjS5m14VtLzzOS4jU673a8/EMo/wYsfCiyI//5sjzm29+yZun2es+GhuT0w6E04GC0DkX00oDIx6B3aGnAf0gotFxNVGnASJTSgH3oBZWn2ZG/Lg2oiWbK3/U5T6W9lxxJnR9mVXT2U5itbqCdGJ/z5P0K6zlP3i/F8Jyn4xc3hux3zLDYM6xIQ+Fk1d72hKjF/5ynJa+wnj6j+Or/9zlPl6fdjPkycafpNsXTDLpq97cEec5TxUssgwE9mnApX2J6ztN20tTJhgoO9FRl/8ba00tP4vqcJ8ULbl2vGKqYHx4xasehEbJbcRhpZEzD1byQdEhbjM95OmA2NSa770zrPaxuKUvcr+6S6HOeeB4P9TlPwACCpt0hJJRp9zdkaOn79cplX720znvRWaeB9aVKzAyt6U0shrbuxr+cob2WVD0vTu2JZaly3PZLNx59xpOhNV5TkUIJazLftDCZQ3uer4cDQzvxJhZDC1hLPAxtjs2L1M59DpomrXH+likbsV+SDC1PAlSGFpAA8glaaD6BQKHyo+waefNZ/UzWP7nTczXF4gO+ofLTFzo1IBlapCUl91yS+gfifC7JRqPCyk51D4jN0PJD5dpoXZUwPGfGYZ8JJy3M6CG9pRn06kkqIm7kn/CcyP6PA8+p8wiL52x4yHcPQwmvOXL6wEnzgNDKlZuGjaekjihLk9OcFYIHQ1uHpXlMHV9zHTTNiR7ourRAVqN42W7DvClqH0fPldbs0EDXP1xGoAW6bICFgs4zlEBXkUVBZbL2s18HunQJP3xORvwRdzWSaxW5+sTN/WtuLCBupSD1GqzhU3eRP3yGoWlOu9r7jv+EY5Qj8xepR84uFVzRqIBf1RdMBTRiu7iwuCxAJxGprmhZOSP59c+4/Ms4/7wMb9Xz84AVpJtatccpn+N5df5HP7OQUX0C6MFap359w0KmEvmuVopefRzY99SCNcFEZe7YACapu9re01YqAyYKuF4CVyBMXh05sg6UPwZWLGyuigv+raXEsIeH13KWs+hIV42nxp8jGxYbBiVpx6/T65KGyE3neTMRuenNr/+qbydTpE9evTDZ9ED0pc9Vpu9etrNvFwAyTwRl7iIqsWXscZ7M7S1crQUzP9mR5bucxeLw8vtZTn687sE79Rep5fOwG5+HpT+xTjshZ3nnZp5gYZCuP6/rLOzV4Y14b3Le5EGyLRAlm0oeTzbIJegR3g0jlxutccMitjiInoo0HR7FV65hFl+5xpd8OOElZ+9fU8Iae9ksLYY0aYZ+RTI+kiPnUxwkf3MJS/KsS3zJR6BJTujn2SF7PuzEHWkh2Ik7cmqEnbjbOFsceBHoQck4rh0aOabrkdY/z079xyjSBVdpk0ilPkcTJlJKcDi01kezydkemu9HjfeyDHn32kL/ylpjwdwpWxawAndika38PDzaANyM4H+OA34OnC3ZHGDpznZunl6Xs8FcYV83wA6tXoMg1cS4T+EcL4HmVvb4g2Cu/BWwEKeoHC8wx8TgSntXHWpmvGRYYLkB3Iwvb3kGKiZSAC2Lc0vXKhuYrJuSYtntmksjIrULvJCI1C7ey7/yFcj+3V5fAbLToHLBoo5kYsAn61xBrTHRSuX6tSjHFehqYNcSKd+EgeW1qj1u0I5cL++6sKCiWvDpQlAH8RT5mAfBVrzXD6BaBphq1V/u0AMs/o3K2Qd6s+A6aMIcqL4Fi8theeiD7/HRNzFdDELqriwuAuQAf9q7ZFTjLc1BwwKXIDM5gc2mFmll5JK4PYOknXatzoVGgUjWxiaXNwraRIKqI5Pooa7vLFKKMwWb09IP5FulO29/oDa/SPAsrY1UEg5SGGBKAXRxaKIaSUKZqKyO0y+cIZ0yDJrXZwq70VxJ4Pv04AV4vT3YTkzRichoq7R+lsAwYIHlPpyYHmRPgau0al6yH6qnceVJqWWinCcndMslW6zbEtIb0d5aAgF8YkEjIGeUqJkJPBB/80zEOSA/bCDiHJCXMYA4B0Qe5/HbpVDaO+KcsH8z0wr2/uaMaAH5RNon7WVvn4EzxpnlLpIfPacuXUPAPlJU4ZgStaMPCkngk0QboYNCodEBljynNFbCRJL6hUgD7MDncji3SaX6kvUuOtEDLWMdey64MemyYN6YFE1YJdovVcq+sWWbZvBG2r4hf8TdXhvZ3ifIgCq9eYalUsqzNh2nqsPSxX8tEDJrRaL54uDzd3k9BqwRL5Q775HHUwrypwZo/pTIheKm5LwfNOlarVVK6SrNmtGDjwjfW7sLxcl9wCoU5/Ae70Jxf8TH7Vo5Wt8i8dNV66+5Nhm4F4pDZgLhUAOt6T1WDbSD78VSKG6ewtpte+uzDNMmrVk4osJNB9dCcee6W0XP+B5tFlnsafzuj7izOIjkgCmS3HviZQ3yf8RVKI78l9P792P0zErdn5TFPhlyot1dHQ+EmteXUUujAX1ZPIXiYt88oB1S5lDiXs9dt6j38sMEKRTngKkG0Gmh2WMUCWX2IHahOM1A92Fh96LN42t2VNmnDl6Adnc4FYpTfIdVKE7xrZgKxZX137ap6f4Mo8h9Lht2WKlmSqRQHLXpG0d9jq7xrmtRTwy4aoNxKDZGeodVzyrrLYHSecVUKG6XpdNyw+Is4+B+u2qXXU0NFVOhuPPHx15y/FvP/JDU98o91zc8w8F2S95i2U6RSLYTqguDT6G4Po1J24dMu2pcFlSySOWUhiqBCsVVvMGswPiGOMYRS6E45OJP4oXieI4OtUxa2FvcC8X9WKH2XPt+vdXu76OsvC4985B4oTjFt1gKJLzhr0NGk1DWIb8rqLfr3vAZ3W4FGucHjCkfGXGrqxhBvW6qVRigXpRKFf6gntxFX7re6R3mUUnx04uLTQXLIxMO1OsCCoSKD91Wqfq/BfUK139bOWLeHfM0+5SXPx6oCT4gTnKgXq4KlsGiJGMwSYB6WxpU7xu43DLfNPjyvkfGkTNxBfWU6AVayRuLKUc7Obqf7DXzIw4jzRnTcFMlZLgOAfXSRve/8XlEd1oyzcHtHHOYYAW2jgb1eB4PFdQDBhA07Y4hoUy7vyGop74k68ALU5ZV4dvpfT3ciqXRbhknUM9DvgoD1BsrX/XvBvWqI/o+oKVxLcuSC2be3DxCHk9Qr2aqbOSTgp7Wx/O6PjtcY7ISB1DPGbQWKqgHWEs8oN75tLhnV0mTGEkquScSBpkYShLU40mACuoBEkA+YSyaTyAQqJeer0HdwNxtnGI24ttKkwwX8T/sEmlJyYF6Wd2rxAjquZgUVuYc6V71W4B649C6KmFyf+8NnWW7WvqL6foGnQ1l/fVscKJekP0fh+Rfmx5VGMm/Bj347mE84TVHTh84aT577a0NNprLaRHDdaVO3hzMwUHzLDkszWPk+JpPQNOc6KDe0UNyvk+YjSZ7H1gXKuTv+NahoN4/XEaggXpgRao6xSrRoF4ivaDy+1XFql+CehPRTPnbQWO7zx4fcmMIxzpCr3yRNGfJaglAYy9kqjCgsVwZocgXMaCxIl2dsUp9Q+g7j/h1G3b05kREnLp90Fi/LfWOR/fWMLYMp/5pyJiUhAM09giUGRUaA2SWIDSWfkjuz9kLR1pmK1TF0Pt/Fnz+pmShMZ5sqNAYIBvkEiahuQTCzKjIqQ8fgglpOhwmVF9ZrAnVXpYv+WTCS/486Vw010jfIkQ2OtZ89reZ+Ej+jjKgq1niBfOcm08DbqfMy8JBcoo0luRkab7kU9Ak/10ApbeXR38ifx5FPXrfIKssyHMrxn3iByhNBH0IKqBUL93eGa4tgJKG1GfN2/2VaMUrdrwuyghAUGvtApSQvR0HQMkAVA4VuZETXBvAMzvEBSg9WfPy71RbjmXa5vdRIyKquYQClOqlsdQqkO7QwP3vDCghl18SBpR4owCVypFDLN1+lYHQNkBp5OlwhTHuVmaHJy06cOz16xQJA0q8Lo4qRUHLRDWVhDJRERRQCtg22rFrbj5j/8MpW+4vCqV3EKA0sVcVBqBUryzi/OP/E1AKemY9hxt1xPJIPzXuLeYRIxwAJZwPSED0xqBXFQZ6I9erSsyAUtPQbkVZIbOsDy64yyisqwnGAVDqfG/bg/QiZYvCkc/W0n6MfYGDSkC3xlCpQLlNx0htA5SQp/USB5R4PQYVUAKUgvzpNDR/SmRAKXnD0BXDtm+nBvXR9byx9dlNMQBKCb2rMAAlSm+RaVuouYG/BpSmPj65wVjhJiN71PWYp/NkNuEOKCEzIHBgb2JAjVDZG7feqIv49gBKB6caa1/xozPyyxJTXvUyd8YVUCJP/KQzv9sHs2M+w+QuDfrDAweRKJgiqfcmXrYU/0dcgNJHeyd1zpt0ernlscPvhn5sIASgxOvLqEgO0JfFAyjtz/KoGsMqopReGt4vueiAF0EAJQqmGkCnhWaP6SSU2YPYgNJQucxxn17cY2w86f7m7OibTmIGlLapVWEASipqIsNE7QeUhqpe9luduMAy+NV9nbE1BUkSAZTmK4TadZd7a7rfzlrp/d9/bsQBcokC5UTlKJzVCJTGKCZA6VOXP8aF9XehbrHvZNL3z1U+YgKUKmpLghzsFakl49Jrax9LmeJgu6mYtlMhkO1IFPEASqumjPRX1fxkfTx+Id0jZu1IAgFKL1SxjHNKlUDGEQeghFz8SRxQ4jk6VDzHRq1ta5JWAEo34ueFaKg9pOyWoZJHx/knSBxQUsFUoE6Vvw6ZQUJZh7S55uHAlt4r/pqHSAoJVvMQmS4Nq3mIzC6D1TxE5rPBnjKIDErBnjKITAOCPWUQmUUCe8og8tQZ9pRB5HkR7CmDyGM62FMGkZFSoKkr1ITc7wNN3aAm5FIOaOpOEn2cCjT1gJoM/6rxZwbSzXfNq9z2o8gXfBxjT6ip88DwMfu221tFKfpWX8rxfAc0KUJNzx6dK+stlW0UpG9kmhrYeSjQpAQ17V00gaxx+gbj+OWBjDHPBy8HmpShpvJXnauNPp4zi+g+/o6UlfkcoKkX1PRmiwerSYpLiT8wcGNq3c44oEkFalK0G6Y3bedT481l0lmHTscOB5pUoaaeX33OvqLFW6cOm71IcXqjBdCkBjUtbXiZKztvu+m6coeDN7sVzweaepNEL8SE6mGqk1DqYa7oGW+aOCGeEqZbVjB1/tF9ONTDpKCNV8Kc8CM7D05pijgXr+I967gL1hF/Qhe+j6Siaf67QpzfbtQvu7FghuXG+Wbd12g2LRB937hAnFEGWBBnNwMxQJxhDvIZYVwuIzKsT//VoxUuExviDDbAQssWGPz/QpzRD6vTXRMaLA8klPW4MIAtiBpLDuIci2mwbpIxmCQgzvmD52bueHvUIn9Kt7JtSnWZuEKcQb2/b1ReWEnZneOvrBr2zAmHkfZoJJbhSkYSZ5OGO8TJftnfp/LUPGpY2dG4Ype3QRKFOHkeDxXiBAYQNO3SSCjT7m8IccrN1I69u9HVcm/AzdzYPzxKxQxxkrSxIM5qrX85xNmrxxbW+Wtz6Aeu6dVc61uMeLZl+yDOeX0uHLzmXEHZuqzu6N3YqaE4QJxNWlgQJ2At8UCcp1c7nt3obWOya6zCARfHg88lCXHyJECFOAEJIJ9giOYTCARxMoN7rNrA2MDYv+Od3vq3z76IH+JEWlJyEKfvMHFCnPuMCitNfYb9HhCnEVpXJcxOPaFQJ2zl3RSzJOXgkHXDch/gtFNH9n8cduoqelg79Q/D+O7BmPCaI6cPnDRfdrJivLK8qXlE4oxp8uf921tEF9Q8RgtLc+8Wl0xH05zoEOc4n/X+oUU7zbP0XeJ3Sp3tWIjzHy4j0CBO8GmLKSNQIM4bFgWVA3eP+DXEaYJmyt8O4qQw594/kGFmdYTTxeIT6e3WX98w7hCnxxAsiHPsEIJCnPssNb8kHlUxPPTiakn8ll47cIU4tw7fMdQuZx8tvOF6jt7yDB8cIE7nIVgQJyCzBCHOw3etE5Z0mU3faOlv5jp0kWCOkmQhTp5sqBAnIBvkEkzRXAJhZlTk1IcPUYg0HQ4T6tchWBPq7RbJzQgveUSPXs/tLo+x2H9DcbHr6Lc38JH8TURSTrr7QcaeuhLOwdRF5XgUohiMWYhiMF9yczTJfxeIc1Boqp+W81CT4pMp+55mz5zUIRBnriYWxLlAsyMhTvPJedqaE92sUhdutRkVlY44dWwXxIns7ThAnIc1sbDEYM0OhziLIg7bWT1YTCt5rFo778ltQSxb0hDnAky1xmr+B3G2EuJELr8kDHHyRgEquQiMAjFCnMNkQ6dtuUQ1PDyhIS45beETCUOcCzClALo4NFFZkFAmKoJCnAN29f46YF+kZeYSl05OOnMGY90WjhBniT4WxOms/x/ECdmnU0L12FmNn41yT4ZfP/J2aw8cIE6cD0hAPDFXHwtPjNIXN8TpcZKxTs/WxnTriwmGhRN0BMtJ/zOI01JL9Qjz/Rl6zLW8W/2WPLyMg0rOmCpN1RcjxIk8rZc4xMnrMagQJ6AU5E8ZaP6UyBDnX/ZaFhUsF+uSx8xJzxJfGgvfW7shTo0xWBDnqdF4Q5wBl0Kqmc6LGEGDy/Zrsz6p4Q5xIjMgcOATVcZg8YkvRosF4uxxaf9+W927RolRQ7/26voUUXm3nRDnrm/H79xf/8q4aJn9Tr2Lk+/gIBLQVTBESh5NvGwp/o+4IM6ZK+vfW/uup+xdMmq8fwT1PiEgTl5fRsUWgb4sHogzy5/pQHfdZLql760gDRUjwd4sOYiT12lR1QA6LTR7WJJQZg9iQ5yvV1RszWpIMNy33sK7ej9jjJghTvXRWBBnwigxQZxe5Tf7LX3iaJ1uXb9yS3CPPIlAnB9mfTkRGh5kuU752dmAp4X9cAABFUdjsWYNowiUxigmiNNuhekqjtIs82CtxvEG104L5i3gB3F2Ynj3Zn40ppW46meuulQv0rG00XYVo7Bsl0Ag28mJCeJUc8vYvCTUz/xIVeW1J/v2C3pGyUKc3pjGMSWQccQCcSIXfxKHOHmODhVhvDoKd4izr2nwQDtVL7NNI1nLgH2V4JNWJAFxJozCUmDBKP46xIqEsg5pM8Q5oKX3ih/iRFJIMIgTmS4NgziR2WUwiBOZzwaDOJFBKRjEiUwDgkGcyCwSGMSJPHWGQZzI8yIYxIk8poNBnMhIKQziRO73YRAncikHgziRx6kwiLNPjqJ22Isqw7AzU8Mq7pb6wCDOWb3P5Q75Fmicbb54/p68u3NhEOcI3eLYmDsDKaVLpPJmjFI+DIM4d7zpknTlrw9Wxwa+22QX564CgzgdDNRyC90eWe/Uckyxj7KvhUGcMQ7Z1pVjulmXch+s3Orp2BcGcc47LcU5OzOLkTPi8KJliwcEwCDOIY7VismZDZQD1RoG1+t6xMAgTuRqS4jUBJFOkUN/ovfy9LPdz5jH1266tTTkw04cSE1rtEFJmGN8ZA/BKRcR5yp+4Dk+GfMcn9Ryjm+DpvnvSmo+7G5w3YHlZ7LpVh7z0dg/NcVIagYzsEjNLgwxkJpzsr+uCj/+0qj8/ZcuFUrJL4lNaq5iYPFj9oz/X1KzYZnnuyGDF9KP6G6s2HClTyVBSM3hmAbrIhmDSYLUZKikJNT2LzQKn38xYJzu5sO4kppjZj9cuHXeDcN4yxFR6ybpZeMw0m5bYBku14I4OzHcSU3pcrnPb8PYxuWNSonqzLBBEiU1eR4PldQEBhA07c4koUy7vyGpucMz4bOUqrVF/All0tll+/eKmdTUoWGRmm+o/3JS0/LmscKKi2uMdtz5sUHj6UTEw03bR2rmHxu6RJrxh2luty9Z6tXfKnAgNck0LFITsJZ4SM1Dubpf6qfPtS4YMfgpxdu6WpKkJk8CVFITkADyCbZoPoFApOYMc997Dfs9qLm2wZvqj24ZJn5SE2lJyZCaNoWVpIN0cZKaCRaFlX/so/8epKYdWlclzE6d3DmS8X1SNiXM+9r252qNDTjt1JH9H4eduqkJ1k5dx4TvHuwJrzly+sBJ85dOUVPlC10tS3dusa71+vQMB829qVia27S45FlomhOd1JSbEkr5nK5ATRwlPe3U6k7jOpTU/IfLCCxSs8YMhdQ8b15QqXLO7Nek5mw0U/52pObWrj4P7zcoGR6WdfG/NvCWhQRIzQ8zsEjNkhkEJTX77tJaqqCTSY+eyLHqe88/EVdS0/Ez5yh1iT0j9dt8kweuZe3N4gVJzRczsEhNQGYJkppaKsmuR68EUYKnyFUM3TWSTSBSkycbKqkJyAa5hDloLoEwMypy6sMHG0SaDocJdRUFa0JdQOFL7kB4ya85T1/WQ0fNqrjfuHHHhxYp4yP594KQsMVDJhmmds2KN8zyHYfHunE65rpxOl/yuWiS/y6kZo8c6T92J3ygpyocNJD58+HmDiE1KTOwSM2G6R1JapoY7PuUWb/H/Ni5oDJGTa7gc93aR2oiezsOpObEGVjsoeKMDic1deqVJjZdC7aIMkzs73H7gjuhSM2G6VhqVUz/j9RsJamJXH5JmNTkjQJUPFFxhjhJzZAtJgtCmibRomp3DVNdsE2QxOl4UpPXxVGlqGiZqOaRUCYqgpKai7lymxklW803zSKnXUsbiXlbOJKaH8yxSM1k8/9ITcg+gWtlSYu9K82P7K4Y+uSM9m4cSE2cD0hABvGFORaDeMpc3KRm0NZbBiPWllmlHqzZZ5bEFnwY9T8jNd9779iZPy+PkvXu8pwfrwePwEGlZEyVfM3FSGoiT+slTmryegwqqQkoBfnT+Wj+lMikpnyZbWH/BV5Gm5uysx+5+n0SA6lpb41Fan61wpvUPLUq0GP73nCrOKleroMiDh3FndREZkDgACEyrLEgxCHWYiE1XQc79+j18qN5UN0qtU/3QhRxJTX7adldXBVx2TTzzbBbrxhWI3EQCegqGCJdtSJethT/R1yk5ntSgeGV66+MQ/vRV5SdfTqs3V0dDzaR15dR2USgL4uH1JyYvOQbLTXSvOQdqfJAl+9WBCE1eZ0WVQ2g00KzxwISyuxBbFKz8HN0stliBdMdL+1o9Nsne4qZ1LSxwiI1ayzFRGq+Yz8ztOq7knJ0y/pOe68FDpIIqamR5ZgWbn6CuumOvM3quIr+ONB+plZYQBlZQh61I0nN77IpFvoRo00zTPUTjbdNPCsmUlPNtjHs1eBCw3Lzcp+R+1w342C7Jkss2wFDgTC2UxQTqXnFrrMVxeuNcXBSd7kx2p/6EojUPIhpnCACGUcspCZy8SdxUpPn6FA5xW5WuJOaJj6zVZ7cPEcpC+2X4Dp+5EKJk5o1llgKbLPkr0MWklDWIYQmNZEUEozURKZLw0hNZHYZjNRE5rPBSE1kUApGaiLTgGCkJjKLBEZqIk+dYaQm8rwIRmoij+lgpCYyUgojNZH7fRipiVzKwUhN5HEqjNRcHFKdNLVTf+PIj1ImD84FXoGRmtp3UxuYhRMty/UvRt99NWEPjNT0O5sUPSvoreXhoV2d09Jkg2GkZkbVe+3ykPGM/Y2pS1JrTQpgpOYdqSdF7iNuUcMDNq3Y9nr8KBipmZmZMsOuxMN8faaCyc3ij3QYqWlbNII6XPGsZWhFsEaMf/8HMFIz5sf9Xs/OMQwj7l2NO/Ok0BhGaiJXW60nNbNGjdfy+LLCNO/lC+6jOxpnRQyUtpKai9AGJWGO8ZE9BKdcRJxL9YHn+BXTsM7xU6bxHeFiNM1/V1IT+WBcMZGaBcB0oqOMRmo25ACLIyWhbRrWgrB1pKbHU+vUoLyFFklU3VurXg4/1R5Ss53T7UFAAbIyGiDWBD5MSokoKGZE5nFVUhOpIvryIIWlP36IpPv4yyF8UMzht+Qd+g11M932OX1i4beQuQRAMUGD1ShhGeygZAwmMriYNUPwf4VRTCxj/RLF/PDJqadnUBGtpNPyKX8sM30q0ZUraJkgTMs4SMgyHcJaDlr5fCyrxME4Xe2Ee5pM3RmJsZZhOZBLE8laGjQ7dWjiXEL6l02cg39M2v5hd65p6V8X5Ted/fpYjCUOStywShxMdRNDiYOvI5Nkuo4PMNy5dcxVS9UpX4ld4iDXDQu8jnIjyryK9iO+edU/Tu10VuEjkwSqZvzcQw+2EGBe5ZUyxzTYVMkYTBIlDrISSJeGLDM1ijtkpqE495AeriUOdv51U6N/kZzZvgJHzuQRg9qb7wwaTgXTcC9c/8XT7oQ9TVM2O8ykZxdWZyT1fzxGYtMuWOKA5/FQSxwAAwiadpkklGn3NyxxcN9kW5bd2Qn0BINHz9KmnnQWc4mDIYuwShy8WPgvL3FQvSX202S5WqOQ+hia5bMJQ/EscbCz+62Lfnufm6U/LF1+ZLO2Dg4lDjQWYZU4AKwlnhIHS84M19Le706LeaZnH3nL2kWSJQ54EqCWOAAkgHyCI5pPIFCJg+p4oyEfFTpRco6dNt7wfJ2++EscIC0puRIH+xzFWeKgzKyw8nyq4+9R4sAJrasSJsSdOWnczcOh26xji9ykNumsGY5TiBvZ/3EIcS9xwgpxU5z47sGZ8Jojpw+cNC96W35t6SEuNXOojd/IUM/VOGieuxBL820tLpmFpjnRSxxIv1EdZHAqkhZGujoiRDmkL+r9iaPEwT9cRrRcTUSJg3MslBIHH0wLKgeeYf26xIELmil/uxIHxbTRdUrTuLT0PvFep6vltCVQ4uDNfKwSBwXzCVriYH3I7A89B1SbpjxsyLrwqJ8SItOlfSUOvH4k7NO8omO+JaCKMj61tr1gB1jioGE+VokDQGYJljjQfNh3zOE19qYpcw2aws5umk6gEgc82VBLHACyQS7BFc0lEGZGRU59+PD2SNPhMKEGLMCaUB0W8CV3I7zkZsW6KUOiJxju2dr9xKtgZj4+kv9ZWTvbesVdRhpVR8+7fs5WHCQ3mocl+ZB5fMnZaJL/LiUO/HaMs5xyk2qWtIgWfyhk7awOKXEwdT5WiYNH8zqyxEE9dbm8gkq88ZFURQf/ktFGOJY4QPZ2HEocjJ2PBe13m9/hJQ56J92tLB6dbJj5YUr8rsJZtYQqcfBoHpZaJfP+K3HQyhIHyOWXhEsc8EYBKtffbb44SxyULFqgymX2YWyuXxMzYcZ0RGGkDi9xwOviqFKUtExU7iSUiYqgJQ5GrzlnbHOj3jSXm02LaeqzsYNKHNS5YJU4CHL5r8QBZJ+Dd8zWv6h9aRospf4qrqRbVxxKHOB8QALC+zUuWPD+QRdxlziI0pzcmxyVbba3uF9tT/uGmTiUODBau+FZ+Hd/49SiOucbvVnOOKgUhKmSg4sYSxwgT+slXuKA12NQSxwASkH+dCmaPyVyiYPUvIsWwdV6ZkWTt8YoXHy4SgwlDkyXYpU4eOOOd4kD27CQFXWr/GjHiyf11wnWXYR7iQNkBgQO9D5lKRa9r75ULCUOKGaZZcNNjKy3msROTi3298S1xMGfxv10xmRNohcM9c3xYkRE4SAS0FUwRKp2J162FP9HXCUOJq+fO92U5ETP7Nq4wSVaK50QJQ54fRkV6gf6snhKHAwcPqhqwKwM+nb7wwvOPZfRIEiJA16nRVUD6LTQ7OFBQpk9iF3iIHrX4ZVLH1uZxOa9Jx86sclHzCUOGO5YJQ7OscVU4mCcafoIvdJEi0LbuojEcSrZEilxEGimc8EmeLP1xgs9XCkf5LNwwOSN3LFIbA0JedSOLHEQoPam8QbN0Thv7J2+evcz0sRU4iA1VXHqR/n+1KMyvS7367nqOg62+8DGsh0wFAhjOxUxlTiIU322wndOFn173d+qA0wVGglU4mAfpnFWEcg4YilxgFz8SbzEAc/RoQL+cu64lzhYOMnH8tPJM5RyrUeBvV9wDCRe4uAcG0uBGDZ/HeJJQlmHtLnEgUZL7xV/iQMkhQQrcYBMl4aVOEBml8FKHCDz2WAlDpBBKViJA2QaEKzEATKLBFbiAHnqDCtxgDwvgpU4QB7TwUocICOlsBIHyP0+rMQBcikHK3GAPE6FlTgweWGhG7xrMnWrn+7yzYuOnYeVOBhx1q6/555so+JpTgO+bR+iDitxsJB91MpaaZJ1qsMf6WmDqiJgJQ7+uK+W4fgl1KS0NNhittOihbASB5rydnJ6AyJNc65fVWUpk8xgJQ5sSIseWe+eZ5lupXRx/G5HRViJA+S6SahYAVjwQOQg5vYhB8S8HmkRvGtOeuczKgNxKFbAQRtehDmQR9oap6xCnKvVgifyJXOxTuST5/Jdmhea5r8rc5l76qTa9NcfTbJTDjWdsnvRT4zMJW09FnPZab0YmMuLdt66+ZpsqyhLWm+18AeOxGYup6/HIsGGrf//ZS6L3zkkz14ibbLuwP7L0Qn7pAjCXKphGqyTZAwmCebyzV7W+YsVb81yqJ2XXPlb2g9X5lLWaLPsjSZf46SYlVUq35do4zDSXq3DMtzNdcTZU+HOXJ5+6Tr8rft82lG1r5ozG3tnSJS55Hk8VOYSGEDQtOtNQpl2f0Pmci95WNOFwhzrrX/fUv/2YFaQmJnLqBVYzKX9in85c7ltzcl1p5njqXlVlERyifF3PJnLSSm1JRrLOhklpCQN3bVT0R0H5jJ4BRZzCVhLPMylzO3Xjdbvs2kHnsnMfLBw7wJJMpc8CVCZS0ACyCcsQ/MJBGIuafeusKNy7hivnyCfp/tGmSviVnBmLpGWlBxzWbJGnMxlpVlh5YLiNb8Hc8lF66qE2al3y381e2pnG8M4ZbvhMzYOjsNpp47s/3g8kXEt5hMZ1/Ldgw/hNUdOHzhpnid1+Uoq5xZ13eiuJrLyMhwcNK8JxNI8K5CvuS+a5kRnLjeMW9wl3CrROtR/fdylcA3DDmUu/+EyAou5fBeEwlz+ZVpQafs26NfMpR+aKX875nIVe8bEtZ5F9M0v7rEfdX5m+Osbxp257BaAxVxeXU5Q5tL18OFRFmdZFqUpRf5JDzJzcGUuv4/zdtid/J2xeWJ8Q8SnhzdxYC67BGAxl4DMEmQu8xyse1/dqE/Ze2taH9oFxwICMZc82VCZS0A2yCX4o7kEwsyoyKkPHwAQaTocJtRtAVgTqm8AX/LlhJdcc+LIHI3qcOMy9+kUu74Z2/GR/IbyOrtBM/eYlH09XUJJnhaAR60Of8xaHf58yQPQJP9dmMvtOY0nznX3oSUcOhRRMPOBMsZ94sdcOizHYi5J7Z7h2sJcVk9+2LQ6INMksUB2yMfsQYij1nYxl8jejgNzabMciyLUWd7hzKX954jtX0u/maenfc4qYGcKFviWNHNJwlSrzv8/5rKVzCVy+SVh5pI3ClBBQ53l4mQuObfmT89Tfm25feSgT+v6N16RMHNJwpSirmWiCiShTFQEZS6DmrxLr3VpMix9Mzvl4aHLyli3hSNzyV2HxVzS1/3HXEL2mVx43bh/fKr5uvVBDONiKX8cmEucD0hAmpCzDosmnLdO3MzllVmh1z9O0jWPkftiYDr+nWDQ7p8xlzKNJ3NpI08ZJZk7WFBWrMVDJTqmSqPXiZG5RJ7WS5y55PUYVOYSUArypyvQ/CmhmUuLHXEjF8sbJsvFTDMYs+6Z8L21m7nM34DFXEZswJu59Lj6eFCP0FeU8L8vZJkUzD6IO3OJzIDAASfM2YCFE+7aIBbmUttrJzfWea/RsS2HlP6mPh6NK3O5xb/rFOvBG4yS9BnGqz2NHuMgUgSmSP4biJctxf8RF3OpnvO2MNIxhF647vknn+/7ura7q+NBGfL6MiplCPRl8TCXsvPqbvTsfsLqYPLhfR4yxX8RhLmMwFQD6LTQ7LGShDJ7EJu5bJqr1dVZ1808pNSCNW3WNEe0u8OJuRy7AYu5/CCcAowPc2kQSH0bvVSdtmEt3bSL78U6iTCXZtpcqx7y/ahZ8d1d3YOfHMSB2zPYgMlcSsijdiRzqfXn3+7RJ/+kRpEabBo3e70VE3Pp9nzVuJlPelkVnHLfEPlAJREH28lh2u6DhHKHRdlOXUzMZaouqXrN0y+UHQesKbMOxlkQiLmsX48JxBLIOGJhLpGLP4kzlzxHh0ocKrdxTdIK5nJ6oWHj4Cfl9P3jw/oFni+skThz+WE9lgLXWjKlV5FQ1iGEfqw0kkKCMZfIdGkYc4nMLoMxl8h8NhhziQxKwZhLZBoQjLlEZpHAmEvkqTOMuUSeF8GYS+QxHYy5REZK4cwlYr8PYy6RSzkYc4k8ToUxl/Rhq2o31toabzvqEOy+6PR8GHOp5BNW5359skX5O9VR+ztdPwxjLt9bbYk8O2wofV3XjEenEl5cgzGXpff3r/4Qs968bJJW5gJrhfcw5vLw4AnHemp9M8oOj8zTC9VWgjGX5r0UT1rHz7Lav9b02PJnu6/DmEt/9QHyrOMvraJMQq69XdVVHfZY6Ut/XD54fkIQ5Wj/nbIr3qn/BXusNHK11frHSh+SXrLmo2uAWYl6lyPL4/bE40BqrkYblIQ5xkf2EJxyEXEuugee49f5YZ3jF/jxHeEaNM1/V1LT30kqNWvvHsv0R2506roHNaLvGxdS0y0Gi9TUiREDqWk+qmnatcZNptuiE16V9XxdRWxS0zkGix+zifn/JTUNKkcvce6ebbFz3VLqIbc+kwhCak7FNJiOZAwmCVKzPGPxix1XtWi5x8dX7vfQ3di+hS1ipN3dOrR2fJU1I/tO6OSgJYWD8Hg6JqbhSBIyXIeQmleMVUe6pOy1WJeYNlB9yN1qiZKaPI+HSmoCAwiadteSUKbd35DU1Mp8YDJpRqNREWv8ViU1qaliJjV1IrFIzW6R/3JSM3DizkyX852NSu8GFoYdUT6OJ6mpuJv83Ds0kFoy7KbZzOKq4TiQmkMisUhNwFriITXVHUY8c/IztCi9r+L4TuuevCRJTZ4EqKQmIAHkE4LQfAKBSM3pMyb2khuWaXF4TI+snndzj4u4FZxJTaQlJUdqukWLk9SMNC2sPO8a/XuQmuvQuiphduoD7GuTXI8GU/NfKS1PHz57IU47dWT/x4MajMbaqVdE893DesJrjpw+cNK84pTK96Tx8Wb5+Ss1w9cu3YOD5n9GYGleFMHXfAOa5kQnNTu91ja8cv+9SXBY6dej0efpHUpq/sNlBBqpaQosFL5uQiE1T5gUVPr/venXpGYwmil/O1Lz0jkfXbNjzvR9B47kN3xX9f/1DeNOaqpHYJGaX8MJSmpyfBeP/DH5u2GYfpacfwF3LK6kZqDsTdmkT5om265Q+jIuHbfEgdRUicAiNQGZJUhqqt9/qfH3qC8m2VWFPWbFlZgSiNTkyYZKagKyQS5hI5pLIMyMipz68MEGkabDYUJdgDmhMlom1BDCS17senOQ49FH1B3h8r221mTtwEfyD9f3bYl5cMA0/8C3kBr31wk4SE4Lx5J8dEsvD0WT/HchNaMG5N6T/XbfPH+Z26vtl74ndQipWRaORWpuafcM1xZSU8lo3FPWsG0WKXUnXs+5fUowmNE+UhPZ23EgNYvCsdjD/eEdTmo62SQp3Dgx3GTPLfLpH97bBOszSJrU3IKp1prw/0jNVpKayOWXhElN3ihAxRP3h4uT1JQbcy5sS0qdcf4EZWvW89tuEiY1t2BKsaZlogojoUxUBCU1DS82aXudmWe9Y9w5RyWtD506iNRcvxmL1Jy9+T9SE7JPVZZ6Utz9DSbJg+6tMclTEXwq3T8jNXE+IAEZxDWbsRhE983iJjV17TWdbWk+RvF3vMsWLqMIlrT7Z6Tmzd2jjXWMPSkHNe0fzqv64YuDSrMxVaJtFiOpiTytlzipyesxqKQmoBTkT8PR/CmRSc3vuZPTX606Qc9etqnnumtlVDGQmtWxWKRmcizepKbFcvseI7RXWOYkl4yYmXBeMEEBD1ITmQGBA4R4KhYLQsyKFQupuSd1jt3r81csdlqvodeE1ggmErSX1BwcF8f6WBtkltKb5PT4xrBLOIiUjClSWCzxsqX4P+IiNTeOKLbpY+9ukpHjo11W8wen3V0dDzaR15dR2USgL4uH1DyvqppS6HeDuvnrdvexiz8JelnJkZrJmGoAnRaaPSJIKLMHsUnNvJRtlv7BB+ip13f1mBm276uYSU16LBapKSM8l+BDana9F1l5Z/oxi9iYim3q0+8MkwipucJj8BF/dx3jMoUTV+cu/qKBA+1Hi8UCyvQl5FE7ktS8ZbSZ8vykvsX2dyMd9V9H9xUTqRlXuz3mGem1UXnkvVVFFnsacbBdX0zbyRDIdhpiIjWDOhffyjy0mxIf/+MZaXyNYAhKsqTmuxgs49wlUH6wWEhN5OJP4qQmz9GhcopD2rgmaQWpOTqMuavTrt1m4e8D558/2ilB4qSmDKYCDS2Z0pEklHUIoUlNJIUEIzWR6dIwUhOZXQYjNZH5bDBSExmUgpGayDQgGKmJzCKBkZrIU2cYqYk8L4KRmshjOhipiYyUwkhN5H4fRmoil3IwUhN5nAojNW/c4fq8jp9odND9b2pZWed4GKk5xvHsg4L8Y7TtjcMvjpk55hCM1DxundLN8QzdKGvR/v1Pv+RrwEhNt7TBqTX+7tYx8wLnv9/j9BBGamaMuVusqENhxFO1Ag4odkuHkZqjV17hXDmXSikfEd+YsrReE0Zq1hzobp4esIGxNeNLN/3YczYwUnNyj7pJ4W/dzOIPG51+QLUcCSM1kaut1pOa0UUxabuPjTJMNn54sdZpfZyIgdJWUjMKbVAS5hgf2UNwykXEuVQfeI7/PQzrHP9VGN8RRqNpLm8X77/fz90o82UTawL50DuBr9oT2ltZAn9w2UwP4V2ZLIrUffm7Mg7Z2pvFMWGQPaFrtG4nlr/3uNvN3gxKiltud5mFel6YtyVkC+Qb2pA1lVBWCSgE7MlqhA5IAEGbSiqRezKs1V//5pkB9Pi+bs3pe34+LLKTG5PDYYk+rk8xrulupXHOLFjZasjq8if9Bb64rFHzFYS+cEsD3pMtmM0QBkoSJGr5dxDogRPLKiWx/JN2AqRtmXM/f/78oy28JVnQMD7eLCc/DyaX7MZ2dfMAE/BF2maY93ybCutE6qHvi3pusj8mmN0jZwddRDhA1dIiDus0lGJZJ6GUANYBZoAfbdk0DTT2ZPv4gBmETgJm4rsQ0UdRl5a++v5ir2XaPbW9NYfPzxE0TvMVRUSAf7aIwzimmMYBvInkjQPaB26czr8wzgSqJ/greTYBY43AR1kcp0CyjoG+AXka2cubucyPNZw8ivevn+8QPaI2z7l6l3POk57/8NJRvb9t8gWza+xh1xfOrhFoFYfxDpZgGc9BMsYTue2tnwG3YJdfWHDaTwv6uLE5gRxg6QSYDzAXx4sDmg74m4fXcl4j+E8DsMmTGdD8gugSd/qf9/W9Z2id0Dc1zGpjcDGisoCbKI4WelkclpPDtFxBsaQtB34IzGtoU7BCuflUmM1xxXaEtupGTIOVm0y3fQku6uY3f4mgI0RdM/1swT2ElAutIcB1arXQsiqX5wihdeomEso6tU+XlXYniz9Yl8tlPtYev1IQD+ph2Iwi2nBZ/mzWcmG8GQ2xGEoFM/59YDgjewXsmIrs3XxBn55mHCcPP2eWGceWxYG2/+iL18Mjsitd53pTkocebSxRPrcf616Fc3sE23vMBv7w9uL60tkevs2/WNQWCxUrB0ZDUzmgfYKoI+uJwJLWtFxoScvfVoncQ/FP28AcSkieVq3oJ6/Vc1p3rAc9d2j05PqB9k/bf7qH2F3pvDPor8W6bp2g4VA6ZEb2lXburtTBtRWonMgzWrCCS4Kgcr8K46vaw5YwZC9/FpfLdhbtTp+cpX6u+UQyi5GPHjrG3YfU/iGM0ArpI3DQyhRTq6aO3SXwSVxZaMsFvglc7NxJufNDjgWt+Pgv0gxoP6R5cxtyVpXjbwz4bwX/txt82SP4iZYQx2Y0N9bmuGML9NcBcUfkphsWd0S6NKEAEvhtRfZl/ZfbwiO2h1ts/6H8peeQC4txCCDFoKlL0GAGY6esekBflvWhk6wblZ/Up3ZYMKPpM1Yww+GTuIMZ07tNk6UFGNHzxxe6zJAfPJwAwYyGz5jb5c8E2JG9efOmA4IZf6h9zLul52N1IPrvxkdpVCYhghmmmNZp+kQA63RIMKPTeJeq3XvPmhVbv313UnNRCCGCGQc/Ye6HiWAckiSDGRcjH5dOtsw03Fi/0ebLwV10QgUz5DCNV/BR0ltiAgUzFspYzFOYk0lLu/fqafiWkfESDma4fcSynLrELSfWYIZfVVJ+1ZqRhnspfntnqiy4R4hgBm8NgRrMABwhtE6NJf0LghkP08a/HfxkADWVu9PhpWz5CgkHMxq+YAUzJn7pmGDGBkO9vGmvMq0iUgaQPFb17IZ7MIP8l9P792P0zErdn5TFPhlyAocNet0XrA162BdxBTO+DGuc5aNea7jLK4g5fEHhQNyDGUgfgYNWEzG1amj6vwpmbEFzY4QOZiA33bBgBtKltT6YYbXh3SCzuGKzwljLOQpn1D7hEMzYiqYuQYMZnQeGj9m33d4qStG3+lKOJ/Zt4RnMCOpThRHMyFIXypbHOZjxWDV5m3L9BOP1p+7Iv/9xaQIBghkBoCSoS0ObPhJJzBXckTU0NHRAMCNmrT39U0NPSqTX4MpYrV4hhAhm6GBah0QE63RIMKNmvt/ZyuGdGQc9VuQxLh+1J0Qwo04dyziAN5G8cUiSDGZsPTalP5VEsTxk3/WErYfBE0IFM8IwjbdEMsYjZjBjdUoUZ+ecw8bRk1Yvv372j28SDmZMxLScosQtJ9ZgxpbKWyPqDNNN04/89bXguz6dEMEM3hoCNZgBOEJonbqN9C8IZjx7dK6st1S2UZC+kWlqYOehEg5mrOpbhRHMGNIXtU4YrsGMm9c8X7zaoUk7wO3b9P7zoI+4BzM+2jupc96k08stjx1+N/RjAw4bdN++aPQ8uEFn9G1TiYE2BDNsFDLfy6bMoBWqhZ621Lezwz2YgfQROGg1BFOrrx27DpV0MCMOzY0ROpiB3HTDghlIl9b6YMbeRRPIGqdvMI5fHsgY83zwchyCGdvR1CVoMKNPjqJ22Isqw7AzU8Mq7pb6dFgwo9s4rGDG1LHiDmZMs6je3n3hRMbOIQkRw++t+EiAYEaXcVhLw9tjCbAjq6+v74BgxvzPmh9LzxfQY/+4p7dbblQ0IYIZuWOxrBNFBOt0SDBj6KAjMtPG5ZqF7/MdObJTbwYhghnOmMaZSgTjkCQZzDg5eDS7snYgpWC/j+KA4uRuhApmqGAa78UYSW+JCRTMqKue9PLRlQaTsJc3rbtFflOXcDDj1BgsyyVL3HJiDWb8dYxzcctwjmXasohsSmrkcUIEM3hrCNRgBuAIoXVqPOlfEMyY1ftc7pBvgcbZ5ovn78m7O1fCwYxu47GCGbnjOiaYYZztuNH3q7PhsUmb5F+91Wx/vUTkBn3myvr31r7rKXuXjBrvH0G9j8MGvct4rA367XHiCmZcrWBuPTTsnWV86aDXL54yzuMezED6CBy0yh2HpVXUuP+rYEYCmhsjdDADuemGBTOQLq31wYwRusWxMXcGUkqXSOXNGKV8GIdgxg40dQkazFgcUp00tVN/48iPUiYPzgVe6bBgxsSZWMEMNxtxBzNO9aB1S2drGO092lmugLPNnADBDIOZWEtDuZkE2JHduHGjA4IZ6rl7Fp77qGRRMjno+cqtzomECGbU22BZp8CGANbpkGBGcYX7i+KVD40KVvrPne8QmUGIYEYMpnHciGAckiSDGY9pFZXbPb4abpv6Ykm/zrpKhApmUDCNpy4Z4xEzmGEelGeqkyJnuiNcsWds7dD3Eg5mvLHGsly1taQtJ9ZghuGMgSe0jXdRihUuq0aXDyAGZsJbQ6AGMwBHCK1TE0n/gmCG9t3UBmbhRMty/YvRd19N2CPhYIaBLVYwo25mxwQzHl+6tfqlnCtje8IF1pju74fiHsx4TyowvHL9lXFoP/qKsrNPh+GwQdexxdqgk2zFFczov+Be7r5De0yCp/prqVxfjX/NDKSPwAPJmYmlVVbH7hIkHcxIQnNjhA5mIDfdsGAG0qW1PpjhdzYpelbQW8vDQ7s6p6XJBuMQzEhGU5egwYz8ZO3bo9JsDTfcun52qXNftw4LZkz1xApmeHiIO5hh7/igs93mztScqT2cxgTbLCFAMGOsJ9bSsJsnAXZkly5d6oBgRnr8pLWKsb2NonYc8LMrkc4lRDDjkQeWdUo8CGCdDglmTHSZw114hEaJevLnTrnRSVxCBDO2YRrHgwjGIUkymCE3rHGa3AySReSUkZGGvXTvECqYYYRpPA3JGI+YwYzRA2KWuo8eS9khtar6quqLaAkHMz4sxbLcuaWStpxYgxkjT7y+skSql3HYjgpT+2z9U4QIZvDWEKjBDMARQuvUnaR/QTAjnPb1KXtQJ/Njrg5baSNjT0g4mDGWgxXMuO3ZMcGMdbG3XmygP7UuS16qW7LO+zTuwYzJ6+dONyU50TO7Nm5widZKx2GDPpyDtUHvwhFXMGNqyV8TH88PsN6jdGFGpkMdC/dgBtJH4KDVbU8srXI7dpcg6WDGLjQ3RuhgBnLTDQtmIF1a64MZJi8sdIN3TaZu9dNdvnnRsfM4BDN2o6lL0GAGfdiq2o21tsbbjjoEuy86Pb/DghlHg7GCGfRgcQcz+ps8X9Dlpi1jw6Wzh4vj994kQDAjPRhrabg9mAA7sjNnznRAMIO5zGnMnR4+Zse09R8wNxXTCRHMWI9pHQ4RrNMhwYysWwxZZ7NnZjkL7IpvLcjvRIhgxjxM49CJYBySJIMZ647+r70zgYeqe+P4oIRK2qRNk8qrSOsr7WZsg5khW7TaJpSdpF2FKBURKjshhGxZCilSWrVQadOmnVYp9b93zMjcmXvj7c7c+/q/fd7386l7zHXv73nOc57znO85Q9E6dS9ILTtomOjmYUPzcFXMmI5oPFlsjIfPYobjjrEi2yT3ae1ymJNhNXa3I8bFDAlEy33egbXl+FrMMPaLH9+cN0T3kGJx4OKx9+bhopjBzCFgixlAIGTlqbGEHlDMGOjuX7e6do5e6fuh05KEa9MxLmYo+SIVMwi+gilmDCZsuL3mjal++rWD4/923aSJejFDJru5cLeVn1bhtlef3X8k9kWDzPBFmqAP8eVXMcOPPLNx/uxSmvfrx9PsXuZsR72YAY0RKGhFQNTqtWBHS6yLGXFwYQzXxQzopLtTMQMa0rpezPhA37+7etJfWtv6pj05G/H6FgrFjHg4dXFazIB+R7LAihmiIUjFjOj9/C5mnDt9mDFeX5gSuq3KKmHA8204KGYIhyClhm/342BGVl5eLoBihtGgC9efzounBPlffiw63EIMF8WMO/uRrFOJB+sIpJgxfd6YlrkP32v6n3ojpLT90hRcFDOyEY0TjQfjELAsZmwSX+j5XnOfTtHYwZKn958/hKtixi5E43liYzx8FjP6/J1xc5JKMz00itLsR5b8G+NihhWi5eiYW46vxYxJ+ZsWXjUgaCSKq/y8rREUhItiBjOHgC1mAIGQlacmEHpAMWOGVXVDQX4OOeyl0pUZi2YcxbiYsT0EqZhhGiKYYsYp72D50YNk9HPNRku0WC2IRL2Y4Tu52GC48WrttGx3+ZKrZ5xQmKBvCUGaoK8O4VcxQ2344fs6Lnd1/I+qMHa3Pv+KejEDGiNQ0MoUUStyyP9VMSMRLozhupgBnXR3KmZAQ1rXixkn9GP7WZ3X0shakZT0/Gv+KBSKGUfg1D1/2JLaNnuY9vYk2T4vx20s4ew3VEBTopEGlbuK0Rumy5LZVQyiA/hZd4atI+C9RBvGKuCfNkSr9UTgfd08iC7O9k4eSkTg3W3BdksnG6IDw8nWw055c5di404dc4vFfiVaux5dsElP2def93Nz93d2Sxe7KdgRY6OBbnqSDKZHkG7qDwzEFtFcgwFSSJNiPkAnDXi+nXXzdvFJ0cc0849q/kx/FzgXkhyCn+aRHDIv//bQZ5+2we/oFvRD+4PtKe5a3/4wjlHAE9VAgabyimMRwGjpH41J7iih7gx0f3snwBnBn5tBgP/TnTKIDNN+bLdVsLF3A3oX0D6R95er19+qUDat04+9/r5CqtEqk8OO4hrsD3PZslMT2qklaDAPRINZYGMwUU/gjdsn2dzGalrIy1jCv+lsfZnGao8rPO0Tn2O61GHESY30KfIjco0zOM9sEKUyP8hlHPb13/U084EZ5K0HxtPDV+SHzV7jIoFCT6MiGk4VI8Pxml83LezWTK0ftdNowdNUC78r9Q21HqaX6/TU4IrFMU5csReV13S5/SraHUghlxXxskgEggt0SLiaw+xArGE3iQAz7IY1foqabBJILbygf1r7Z6wcx9tIaHoB0wRmwsU9L4PzdWlNT0uHtawFBEbHDTrdi/2TA7X0DWkkYwW5jVPnGG6WU9Kf2KURV1T4x0q64S6tjIVNw2MNz0XDPTKXGTq1dVHiqwUVhA0HAYlV1IGcEurqDwFXX3Gwsr8B6F8MIH1ne3ovljwSOmBw4PLkPszLOjbs/hnR5l0UF2ymk598lK72VPFuX32mq3J9Tqz9+q8PmttU7RUqFdcoejuM1l9x8NX238d8HAIrIsHOBX9pQfS0BCYeVg685zNW3/a1eFjHap34mGDw6sc6zi9nkjBlfZSoz6W2kD6XxwtBAtPczUNS0iI09ZNrV43bcKJK5Q8DUxlgLU/QWlOBDlEGtVZoAdNaLHE7REIKBkPayzZg9v3LkXmq1P/LFcaG4H7q21qeF5Qtcl7BGb/bb8OtEBH1mGCRw5KgTI2HBJQcpgSsmJAMFxMOFTw03/mkRaeoIK/o+JpHnEdY9zawdGI4cE904MKBAonoAn6iU52G6OQMvAYz1fZgeHkQwXjBcOd97gpF7uhM8Srt7NGDzuyudDnD41G4ZyC8VLV2c3ZwMLQErkOHB4hPQi0J55NiJu4MN2Pg8dm/doKG81qwJ1g7AM8DVlgYNvYerHe3BtQCxpMG7ySIHdmTXa4xtrCCUHQYsKOpOsF7p7oEzdLN1t6JyljF4RR92y8bgqtena+Lt183dnbpfJXTGaZpF1Z4Fx6uHMAU0cDNGZhXeti3P1Uf9lPxmqW6Wa7TcbKxt27/UWa3FgcvgsNzp0s0sN7pwJqYtwdzcC3N3tJB3dnm12eBXMUDmKg5dvy712I3S5dfAaPdVVPgXJVoOy7ff08AOeRMOvXg18KNnP5hyHCwXM/pquz6mCjJGngDd7Y+cN47mERcB2TARDfwTqxpN09Hdbiz5XaRrBE1pGFgHrFWTYrHg3Sp/0PPFIH4/x9GyAggdSNGssq53tDw0AKMZ1KR7PBwFPeaQ4cPlDSPrtWWkswNpQSMyOxzIeXyMBQ0H3EQSXOJjpCcCqe5a6m9oj09Vf1Eib7D8ydL33G8at9Fa8GQow10HDuYChSn8nDj3XgNe3cXUHRLIANmDnvrJ7cHZ6Il8B/RFvwNPE0RcTPn6bdFZynxNnskpD7ZbYV9Pi6DcDRymUbcyNnNQ79z9YyHwf5hGtFxN2jsBRIFehRgMGl18H9Og9loFVRMpEVV9jdiOAAGY9gAsZDhxXG7dlOmwZmSfGPYPc9ZOWrHlq6Q2W16inN0HQJ6rQe4fA5SIQywTslw5y56wa2JTFF3dgSSm/a+w7yNza/bMEdgsBzmzjStDZCsdinfNlAXGT8q8QgtasCDcvctMfK/f2AuI/P8qS72n6oTFQS7CMAcjWQeObgBOBmNgF0G6aLjk6idRAHHbnA0BKcwQHas0D6rdCcC6jELZcy/tdcIgE4BLkIxbHhXXca9P9h22dZWe19T9IfqKb69ObNCU2bP4p7Vs67/LkzZnbH+oia1kJKvu/LL31PNmv4wTIEAlQ0ocy8yj8xx5gmmzFxT6T7d03lCJ/MTrRge6xgMJzA5cmdYr2W6hz0wpeedCW7KjAk7VZRM239tjuXeCetUOSPMr/vacEeYzo1oJ9xNeSzZlvGSbUgeUzZWSEiHCwm4GVGhQ19XRlQe6TbEU6GmQ2FATY9AGlAjOyQ/hnvJrc6OYhCMI9V8osguc5rNtqIj+fbYq59kZILUoi1vU0KDT79FQfL94UiSbw9nS54BJ3m15LgP01ScaX7v3+kpX9/KicT3N2QAmYc1g0hf6+DAY8SDW+aZzP6cE/g5MDLbOwEpi71NeyhfZ+9hR3T2sGO4dX28WzEnpvLlRDN6JmnxnciyW6IIz8llGc7mbmAvkqBDt/Ba6FcA1G0I/9MRThoslrqDQxvwMB7MVABUjKcA4sKLlEzFMunehlJrb9Fzizhdknkj7kWf9su/80uot/+pX4K7n0DlfHiVooPA3U/hsAv9XVRuZIdybhyuBroWT/kkt8TTnXfLUVI/m1zTkX+ZxAnGsRwELC9zq8jZivZYBarVEI6k1uVwgRbu2Q8qZrzehdFZh3GdFruV9RhuTgwHZfBn3JW1KSt1nDwYtgw3CJMF/vnT9ESamQaChgVuQbR0Wt9uap5WhqZff9JJ/tCuVbmsXtBE4mFXg1xmL+DQhr24CCeEDJ2pLZgRMzMytuvb8JTizeNZGZblY6hR+heTU1YYenJKwXwrbinaL/NDCqaLw0pxuWOgyiTADFT0E1qXzxPOqnsvGT7X/qUu52KcJLOw5eJgbw0WE524Ryq4jGAkDegGDEfgU9aWDkRHjrt0aVxqrTH7EjyVSI2pJ7jWHpbfgvRY3GgaZ3sX5ZQCIsZVcCocyGtkAhcCE6N4rH+wp6g81j+YK6WQ9Q/oMga7XQimXRDrI6O17N2AWAB6P3Ow5LQXT/uMTRyj/01SSXdbDWGI6XO7uxz2ESJxl6JIgl4gIQDmvBjFWiDh6h03wK+2iKrsJJLQb0SSNWIAkzebbqmUsVM8LDTnu/6RO2JL3vXLn8+pEplbJfJvVVo+tfArUdZWLXR1Ls3fQl0MBZUSEVUKiurWMpLMr2WkLggEXa3v0lIS+zrq/G8ey2NaSGDyD9HCIY+pFCueZsHF0yujX734vJ9G88kIk5ts8WkN54o5zdmT0fV8fxJz64ADWJtRcAQ+ORFcZW6fXhEtHZydbImWrNpM1zarRb9a5aY+ylQ9WW75wZXzXtpyPxv3aj54tavlAcCXZGIB/b7zCqAEcKtoDE9sC86X+pMt3RkdkDPvrcd2Cw9c6mdNOrV20V43ycO+f0zrQvsblID4w/72EPyO01g4ApUIbraN7RatO4jtI8zFbaYz8BTKlbrHtfSdCjnWU7x0xjOdFM6eRnPmOZCyr/9uplOxeMMI05px5IT6wMXnRWZpoCAS4CoIItXF4I+WYv8Zr9YtCGdwRye3QXb1O1uDxuY2pGrmtdba3A6cuOaPXf1P42VsHsuXKbzMVJfL9OVupeLtWgCDq2O7P4NlDN47F3yL9mmKm9D9A/VHGSeshSB+HXfhRvx+NfFDDabTwqoBOC1r9DhOgBk90pQLTcde+6Ieet2hruneyzoIgML0PqKZ+RLuMUQURlL5DjS43XeJq9ycHYkbvdZv2Ey0dnZ0cXYCp99dGz+CpRg/68UXUKP33Gg+q/+yFu7puGGkX21dVLMF6ORhoJoD1HkgwARwPwj3WCJGgI+TQ1iPsNGr03vzfMvvmffM3S730SserOB84eYYjUHgHNwN8BRuqEt4shlnad7s1725S/OdG38XUW+3rL0ulqdO9x032FRpSO2ffhdJIyDnflDOeF7OaQMMzVswiqg8McbS7oyAHZZd/zvLTh96bM+uCEu1JGEj84lulzjP3uhrjmQ7827YzkBKYSZFNV0jgJowMKZVNAYF261GtJ0pjmxHVOvODuoO2234ne3GnC06uWa6l3aEnIWu3j2vt5y2W4JkuyVItvvTOQNgHDKicZRxZJxu7uSUYlkHXLT0cFsLs6gDTf4gC7/MW/BY+G2/jvoonMsKdGJksC4GsYcM0OoR072cpD9LBASgfeyyLBHZD3Npcasfiimt+Gb6Z0A7CgqYIiqg2pGHZBNg8pBub/+S7fBe/m//gu5C6rT9C4pLA03CBN50GdAkwmqC8mxAUy8C76IU0NSb1QTFgIAmUVYTlCIBmvoQeANXQJMYgfd6EdAkzmqCLtMBTRKsJmilFGjqy/5dkPk+0NSP1QRN5YCm/gTey6lAkySr6S8p8pd1ChM1juYUNL6d+/4a0DSA1VQV1XArRzFLPUL9kmmkNKMFaJJiNT34cG3o1UF62hHSBgnht7/UA00DWU2rogyHBBwdTtm3IPLjki0FsUDTIFaTas6W6ieE9eo74mqqxmY3HgGaBrOa7t6fNz333n2N9DG1zXr6ay4CTUNYTZbX9azNGUPV90g8lD0oM04GaBrKatp36cL0pzL3aYdO0sPzd5R8B5qkCbyzLa5dg8MIMLsGde/UnVjyZaS+35z52dcffYrn0VG6u2swB65T4mYZH+ohKLGIUjHEVy4715NOTrqjs6i4UgmFdXw64jr+go7lkVw4zXF67BS0Iwrs2CnTOKRjp97G8vvYqYkDFzi3+ClrRJj5RK5JHcfJK2Bz7JRhHNIhHgvicHB2TlFRkQCOnZp8mrH33SAiJabIaHzYYVHOpUSsjp2ahGgdaTxYRyDHThXeDl5gdXyDnv+Iqc/fut3nrP9ideyUMKJxgGiCvXEIWB47pTq1SuVc42j9cJ2FOvSLepwHLGJ97NSdWMQD3bAxHj6PnRp2USLpcf0Y9Zxs8XmR44UgWaLAj53KRrRcNOaWAz/Et2Onrt4tXqo2uVD7ZBbBM3OTLmdGh9WxU8wcAvbYKSAQsvLUPAJMnvpvOnYKOlXE+NipmjikY6eS4gRz7NRkPYK3EGkYPfSlrKvnTPmrqB87BV0+ROEopctxSEcpFcXx69ipb9MaehvuVNMNmPtg48ravNuoHzsFjREoaJWEqNV+weahWB87lQ8XxnB97BSP6he77ggNaV0/dgpaHEOhgHQCTl3TMcJrQo9LkQvjHN7N3SxG4awadBxl0V6Y7noxo1Do1ykYwDDhBkxMLD3AvzLcwBsQV1kyC+jtxJK9hzv7zCnWL2K1uxOtLZ2IVsBsc62Li4M9eGyVM9AIfL79lmudwI+C++idQD7AgTkSMS8qE9XtwKOBmJOgpfTlRBc2o8ncAuBsa+vA6NiABf6MxzpnoiO4MbtrxZaNLxY1TwuU10ghzHjbu2inH6Js3MUWyA90YyegzJmK9mIL1wJ4CjAyyZRXdAemGqjOlBHcq896IN77IXJ/zHsztlrdD/AcuRUqnEd89WbegwffzLz8u6iq8H7q6AmMWv2IUWanxi88fh2FTXxioEJmvKLqQxDw5FTod1UPOQ5/ZCU9oGYsweAgxlFng1wCE+K0M4SnpW8/9lQV0+UfUBW7ciRVAL/BzcysaWF3Ch8zdVYRjd3A6TPYizmtZe/eOS4wZ9tbwFk2782qoWKq+TMOD6NnzLUlKMqROSdkEvSOG3GTLJ3a+GG6qtNIpvM6jYnp+lg5OzswLDuFye5MzEYbgBuJwSGBXUu0XwWGd4QF1ZtDp/TWi8rUDAj8fLdu9+gCyEko4P24g1D7ZdRPbstjRRmeWJd3LjPKdGtBWd6YdY4dC8jqjjDxORGMMN9k+pFXY4ZEu9E4T/bvw7oxd/mb3cAPcZjBBlYcGYg4wr8R56/2UerXCN4ddQamnI8Nnn5KM+7l+Qixv304aXLxjp0b3FTgryZ+KMTs07AKAX2albcVEGDyNk3SJMWf82+QUu7LHq2JfjeDk31h4mkuziBByp2zicHo/PevBSj7X5+3YQ14HnZA3mlrR+w4GqP9LICupUtSssnnC/U+knwfZqTO21A/E/ZpuUmdTo1d5QQBfb0qAX0bAH1ToGmSFKCvQgVXmtTN7aRDfj0WCKW2a8Hz1TPPuyyIaTtCOSD6d67Q2BbOrzoXMwUPHeJ1YsSvlt+lUNDA+KdoGdh/QfXm8fJOJTDJrOxWCtWvvfvaMGzdGLzzS33/hJbiPFNS1INpY9ZQgxI4kyUN5ge5kyXWdX7s+KiqQHp/rwqsk6UOz+xGogQ+sr2zjb11e3/m/UVkkQyfLWvy9Q4PN7z7yaNKm9NX2Tfg9tWOFn4YQwHRGHVncZH+ELqzHqSs5+TsAQxfltZgZVph6nxgygry50rEafOt7ZzdbJSI0+e7u7p5MP/BO1vVObTIsCSjkOT95sYduRu+nJshxcFfYOSx3oG723Rq4oex/M8iGUsVG2NBeg6z7tKdbHXor2UEp7VuVu4IPejiI+Ngc5U2jSM+gx9d3zqn+k+myn9ojqwcViCXAcxxlQv6y6kwaavoXpbKiuQI2ZZE44tvN88N196h8/jLzVDDeEynvaAAERUsAep4CACGlm5louyhzNkRSKh4fy31dVJw+GtxzUTD7RYKnu6FkKGM+UEeQ1n7dX4IUHYWQYBUw7PsRLOQ8O+inVSCTNR2DnynHyWe6Wo5t3C0wGinqRcqEGinoCquzBJl2sl+iGrVZvt+Osl33obSZv0ciAPaiQhKArt2fPU8JkGfE9m4f/++AGgn+6Kv2o1L02iJEpS5xd+cTHBBO3mfR7LOVDxYRyC00yPZfb0+HzpIjr/tGtKyZMZbXNBOD6uQjANEE+yNQ8CSdvKubTudoVpL9dcNvqNav3U2rmgnNUTjNZ3DOtnFEe30bq5oc1z0Wv3IW2luC103vsSYdoo9h2Q5A8wtx1fa6XxK3VvTjHpq8bDSMWpOcxpxQTsxcwhY2gkIhKw8tYjQA2gnjVHjM8dK9tIsOmsVkvN24yuMaSfixQoE2smlGrZYiirtlGS+efT+2cqUbc8mCJ0c+MwAddoJOjdHgeCRApWDJXjKqrkKpSjRTrKPVHYaCqVopJvIqb2f8SoSddoJGiNQ0ArwIwStiNUCjblY007FcGEM17QTdNLdiXaChrSu007XMm8GhJy6RD0cPkokxqrmJwq000k4df+jnf4R7XS4qK3h6MEj5HxH0b2HUt8rC4x28v6ORDt5f+MH7eQp1nft63NjNHPzRnouHrg1BkXaidhq/eHDDEWdU6uflQQ/G38aBdrJ5TsSHEL8LhDaqZeMcNoTVyotaVCZcx+RO5WY005XvyGpAvgNbmZmWNFOyx69WtBW0KKXkZYsmmptjx/aaSqi6R624mK5j++0k2GrBs1H25W+u+kN5dTrow8wpp2YUQYWVwGijMBopxtiG0ZMUV9DPzRmYiGl/E4wDmgnZrCBFQcINoKjnZ5sFHntVZikEWx6++GP4c2iOKGdpiIqBPRpVt52itAjaKcZNQzq/EXi2j75R/wnbBoRzXfaqewnEu3k8kNwtJPHq14uq5rHqqWWa2RR7LfGok47QQMjCrRT1k8kZsHiJ8q0U+2AI4skd6vSExpmKJoUx2dgTjtJIb5/2Q+skyV+0U59Uz1aj40jkIPvB2/5YCh3EBe0E9BZEYxBxMYYmNNOZefqNU/mVqoVqVq9v3CjLg4ntNPVNiRjebfhoefwk3Ya98JRbVXFFlJo8SHpvwjjoV98IGjaiRnIYWknzZ9o004W+1/G1a8YpZfUb9yyvnpzjmNOOz38gUQ7AaEFZdrJX1NfIWDcNXpI+NxBls90J2JOO4khCZB6qI2daJYQ/l20k9vt8JSiQbP1j3w8/c188rEnAqOdLgohne30ncDvs52aWyfu825bpuNdbKvgWjL8DQ5op7NCSCdlRArh4ICaW7duCYB2sml6NjBb/zA51ML0zo35BeK4oJ08EK1DxYN1BEI7rZ+8fsdQk0TStgoTr3lVG6m4oJ3GIxoHiCbYG4eAJe20bzG5VY9QrR2/THLY9IlxV3BFO90gIBkvHRvj4ZN2cqhRF538Ikr/cGS06xNPEaxpJx9Eyy3D3HJ8pZ3sln4aOkUvSLskeEWTnWLWW1zQTswcApZ2AgIhK08tJfQA2mnJNqd8pd2H6RFkq0PZP9/3wZh2OiuMdLaTg7BgznZyJ3usb01UphydL/2tIffSSdRpJ+jcHAWC56Qw0nlFocL8OtvJ/p6R7sxhPqSiIJFrkfWSIqjTTtAYgYJWDohaaQj/X53tVAYXxnBNO0En3Z1oJ2hI6zrtpOEywTBfwkj3wOW6Rl/6bAUUaKfTcOr+Rzv9I9qp9K1Ilcanizq7+qvcE6LrLhYY7XRxZCUC7UQd2a0vyusi7aRdQZ5iHfyeVDi5sHQU6eA5FGmnT8bWMk5NqVqltJz09399+lOGFCxHnQUVgoVDIkdyjUD8oJ3Mvp25/OyxJzk8/EVuzpFhbZjTTh6IqgB+g5uZGVa0k+sDtYGnZbT0smdY3feKOZOAG9ppPKLpvo/AxHQCp53yvaVHt9SP1Nm+6eAV0o7paRjTTswoA4urAFFGYLSTxT6xj2Gb5DWjxywJKHikMAsHtJMHojhUiDh8pZ3uHS4/NavqEdXfK6uu1JashBPaaTyiQkCfZuVt5YQeQTs17XdgtAi5qYUnj/GNq4s6wHfayWF0JQLtdHYU7AQeddqp6YZyfM1EKa3gz+7Zl4bRpqFOO0EDIwq0kw2oHiyzMG90t1Ko39NOa1Z/nVVUbal24I3ceaWILUcwp52GIL7/61FYJ0v8op3Wyq8v83x/neT30chDROJvJ1zQTkBnRTBGJDbGwJx2MjWZSVW8G6lxVD5bcROtZTVOaCcPRGNRcdFz+Ek79TOr29Frhbza4fOJW3+U9B+KMe3EDORwtFOa8ujuZam/p53OzRgoJeqeqJZtvNLDd+aXCMxpp++jKhFoJyC0oEw7VQS0rHFoMyRnJ79RFJ1yZh3mtFMQkgCm5qPYieYZwr+LdpIymqQ4P+q55r6S3llHzwUrCYx2MhuDRDv5y/Kbdhp2nHqqSuEdLfmc3N4NAdc/44B2MhiDtHasMAYHyMaVK1cEQDutPV0dlrjYnJaecfXLCK+V+KCdCIjWqZPFgXUEQjtd/Hqj7W3haL0UkS9n3J6Z1eCCdsqSRTKOPx6MQ8CSdjqeR35yQ8NDI3iNyIKNFospuKKdLBCNp4qN8fBJO5n5tfZN2K5JP15MFm9xeNyCMe0khWi5xtFYW46vtFM/u0F/ranfoRE1tvySjuLCQ7ignZg5BCztBARCVp56ltADaKcB392r35LD9eMmma6QWvBSD2PayYCIRDu1jBEM7TR2hfApN+nx6id+9PPXurGuHHXaCTo3R4HgoRCRCB4ikV+0E7W4/+KRFiK6aZ8Dt4XmRDxCnXaCxggUtGoZg6TVVcHOErCmnSrgwhiuaSfopLsT7QQNaV2nndY0vsntsySMsq3ULOVOv+KlKNBOlXDq/kc7/SPa6WBTr8PXWz/Sc8a832t0YPUQgdFOZrOQaKc6FX7QTkefejpEf6app/seeZGr8WwFirTToo0PP+h7bFdLsJim4rmL9AgF2slgFhIcojBLILTTtIozE/vKSqsH+k+1eLhe5gfmtBMBURXAb3AzM8OKdprS/8q2v18nkPyr9sSHfLGXww3tlKWCZDp/bEwncNpJIj0zQ2Vmm77fgx0vcox6LcOYdmJGGVhcBYgyAqOdsmq2aU1gvNA8ltPa/86dzHAc0E4ERHGAYCM42qm5j6pdoN47zeI5elcdI8wu4YR2YvZpWIWAPs3K284RegTtZDZVOrfQ7ol+1ASrWONA45t8p51aVJFoJwNVwdFOM8RqTF1e+tLSDgklP+lb3Yg67QQNjCjQTk2qSMxClSrKtJPJ3cUyRyrG60YZRB3NWrr1Jua0Uyzi+3upYp0s8Yt2MmrVq1SYW0OJXcOY2dc+uAIXtJMBojEUsDEG5rTTK/MJdx9fCaXvcvLw7TXx8Qyc0E4ERGPVzcJDz+En7aS3SOze+IyxlKwrEyWfOb5Txph2YgZyWNqpSBVt2inYKzV7kEGCXnHz1AFFfs2OmNNO/mwBeNJOBqpo005FZRuv7aBL6ASsjGjTULohjTntNApJANOns9iJZhXh30U7BZkd16+Y0U//lFvDxhBHqxECo52ezEGinYbM4TftRDygqlUcvJmUGxmtn3V28w8c0E71c5DWjnPn4ADZOHfunABop8o9j1sGLZuin0V59kl1/3MKLminQETr2ODBOgKhnZKvmSiaaG3VjOodWLlMqX89LmineYjGGYIH4xCwpJ22HtKsdB8crh8i8SCn8Wv2FlzRTq9nIxnv7Gysk10c0U52F1/89cInRHv7osWer8Y6GWFMO0UiWs4Dc8vxlXaKr338MX3hKcpRvYxJokOm3MUF7cTMIWBpJyAQsvLU84QeQDstOSfkVL0oi5o9OX2F60pZL4xpp/q5SLSTz1zB0E6nqCn9xHs91N8j+Ub65CPz6ajTTtC5OQoEz425SARP+lx+0U6bRe2rtvWZopsZS5qifG6JBeq0EzRGoKCVD6JWy+b+X9FOF+DCGK5pJ+iku/PZTpCQ1nXaabxVlVRkZqNactWoqbV1kkEo0E7VcOr+Rzv9I9oprfKDfKmfCjXpZZxF3E3tAoHRTi5GSLRTkyE/aCfTxAFpV5IT6ZnirsP793EioUg7fSAUqF+vfau5c6TWhpLq55NQoJ3sjJDgEDUjgdBOJd/2iGf59tEqTuqzJPqR+wvMaScZRFUAv8HNzAwr2sll04aNha6B2ocdkg///Tk3ADe0U5UhkulisTGdwGmnKV7hl90jDSmn3p3WCEuijceYdmJGGVhcBYgyAqOd3r0YHL1imRP5UEyj7KRBg3VxQDvJIIoDBBvB0U6iJ3vnRmdM1DvhHZ5f3qB7DCe0E7NPwyoE9GlW3naR0CNop3tCz4pWT75LCvDauyH0nco0vtNOUiZItJOdseBop4A+iiN8dsVrhCkr+O1cK2eKOu0EDYwo0E5iJkjMwkNjlGmntTbvT821rqbsLc9el9ki54Y57VRgjPT+QcZYJ0v8op0sXr9Y4TwlUzvjr5mBK44/8sQF7WSHaAw1bIyBOe2kOGVQ0bIEG1JUZOMG5d5OyTihnWQQjdVkhIeew0/a6VbKeLGS2mpKplzIacsfL+kY007MQA5LO9UYo007xfTu11f1YpLakTEtgQfHXDyJOe0Ua4xEO9kZo007LWrdSEis2UwJU763WPbqp2TMaaeZSAKYthmxE81LhH8X7ZSZGbvQ6KSD7vZMCe07xZ+0BEY7fTdFop2UTPlNOznZHJy3YOp5cvKkhk3ZcZPW4IB2+miKtHZ80RQHyEZpaakAaCepMUtTNv9VTwuLXimndtxvOy5op0RE62zCg3UEQjv9EHpWoV65Q2/f7vV9pn03jMIF7WSMaBwlPBiHgCXtZE2IGa0zIpqSslTt+qpD5pK4op16IRqv3gTrZBdHtNOG6ALLqOof2vmVF2K/xE/5jjHtlGuCZLlAzC3HV9qJcNtpUk2mHdn/VYbiID9Fe1zQTswcApZ2AgIhK0+9TOgBtJNh0WSSklQ1bWeZz6ggz9ENGNNOHxcj0U6RiwVDO0mHiC68N2qyfoh8VR9CUKYJ6rQTdG6OAsHzejESwXN2Mb9oJwVDs/1jc5NpOW6XqpYIj3ZBnXaCxggUtIpE1Mpj8f8V7XQFLozhmnaCTro70U7QkNZ12ino56PBLy5S1Xc9uHHg/LNCTRRop6uoqdtPgOpusl+outWxSGvf6wf2T0ReqHdSN0+o5nqc013Stul9tfuIizoBTcKspnGqU7JHVQVolqxeoGY0Ii0MaBJhNYVlvzx9sb87OeLo0V0FixoGAU29WE23B20zGrsoXrvk+7mTapHzueG03nDm2j7prFK81CPN7ZvOSKmsSn2GgrmuwZnrPzjtH8Fpk6uNRjvGH9conm8t2xY2XkZgcJqPMxKc1suZH3Ca69P+FvOPuOqG51I/rt5s+QpFOG3OdvMFFIK1VmbflztW7ZmQigKctskZieUxdhYInLZS2kh248sIcr5YdHp6A7UYczhNCVEVwG9wM5HGCk4r1s7KKX4ZSouepbpw9d62ZtzAafVOSKbLdcLF6izf4bR7Ec3rr21coB2dRtts+f79fozhNGaUgaWLgCgjMDjtcpD4XTERa/IBQ5IeWb2AM7nDBk5TQhSnl7MA4bTZLuJ7c/aVq+3zXnWjfo6yOU7gNGafhlUI6NOsvK2G0CPgtOX2GXT9gbP148zOpB4ZW7mL73CakisSnObjIjg47XqWe/mQgGD1FG/zk4ekcjmTeTTgNGhgRAFOG++KhJh8d0EZTqvW6DdKbkmQXm7unkwvz1fDMIfTbrggvX+6C9bJEr/gtEPTzNc/Pa6tF2idlJdQtoLzu5exgtN8EI2xDBtjYA6n5elfTU7bFqedGTt93rnYvqo4gdNmIhqrHy56Dj/htPqkH8uTD7Wpxc5ImZS5NDf5T6bKKKBJzEAOC6e9dUEbTnudV3JVJOsNJTJ3SnXCtoIkzOG0ky5IcJqPC9pw2rTNUhcnbS0h+UkuTCBXqULm/RjAaQZIApgOd2EnmtcJ/y447cwj6TSrrzu1T53y0TO1XrFcYHCajDsSnEZx4zectkV+eWbg9zukXY6X8z8XLNyEAzhNyh1pqb/RDQeETUFBgQDgtO233likvDpPC+nzOf2VZCzn12thBaeVuSFZJwIP1hEInKajbBSyQURZw1+lbLwqXf0MLuA0F0TjUPBgHAKWcNqXG6tKvW40qgfMPPip94ovH3AFpxERjdfiinWyiyM47Z7oGtKty9H6cY/pqUSJQs6zYwQPp111RbJcCuaW4yuc9nzZRLEUS1FyxMOxySqie5P+nGxBAU5j5hCwcBoQCFl56g1CD4DTxokbiSnK7qZk194YyhhE0MEYTpPyQILTCtwFA6eRH7s+Wqyarldc9DHKbplVNupwGnRujgJwJeaBBFw9dOcXnNZ3Uj+S9uE6zTyRrHI7tZj7qMNp0BiBglYF7khaBbn/X8FpN+HCGK7hNOikuxM+BQ1pXYfTDAgrnujHLKGl0gdeUYmxkkKBdroFp+5/tNM/op1OPUra/DFou27J7AmZy/QlPgiMdrrhi0Q7hfryg3aqGPF8i7iICS1u3Z0F68TlJ6FIO8lkNxfutvLTKtz26rP7j8S+KNBOV32R4JCTvgKhncqlJV2OlvSi+n+c/mO4pO9QzGmnFERVAL/BzcwMK9ppkvDlH8tbC8n5j+eVKJxYX4Mb2skb0XQO2JhO4LRTlqubZ9RNMWr2h/C+9z/o0jCmnZhRBhZXAaKMwGinH6XhTxctv6ufX+z7ctOpPtE4oJ1SEMUJ9RUg7fSGsdpri0ke2d/rKymlz9eNOKGdvBEVAvo0K2+rJfQI2ildblbOgAltGscDducp7pQfyHfaKcUPiXYy9hMc7RSvNdUq4I0PJYYccqS6VksRddoJGhhRoJ0S/RCPovJDmXba+lpv6+1TqpSUV0sLjzrNwP4ork2I72/nh3WyxC/aSefj61miJ5brnlii5qSRKn4PF7STMaIx1LAxBua00xbHwRbVl5q009LMVEYuH/AFJ7STEqKxZHDRc/hJO92f0bh9VmGcbr4OvbowapgPxrQTM5DD0U4mAX5o006M64q1GcLrqAm9ex8Rcc8Wxpx2cmELwJN2MvZDm3a6Yb5sYdnqC9onDIYYWok9UcScdpqDJECqrB870awj/LtoJ93BUuX64Sb0pK2UnHUvYmoFRjtF70SinVR28pt2WmIoeUY9ajg5KHunPON9ThwOaKdDO5HWjv124gDZyMrKEgDtNMpHtk7W25Qa42kW3VYeUYEL2skN0Tor8GAdgdBOMY43+3ywdtRLkJ1oc9xRuxQXtJMuonFU8GAcApa0054FzbsSZ1tp+e+urDnXNjISV7STHKLxJLExHj5pp3FNCc0elYbkA3OVqsvET77HmHZq9UOy3DNcTFP4Rjs5LHXSf2BqrJn8cOqk+g0TXuKCdmLmELC0ExAIWXnqbUIPoJ08ZWTFGSfe0AO1/W41b+orgzHtNMIfiXZ6y53S8oV2si89/2Pnq7W0kr2Dtr1KHfUEddoJOjdHgeCR9kcieIT9+UU7XSQqlR4791p9f8ibOMobhfGo007QGIGCVm93Iml1R7CjJda00x24MIZr2gk66e5EO0FDWtdpp2tnalIuzfJWyxgd1WfDe5lWFGinu3Dq/kc7/SPaye6IXNxVz9X6QUvWL/0Qb/1YYLSTfCgS7fQshB+0U/8zdw+8DiygR+vHpwUd2RSEIu3kO7nYYLjxau20bHf5kqtnnFCgneRCkeAQyVCB0E4xF3rv8Hy9iB4V2av5uJOcJ+a0U2sIkiqA3+BmZoYV7TRiuN7CqP3G2oeXv71iGHDaATe0Uw2i6UqwMZ3AaaclwqFVAw4J0w+989sSot1MxZh2YkYZWFwFiDICo532BAzsR9kgr+sfEalLj7/wBQe0EzPYwIoDBBvB0U4XBrz+LFFRSMovSvWZ8dfWTJzQTjWICgF9mpW31RN6BO2UNuN+sZSCGjWcNMErWapfKt9pp9ZQJNopKVRwtBPp4O4HhRH7SQf6tjKmTZ5YjjrtBA2MKNBOn0ORmIWG7qVQv6edHlNvuvRNuUgLjfu8VWzZuzmY006XEd+/KBTrZIlftNOp0ySCzO5H6ruWNAyPOZ19ARe0UxKiMfZjYwzMaSd7VWrcgb/faAdUzPnydnb8apzQTlsQjbUaFz2Hn7STlThtyzKFe9Sg6WV3SzUXbsOYdmIGclja6W43s9Tf006ni48ITUuW0Du+bSzph1ipNua0UzlbAJ60U1Io2rSTyauF5wLu2+iUHli7WG1saRHmtFMgkgCpLqHsRPMe4d9FO03feN3p+sU4tdLJ4S9j1zwcJzDaqekAEu3kf4DftJPSY+ux8bG9dOKOb2/9uVpbAwe00+sDSGvHdQdwgGykpKQIgHY6uFepSWuWodo++b2epAUhp3BBO51FtE4WHqwjENqpz2HaWKXomTo+znJfrfcu3YAL2ikS0Tj+eDAOAUvaqb58acrPnbb0+I1Bz7ecG/8KV7STB6LxLLAxHj5pp4bomGMWqm/UYk/cDJMM13bDmHaiIlpOFXPL8ZV2+t5aZj9OI0gzWrL/ZOPBRedwQTsxcwhY2gkIhKw89T6hB9BOV5P766Z67aCGpH3tpxx80QBj2skhDIl2UgsTDO3kNkHuhEmSt258UMls8YnbnqJOO0Hn5igQPHZhSASPcRi/aKe5cy9u3trrpVbIsb9c24Tuu6JOO0FjBApaqSFqpRT2f0U7PYALY7imnaCT7k60EzSkdZ12miNZNzug2U4nPF3jXAOJNgUF2ukhnLr/0U7/iHZaFWU4JODocMq+BZEfl2wpiBUY7bQhHol2mhPPD9pJNezhZ33SFNqugOMFy8SOG6FIO93ZGjQ2tyFVM6+11uZ24MQ1KNBOnvFIcIhVvEBopya/1WI+B76o5ziUbrpSZj8Bc9qJjqgK4De4mZlhRTtpTLxal7l5JiXXOXGP2/Z1a3BDO8kjmm4QNqYTOO00f84KoqXsQp2QtSsXJcxgHMCYdmJGGVhcBYgyAqOdJk24OXLZICHtErJMfvkY8lcc0E50RHHmxAuQdrI8nH65aOwC6jEf3QlfGmuIOKGd5BEVAvo0K297ROgRtJNqzpbqJ4T16jviaqrGZjce4TvtRE9Aop1audMkvtFONXvTfJeucaIdCG0tWLZfRwp12gkaGFGgnXQTkJgFlQSUaSd/832kgcpraIezQ0c/CvkqhDntJIf4/pIJWCdL/KKdPk8pJ24epUFNaDRufvrgqQ8uaKfWeCRjPMNH+iNw2kn/x4onlD0DNNP0KdtOmB/ZiBPaqQbRWCWYTzP4TTud3ZttJDdMjRYvKm3k/nqYPca0EzOQw9JOUxLQpp0WKxhHiwQUax5vLG/wclvqizntJM0WgCft1NrNTPT3tFPU8/o+puaplLAPuU6TSbf+wpx2ehiPRDud7Ug0Gwj/Ltrp7v1503Pv3ddIH1PbrKe/5qLAaCeNRCTaqT6B37RT7prLsifLDquHfy+cuiSseQMOaCe1RKS1Y6VEHCAbcXFxAqCdqPJidZ80lukFyQ3u9eZQeDEuaCcZROv0woN1BEI7lddIvtO8oqEduWrFg4Sixx64oJ2aEpCMU4/NTANHtJNXIz3qXsNNjT2quSuXhw6k4op2qkI0Xi7m00Qc0U6+t3Iq6bL1Osnz/XQMtpnGY0w7xSJaLhBzy/GVdiIXry87p/xUe691iGdTxLxMXNBOzBwClnYCAiErT31M6AG0k+V1PWtzxlD1PRIPZQ/KjMP6bKeyRCTaKTRRMLTTqh+ZRcsX3iDtaBjzJP3k9mmo007QuTkKBM/JRCSCJyWRX7ST+sVP2hpNcbQdZk31J0b+1Rt12gkaI1DQKhRRK2/B5qFY005P4MIYrmkn6KS7E+0EDWldp532Xbow/anMfdqhk/Tw/B0l31GgnZ7CqUu0HZfvvyeAHHImnXrwayFn1bS3IcPBcj2nujDLQnBdeDCJuM7ejUF0A+/EEpD3HviWNieZxRM1o28FPpvqJi3H40G4X/r3Ee781QMhfjl6h966ZtW5J4/8w14bAfRLu3cV7eOyN7TXgstsCu8qWJI/w73kSyV2GvUXa6YkGekP/PDtgi9uJacOrUSQXGkoOxV6jnvJP5p8Pb0zwJu2bdCLaq/nhSNxK/nFqUiSp09lS96Ie8lHZVkdCdA9Tdp7T9xg84Gy0biVXIyGJHkjlS35C9xLvl5H4bKBzz5938uStmofxbNwK/l3OyTJ6+3Ykr/EveQ68m50SfGRpKzw/rarfZ6l4FbywO1Ikm/azpb8Fe4l3+Agd8xztYJmicTpG+Yrv47CreSJQUiShwaxJX+Ne8lvt6y9LpanTvcdN9hUaUjtJNxK3hSNJPnDaLbkb+Akn5FLJ89RNKeUZHrTdjVl1kIKIoDYbs4ORCbN6c69xtgbRmgVTS9gKmbdTguyVu5Zt2oHtphbB9Y4OQN/A+Y+rI0KXVt/dFFblLdnf5lGcsn4S8fLmpqRnphHCYejvYtKewOT6CwzIB0/S+aB/xPBreumFXzA/63m5y6ZJfdKM+yZUZz1SkYSivj/a2/bLxapRygnRB9q2IkGC/2hL7oACgWBCjWRgH9AFWppV4irpsqWqIvo31h1Th9irT3RQf+aDGI8yjxVXKMdke8sJa15qkqSdPtyqSYnGQDjKOzraFdcy/JYQhF51WOIQGvT4gouNqSbQo1YzABXSpkKcfY73gote7+y2WipiVbiI7f16TF+JZwr26ybca9ssxv4oZHBYiSNoM4k/A80YqJgLOob0Ol3XtR6vaFI73orOWLjsykl1ZU/OfsieDNuhViX+aGPlCmSPi4m7OrAW7jAP7FtmEwGUUQzj9z0jSFryxn4+1Lt3T1gt57BlexH0xiW7mvd2rd+tbNK7dHdAbhb14K78sDh7xJKx1HzlEhzSmyWXYB9Km5cuVNjF3X0AgmKpYCO5YCOD6E6uoDnJizhCuvdxJXFyZbuDKYAPN/3hN7EjwfPntHezVgw6t5wUc6v5OsFvhLXi7Zf/V18hwa9P4zvdoBURFCqCCC+l0GlGnWCKRVsfOfJcdOZa26gg9h7MBzdwb2FVJ4auZavezqtQp4cEtOboSJm7jOISYAD767p5eLG6KgXMyvNZpM5Vy8ETb5J5bN0AncYcOnkn8fUidU137G6ElfX7DXtI0ny3FVKgorKHaHMcWdEqPZW7La4xqhRK6eZUjNF99n/aJTghJBYlFw7n931fkvUZrRnau2kOBFMSRjdzst81EUK0sY5k9Kua466djpOCv7JuIGBzq3dyDhijQClT/LqvKAdygy7lZMRO3IyW95y8D4p4IYrqY3srnkwytngFnXuHx2yx98UzQIQzNuIlaJxuWZju2DdWvYergHxF1A0eEJ3+uVVj8poATrhMsYpRvnKTphuNsjKY6khxaujgmMooAarozYRYMbQsMZPUZNNAqmFF/RPa/+M5VxLkPgVnrhXveFmqNK/Nm87ERkdN5DgDnW9SZPJitO61DOV5GfKnKPJaMUyypc53iCdhHtM7v2Vv9q6gXgQVwKy1vFa1KaATra8on/HDi/2aiM7OknogD2Va/WqD/Oyjg27Z0S0eRfFBZvp5Ccfpas9VbzLbheCae+rz/Rnrp4j1n79143Nbar2CpWKaxS9HUbrrzj4avvzMB/3d+Fj8C+tgA7hZm9p5cC7G7Q239+ta1ihE1WlkjH7gTtnBJcwZX2USOKyhhCJqxcIQUIGdKj80woDYE0CaM2pJB6JpgM46q+o6KSREFoaDVN96/tXvzi9vSK7eol8TsiC0YjMrRH5txpBwxAKGgE+jaARcXkFywE7HAkpqg5ph4nAePorAPAOqDfDhkzRnEA9qOsrlmWcw3nEn2j7bbgDKus62gHVII/lKy0kcGIC0eFGLlMlVkBthguo0g17NAbNuaIe9/fj0syqdZwHSgqRea+/D2zHcnhISZBob+Io07EoHq7yHc8FeiMGMH+2YWaoTBLJEcS8XBzsreEPIAjKTo7wlt5HDb6l5v100p19kHfoist21RYd/BrEFsSiCoJMcgVYiQEHN5bq7/+R6u3JisCV/4v1C93BJNTZwQF4fjBqAJ3ClgE8BXszHe+dn9dNVeyJaYmaRw8FHkn5mq4igL1AcKYoAwkbGtQUH/6RKfqaA1I4ujg7MZw8BG6QIabtpZKN6zf/egqe6pvdW7+e5hVITiONOSRUPXcp7Dtwz+E7N6JtCbHiCsLUAsASJZ0t8bEnh6Ljt/eHjvPxJSeOP3OgfutuFYxCEeEl1P8/9WT/v3Ri5jWrb4q6R4V+VMTX7niBI/93aYb6/+ee7P8iD0IbUosG6RVOebGV/HPma4z8v3FQJcT/v/Rk/y+7edLbzFiKdPLv1Js3nwpRcOT/GtKVEP9v6cn+T5sw9Jjlh/NaQbfy7o60eFyDkf87KEP9/2tP9n9hqsswy0+a5JO2ypmbrj0k4Mj/q6ZB/b+1J/v/B5eDUflL8tSy3tcs/vlObjJG/p+oC/X/bz3Z/6UNX/q/lStUL9UtdZ+SaLsPR/5PoEP9/3tP9n+NrTteBPzw1IwrqrO5PYxhg5H/+6+C+n9bT/b/uDipeZ/ER5MyRAfXjBywqRZH/v/dHur/P3qy/4u+LM8lTzmrcVjXTE9tw9bVGPm/7jao///syf5v92rT34ueDaYXnF29Y3fDkEM48v9+O6D+D8rWY/3/Tsx0TQVNR7WUccaPl1T+9MDI/5fsg/q/0D9S/V/i/wduhgW9ILzTKN39YFORXvxLHPm/bDDU/4V7sv8vn1r4lShrqxa6Opfmb6EuhpH/p0RB/V+kJ/u/gZTCTIpqukYANWFgTKtoDI783ykG6v+9/pEl2jc8C9wGg34xc+4MW0cG3MmnK3OovSm+z9W3TVQsnTNwfg2PZ+ex/sW8jLbqIFcUa91R//8f + + + true + + iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOwgAADsIBFShKgAAAAJhJREFUSEvdk4EKgCAMRPfF9gn9WX9Wq5MtEmdKbQQ9GClud4cY/Q6WbwgQ13LnKh5mAsKEle8MeCLm1C9pb2I2QHxNtKC2RLNVeiYjTWyDIxkEZPuKykDTj6QboTZwTA8KA+/0oDRwTg9OgwhxUBh4Xo2SDaLSg5waBrJ3J//uL66mG4zxNGX9BMzezmuDR4UQKg5CxQ2IduVGkrvn0vkHAAAAAElFTkSuQmCC + + 888bc43d-bf25-48c3-aa36-9d17285125d3 + true + DIFERENCE CURWATURE LINEAR GRAPH + DIFERENCE CURWATURE LINEAR GRAPH + false + + + + + 20 + 05f34f0f-4f8e-4462-82aa-5e30fb909cb5 + 0bdbe3fa-89dd-406d-8c80-6cf3cb28ec67 + 19201f27-e961-4cd6-a1da-dbd604d23fd7 + 19a6753b-a9d0-4f37-861b-7022988355e1 + 240848bf-eb4d-46d2-8106-6ebbac5ab881 + 2410d7ff-a8b9-400f-890a-b069943f1167 + 2cdfbce2-6ecc-4836-aa8e-0f85b8a74976 + 47a31173-f0f1-44a2-a201-5dd8d33b6071 + 4cc97740-caa8-4b16-a424-4ec69e765379 + 51f9a605-042d-48b5-a72d-840602c3318e + 5feab2b9-bbc8-4117-abda-c735008c5e50 + 6c1cd4cb-f26d-4baf-a9d0-c412a73f153e + 827a1037-9bab-4f09-a804-99da30648e96 + 876ffa66-c4c5-4e61-8635-2e6563eb9e15 + aeb0c3ab-df35-499c-a9ea-aaefe2199a0a + c5b9232a-b0ce-47aa-8983-9a32708608c6 + cf57d458-4d9e-44c4-85c3-316fb4603137 + d0af14ea-590d-4f8b-80a0-c1bfc02e22c3 + d364e931-f072-4723-9456-b543274ed03f + f24ce9b2-701f-48ec-9ed2-cb2f2bd4896c + 9492d9b1-8423-4285-a424-c395dc7f8b36 + 17704c02-f561-4245-bc67-2eaf7cd1e000 + f9b9305d-1e20-4067-946a-b44d88604308 + 45329fda-4528-406d-a823-54e35ac6ff74 + 34281050-3848-44ac-894c-a3119ffa069f + 88ea5216-22ee-43b9-bf4a-bf732fa4678f + e294df03-baaa-4b12-b92f-e97f42ff34ec + 357ceb68-e651-4e13-b8c4-6a838be2149a + 98a7b290-1680-4c8f-91d6-4080e52ada8f + b4c2ea06-2f42-44c4-9b4a-584b407a7f6a + ad15254d-f361-46c9-90d6-b5db1b60e3d2 + 80bcd5c0-5458-4110-bc35-aad5d5e50148 + 9096d595-00e9-44ef-bf8b-df7cba4ba2ea + 9d9970f3-5ab6-40b5-b0f2-d257ffef222d + 054cb35f-8548-43e7-8129-2bbf3a113dd2 + e9837f44-fe89-4576-a1ba-d864d9176564 + 7979dd58-784d-428c-ab41-1f9a01cb3b5b + d134b7cd-fb62-4a2b-a901-fec5a2d783e9 + 693656d3-ab20-45a4-a99a-8ca5a8f9ac36 + 3c10a1a1-09f5-411d-ae06-13d21b0f7cd7 + + + + + + 1495 + -116 + 110 + 404 + + + 1591 + 86 + + + + + + 20 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 2e3ab970-8545-46bb-836c-1c11e5610bce + d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 + 0 + + + + + Vector {y} component + 240848bf-eb4d-46d2-8106-6ebbac5ab881 + true + Y component + Y component + true + 0 + + + + + + 1497 + -114 + 82 + 20 + + + 1538 + -104 + + + + + + 1 + + + + + 1 + {0} + + + + + 8 + + + + + + + + + + + Second item for multiplication + 19201f27-e961-4cd6-a1da-dbd604d23fd7 + true + B + B + true + 4cc7e1dc-1b86-4199-baab-1a972e890666 + 1 + + + + + + 1497 + -94 + 82 + 20 + + + 1538 + -84 + + + + + + + + Vector {y} component + 827a1037-9bab-4f09-a804-99da30648e96 + true + Y component + Y component + true + 0 + + + + + + 1497 + -74 + 82 + 20 + + + 1538 + -64 + + + + + + 1 + + + + + 1 + {0} + + + + + 7 + + + + + + + + + + + Second item for multiplication + 19a6753b-a9d0-4f37-861b-7022988355e1 + true + B + B + true + 4cc7e1dc-1b86-4199-baab-1a972e890666 + 1 + + + + + + 1497 + -54 + 82 + 20 + + + 1538 + -44 + + + + + + + + Vector {y} component + 47a31173-f0f1-44a2-a201-5dd8d33b6071 + true + Y component + Y component + true + 0 + + + + + + 1497 + -34 + 82 + 20 + + + 1538 + -24 + + + + + + 1 + + + + + 1 + {0} + + + + + 6 + + + + + + + + + + + Second item for multiplication + 51f9a605-042d-48b5-a72d-840602c3318e + true + B + B + true + 4cc7e1dc-1b86-4199-baab-1a972e890666 + 1 + + + + + + 1497 + -14 + 82 + 20 + + + 1538 + -4 + + + + + + + + Vector {y} component + f24ce9b2-701f-48ec-9ed2-cb2f2bd4896c + true + Y component + Y component + true + 0 + + + + + + 1497 + 6 + 82 + 20 + + + 1538 + 16 + + + + + + 1 + + + + + 1 + {0} + + + + + 5 + + + + + + + + + + + Second item for multiplication + c5b9232a-b0ce-47aa-8983-9a32708608c6 + true + B + B + true + 4cc7e1dc-1b86-4199-baab-1a972e890666 + 1 + + + + + + 1497 + 26 + 82 + 20 + + + 1538 + 36 + + + + + + + + Vector {y} component + 2410d7ff-a8b9-400f-890a-b069943f1167 + true + Y component + Y component + true + 0 + + + + + + 1497 + 46 + 82 + 20 + + + 1538 + 56 + + + + + + 1 + + + + + 1 + {0} + + + + + 4 + + + + + + + + + + + Second item for multiplication + 876ffa66-c4c5-4e61-8635-2e6563eb9e15 + true + B + B + true + 4cc7e1dc-1b86-4199-baab-1a972e890666 + 1 + + + + + + 1497 + 66 + 82 + 20 + + + 1538 + 76 + + + + + + + + Vector {y} component + 0bdbe3fa-89dd-406d-8c80-6cf3cb28ec67 + true + Y component + Y component + true + 0 + + + + + + 1497 + 86 + 82 + 20 + + + 1538 + 96 + + + + + + 1 + + + + + 1 + {0} + + + + + 3 + + + + + + + + + + + Second item for multiplication + 5feab2b9-bbc8-4117-abda-c735008c5e50 + true + B + B + true + 4cc7e1dc-1b86-4199-baab-1a972e890666 + 1 + + + + + + 1497 + 106 + 82 + 20 + + + 1538 + 116 + + + + + + + + Vector {y} component + 6c1cd4cb-f26d-4baf-a9d0-c412a73f153e + true + Y component + Y component + true + 0 + + + + + + 1497 + 126 + 82 + 20 + + + 1538 + 136 + + + + + + 1 + + + + + 1 + {0} + + + + + 2 + + + + + + + + + + + Second item for multiplication + 2cdfbce2-6ecc-4836-aa8e-0f85b8a74976 + true + B + B + true + 4cc7e1dc-1b86-4199-baab-1a972e890666 + 1 + + + + + + 1497 + 146 + 82 + 20 + + + 1538 + 156 + + + + + + + + Vector {y} component + d0af14ea-590d-4f8b-80a0-c1bfc02e22c3 + true + Y component + Y component + true + 0 + + + + + + 1497 + 166 + 82 + 20 + + + 1538 + 176 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Second item for multiplication + 05f34f0f-4f8e-4462-82aa-5e30fb909cb5 + true + B + B + true + 4cc7e1dc-1b86-4199-baab-1a972e890666 + 1 + + + + + + 1497 + 186 + 82 + 20 + + + 1538 + 196 + + + + + + + + Vector {y} component + cf57d458-4d9e-44c4-85c3-316fb4603137 + true + Y component + Y component + true + 0 + + + + + + 1497 + 206 + 82 + 20 + + + 1538 + 216 + + + + + + 1 + + + + + 1 + {0} + + + + + 0 + + + + + + + + + + + Second item for multiplication + 4cc97740-caa8-4b16-a424-4ec69e765379 + true + B + B + true + 4cc7e1dc-1b86-4199-baab-1a972e890666 + 1 + + + + + + 1497 + 226 + 82 + 20 + + + 1538 + 236 + + + + + + + + Number of segments + aeb0c3ab-df35-499c-a9ea-aaefe2199a0a + true + Count + Count + true + 877d17fb-a865-4477-84eb-510ff1f13db3 + 1 + + + + + + 1497 + 246 + 82 + 20 + + + 1538 + 256 + + + + + + 1 + + + + + 1 + {0} + + + + + 10 + + + + + + + + + + + Contains a collection of generic curves + true + d364e931-f072-4723-9456-b543274ed03f + true + Curve + Curve + true + 7428efec-7c04-44c5-9681-0bb0a240649a + 1 + + + + + + 1497 + 266 + 82 + 20 + + + 1538 + 276 + + + + + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 7428efec-7c04-44c5-9681-0bb0a240649a + Relay + + false + fe2c7fd3-a20d-49fe-8b1d-09361e90e45d + 1 + + + + + + 1201 + 307 + 40 + 16 + + + 1221 + 315 + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 877d17fb-a865-4477-84eb-510ff1f13db3 + Relay + + false + f1fbb0e1-fe5e-40d2-841e-732012e40657 + 1 + + + + + + 1188 + 261 + 40 + 16 + + + 1208 + 269 + + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + f18af49f-2c36-475e-9666-3bd16c62f28a + Panel + + false + 0 + 0 + 0.000510441291375068915 + + + + + + -347 + 121 + 160 + 84 + + 0 + 0 + 0 + + -346.612 + 121.1601 + + + + + + 2 + + 255;255;255;255 + + true + true + true + false + false + true + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 74e72892-1a4b-4eae-af9f-1aa7c27d779a + Relay + + false + c48f2a86-4388-4b9b-a155-5f9d30e70ed5 + 1 + + + + + + -385 + -117 + 40 + 16 + + + -365 + -109 + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 1b67eee0-1eda-4d33-a2d9-8cf379c87ae7 + Relay + + false + 118e674e-db63-4847-b023-71a1ecd9c236 + 1 + + + + + + -387 + -15 + 40 + 16 + + + -367 + -7 + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 1e05010e-b50b-4830-b2e7-d7ec43b1b1bc + Relay + + false + c2694786-f0d6-43b4-a7b8-e3a0d5b6af9f + 1 + + + + + + -389 + 35 + 40 + 16 + + + -369 + 43 + + + + + + + + + + 758d91a0-4aec-47f8-9671-16739a8a2c5d + Format + + + + + Format some data using placeholders and formatting tags + true + 0dc3cf42-8c57-4e88-9c7f-ebfcdb8df114 + Format + Format + + + + + + -331 + -153 + 130 + 64 + + + -239 + -121 + + + + + + 3 + 3ede854e-c753-40eb-84cb-b48008f14fd4 + 7fa15783-70da-485c-98c0-a099e6988c3e + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 3ede854e-c753-40eb-84cb-b48008f14fd4 + + + + + Text format + 029c7b0e-8214-4576-bbd2-fe0901352c09 + Format + Format + false + 0 + + + + + + -329 + -151 + 78 + 20 + + + -290 + -141 + + + + + + 1 + + + + + 1 + {0} + + + + + false + {0:R} + + + + + + + + + + + Formatting culture + c10e2589-2e0e-44f2-8c2f-494f97d8cd98 + Culture + Culture + false + 0 + + + + + + -329 + -131 + 78 + 20 + + + -290 + -121 + + + + + + 1 + + + + + 1 + {0} + + + + + 127 + + + + + + + + + + + Data to insert at {0} placeholders + db915e2c-2049-44b0-86a7-8e0a05caa8bd + false + Data 0 + 0 + true + 74e72892-1a4b-4eae-af9f-1aa7c27d779a + 1 + + + + + + -329 + -111 + 78 + 20 + + + -290 + -101 + + + + + + + + Formatted text + fe9b2349-403b-4c80-bf8e-3415f7e9017a + Text + Text + false + 0 + + + + + + -227 + -151 + 24 + 60 + + + -215 + -121 + + + + + + + + + + + + + + 758d91a0-4aec-47f8-9671-16739a8a2c5d + Format + + + + + Format some data using placeholders and formatting tags + true + 83c699a3-3a60-468e-8e09-9fc0126b99bc + Format + Format + + + + + + -331 + -69 + 130 + 64 + + + -239 + -37 + + + + + + 3 + 3ede854e-c753-40eb-84cb-b48008f14fd4 + 7fa15783-70da-485c-98c0-a099e6988c3e + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 3ede854e-c753-40eb-84cb-b48008f14fd4 + + + + + Text format + 4410e18b-8b01-4918-9a82-49048c3b2a4b + Format + Format + false + 0 + + + + + + -329 + -67 + 78 + 20 + + + -290 + -57 + + + + + + 1 + + + + + 1 + {0} + + + + + false + {0:R} + + + + + + + + + + + Formatting culture + 98b62a3d-1fb9-4cc6-9c2d-503672ff8b96 + Culture + Culture + false + 0 + + + + + + -329 + -47 + 78 + 20 + + + -290 + -37 + + + + + + 1 + + + + + 1 + {0} + + + + + 127 + + + + + + + + + + + Data to insert at {0} placeholders + ec3f478e-2b31-42f3-88b4-9cffd1577e1a + false + Data 0 + 0 + true + 1b67eee0-1eda-4d33-a2d9-8cf379c87ae7 + 1 + + + + + + -329 + -27 + 78 + 20 + + + -290 + -17 + + + + + + + + Formatted text + 07b602e6-3f30-4265-8f7b-014173103908 + Text + Text + false + 0 + + + + + + -227 + -67 + 24 + 60 + + + -215 + -37 + + + + + + + + + + + + + + 758d91a0-4aec-47f8-9671-16739a8a2c5d + Format + + + + + Format some data using placeholders and formatting tags + true + 19a54d3c-b7b7-4d53-b8d0-f7fa93338ec6 + Format + Format + + + + + + -330 + 14 + 130 + 64 + + + -238 + 46 + + + + + + 3 + 3ede854e-c753-40eb-84cb-b48008f14fd4 + 7fa15783-70da-485c-98c0-a099e6988c3e + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 3ede854e-c753-40eb-84cb-b48008f14fd4 + + + + + Text format + 8f443e65-05a0-4035-8bc2-c3635e897552 + Format + Format + false + 0 + + + + + + -328 + 16 + 78 + 20 + + + -289 + 26 + + + + + + 1 + + + + + 1 + {0} + + + + + false + {0:R} + + + + + + + + + + + Formatting culture + 9bb27c66-c1cf-4073-9393-c8ac657e997a + Culture + Culture + false + 0 + + + + + + -328 + 36 + 78 + 20 + + + -289 + 46 + + + + + + 1 + + + + + 1 + {0} + + + + + 127 + + + + + + + + + + + Data to insert at {0} placeholders + 8dc78f70-6c2b-4abe-80fc-fec3aea4db06 + false + Data 0 + 0 + true + 1e05010e-b50b-4830-b2e7-d7ec43b1b1bc + 1 + + + + + + -328 + 56 + 78 + 20 + + + -289 + 66 + + + + + + + + Formatted text + 12a00da0-f03d-412c-99e3-24174bf36562 + Text + Text + false + 0 + + + + + + -226 + 16 + 24 + 60 + + + -214 + 46 + + + + + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 23d9f3a2-1454-4364-a19c-8801a4aa8e4a + Relay + + false + 7fbc35ee-c93d-4288-b414-b6d63a02edf6 + 1 + + + + + + 57 + 55 + 40 + 16 + + + 77 + 63 + + + + + + + + + + 290f418a-65ee-406a-a9d0-35699815b512 + Scale NU + + + + + Scale an object with non-uniform factors. + true + 8d1f6b3d-13f3-465f-b3c7-56564b00752c + Scale NU + Scale NU + + + + + + 153 + -193 + 226 + 121 + + + 315 + -132 + + + + + + Base geometry + f948e3b2-cfd7-4eef-86a5-50f9dad72123 + Geometry + Geometry + true + c88c0b93-14b6-40b3-a27f-00ff79f7b13c + 1 + + + + + + 155 + -191 + 148 + 20 + + + 237 + -181 + + + + + + + + Base plane + 432aecca-5eaa-44b6-b0f2-18b882cfca7b + Plane + Plane + false + 0 + + + + + + 155 + -171 + 148 + 37 + + + 237 + -152.5 + + + + + + 1 + + + + + 1 + {0} + + + + + + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 1 + 0 + + + + + + + + + + + + Scaling factor in {x} direction + 5f5ed2c5-b1d2-4d06-b26c-f3b52b48dfce + 1/X + Scale X + Scale X + false + c48f2a86-4388-4b9b-a155-5f9d30e70ed5 + 1 + + + + + + 155 + -134 + 148 + 20 + + + 237 + -124 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Scaling factor in {y} direction + 511a0238-63d0-430f-a55c-66dc2b094d0c + 1/X + Scale Y + Scale Y + false + c2694786-f0d6-43b4-a7b8-e3a0d5b6af9f + 1 + + + + + + 155 + -114 + 148 + 20 + + + 237 + -104 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Scaling factor in {z} direction + d91b01d3-f368-46c1-aeaf-e0c7339bfdc7 + Scale Z + Scale Z + false + 0 + + + + + + 155 + -94 + 148 + 20 + + + 237 + -84 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Scaled geometry + 7f737f09-6227-4105-9ed2-0609a54e83ce + Geometry + Geometry + false + 0 + + + + + + 327 + -191 + 50 + 58 + + + 352 + -161.75 + + + + + + + + Transformation data + 67e926b8-0b7a-485b-9f8b-0577bd48e6c3 + Transform + Transform + false + 0 + + + + + + 327 + -133 + 50 + 59 + + + 352 + -103.25 + + + + + + + + + + + + fb6aba99-fead-4e42-b5d8-c6de5ff90ea6 + DotNET VB Script (LEGACY) + + + + + A VB.NET scriptable component + true + 193810d5-127a-4ef2-93a2-2df5119cf6ec + DotNET VB Script (LEGACY) + Turtle + 0 + Dim i As Integer + Dim dir As New On3dVector(1, 0, 0) + Dim pos As New On3dVector(0, 0, 0) + Dim axis As New On3dVector(0, 0, 1) + Dim pnts As New List(Of On3dVector) + + pnts.Add(pos) + + For i = 0 To Forward.Count() - 1 + Dim P As New On3dVector + dir.Rotate(Left(i), axis) + P = dir * Forward(i) + pnts(i) + pnts.Add(P) + + Next + + Points = pnts + + + + + + 960 + 1569 + 104 + 44 + + + 1015 + 1591 + + + + + + 1 + 1 + 2 + Script Variable Forward + Script Variable Left + 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 + 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 + true + true + Forward + Left + true + true + + + + + 2 + Print, Reflect and Error streams + Output parameter Points + 3ede854e-c753-40eb-84cb-b48008f14fd4 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + true + true + Output + Points + false + false + + + + + 1 + false + Script Variable Forward + 23d5f74b-2615-4df2-98d7-e702968086f3 + Forward + Forward + true + 1 + true + 147ceb0a-e550-4da4-96ca-8ca546338041 + 1 + 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 + + + + + + 962 + 1571 + 41 + 20 + + + 982.5 + 1581 + + + + + + + + 1 + false + Script Variable Left + cd494ec9-299f-4eff-af9f-62e91ff30a17 + Left + Left + true + 1 + true + 3e0631e2-acee-4952-b380-ca85b2802769 + 1 + 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 + + + + + + 962 + 1591 + 41 + 20 + + + 982.5 + 1601 + + + + + + + + Print, Reflect and Error streams + f1122156-86f9-4e0a-96ef-9a9fde4cd825 + Output + Output + false + 0 + + + + + + 1027 + 1571 + 35 + 20 + + + 1044.5 + 1581 + + + + + + + + Output parameter Points + 35165a66-0f4a-41c4-96bb-4865345e7d7e + Points + Points + false + 0 + + + + + + 1027 + 1591 + 35 + 20 + + + 1044.5 + 1601 + + + + + + + + + + + + e64c5fb1-845c-4ab1-8911-5f338516ba67 + Series + + + + + Create a series of numbers. + true + 3ccd8fbe-c80d-419d-bf32-d57c2bb4d8e6 + Series + Series + + + + + + 393 + 1730 + 89 + 64 + + + 437 + 1762 + + + + + + First number in the series + 977bf3e7-0d24-45a9-a6b8-e3d9f6e04438 + Start + Start + false + 073ee4e1-f1c0-4fe9-b5fa-b550be09f47e + 1 + + + + + + 395 + 1732 + 30 + 20 + + + 410 + 1742 + + + + + + 1 + + + + + 1 + {0} + + + + + 0 + + + + + + + + + + + Step size for each successive number + 254feffa-5877-4f43-9c51-74b6cb770fe8 + Step + Step + false + 073ee4e1-f1c0-4fe9-b5fa-b550be09f47e + 1 + + + + + + 395 + 1752 + 30 + 20 + + + 410 + 1762 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Number of values in the series + 16a91bf3-6653-476a-a5ad-6b5eea6b39c7 + Count + Count + false + b62d6a8f-bc00-44f0-b8d4-dcc23bcad9a7 + 1 + + + + + + 395 + 1772 + 30 + 20 + + + 410 + 1782 + + + + + + 1 + + + + + 1 + {0} + + + + + 500 + + + + + + + + + + + 1 + Series of numbers + 13c1bcbb-6f8e-4b2c-aa4f-73a4dccf97a7 + Series + Series + false + 0 + + + + + + 449 + 1732 + 31 + 60 + + + 464.5 + 1762 + + + + + + + + + + + + dd8134c0-109b-4012-92be-51d843edfff7 + Duplicate Data + + + + + Duplicate data a predefined number of times. + true + 6c965c03-c748-47af-9b8c-55ba80a7c206 + Duplicate Data + Duplicate Data + + + + + + 384 + 1573 + 102 + 64 + + + 447 + 1605 + + + + + + 1 + Data to duplicate + 371f3cbb-f7cb-4b93-85fa-2553b97d0873 + Data + Data + false + ff15de5e-5cfc-4151-a598-a645878d2f45 + 1 + + + + + + 386 + 1575 + 49 + 20 + + + 410.5 + 1585 + + + + + + + + Number of duplicates + c21c1053-7352-4746-afd1-3a086e340bbc + Number + Number + false + b62d6a8f-bc00-44f0-b8d4-dcc23bcad9a7 + 1 + + + + + + 386 + 1595 + 49 + 20 + + + 410.5 + 1605 + + + + + + 1 + + + + + 1 + {0} + + + + + 500 + + + + + + + + + + + Retain list order + d4b874be-26df-49b4-b504-a68703706422 + Order + Order + false + 0 + + + + + + 386 + 1615 + 49 + 20 + + + 410.5 + 1625 + + + + + + 1 + + + + + 1 + {0} + + + + + true + + + + + + + + + + + 1 + Duplicated data + a8d4b2ce-0382-4b07-ad56-e45e8d6691c4 + Data + Data + false + 0 + + + + + + 459 + 1575 + 25 + 60 + + + 471.5 + 1605 + + + + + + + + + + + + 33bcf975-a0b2-4b54-99fd-585c893b9e88 + Digit Scroller + + + + + Numeric scroller for single numbers + ce7a6538-1307-4799-aa09-c6d0b388aa6b + Digit Scroller + . + false + 0 + + + + + 12 + . + 11 + + 1024.0 + + + + + + -143 + 1722 + 250 + 20 + + + -142.1696 + 1722.402 + + + + + + + + + + 33bcf975-a0b2-4b54-99fd-585c893b9e88 + Digit Scroller + + + + + Numeric scroller for single numbers + db90c791-fd03-47f7-9d9f-fce64245413a + Digit Scroller + Π―R + false + 0 + + + + + 12 + Π―R + 1 + + 0.12177142743 + + + + + + -138 + 1624 + 250 + 20 + + + -137.4702 + 1624.085 + + + + + + + + + + 33bcf975-a0b2-4b54-99fd-585c893b9e88 + Digit Scroller + + + + + Numeric scroller for single numbers + 80528f19-96fa-43a4-9544-823f9ed395d3 + Digit Scroller + Β° + false + 0 + + + + + 12 + Β° + 2 + + 0.0003959052 + + + + + + -140 + 1667 + 250 + 20 + + + -139.5521 + 1667.344 + + + + + + + + + + a4cd2751-414d-42ec-8916-476ebf62d7fe + Radians + + + + + Convert an angle specified in degrees to radians + true + 9393d860-fd26-4ce8-8516-240665f8d209 + Radians + Radians + + + + + + 238 + 1631 + 108 + 28 + + + 293 + 1645 + + + + + + Angle in degrees + 23aa7fad-d7c7-468b-8fe7-cb92d958d0af + Degrees + Degrees + false + 256fa74d-8451-4366-b97f-fb31ceb7790f + 1 + + + + + + 240 + 1633 + 41 + 24 + + + 260.5 + 1645 + + + + + + + + Angle in radians + 073ee4e1-f1c0-4fe9-b5fa-b550be09f47e + Radians + Radians + false + 0 + + + + + + 305 + 1633 + 39 + 24 + + + 324.5 + 1645 + + + + + + + + + + + + fbac3e32-f100-4292-8692-77240a42fd1a + Point + + + + + Contains a collection of three-dimensional points + true + 4be4d01e-f1cd-4466-afb7-4c701c8415b6 + Point + Point + false + 35165a66-0f4a-41c4-96bb-4865345e7d7e + 1 + + + + + + 888 + 1718 + 50 + 24 + + + 913.2098 + 1730.519 + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + b62d6a8f-bc00-44f0-b8d4-dcc23bcad9a7 + Relay + + false + 5078d0e9-110e-4e9f-a4a7-8a5d53101b3e + 1 + + + + + + 249 + 1693 + 40 + 16 + + + 269 + 1701 + + + + + + + + + + be52336f-a2e1-43b1-b5f5-178ba489508a + Circle Fit + + + + + Fit a circle to a collection of points. + true + 1e1c32a1-ce8d-4957-8d6b-20e1e7f00d58 + Circle Fit + Circle Fit + + + + + + 366 + 1991 + 104 + 64 + + + 411 + 2023 + + + + + + 1 + Points to fit + f1050762-10a2-43ca-8bff-809dcce2a36f + Points + Points + false + 4be4d01e-f1cd-4466-afb7-4c701c8415b6 + 1 + + + + + + 368 + 1993 + 31 + 60 + + + 383.5 + 2023 + + + + + + + + Resulting circle + 0e3da8fe-67d3-42b3-ba8d-a7dfea586d42 + Circle + Circle + false + 0 + + + + + + 423 + 1993 + 45 + 20 + + + 445.5 + 2003 + + + + + + + + Circle radius + 1bfdc1a4-f5f2-4440-8ac4-89a785d20c79 + Radius + Radius + false + 0 + + + + + + 423 + 2013 + 45 + 20 + + + 445.5 + 2023 + + + + + + + + Maximum distance between circle and points + 27b55d9b-ea60-4f36-964a-16c736644482 + Deviation + Deviation + false + 0 + + + + + + 423 + 2033 + 45 + 20 + + + 445.5 + 2043 + + + + + + + + + + + + 9df5e896-552d-4c8c-b9ca-4fc147ffa022 + Expression + + + + + Evaluate an expression + cos((4*atan(1))/N) + true + 74efbc8f-3410-4e24-aada-2bcab8a679bf + Expression + Expression + + + + + + 517 + 1953 + 215 + 28 + + + 615 + 1967 + + + + + + 1 + ba80fd98-91a1-4958-b6a7-a94e40e52bdb + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + Expression variable + 4f02194f-7531-4362-9ec9-d41464997f0f + Variable N + N + true + b62d6a8f-bc00-44f0-b8d4-dcc23bcad9a7 + 1 + + + + + + 519 + 1955 + 11 + 24 + + + 524.5 + 1967 + + + + + + + + Result of expression + e71a1b21-deda-4ee0-8783-f40fbe34bf91 + Result + Result + false + 0 + + + + + + 699 + 1955 + 31 + 24 + + + 714.5 + 1967 + + + + + + + + + + + + + + 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 + Scale + + + + + Scale an object uniformly in all directions. + true + 0868edf0-bef8-44ba-bfff-f419e7d67d07 + Scale + Scale + + + + + + 540 + 2098 + 126 + 64 + + + 602 + 2130 + + + + + + Base geometry + 2eb8844c-6be8-465d-9f45-fe8cda686713 + Geometry + Geometry + true + 0e3da8fe-67d3-42b3-ba8d-a7dfea586d42 + 1 + + + + + + 542 + 2100 + 48 + 20 + + + 566 + 2110 + + + + + + + + Center of scaling + 460a9868-24fc-4fc4-b670-679bab81e8e1 + Center + Center + false + e7ec9ac1-1a14-4f10-af2d-92b279404e69 + 1 + + + + + + 542 + 2120 + 48 + 20 + + + 566 + 2130 + + + + + + 1 + + + + + 1 + {0} + + + + + + + 0 + 0 + 0 + + + + + + + + + + + + Scaling factor + 875d2dba-b4e5-42c5-b511-4c5d1b9a78c8 + Factor + Factor + false + e71a1b21-deda-4ee0-8783-f40fbe34bf91 + 1 + + + + + + 542 + 2140 + 48 + 20 + + + 566 + 2150 + + + + + + 1 + + + + + 1 + {0} + + + + + 0.5 + + + + + + + + + + + Scaled geometry + ab3f2f73-b91a-4c6d-8374-0389102171db + Geometry + Geometry + false + 0 + + + + + + 614 + 2100 + 50 + 30 + + + 639 + 2115 + + + + + + + + Transformation data + b2e95054-06fc-4de7-a108-3a97edfda004 + Transform + Transform + false + 0 + + + + + + 614 + 2130 + 50 + 30 + + + 639 + 2145 + + + + + + + + + + + + 2e205f24-9279-47b2-b414-d06dcd0b21a7 + Area + + + + + Solve area properties for breps, meshes and planar closed curves. + true + e0c086dd-125a-4893-b52d-269284ba8332 + Area + Area + + + + + + 354 + 2108 + 118 + 44 + + + 416 + 2130 + + + + + + Brep, mesh or planar closed curve for area computation + f782124a-d5de-4023-a7a5-af4b9cf9feb9 + Geometry + Geometry + false + 0e3da8fe-67d3-42b3-ba8d-a7dfea586d42 + 1 + + + + + + 356 + 2110 + 48 + 40 + + + 380 + 2130 + + + + + + + + Area of geometry + 0c7ff78f-224e-4115-9e24-ae9d1967091c + Area + Area + false + 0 + + + + + + 428 + 2110 + 42 + 20 + + + 449 + 2120 + + + + + + + + Area centroid of geometry + e7ec9ac1-1a14-4f10-af2d-92b279404e69 + Centroid + Centroid + false + 0 + + + + + + 428 + 2130 + 42 + 20 + + + 449 + 2140 + + + + + + + + + + + + ce46b74e-00c9-43c4-805a-193b69ea4a11 + Multiplication + + + + + Mathematical multiplication + true + 461fc3ce-2791-4cc9-8c3e-25389656f03d + Multiplication + Multiplication + + + + + + 665 + 2010 + 70 + 44 + + + 690 + 2032 + + + + + + 2 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + First item for multiplication + a247e566-2790-42d7-8a97-f5d9300932cc + A + A + true + e71a1b21-deda-4ee0-8783-f40fbe34bf91 + 1 + + + + + + 667 + 2012 + 11 + 20 + + + 672.5 + 2022 + + + + + + + + Second item for multiplication + 8c992c09-9162-4193-ada2-ca180f2bff01 + B + B + true + 1bfdc1a4-f5f2-4440-8ac4-89a785d20c79 + 1 + + + + + + 667 + 2032 + 11 + 20 + + + 672.5 + 2042 + + + + + + + + Result of multiplication + 5e47cae8-ad95-4b4c-a1af-feec999bc560 + Result + Result + false + 0 + + + + + + 702 + 2012 + 31 + 40 + + + 717.5 + 2032 + + + + + + + + + + + + + + 9df5e896-552d-4c8c-b9ca-4fc147ffa022 + Expression + + + + + Evaluate an expression + .5*L*(1/SIN(Ο€/N)) + true + eea9f1d0-8fd2-4314-9989-8302e677101f + Expression + Expression + + + + + + 605 + 1852 + 207 + 44 + + + 699 + 1874 + + + + + + 2 + ba80fd98-91a1-4958-b6a7-a94e40e52bdb + ba80fd98-91a1-4958-b6a7-a94e40e52bdb + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + Expression variable + 37cc8cad-4cf7-4da7-ae8b-baaa7447ca62 + Variable L + L + true + db90c791-fd03-47f7-9d9f-fce64245413a + 1 + + + + + + 607 + 1854 + 11 + 20 + + + 612.5 + 1864 + + + + + + + + Expression variable + 1bea666f-7b30-4858-b2fb-d70e9f75df7a + Variable N + N + true + b62d6a8f-bc00-44f0-b8d4-dcc23bcad9a7 + 1 + + + + + + 607 + 1874 + 11 + 20 + + + 612.5 + 1884 + + + + + + + + Result of expression + 3c9661e6-e5b9-4a08-afce-8c2037330161 + Result + Result + false + 0 + + + + + + 779 + 1854 + 31 + 40 + + + 794.5 + 1874 + + + + + + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + 646f35d6-4eb6-4dd5-8cac-4f8f0c9b5977 + Panel + + false + 0 + 3c9661e6-e5b9-4a08-afce-8c2037330161 + 1 + Double click to edit panel content… + + + + + + 891 + 1854 + 160 + 100 + + 0 + 0 + 0 + + 891.1822 + 1854.321 + + + + + + + 255;255;255;255 + + true + true + true + false + false + true + + + + + + + + + 9df5e896-552d-4c8c-b9ca-4fc147ffa022 + Expression + + + + + Evaluate an expression + R/(.5*(1/SIN(Ο€/N))) + true + 215d4120-1cff-48de-94bd-f7b73ce01e75 + Expression + Expression + + + + + + 284 + 1493 + 224 + 44 + + + 386 + 1515 + + + + + + 2 + ba80fd98-91a1-4958-b6a7-a94e40e52bdb + ba80fd98-91a1-4958-b6a7-a94e40e52bdb + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + Expression variable + 8039b10c-7cc8-4915-bdb9-ff99c2f805d2 + Variable R + R + true + 375085a7-85bd-47e7-800b-36aa5972104d + 1 + + + + + + 286 + 1495 + 11 + 20 + + + 291.5 + 1505 + + + + + + + + Expression variable + fb427817-9f0f-447d-860a-e480261c5a5f + Variable N + N + true + b62d6a8f-bc00-44f0-b8d4-dcc23bcad9a7 + 1 + + + + + + 286 + 1515 + 11 + 20 + + + 291.5 + 1525 + + + + + + + + Result of expression + ff15de5e-5cfc-4151-a598-a645878d2f45 + Result + Result + false + 0 + + + + + + 475 + 1495 + 31 + 40 + + + 490.5 + 1515 + + + + + + + + + + + + + + 9c85271f-89fa-4e9f-9f4a-d75802120ccc + Division + + + + + Mathematical division + true + 7de561f6-268d-461f-a4c8-eda519d78324 + Division + Division + + + + + + 55 + 1790 + 90 + 44 + + + 100 + 1812 + + + + + + Item to divide (dividend) + 4b3622ac-b6f6-4c84-aaa1-2e40b4eb5e9a + A + A + false + 0 + + + + + + 57 + 1792 + 31 + 20 + + + 72.5 + 1802 + + + + + + 1 + + + + + 1 + {0} + + + + + Grasshopper.Kernel.Types.GH_String + false + 360 + + + + + + + + + + + Item to divide with (divisor) + 164f2f15-bca1-48ba-aacd-831d6c5118cf + B + B + false + ce7a6538-1307-4799-aa09-c6d0b388aa6b + 1 + + + + + + 57 + 1812 + 31 + 20 + + + 72.5 + 1822 + + + + + + + + The result of the Division + b62c1df8-8506-432d-a6e8-a67f16f863f9 + Result + Result + false + 0 + + + + + + 112 + 1792 + 31 + 40 + + + 127.5 + 1812 + + + + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + 755afd66-a8b6-4eda-b11d-813843840b3a + Panel + + false + 0 + 1bfdc1a4-f5f2-4440-8ac4-89a785d20c79 + 1 + Double click to edit panel content… + + + + + + 549 + 1446 + 160 + 20 + + 0 + 0 + 0 + + 549.2184 + 1446.83 + + + + + + + 255;255;255;255 + + false + false + true + false + false + true + + + + + + + + + 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4 + Reverse List + + + + + Reverse the order of a list. + true + b2fe30d5-a712-4905-b391-821ae44f7d1f + Reverse List + Reverse List + + + + + + 468 + 1668 + 66 + 28 + + + 501 + 1682 + + + + + + 1 + Base list + fb6b39e9-a6af-4a51-9455-a92fd1fa3dfd + List + List + false + 13c1bcbb-6f8e-4b2c-aa4f-73a4dccf97a7 + 1 + + + + + + 470 + 1670 + 19 + 24 + + + 479.5 + 1682 + + + + + + + + 1 + Reversed list + 8646f974-91ff-408b-aa4d-7fb4f8df1cf2 + List + List + false + 0 + + + + + + 513 + 1670 + 19 + 24 + + + 522.5 + 1682 + + + + + + + + + + + + a3371040-e552-4bc8-b0ff-10a840258e88 + Negative + + + + + Compute the negative of a value. + true + 85d22e58-6d1c-4fc5-a0e6-db45a35dbf06 + Negative + Negative + + + + + + 667 + 1764 + 88 + 28 + + + 710 + 1778 + + + + + + Input value + b9f327a5-f681-4bab-906c-b34f3e2c24e1 + Value + Value + false + 13c1bcbb-6f8e-4b2c-aa4f-73a4dccf97a7 + 1 + + + + + + 669 + 1766 + 29 + 24 + + + 683.5 + 1778 + + + + + + + + Output value + 3ebf92f1-2275-4471-867c-81168d14be25 + Result + Result + false + 0 + + + + + + 722 + 1766 + 31 + 24 + + + 737.5 + 1778 + + + + + + + + + + + + 3cadddef-1e2b-4c09-9390-0e8f78f7609f + Merge + + + + + Merge a bunch of data streams + true + 0e44c07d-1872-4e2f-ab76-00ed6aed824c + Merge + Merge + + + + + + 612 + 1633 + 122 + 84 + + + 673 + 1675 + + + + + + 4 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + 2 + Data stream 1 + 8054d771-018f-4a32-b4e5-5bd79d5d438e + 1 + false + Data 1 + D1 + true + 8646f974-91ff-408b-aa4d-7fb4f8df1cf2 + 1 + + + + + + 614 + 1635 + 47 + 20 + + + 645.5 + 1645 + + + + + + + + 2 + Data stream 2 + 05fec144-1dbd-44c0-997c-ab726c498b6d + 1 + false + Data 2 + D2 + true + 0 + + + + + + 614 + 1655 + 47 + 20 + + + 645.5 + 1665 + + + + + + 1 + + + + + 1 + {0} + + + + + Grasshopper.Kernel.Types.GH_String + false + 0 + + + + + + + + + + + 2 + Data stream 3 + 38e4e3db-338c-43c8-9e0d-578f9c881434 + 1 + false + Data 3 + D3 + true + 3ebf92f1-2275-4471-867c-81168d14be25 + 1 + + + + + + 614 + 1675 + 47 + 20 + + + 645.5 + 1685 + + + + + + + + 2 + Data stream 4 + b01c5f53-5323-449b-9e7d-3debe1530274 + false + Data 4 + D4 + true + 0 + + + + + + 614 + 1695 + 47 + 20 + + + 645.5 + 1705 + + + + + + + + 2 + Result of merge + e6883f83-7321-4869-ba03-b28db7c15488 + 1 + Result + Result + false + 0 + + + + + + 685 + 1635 + 47 + 80 + + + 700.5 + 1675 + + + + + + + + + + + + + + 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4 + Reverse List + + + + + Reverse the order of a list. + true + 927c4f5f-09d0-4e2a-86de-669a0fb6834f + Reverse List + Reverse List + + + + + + 545 + 1495 + 66 + 28 + + + 578 + 1509 + + + + + + 1 + Base list + 2b065ff5-2682-48cb-9eed-eb80e4d5eea3 + List + List + false + a8d4b2ce-0382-4b07-ad56-e45e8d6691c4 + 1 + + + + + + 547 + 1497 + 19 + 24 + + + 556.5 + 1509 + + + + + + + + 1 + Reversed list + 80f75b67-ab0d-49db-88ed-3c55aff68d37 + List + List + false + 0 + + + + + + 590 + 1497 + 19 + 24 + + + 599.5 + 1509 + + + + + + + + + + + + 3cadddef-1e2b-4c09-9390-0e8f78f7609f + Merge + + + + + Merge a bunch of data streams + true + b2031a4b-8015-4f12-8f56-d042d761e9b2 + Merge + Merge + + + + + + 711 + 1489 + 122 + 84 + + + 772 + 1531 + + + + + + 4 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + 2 + Data stream 1 + f150b0c2-a9d8-48af-85e6-4a08fc493011 + 1 + false + Data 1 + D1 + true + 80f75b67-ab0d-49db-88ed-3c55aff68d37 + 1 + + + + + + 713 + 1491 + 47 + 20 + + + 744.5 + 1501 + + + + + + + + 2 + Data stream 2 + 311df633-43a1-4c6d-9575-509e524f8766 + 1 + false + Data 2 + D2 + true + 0 + + + + + + 713 + 1511 + 47 + 20 + + + 744.5 + 1521 + + + + + + + + 2 + Data stream 3 + e88f8a6d-a05a-49e3-a7f7-a253f1d7e828 + 1 + false + Data 3 + D3 + true + a8d4b2ce-0382-4b07-ad56-e45e8d6691c4 + 1 + + + + + + 713 + 1531 + 47 + 20 + + + 744.5 + 1541 + + + + + + + + 2 + Data stream 4 + 3dcf6632-4c2c-4051-a3e9-ff6ef825e6a7 + false + Data 4 + D4 + true + 0 + + + + + + 713 + 1551 + 47 + 20 + + + 744.5 + 1561 + + + + + + + + 2 + Result of merge + 147ceb0a-e550-4da4-96ca-8ca546338041 + 1 + Result + Result + false + 0 + + + + + + 784 + 1491 + 47 + 80 + + + 799.5 + 1531 + + + + + + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + e7210d73-6cfe-4de7-8448-9777503ce93c + Panel + + false + 0 + e6883f83-7321-4869-ba03-b28db7c15488 + 1 + Double click to edit panel content… + + + + + + 1159 + 1460 + 160 + 479 + + 0 + 0 + 0 + + 1159.163 + 1460.554 + + + + + + + 255;255;255;255 + + true + true + true + false + false + true + + + + + + + + + 59daf374-bc21-4a5e-8282-5504fb7ae9ae + List Item + + + + + 0 + Retrieve a specific item from a list. + true + 30cfd029-92c7-4238-a408-6929948027aa + List Item + List Item + + + + + + 786 + 2009 + 77 + 64 + + + 843 + 2041 + + + + + + 3 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 2e3ab970-8545-46bb-836c-1c11e5610bce + cb95db89-6165-43b6-9c41-5702bc5bf137 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + 1 + Base list + b6d36df5-0130-4255-b205-5c8692927ee7 + List + List + false + 4be4d01e-f1cd-4466-afb7-4c701c8415b6 + 1 + + + + + + 788 + 2011 + 43 + 20 + + + 809.5 + 2021 + + + + + + + + Item index + a40829e0-25d6-4fd6-b645-d96b8a696078 + Index + Index + false + 0 + + + + + + 788 + 2031 + 43 + 20 + + + 809.5 + 2041 + + + + + + 1 + + + + + 1 + {0} + + + + + -1 + + + + + + + + + + + Wrap index to list bounds + a032919e-88c9-48f0-b24a-51aa539e52cc + Wrap + Wrap + false + 0 + + + + + + 788 + 2051 + 43 + 20 + + + 809.5 + 2061 + + + + + + 1 + + + + + 1 + {0} + + + + + true + + + + + + + + + + + Item at {i'} + 231ec3f5-b0c1-43a7-a9fc-ec5669fc1001 + false + Item + i + false + 0 + + + + + + 855 + 2011 + 6 + 60 + + + 858 + 2041 + + + + + + + + + + + + + + 9abae6b7-fa1d-448c-9209-4a8155345841 + Deconstruct + + + + + Deconstruct a point into its component parts. + true + b9c21b7f-29c8-4753-b2b5-0e8b3c9b4034 + Deconstruct + Deconstruct + + + + + + 899 + 2015 + 120 + 64 + + + 940 + 2047 + + + + + + Input point + 4a29e212-b848-4130-bf63-69e5f1c898ca + Point + Point + false + 231ec3f5-b0c1-43a7-a9fc-ec5669fc1001 + 1 + + + + + + 901 + 2017 + 27 + 60 + + + 914.5 + 2047 + + + + + + + + Point {x} component + 9f667c48-eb1e-47a4-8db2-61666d1ea383 + X component + X component + false + 0 + + + + + + 952 + 2017 + 65 + 20 + + + 984.5 + 2027 + + + + + + + + Point {y} component + 79b1faa2-503e-498d-9a62-75f1113025b9 + Y component + Y component + false + 0 + + + + + + 952 + 2037 + 65 + 20 + + + 984.5 + 2047 + + + + + + + + Point {z} component + af4c6c2a-e29e-4d24-8c7f-4df53b899191 + Z component + Z component + false + 0 + + + + + + 952 + 2057 + 65 + 20 + + + 984.5 + 2067 + + + + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + fe052eae-c14b-40dd-a64e-a9605baa3660 + Panel + + false + 0 + b0ca4533-8708-49c9-abb0-994600403593 + 1 + Double click to edit panel content… + + + + + + -75 + 1436 + 116 + 20 + + 0 + 0 + 0 + + -74.75103 + 1436.004 + + + + + + + 255;255;255;255 + + false + false + true + false + false + true + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + 15a9d74b-afeb-4d95-a1bb-fa7477735b92 + Panel + + false + 0 + a6d6d315-6584-4d1c-9c7a-258d37fd4a9a + 1 + Double click to edit panel content… + + + + + + -74 + 1517 + 118 + 20 + + 0 + 0 + 0 + + -73.92162 + 1517.638 + + + + + + + 255;255;255;255 + + false + false + true + false + false + true + + + + + + + + + 9c85271f-89fa-4e9f-9f4a-d75802120ccc + Division + + + + + Mathematical division + true + 5cc4f794-4ed4-4a4c-8c41-7786c46d0031 + Division + Division + + + + + + 1151 + 2015 + 70 + 44 + + + 1176 + 2037 + + + + + + Item to divide (dividend) + 5a96fddc-d35b-496a-8a2b-dc4281e0294f + A + A + false + 9f667c48-eb1e-47a4-8db2-61666d1ea383 + 1 + + + + + + 1153 + 2017 + 11 + 20 + + + 1158.5 + 2027 + + + + + + + + Item to divide with (divisor) + 81aba054-a3f4-41cb-bf02-15a2fcc92ee7 + B + B + false + 79b1faa2-503e-498d-9a62-75f1113025b9 + 1 + + + + + + 1153 + 2037 + 11 + 20 + + + 1158.5 + 2047 + + + + + + + + The result of the Division + 3e1b6d63-9b79-46a8-8d27-80596e7d8b16 + Result + Result + false + 0 + + + + + + 1188 + 2017 + 31 + 40 + + + 1203.5 + 2037 + + + + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + 9a773977-be13-458b-81ce-8e026fc440d3 + Panel + + false + 0 + 413475f9-4f88-4628-8645-62eae4dd9722 + 1 + Double click to edit panel content… + + + + + + -75 + 1477 + 116 + 20 + + 0 + 0 + 0 + + -74.95802 + 1477.779 + + + + + + + 255;255;255;255 + + false + false + true + false + false + true + + + + + + + + + c552a431-af5b-46a9-a8a4-0fcbc27ef596 + Group + + + + + 1 + + 255;255;255;255 + + A group of Grasshopper objects + fe052eae-c14b-40dd-a64e-a9605baa3660 + 15a9d74b-afeb-4d95-a1bb-fa7477735b92 + 9a773977-be13-458b-81ce-8e026fc440d3 + 3 + 084c7217-4011-493b-8830-63953c7ba928 + Group + + + + + + + + + + + 9c85271f-89fa-4e9f-9f4a-d75802120ccc + Division + + + + + Mathematical division + true + 3c066c4e-f82e-4ce0-8965-2fc103a164f1 + Division + Division + + + + + + 168 + 1736 + 49 + 44 + + + 197 + 1758 + + + + + + Item to divide (dividend) + 48454173-6e78-4a1a-90f9-71b265a676a7 + A + + false + ce7a6538-1307-4799-aa09-c6d0b388aa6b + 1 + + + + + + 170 + 1738 + 15 + 20 + + + 177.5 + 1748 + + + + + + + + Item to divide with (divisor) + bd85d2d7-9186-4c60-8c8e-c3db7225fed6 + B + + false + 0 + + + + + + 170 + 1758 + 15 + 20 + + + 177.5 + 1768 + + + + + + 1 + + + + + 1 + {0} + + + + + Grasshopper.Kernel.Types.GH_Integer + 2 + + + + + + + + + + + The result of the Division + 5078d0e9-110e-4e9f-a4a7-8a5d53101b3e + Result + + false + 0 + + + + + + 209 + 1738 + 6 + 40 + + + 212 + 1758 + + + + + + + + + + + + 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 + Interpolate + + + + + Create an interpolated curve through a set of points. + 5bd76574-5d5a-44cd-ba49-5798321dd60e + Interpolate + Interpolate + + + + + + 783 + 1332 + 225 + 84 + + + 956 + 1374 + + + + + + 1 + Interpolation points + 1309ce84-0810-4236-b802-033306a3ffa7 + Vertices + Vertices + false + a35486f2-4dac-4ca8-ba16-9b13976474ec + 1 + + + + + + 785 + 1334 + 159 + 20 + + + 864.5 + 1344 + + + + + + + + Curve degree + ff1b1037-4bac-4f05-b1d6-ed7e744d8455 + Degree + Degree + false + 0 + + + + + + 785 + 1354 + 159 + 20 + + + 864.5 + 1364 + + + + + + 1 + + + + + 1 + {0} + + + + + 3 + + + + + + + + + + + Periodic curve + c55a5646-4ba9-4464-af9b-8c798d388029 + Periodic + Periodic + false + 0 + + + + + + 785 + 1374 + 159 + 20 + + + 864.5 + 1384 + + + + + + 1 + + + + + 1 + {0} + + + + + false + + + + + + + + + + + Knot spacing (0=uniform, 1=chord, 2=sqrtchord) + 33a680a9-7b32-4f98-99cc-5298b63afb44 + KnotStyle + KnotStyle + false + 0 + + + + + + 785 + 1394 + 159 + 20 + + + 864.5 + 1404 + + + + + + 1 + + + + + 1 + {0} + + + + + 2 + + + + + + + + + + + Resulting nurbs curve + ffc7114c-425e-4e46-9780-4f5439b2a045 + Curve + Curve + false + 0 + + + + + + 968 + 1334 + 38 + 26 + + + 987 + 1347.333 + + + + + + + + Curve length + 2b05c6b7-328d-44fa-bf99-ff7ef38fd7f7 + Length + Length + false + 0 + + + + + + 968 + 1360 + 38 + 27 + + + 987 + 1374 + + + + + + + + Curve domain + f5a94324-cae2-422a-9504-bc1edac874d6 + Domain + Domain + false + 0 + + + + + + 968 + 1387 + 38 + 27 + + + 987 + 1400.667 + + + + + + + + + + + + f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a + DIFERENCE CURWATURE SHAPED GRAPH + + + + + + 7H0HXBNZ13dQpEpRUVAUgwVRuh2VlRaKhKKgYieQANGQxCQo2BYVe0NFRWzYsYIde8O2lsXe67qKbcVeVuW7dzITMhXyECDP9z7uTxfmZCZ3/ufcU+499xwjf0lccpJArCgFf/RYLFYd8NdcKkpOEIqHjRLI5EKJGJIiwGVIhn8M4Uew+4IEPL5ABj9SByWbYKRgf3jZGFzqH3j/WeSQVeHT7irCt8iS1xhGyASjhILRkG4C6AaRieApfAv0cqhAnhiVKhVAcm30i81QWphElsQTQUorcHX16tWl2F2RApEgTiHgYzShUFhq5S+IF4qFCvAWETKJVCBTCAVy7LHwr74/T4F8jxH4ZdfjpJnzp901MvUXyONkQqkCfXk4RJZ+GC9JgP32pnZ0UKCr65M9S1+unAH+fbIkD/z7eMmOx0t2Iz8gv+5eD/+dPxf5N+Px/EWqTxZlhcGfF6bDJyyGtzxZvk718+PMhY8zF6k+9njJJtXTlB9TPuTlkl3w+tKJuK/G7kWHhFI34Ye3oux7Z2YjH57N9HP2ZtUD0X/RK4x3IT+jb4R8o9oANqnGho4TG3bZZxCq8h3RL0XeHUUVeQKKD3YvGUklwijayi/CGIHyBX0ajn0ovAhnXV0Dg6KN+wAJg1NBjk0T+McMu+onSVZOoNrYFADCNhwIIyo/tdDLBlE8WYIA+aQdnGpfS0sH1QOSNVAiScJm0KSmMT3r9APijPsqY3iF9DXGfeKkXF6qJFmh/lmTQJkkWUr6cN3AIB+uMFbGk6FTQA+dWXVwH4VXDJWfS0XGjN5u6SOXC5JiRakBySKR+lTwiUiOjxfI4oXyRGd2P6XG8Org6g7/c2b7JYsUyTKBl1iQrJDxRM7siORYkTAuRJAaJRkhEHuJwdMssEf3K9M38MmG6FMMfJIViRIZdtksVBiXyBOI2BGyVImsVjAf0zKri1c0HebRj5tnME/4q9hkDG7GmpQN05Dme+qVKYvwWMg+FUz9AAdNlddwYMHrBsrrEKNaKH76gX3LdJ/Huj6nBuVtCshdZ3H+xIRPi3GjqoPwythPIlbwhGKlHnVEn2LgK5GhqhVjjIGfRCRJlmEaDv6fSlfZ+bAT4HPZknh2oIwnlydKpED3sSXKt6oV7I9ID/i7sM/LcQM+JoTNdHvl+v1F8mJA0kNJpTF3rj+83yoks/eOYVkX/jABpFooSTb2l3Oxu6l/3h95r23zQxoCUm2U9MS+G++Y6yzuljVbPN4ILBwBSR8l7TjjM+q7rU3Q0WeP5nW1tH8ASHVQ0ofrTwrWNCjm5jx7PiQ9essLQDJASasOdbC6/rNu4GG9WgUT7LK+A5IhSpLmcVdusejGSWs01ye49YTRgGSEkiZ9PsQyP6Ifnn+oq97lfYHrAMkYJU0/earv0b/MuFvTn8zv+uKrEyCZoCTxXpeXp19s52x+tCXG03H/N0AyRUm1D464Xsfzl3fOmwWPdroNuA5IdVHSzAmtf7y5ERuwyCzizccI24GAZIaSUj41sneSZoWsnTDLcNnXGf0ByRwl/XjSqtvFN5167fOMdBm5OuYjIFmgpJ8HfFYMXLTWP9u49PLa2+lGgGSJkpo3X3F+TsfHQfNXni3cGfh9ISDVQ0lLQ15xj23pyl2w16npyoG9nQGpPkp6s7Zu0/wHluE7Y3rz79u2KASkBijJ3vi4k3vIO5+CqB/H5tdp1BWQrFBSk8HSFfW7vA1epL/fdKR58BJAaoiSHrz8uHFOeqOg7cdHPLXcumwTIDVCScVtOKf/zejpd3CZj1vc+M+PAckaJf0+J8vo7NufAdOdr+b9sX5iIiDZoKT4hpHf9KaOC5imt08mtg+ZDkiNUVJ4VsGklNphPmuGJdR/ZZT+LyA1QUlnkjt0fD8hLfTQg/W3rxulTgQkW5R0qfPC0QtOFPXKr7/xIPv0xHaA1BQlZU25tu/7iiSfbe/szfnibChRzbDpUCicWt86i5PxntP+BNfrFSDZoaQeV5pfW7jyqM/6cVsnJY0YuxmQmmPv9SB3wMYpncInxj+/x2JlxgISGyWtFCZl7l7ryllfJ/vWoV/99hoF+w/DaRB7qJmDxXIFTxwnCEwWqpTZZNmfdW4frRV0dG/onEfHePoUasMoTBg3Qv0yy8RHoZAJY5MVSg2Pqm5MRelpTUX9Vo0qqkNUwZIfwTf9cnu+6OKz74pCTUVJdzfLMzBM4uTddO40Y9LLwWoqakvepe2T3jwM2RlrGfPGrKelmoqa2Dfs09kNKQGbJDOCpvumnlBTUU9f71/1LjDYd4ZT23msIPZTNRW1K+/4r6A9A7hz7GaVnF9yzEJNRfWNanrGrn+pz9KTHXOMo35+VFNRUT0aJ01t9Sp8Vpjex8lmId/VVNT4QIVk+HqPwIO1rqY/rHv0g5qKWuYUZhfw79CwHfJlyza2m7hDTUV9z0rx3xzMCtzZaJbX88l936upqIXTOR2LbMcGrOm2lvOscFdLNRVV8nu9en9ODQ1aFtR8d5RL289qKsoktPPnyytaBOX1utVzaKtrF9VUVFHE+3yX56GcTS3X2Jl5yF3VVNRMp7WpthHcwIzUbNudV/ocUFNR+5YWGtoayrgb+t+wM7xeOEBNRbXdfefsu0+vQmavfucW2d86U01F1fLauWDM/gnhi79092o/vfSamoo68TrifROLdiFLnVesMNkYsE1NRX3K6xdgkucdsr+lW72EPj23qamou8PYwgPX+wQtt7/a58awg6vUVNTM4T5fZ19YFbwj9UODnKehKWoqivVXQpeIPSW+Ga3evR0yu8dNNRXFihzw/Ni1tb12Xm28v86sO/XVVFSfzl5ZDSKdfHYPntHLcd6bdDUVNa3xaNvsXRdCZo3lWRe+Hs5WU1H9kof5dShMDdll6JVv9VHWUk1FcS/ZnF5RUC9g5bHf4xvual+qpqI+eizkeL4rCdrll3Pg2pBWSWoqqs4/M5J9BswMmt7bZ9BFSZC3mora+iF8Q5evrfz3mOx4f3ziQpmaimr5+Y/X3vbHA5cbbGVPidZvAEj2KMmz3SGum1+XgB1ngjv7jNg5D5BaoKQRAR59DXat8p1oNmX2hPvnoAvQEht8VPrgLcv1A5bGft5gfXBMT0BqhZIO279dHDPNxmfqmcxbXtsPHwWk1igpzTFjc0u7+b4H2x6IWjLwsQ0gOaCkCdw9A88k5QbsS+qybG7/5taA1AYludxlL+V/9eLM6rLCult/OfwuR2yE/a+YLxvVtlf2RkuHF4U9ZwJSW5S0qF5pWGf+uNAVr1p8uCsP7Q1I7VDSWpf8hbdcZ3jPYUdNjSicdweQnFCS3VqvP84nJQbsXrv99gpWJz9AckZJm/R6tzrLjfSbeiV7mGEP03OA5IKSTi+wNPjt3cPQDetWPAq7ePgwILliU2/qmtN1zd722tDb1TK6VwtbQHJDSf827rRuaPto78Orv/zFPecsASR3lPTl69ONF5uWBE39TXw5o8WVsYDkgZL+cD7Z6HztuaFHZ3yyf2VUfxkgtUdJ66d0cV456LbvTjuF5R9216CB7YCSno3ZN+n+RXmvrVzr4LP8Mb6A1BElLe8mfdT5TmrAbpHRvnnPdroBUidMs11zaDH05ODAufV2ng/5vCAAkDqjJHmtZOuwZpa9Fuz4uGP4h309SEavC4vG6E3Z+Dzax+Fc0MQXZ2abWIw314LRgwaB0ugd2TD7t9yfeb32HOsRdfagvD7uuwzCkpNiBTK81TNEH0Vlz9zQT8rZPHacRCRSBn/QusWLJDyFUJzAlkqEYgVbjDxYTvn6RFNHNSTS+2PXw5HxKJdGkFDQIBLY4TgBC+XKxsdLG4+/3TVs/58TEkOdiqaYKsmk4I8Apyp29QUf5COX4ERnpbXjsCI6nGKxgnxZrGM+dSKEoyTIc6DKYVk6c8bObH/KPAJGWnKFQKzw5yl4zFGnga8MAJLIUmMY+UP6ETxFIvbqtce6j9cPVgiSWKyy1SkDJcLwM1jsymJleKPiUJtOHA4LNmwW/zzPneN8ape7rP4QHPbGfsmyUTwYyOIlAjoHBjQS0Z0ziidK5ikEbEWigB2HPQCKBA/5VcDmKcCPcqkgThgvFPDZUp4MfKdCIHM1CBLy+QKxCi9KaSF6PzQjJglMGamCrGY7cgCAgNXfAavTfAmsZjsD6m+nTJHRDxOKpclILGyIgkwFTT0/5PUVErYAxYjyBce9fdHudeaa4NmDTNv3XfNxIl4bIM8gvRx6ubzJQPQBKzkZvAFCUm90MpQQJ0NRWw4rrScOIb1yEGodgckCG2gRpbTwJUlA8MpFbUFKyzyvkB4h267fOGCd1UyGFwvVc8liUUYqD71f/eeLiutmB0yrnebao9+03VpAD0gQA3o5XqfqKtGTJCtQATNggK9hBKJrVdCBiTZWMZ4SLttBC+8t9ojw3mPxuEnA9QGReCFDnkMWMuVlEkxUOLAqjsMjZ1SKegAccog4RLtyWEU98TjolYODtWqqs0cB5SeRMSHBf2JkwPWbxV0d/FvXde+KXmmuT6oEEfeeTIgAucEhUqviiMQJZXEiRtk43/9madCG46GbeaJ/Cq2eeOsIIiVeTIhEeJ1CbR2MailtnevzWPsfsq8hmQOu3XLL3WyFe6+6/sJRQr6AjShSsrkzpAG2LXobZtvABAGKamQyT8QWCcQJikS2XJAAd4XkFTJuxPidfogk9HHUCsJaBFSQe3cA6xMqE5fhBKieGpk4C5WJ4yOjoXzJniuSp91+VjcofdqRzXODC3/proErAfhYQnxKfCjE7hFQ0dJulAaOzl+ur/RaoTeEyQUlREUp9WIcGivCVpg8u9htzLSNBIjg61BAhFwuDyJijKUFiIo8mSACIlTDDjG8iQ05osYpTGPScco6UioSKlRcgvpyhFA8giaC+aOD/sqxzYMPzvn+vNHImQPw7AqB95HZpbysbU0J+ZHRlYkfJV1qhB+GsRKJSMBTKUAWybXBFIuBT1ycQC5XfzylroEKD25oKUNMas6suMczyL35wGdNhzp/c/i9juBjS8ShIbMGu65t3kQ4o+pkMJUVM3JF1AnJ09EQlhZRPHECYCzq+iCSy68AUnuaCnJXhszymRx6c/qiA70e45AyQh9KxqqMUhVoIZqFFi2gWUhekIZotSyLOGB0IagwXMRggLDrij2VDJg6rSogQyY/LWRg8qNuUh0WjZu0auzi6/8Uj/DL3db256U/21+nMM94/8iYAd82tAtEQGgEMmGc0m+qmHdEtO6GoTypVChOwJCCr6NFZ+JJB/0GxvcPhs5dlTncMTyocyUtJYzo2MaAOTMplo4GZjtzOg00wphjQMecWMepLbP1j3jviW5ls/n87Ua417XwF8RJAG6y5DgF20cWR3Zj69CwqXsfAXgFwSjlqk0sTy5gS0U8scCZLePxhcmAe2I++JsgUsXjcD1HzObJ4iq2akPcYmIcN4lhxA9UNGoAtvAYByB+gcq9ZQH39pifRu5tU/DdbBBO+iljKOjmlg2M8r0f7E17aftuYMD+4e0zOOGF93DvXZvqXZGL5YkmMUSrpGiy4GIDBCoHOA1SIlA5bRGgNFqKsPVVyRAiKkrclLEnJVBr/9TLveueEnCgec+GbeTLmuH1KfK0CPg0sj5Vo2lbnx5zQnGJptKnUhcOi8XRcGmij3I+VQgT/z2HThyZdd9/ZuaN9hNGm37BOy/KJ5GdF/R6VWAR48+EBVFGyluUYPuoKxRH8BcqG55Y3haFhxIUo4LTDfQ/5vltf7tC8bLk8yO8wkceSVb4ystVAQnbjwmSNF9Mo2NRIUmjuy0Yn9qs26+A+X07zWItG7AEL/jhYP6EjwLeSTRZmdemwbWBnyQJwA8mHpx88OaUiilp4mY/3VDIc7CMVlFPBeiUjOEAunwA3SMidCzgx+QLNVLNpsHwU0onjvLllj2v9+vU9r7hm63PtL8ZySOsePaD95HlRnm5PG1M3IGupDaWwnUFiE2xD8UeU3Q7BBuNtHHdcORjDOi84o9oXHdgw/A93qPudLj6KJugagTyZBF5xQG7rvV55YwC8JUKgAIXBAB0XhnRzauRR4VOwrDNfvuOhIuePx30FvdGpr2TwbvAFBxpIrUzW8H4oZW/UA6sXCrc0RIooN5KdcECCejzJsBvoEScmD5DOz4S7DgiCXvjSIlMEa6en0QhscT0lwpKrOppBIbFtAGqbhRgWCM/+Jfg2g5vw0kaP+qUGZapHizmC1Kwx8H/o6w0pmPlq35hXH23b36L1l4IWB0ePBAHlT4XsI6sHPVpGGbvJxPA3UkeWwQ+zo4VKEYLBGK2YrQEjfYqpiqJGU7kIZHYhlzVwHPNiEc9V3eS5wpmgLtAI/VoCb+cDd5DplC+J+VbtW28/Iney9WcOYMnbflltssGL5ORyN3Ue0M4Ynn6krj5pAXvVQrBiqAywzlAXxYJNNqGNEfAEoCQhx6qp3t+67jb5anvpsv9eH3yPWfjN0k44F5qoNRI5cFEdIm1ABOQGgaYMvgamhWlUCmXSClRSkxKDepzf4/ftqPOtaaMnNayotNE+ybFBZWRfGBS2MQJJXVFoEH1kAmdHjq3jMf96WkdOGmDneHLlmPxi4lGCBiR/tyKR92+eF2EAgliynjwK58dm6o+YZ3ZCnRhD8biys0l1/EVUlbEnEvqcZOX9jBKBTHOAUrLaA3A+B5VuO0NOGC0ugqUVlSji9uieg7jTEkwHed20yQA79gheons2CkvV7OiOgYA+rr6FAyxKWYgG0QTuas12k6yQQDC5MKRL5Qp19faUgL1e6I1L5f7njNraVCD3W0jTPEqyx+7mayyykjlARZz9PAH24ODA9Kf5A4wL+myQQuARTMCBiSqRjaXlIvr8DMdWHR/SnoSN5wwZ5UygEF4qZzX1KnxV3hnjqUWcA4YBn2bbr/Hsn6wWCGQAWZwUqQy4KqqPauWSzTegecijyU78Oj18thKzPTVAlsLcpjYmphT03uGZUl0JT21bBSjD0x8/r5Vcdjs+1+7NF7cb3GNGUWWK6qP8qmW/fJdkemFGkVTFo1R7Ne81ojMHZa++1eL3nYfbxSEX9lVZQMqJa3iiRX79VS34vIG4wQy+AB2PE+Z2COSiBPYQoUcs4joF6F0OTuOJwZOPlueLJWKYLZhrAQQhViGVLIY3goNqhg5YCscAz6CXHRl+yVCvYosiA8KG1KWpgiXfRWSBLh0pYoewGdgBJEk4QsqGEAQDzswwkZeECd8oKIrCzBhbzNguL4fhYXOh2H3pqpIabQ99CE52c2CO+nFji2pB6+v0OImDXEyVVI1ZQCEYjbTLel5AyfZcjPJRDPlEbTAySM7Hq74IpihgIGPUkJmbhAxt/++3Zz5+gF/HJ05KaZy+rySigKicmwTEypAbnRIYWuS6NExOJ4dJUsWOCOzGM8toVxdLzi6u7qzJ7A9XN2p/SvDLYKcTcscgtO3HbZa7djxK375NEz1IPLyqRqtKljHZmRdUa5O5IPoaWRlmylTXYFJgFwrSyZn8J8W3J9YO8P2SK+tmZeO9OG9wm+dVm/KK9waQLRMEBVTWG6IltFoX8kBn/WhETDuntc6WbWx9Ft5y7jw1qoi/LK/IfpgEjQqQlWAgygbWnCAstFoo6mN0kqVWXBN0OGnLMms3ekANzf/xP3AtmlztZFYrgWE2IwIgTmN+m11WTR+G8ennVOp1zWf3Ad2m66sfNsBv9aHxBZSiQhYdLLPZkSDcydsPUMM82Cx+/mowVMkyiTJCYllK+WarLcSD4DSjpa8MqlGrKhfDByhnG1oWmwu0U0qAvhGbCW5SUaYeqzYxoFV2bDKyTSKeXe5cdTmlIC5+skng/fenIVfvekHi7uALySv3qgo5blQRMVYSRcKORmzjS5XOwvIrvc2jVyousrpyxckyATU/uXFHHMHo9ELObPOrMz8+9eHdnhnyR+5kewsode1PTvh+5dsZXr/nK017SypJFMDRwkOWSjhYylblIzYumCH6+FuBZy9w/9KOxDz4m+8rGIPIMuqilIVzIhgZAarZphBSodVZ0XtcljhGiKWKID54sXBE5aO7l4gZAWRRZIz28MrLlEi4zuz23vJR8oUyC/U3up0O5Pp41YO9J963uNxYkbpabxdg18QqUilyKVQI1UFs/K3MDErZosuzBz4KM0OZik3yiGzxMmyWDnDDMr4YpXe47eSXpOf2IpfTLa7U5lQubKhgzuqyG0AO4qI7DjmwenbeptmXiqqyRm8ra55nd2PDLsUOq/PuVBr9919ajbsBQAc24oCcIsCAKhaNPJEMVOGpDxRAjB6h2ly5zAHzvql9QZ8NX1YQjBlyI0Upkx5vSoAKN7CAMDmMVswR9OMReNo/mcnzukQ1MqJc2LNEK2eOCceZ9fGifN8mhPnA5s4c1Jf52E8MKfjgcY53UYMLNBqTjexRosWlwaJqlQLjHi0nYkR47ZjjLCgYwQ7oeXe6XNm+C48uZW79Nv+sfjX7SMQ8VKpGUEIK+g8gwY+7NFCmYAtg09CywpR4k7MAKIYCAl3PXa5mBPzyCqbMw8wPzbiFNyyBwygKLfA8h6BYW5Jh7lx5JJRG5KH++e9+Srowt6Ejx0t0Jg1FPwjE/JEFd+haFIW7YZLBeJALjsJfUbFQlpinSHGYZF3AAgf0GA5sGQ9ugNQRMqDAC5WxDpSaMvkijZTFr6Csx8uqfCF8fHJcgE7LpEnFgtElC9+26XTk5P3srwP5Q69NMYh4Bx+vclf+QTyehNG0LaRyweQPIKQpFF5nfkwL2Z9jXiddYBylahKin358qVUk6iZjWcMXOtKFvFk7ERhQqII/KVWC+eH/fxz+omJoRt//FxkO+3XSXwAF4k+hBzAqShVwR1vRu6UrNMB7pSWsko1Caabc5KEcrkQ+IJxODZhKoSSOZJ1W1fe2Lo6ZHfdia/s0p8dwjNH+USK/I0ySlUwJ2cdE3MidIE5kD+ahNddfJLgVyI8AcMBcbZMII5LVW4AebElUt5IuF/kgfxW9gnqGdU7+66smaMtd96M339Kd3RPxB/pj1J7PvlIP45aFcxjMTIvf21NR9tlm3qPcJt6+uVw0KuMg/JEoThVDFwnwD7ALrEEnmrzAD+JJKMRIvzVHZKSeCnKC9RLW6E3l998/sV3zjb7L0tlpQmENLNEqrQN9HJVcC5mLRPnLGucc/AmPkvDdZL6ZeskjIpwJZfTO8DewL9g9953V0euq4NXhLQ+UxlF2xxxd0V9COinniW5VW6IIkT91HosGj+1sf7YyBMHP4YfNcr726HzWGfcW5n7JcsVkiQ2WvUd76ZCTOlOA7XxEQFJl6OZB/AZyGZ2gkCSJFDIUtlS5QPlFsHiOFEyXxAs7iMQo6cH6J1XYiVMprGS+ECgm8Mq31KJTBEgFCkEqoLXFZ4NbTmsoo0A+yyqXPkMuFe2kXa3hjKGCsSwUUgweCrk0RvV+j3vzAuHwKl5oi31G3RYgBdL7KlksVRRqjnZBZ5IPgaR86bSIxFOHJZ0o0b5qA2j1FwY5OiZjK4ITDPP7K6PGr0L3r/ed0j7loTo5z+awgSsiDpCG6e3GbEq2lCtOhfrO2GIhlzwQ9DZuZ9zv9RIgHp82EVfd9/SOohtI1pVIywwwD4K/19X3e3B38HCKkzWp1NjOhpuEwv0Vlu47d6SKdwuaV7V4fbajU3kj2bVD1o6Z/XfJi8PL9WBcNuyJZPzIm2hAzFDfn5+NYTbxcs5R+/FNA9Y9PfjAoHC6aVOhNtF9kzccbfXAe5US7h948saS97TN36TjFat+H38/QidCLcz2IxrIc11gDmsmgy3i2c+t1jLfua34/vZl6OGt5+pU+F2RHPGcNuupoM2HQq3s4I9T99s0cl3R1+LcPdjQ0fUcLhtacdosZrVNOeqNNyefbH16043jP3Wvmtf18jCPF8nwm3Eh6ANt4EiRP3UBqz/D8JtYguJGg63c9oyhdvejtUTbg/gm7r1GOIVPLnZ3QGtG+/YpfVwW8vVRJGC2G2ZQshHjlUVbu8r8pwsuvw0cJOog4Tb7p+hWg+3iTpCC1gBOWLAKqfN/6lw24pOjelouE3sbFNt4XbiHqZw++yuqg63TaZvvJYxoL9fZvjCXy3G6a3WgXA7eg+T82K0RwdihgcPHlRDuN0+y3F9195twucltK99rtPrAzoRbhfsZuJO4m4d4E61hNs3s7i2O/JWBWe+upv6JMreVCfCbRtG5gBtUvPMYdVkuG0SvLPFtf4mPplpLR7k3/zVS6fC7ZRdTMxzrBnm6Wa4fbfrWstfBx38JrrP2dnKotmWGg63b+1k4tz0nTXNuSoNty2cWtp7tooOmTXz4PweqfJNOhFuIz4EbbgNFCHqpzZk/X8QbhN7L9ZwuB2zjynczt9bPeG2r5PfkuF9UnvNXRZz9ejDxm+0Hm4TU8G1EEJG7GMKIVn7qircfr7gfgOFIqrXrpvT/7XY+9t9rYfbRB2hBayAHDFgFbP3/1S43YhOjfn8GiV/rZgQvCuh+a8IWcwsQlyrarNEUVoUfg1dWcpm/jIeUGN9wEtI2ISnVPCINLErrAFXEjdCwFfdxDhSiggc/wENDkm4ewBBmuRLVWEGFq50I6krpgYC9soTU1C/l40IqaoKonGk9GqFwPnl1nj+yHyhX85Ax7BUVoeOjODoVA8iWJjREiJqRTU1z8IkHXeN1FizSF6SVAS9EICaXKhIxaKzQNpatQW/vf2ruFNd/4X1Zb8av8z8gxE9Q3/lYynWOFCCtv0TpMSnGxNEQOh0wGNEZFyDknDmkXE8EVI/n76McGurqfEtzs8L2dRrRlD/wtaWzIKNPJDCkUculyfYxN7SWhDsDFcmrpW46ALXhCyVVbBm0ViF5G+HOuzMiQpZ+jN68IzuK6fjHUZ/YYJQwY6Mk8HDchp0120ZlpyEnKeTo7cialAuRMrmM51vJHKKUSgIw6vQqS+6CWuEPQVexGy4AfIFqqNrsCKJAXCO44UpZV9RB3YtUBWFNkWELzle7SNoLXYMsnjsG1lKzlW052YrDuuYE5C5MX5kmRvYqxWn0wEnLJKxoWO2X5sLbp6TH3JzAla/U3g2xreqMOsjSOJJ2cqzovKK981to7wP5aqyjyCPLRaMhpcQIVAeGq6QtSO2emcYIYndeHJFcYXpC/MArpeozH4EjFLmalRYzhzhNgxRZHA41M0S98uSAgdeCNw04dHaGVknH2ixoj+x630lVV0MgCcHwlOXStWlAFUXMU8jG26mHA/TQXKTFp3EZwOlgTs/h9zl+7gZ4c84K+8nn3FGr5eHT8TBqy8tL1zkrhu1KqL3tyMNtIAPixEfID41YQqMkCo9o5RA9GAR/2hWac4siidLECiYmPZ5SO/t+/tYhezvzxkyd94HfDFNA+X9ZKah17XtVkGuxMxl4oqljnJFo2U5C0ThSQV8VPlSMiakd0mv85/ucDNFIX23t1uMP/1jEIrcT2YMel3bjLF0RdUJXI8jdY6OcOOwHOdpVpjDVoUBrIUaJxKWh8f38XqmYedOcef8/JTA6XblHT4C8FM+gBwBYISqQCR/LhMiXedidr0xi8au5y8I+Tioe7fgqR9/KoxO3sGXSUe/seJdeHqoirvjDTh7dKIwLpEtEMdJkqQ8uRx2CmGLwAyCfj5q/isW8LP+SugSsafEN6PVu7dDZve4STVeskwqr2tQ0p09By3pTmrT4w3r9cyubCW0pqirAY29ULlKCwv0KkdC+eKil3tN7PtGha9SjM4PbzfqMF746BwbFaGajT+sdm0JMXT3pehmw26HYKiRxuqBxQXKsi+4MsQiyWiBXNkjAO6Fw5/LfEr22DDqlt9Ee16jVWdgexMEMBsqwOBmBAAMncxN6CazzhTaIEqTlgpt/IcdfGgXgIEY5s5iKrSROAvD3FbnMSfWq9cS5mb631fsDQv0WfJ51e/Wo1P/qmzrbJg5vJIOc3eAuftKDPOmdJiH7Qu4dI5V6Jc2sHF34cte9fChfSjcb5SKhHFIlUmy8aJD2jYU+GDAJVCAO0XsJNxTKmSbpjUebZu960LIrLE868LXw9lMwyLvoOHpFVUbcD1pBYBzNuVOGUyvXH7KTFWVFfNWMRtugjSQw/ESfpMhcjmYj8nAAP7ZuXpHjf0P/GMdaubUoAij69HQTZWt10gyYqS8Tv9g5XiQ4cKPMAXLzQKEMqDnhcBNRlaI8Pyi5I+rYbpgwt5FAdkLGv7ddtQQfIN5PR/y7PAhzQ49wuxo9vb4vSUOC4KXj0gcsX3kpjWVLSMK2JkG2enuQxV9wH2GFafUQNIrByS7SNiqla8RSknLHMctePgifOOc1zPfHhXji1Pp+ZJR8i0XpT+cTzY6X3tu6NEZn+xfGdVfpgWUgFgzoJSx/BQqgypZYvItbJRJCtAZrQBARI1Yo20DYfdrRGJg20BSj6cgFwQpVJ82o9On2QWPBkx7+jX4QMGeAztGPOYSqoTzxAIRuWEgnRp19GFL4R1q6QlssUQhULacUAhS0JaM1G4u95LN6RUF9QJWHvs9vuGu9qUUQyFhy6JCFVmT7QO5CC+qF8onCKfPjkQHE5um3MnDkjZEX+fTrvAb9ZULZFFg+NjXtvaXJMeKBDByjBuBtIPgCxXou4NZB1cHnqRtIPBRtT5MXEx04LBKYgAfPf1YadP8TEJ5sgShmCuIxwmFqfJyH5jsqX7dWHk9SiJVv0pc6XXgJL2JOWWBgBghk0hhrWTlqAyxUSkzTOElbOPYFG7SBov5sKqyan4bw4twyULtEmK/ROh+tNJIwhRSIU/kBzuEqFhjEKkAQWKS6nf9/jKetExzKEXVjk5Udcbd+uixkOP5riRol1/OgWtDWiVpyd0iyr8WXNyiWCYXNyIWUw/NdR5zYs9ZLWFObDmtBcwzApkwtwzEMGfTYe6xrs+pQXmbAnLXWZw/MeETvl9SnUCZJFmKx7wuhrmvRL0Pqh7drKZwFnzYCfC50AwGynhyeaJECnQEyhB5rWB/DLB+ycP8OhSmhuwy9Mq3+ihrCUiYK0iUX0CqhZKIMwaQarOomwkDkj5KKu3e5u6769Y+W+o/n1rr6UUro2D/YTjOQI1KXbzoQ/iGLl9b+e8x2fH++MSFMgoIyaaEwGMWxmMlu+zp2KVDFtSz3SGum1+XgB1ngjv7jNg5T+sWlDR/CrvfG7KEt8E3XzriUd9//nSpGQta1JrDKpgOS5VWmQW905ozeef0/w4L2oJOVHVGm48I8OhrsGuV70SzKbMn3D/XUEvanCj/WtDm3jOZtDlrJqbNW+o85tyo9MFblusHLI39vMH64JieurswF5HChHnRaAzzVnSYf48ddKaDycbQ9Ydr/2Ql/lxIVVW94jsbdqECnhym4SHrzcqGWcBOom36KrZ3cdj+7eKYaTY+U89k3vLafvioJnXeK5q1DttC2wLkCqj2LkqcgGfSRLN2tKpmd0lKACjf7OTURZzo0XvDZ3b4O3BEHp/gDOtSZmEETJCGAJX4UKyzw5QOAJBmvS/Lre/fSa/xuzl+Uv+9n7wT86/Nqdn6/rDhIQKAEdVGA2wZDQBA51ZrurmlowuwaY4Zm1vazfc92PZA1JKBj22qYQEWSkzXbLoF2CIw4aYv/d8CLMqf7SNa5S4YNZGTO8j/4Mt9yX20sAC7qF5pWGf+uNAVr1p8uCsP7a2FpBzHbLqlxQJAvbW0qhdgZ9k+DPf8bSdny4ZJDZMGy220sABLzOTQAkpArBlQ6rq0ChdgiYvuNboAm+GMSgzlAux0FwQpVJ860OlTnfEPJ3D3DDyTlBuwL6nLsrn9m1tXxD+kCB6r3j2cvoPJPQzagUHeRuchH9H/ivmyUW17ZW+0dHhR2HOmdiBPTEoN6nN/j9+2o861poyc1lIba1oJjGtaCRjkjjoPOdFoaAdyoptXScil8DDAEjrIoRuXvwSDvC0d5A3j9+dlnzrHWb71yZjzTcfl4LOGOClSkYRP0eyyDg3CDugdWNyjTNmWJ/GQRH20/3sFM7kW9nk5bsDHhLCZbq9cv79IXkw5NHJCE0qo6NEs2OfiMNTOVO4Z3DxzP/wfxkMC5UAo3+0vqwDr8N2XA/ZOG/D5exfOMi3GQ1o+MAqT3YogQJTt52zgfvRhjRpXduojAKKB1MHgC2C6n0QuhHQ2GJ9QxAaSopITNk8GG9xLkoRxlCj+afCulsWakIDsGVNONeicgJcQY9X3kLv1lZG0furKEZEYBrgeHdKJ1orkztKYVFcwQ9EFnWj8MnYpEnkKdhJvhICdLEXWQWJ5sC4QbVu/3NrDWq/cIg9ZarkxYdasrZaEyjPoYykqz2AUrWfMuqDC7k/FvSxXRNhJOcQaAmeP9aDFjhgKiEBSgrXM+VBc+pw+IdnPZdF222fjdyv+o463WgDLnREsIOqo/WnHorE//ZrXGpG5w9J3/2rR2+7jjfC5/RYcuI0B84XpVuPoCnXt11PdilkiIJrgRwAGTA5FW9nzRBJxAoi95OjqjCu+1b2cHceDiaRsebIURByAQ7ESQAT3Kx+ZLIa3wj0XsapXvfKiK9svEXYCR/g7KGyIWpttYBkUkgR4WE09Q1UxWsJOgov4FbONpTF3rj+83yoks/eOYVkX/jBhhI18jJnwgYo6HLB6zDG0kBj5GDOwlSlHNbKV9cpsJTogypcd3p5jEXBjedA2ru3om9sL62nRWBI1UCWNJVJqDSIUTTUl4FKQzTGNjGULnDyi+30QMxQwugjYS/Hj84jxV0J3XA8/EN3DK6pmO4YCVM4eZUIFyI2OVh0q7/hSx+B4dpQMloaCsxjPLaFcXS8glaQmwApS1K2H+y2YPWZaQV/u/tyuP9Z+LrqKY5lJmOpBJLap06qCdY6MrLt1REfdGablpGYRSDdUYBKwOnnCeKjeGdbok89d9jBY+SF44j3x/thj0wkbY8jzyEpIeVnbTIElGxEtE0TFFJYbomU0OunkEAWNFUBklEBpFzUApnFp7SLXdn9wNmVOYGXOekWIINEHk8M0jFAV4CDKhhYcoGw0ak/cRmmlyiy4Juj0mrcr76RFUvCcWg9mp3SwXIQPUVTL/uQQpYxUFQg5MiIE5jTqtzmxaPy2c8t43J+e1oGTNtgZvmw59gjeG+UCH40d6c+t+MKBr+pgGMxvwDxhECHGg1+B35XKBtjKFMo2xkDZovIKfS/UdRtfIcdJNvaXc7G7qX/eH3mvbfNDGlKPm+xFYxRNwsDP6BExkqvkDT3nT5otKyADUMOAutrNzh6e3Rr4B21e+E9f3uGplwh1LuDdFHUukMvleUpE/aeF819sCJCUSgjZsHPQJ40Of9sgAGFy4cgXypQdmKmN7c3Ny5/ONpsYkNaAN7Cg5Mlu/LT0x24mT8syUnmAebh/bBf+97JeK5frbdP7dT5eC4ClfWICDEhUjThRSpsBP9OBRfeHfCacqcSLKcJLBq0qSz+gcIh9FzijobjRmMknTeojZ58BMzgpUplAVQYLcWp9fCMdo9tWzgEmsDYpf8bRlFO2AenmI5aZtFRM1AJrH31kYm3GR93xjzM0O0hel6umzymZaWVs6Nwm28F/UeNp2/u2OYRvaqHPpSqyqbyq9SOWrqhOyveBvCDGt67IFEMNozOLxjD6XrO+P6rLLu9tg4bazOp3GJ/oaQW3DhRw6RNWthbAWmsCDU5Pu/lJkgDkyg0M5DH8sscgwWHZoWk+EJIKWcQn9t14x1xncbes2eLxRmDhWP6ASeyg/JQGiwru5wHoxVQJSTFA+I/9UdnD1D5cNVDgcgNMzITehkTMdsQOAgP0EMOK/KTUaXK4Gi0ZLeBTG5FryTOsbrjzQvct6d5mf7ZHO7yOQWqqUBw1R6+Xp2MyA9q1C4n8LWjR83CP84M9O2hhZYINYdanyurJaovAXNkl4dZq7FetbsVJxHJBXDIiHjDLgXp1c/R9R9bPXk6+Kw9HBg9OW9IDh6Vp2XPJ4S+OqG2VwHZGYRtMBdstFwQ2VCW40KmE8+YtP3h0loROff82xPXq7xxi4SGpiBcnYIcli0QUuoDOYXbB7hPD+6DMCsWjeCIhXynko4Uw/xCEKbKKa4IdZ3xGfbe1CTr67NG8rpb2DxjGSVUgSY2sgZcsPUe3+ZYD0T1b2bnfCBo1pIyCAh77h0oSIkadWHPp5J9br/QKWDT7xLoBH58H491n5EFk91l5ubzpPOnzIZb5Ef3w/ENd9S7vC1ynBZchBiKXTuUywM14y3O07nMFkbNVISfDiRoULersutOPp6WyuAG7zhi2vdZz1nd82XNUQKi3dPBUbc9iiBaQJAa0pGer1cHCBmoUlSoVqOPQUu1cjWsIcGkFIlf4GblrYNAw6OQmCGSESnzwT2UVdyPEQELGgkeAoDpVyWpKLhMNU2UmSWVrMbmis6CEKs0MFrgBs0CjhTAbZTkU6CsgtgoTfT51gZDQEIerWzN6bU+euPpG/FdCRQXkrSg2JpDLVQEFIuK0UAARRw2VK0vX82+I2lI7+TfE3DUtpDylnGFKeep6BoPcTechn37yVN+jf5lxt6Y/md/1xVcn7UA+9odDmMe9caGH+usdithsXawFyG9dYYI86woGuTsd5BqfnLTAIK+Gk5PEaEzt5CTRPVM7Ofnh+pOCNQ2KuTnPng9Jj97yQu3k5KpDHayu/6wbeFivVsEEu6zvaicnpXnclVssunHSGs31CW49YTQg1WFRuyuAZICSiIICSIYoKauZ2P3B5MSgaTZbXfSeXntAOooJhZdS+sR7XV6efrGds/nRlhhPx/3ftHAU04OO/y1CCl3u7zAJ2KjPj73xwhLP/wbKxX4/kUQO3UVkA6fi9UpbBAjhAcxEeGJR+QAkpIRxpkYHgWofHHG9jucv75w3Cx7tdBtwvdwhksCh+pAGrUa6ngST7BbV2jXMOux6QqO1a1vlbhvSWUGCHGqWwKxA+rygdtP/PP1YKA7PX2pW17hJg98rs9dWtcvYRXB/9CRqdkkl9o7BBgInKP1wOqwaqlIi1LGirr7I72ZR0r5N8MIl/Yd6xte5p7tnqiBKQGYYUDp2XLMzVc4R2LxCJhuCGTblYKiH5Z7Rb5UkjTYqaczeH753WEb/+H5NrWtwPxcWtUKEiHJDDp64unVCMze2nWr3EEKkhActtAgsEE43UVewGR7d6F/5v8FrrBQ3L14JTtKBXUsI0vQTTCB1PaHZvm5rf6HyzVVLVWUio6z4SaugNp9k3/i+zDb0gMWihp7jF7fC7yJizyXvIqooVYFO8XEmdLKOY45RexaNYXzVL4yr7/bNb9HaCwGrw4MHkhfiyZaQrnWHPX4/V5XqNlqCrrJWzBDOnND6x5sbsQGLzCLefIywpRgS9d5ABWF7BBRT/ikA2wWqBShYcpF1qgq2aTcZiq40SZrjm7t5eavzD4ZPwi92IvuxNGYdRyx3m4qg4iqpxVmwxzEEK4JKxmDjgohTGtk6cwQsAZhp9FBl1w7ZsNuzb8DiBZ/qfYg6LsZrIg64lxooNVI1uwQQJhYjTPmFGh4gLncLjbjXXGNbaFDTIDICt9BIh92krgg0qB7qQKeHdL+VQMqnRvZO0qyQtRNmGS77OqN/lbcSkAKxOfaarpVAGlwpf6X1VgJvPz02bfHbJe+dX3PrW/jXa6rFVgI/D/isGLhorX+2cenltbfTjSq7uwVn1Wu6ouy5sFPXa223Emgm6cyW1eH1mtjgdt9usXe2arWVwI2WbT5zfTr6bG/WsXD/C9k9LeBjyYgPEB+dLFqv5VYCDi4zxpbO2uA/74Cevn2DKa1rtJUA5Ir0FRNX2DrFlZKjGFe030og6uDx+76Gj31mG3kKkro6Pq7RVgLerqg6oSycnwYL57+u4lYCnb38Tuf2nsiZt37qfPm2xoTDj9XeSgAicuwVEyJBrzC73pFFY9f/21oJ/HjSqtvFN5167fOMdBm5OuZjFbUScH/J1Erg2IvqbyVwYbD3ZUloP87BDps38Y+f+6LlVgJaNv5IKulLplYCAMMabiVAtOc13koAAYy2lQAADJ3Mnegms85sXBGlSUsVy4jbHFrYuSooZtq5SinGMO9Mh7mOVlVq3nzF+TkdHwfNX3m2cGfg94VMw9JSVaVHIMj++p6uqhLcowh6/7+qSih/ilILu945UBQ4xau9uYHI/bkWqirdWHZ27iP7VuHLf9S6lxdjUek1EzA7it/T1QuKBtSs91VdVWmhaPWVtRc3hG0ftdW1Xcd4fy1UVZrWqYg9ff8TvwWhNwRRPusru/sNUQpiROnruyqsqkTMeq/RqkrIgvd7uqpKji4IUqg+7fJfpk+XhrziHtvSlbtgr1PTlQN7O1eTPs15y6RPS/75nz5F+fO4tP3nP+/NDNi4xCNtx+MDm7SgT9+srds0/4Fl+M6Y3vz7ti0KtaApMt4yaQrvt1WtT/uNnBc8yjfZf2Ynu1prurmM1YI+JS4SaAElINYMKOX8U4X6lGhDa1yfIhJDq08BUqg+7UqnT3UmJiBOJ52s3wVDgqw3TCFB9BsMck86yDVOZjPHIK+GZDbiNolaMhtxbUUtmY0Y0KklsxEjDbVkNqLRVEtmI0qDWjIb0UMjZaxBrUgpYvbGx53cQ975FET9ODa/TqOuWshY66Y1JptWI5OJZdrUmEysUqPGZGKGmxqTiXv+JJ7o0/GkyWDpivpd3gYv0t9vOtI8eIkWeNKdjic61NChuA3n9L8ZPf0OLvNxixv/+THFULTcEmmNfdJU/p2ZPou8n6Z1XZ26veZaIkU8PlXFLZEOcR//dzR06EEnqjpjln+fk2V09u3PgOnOV/P+WD8xUUtLdUT510ZzgSeMpUyfYHbZS+cxj28Y+U1v6riAaXr7ZGL7kOm6uzxafJUJ89yrGOa/0WGusZk0Y1WfmXzw8uPGOemNgrYfH/HUcuuyTWpmkii/amaSOGPUzCSRsWq+UNoe54dnW57nbD695FJ31xZWar7Qrk2+M/PCHnC3J35pu2xDx1kk4wq1PqUghWcVTEqpHeazZlhC/VdG6f9qwbj2pOOkceSSURuSh/vnvfkq6MLe9B5f3g7d+AsF/8iAqqx4VcAm2JahmB0uFYgDuewk9BkV2xA8k9yh4/sJaaGHHqy/fd0odSLjsMhV9wgf0OTk9ne06l4RaWkGRGZpX0lbhExpEs2Uoo1Vn4QlBJJhmc5EnhgYOcoXlwuHRQ7swvedPdJ/aJKi1RP8hqC/8gnkDUGMoPUWFbB5OIQkjSpxIh/u+H2rkcSJOnEAWpXSKCkpKdWk2B8bzxhYXypZxJMh+4wi6L5Q8ibr5Pas0Su7hx7Navhvp/dbdhGKqKIPoSiiilGqgjvSb0zcYesCd4A2KtUku6g5J0koR8oWx+HYhKkQSubs7ivdVzJoVvjEk+7+tie3jMMzR/lEikXcMkpVMKfoKxNzgDapeeZA/qgzB7NMdMzp4pMEvxLhCRiOHNwqEMelKosuerElUt5IWKPRA/mt7BPUM+rd+XUDdqX88F3f5Z82j3Z1wtdBqBul9nzyOXYctSqY587IvEdfdKdQEL6Qpn45HPQq46A8UShOFQMnGLAPsEssEUPWgZ9EktEIEf7qDklJvBTlBUo+Chc179Z7/V9hs07eWyXpF1BEqIaWSJUWjV6uCs5lfGHinHeNcw7eBHdUNEqVqa9cjxaKE5gVoevduCPLha7B0xPHtnpxzukTXhHS+kxlFK0veLuiPgSMOM6S3Co3RBGifqo3i8ZPbaw/NvLEwY/hR43y/nboPJawU+enXMiJkAlGCQWj8W4qxJQus62ND6w6JFdbDEIKyCYIJEkChSyVLVU+UG4RrMzmChb3EYjR+IXeeb3UeeHoBSeKeuXX33iQfXpiO6axkncV8XTzfuAfqUSmCBCKFMovpnL3aWdDWw4r+gfAPotqtzEDuLS5/9JmvVFGw4EYNsjBSWSMFfLonTfXW7EvrWl4+vXLM39/OQN/7tgIeypZLFWU8uJkYnGzysbJALkgiJw3lR6JcOKwvv6rUaJ7wyg1F4YtGSWQyYQ0PSusTUOG1rW/yVlft87ZySe3N6j8FCZgRdQRWsAKyBEDVtH/VqvOxdYxDdGQC34IOjv3c+6XGglQjw+76OvuW1oHsW1Eq2qEBQbYR+H/66q7Pfg7VOG2D50a+18R/v+oCH/WlGv7vq9I8tn2zt6cL87+zgibNovw25QyFeG3+VUVRfgP+GUNn3T/RK8DtcPbrmI1e6rF0+Za1pFwwcSolKlmecGvainC36zezr0H7y7zmzzcesfM/UkhNV6EP/EXY2uCXzXtgarvONVMEf6JiT0brJ1TL2iL+wqfF722DtGZIvxnfzL2T/j5f6MIf51nkzedPWLlv7TkfNM/j7/pQdjprO4i/IiWoa2iDrRMtRXhnzr07I97TdMCt/ke8Fw+ZwY+G6FmivAjyoa+Q8GvaizCf/i6+4kjm0/75tZZHrrl0/XbOlDOAmlT8JOxTcFPLPz0ZdH4bRyfdk6lXtd8ch/Ybbqy8i2+FJ8pcohPKhEBi0722YxocO5UtkUiLLsfrYUBEJdJkhMSgQ8nFyBLNZrUclhYKJxa3zqLk/Ge0/4E1+sV7WjJVQ/UiBXN7YOd+/ROs1hPAHq5pLbLAN/prNOVPFhlVTYscBXFgvLVDdu12/h4QmTwInnw5PWn3Yor37uL4EIRFWMlXShY9tYRokfZxS4L1sXQO62JC4X2QOcLEmQCav/SbKrpwuzoj73SL92oa3rgWnPCCSnkRooTUsrrVVH29xaL6f3zWad1YLkOkUwNHCU4ZKGEL4xjqG0TNS7W1OXH3pCJNhMzH3f2rIOXVewBZFlVUaqCGdMZmRFTM8wguj8sTXYsXEPEEgUwX7w4uHbq6O4FQlYQWSQ5sz284hIlMr4zu72XfKRMgfxC7a1e7vLcPH/2Y9+556SX03yCJuPtGvyCSEWqiKL/ZRmpKpjVlZFZljoxc+CjNPJWG5YtdIuTZbFyhhnkdK5zAbufu9/8wsX7R6bf/FKZULmyoYM7qsjhUc8iUl0oD86W96zTGnmpqCZn8LZCo+tzDVrMDd8x+OGeP6TXdtZs2AsAOMZCAbhFAQBULRp5opgpoy8ykfpDPzDmsyt305/d/7Vt1HN2jR72hQBEsRgkoF8z1mnU0fRj/Xfl4/S40vzawpVHfdaP2zopacTYzdWWj+Nc+zRDPs7gWiTPUsv5OKOf1Wv4Z+x2792f389fPjojRAfycVpBSGh3N3/UqhGlj08quHHjRjXk4/y+7o2P2a1toauehPI7lI7ophP5ONdqMXFnqy5wp1rycW4V6rU5ayLnZk4obd2/zdODOpGPk87InMG6wBxWTebj7DDsorfgrxifXbY2Pn/Z9mypU/k4HRmZV7dmmKeb+TiSjJ39PsR3Dy+YExE/9NYg2xrOx3mqx8S5Q3o1zbkqzcdZkhSa7ffCI3iecMIVX/dzxTqRj4P4ELT5OEARon6qP+v/g3yc3x/kDtg4pVP4xPjn91iszNgazsfpqH+aIR/nXm3axVKt5uPENwtdqLAe5J3+Luum7/zYDK3n4xBjcy3kmDhD5GhzTPT1SQulWsrH4f6exR1lkey9f2loaOsWdWtrPR+HqCO0gNW92kxY7a5drTq3pvNxOHRqbORRoZMwbLPfviPhoudPB73F75T0ToZnJwNlPGki+YSpBtsXrfyFcik8PabazUl1UZ4yZfNgzbwE+A2UkrdSmJS5e60rZ32d7FuHfvXbSzs+8k6OOpEkf8aRQIWFqx/FopBK4rmnCkql6mnExkltOKz856dYrEZ+8C/h/OfwNpxDW5+fMosUiADDBPxgoNdTsMchbFWyMoCOlRqfSXNUyXbVn0mzmJ3aLb1TPd8jhRb7uobVmqV2Jm32hw9N027fDkxPfDaoWUvDcLUzafM83vF8NweGbXH9t42lvv0StTNp56MPhNxxXuy7pyh+juNFt1lqZ9LmWYa2XRKYEbCm1e1h2e0Pl6qdSbs0JOYep9Xn8M3fJsyo73/HTe18frewK2cWOxQGZfTvLVvSbFqeWrOZeY95p6PuSDl5okbdDkRu8gAkI5S0tNlj2/hpPXw3p0rur8hxhGftjFFS+z/X/toYH8LZaDVr0GrjO1MByQQlHZVffZBsci10xsqiCR5nGuwEJFOUtMAz+e+FYx8Gz+ct6NrAQR4ASHVRUv36LVp31GP3ypvy/Gpw/NAZgGSGkqaaRI3oGcIP3PygsInc3/MyIJmjpGHD2Bv/juwQMH9uzoSXo/5cAEgWKMnzQsihaSERYdOdpNZDxh4fCUiWKKnttvj42x0u9sqrZdBrVfSvUECqh5JcTz063MrjpPfsMVGxV5cvuwhI9VFSUbN20/eOuBcw+bevTa7MNhkHSA1QUtCBoJSlJQlBeY+Tm2XVurMfkKxQkrR5e7Owy7t9so6WXBk8oFECIDVESX9HHi29e9XY56Cd0ONbryNDAakRSoq7eMO47ZpszuHmb9pO+cdzMiBZY4O/+jQ+eOpP7szfurD8h5zqB0g2mLBFW808stTQZ9+OS89O947/G5Aao6SOfcNNRxz2Dtv1+681KyZm8wCpCUoyi1trdWFCbOCRSdvPL9BvOwWQbFHSyw4l32JePQpbPfHBvjMRc7sCUlOU5Cvp+HXlq0T/iRktd7/9tjMWkJphXL4j+HZ53jHflYYTXk04dnYmINmhJI8r5o1S3h4IX3vaZXyTus//AaTmKGlre+tXJ6/X8c1o0VFs/ek8fC82Sir2K7QqPrXYd2u34c9qNTwsIx22tGfRHLZcWr9Ts2Kb537TvK2avB14cagWDlsG0qmohvH787JPneMs3/pkzPmm43Lwi4mcFKlIwqfIIKBrTOqA3qHK+URKrcuTeCIRUEJoFfsKpgwQFRTl0MjrnCihgn5JGogFg4xP03QhjXDmsEqMSN4vYxOIsoxK5UAo3619nbp7nW2LubM+XIgz6T3ylxYTKrXs5MIitd7GdHt6NjB10FijbIBOfYDDJEPW7vgCWKZXIhciKRRgfEIRbLqskhM28KDYPBhyxVGi+Hdc00u/DVjiN9nerO0tz99b4LdAVd9D3gItI2k7koVwAYlhgOuskU7sV5PT9TRsG+qCTjR+GbsUiTwFiF9GCNjAAVG1YaLfK/311E5ScGN9SOanL4/te55KIayWo4+lWC3HKNrmnqULKuz+lBvYroiwk3ZMNQTOHkvswRatBUQgKcHq03DP3k/ZV3xnNzs2ZvXYr4mVTyPSAliIqNOCBUQdtT9BrP+dPtDm6QOih15tpw8yTU4znD6wMtHIVlbw9MHD9JQNKdenB+2t42DXvLXNBC0aS6IG0sLpg9kQIdpkbb6JRsbyPz19sHqesN2qtcKwPVM9op80bL+qxk8f9GBEBciNju6UVN/pgyl38pz3PU3tNW9tpvmqi5ErdOb0wWtjJtYVGuuoO6Pl0wfPG50WL9ni4Dcz+ESdRWtPXK7h0weIlqFNHwdaptpOH5yZnL0l9IeR/8I7H1u5P4920IHTBz0YwbEy0Sznq1KnD4b329C2f+p335UpBg/qdn+NrwFSc6cPkDlNixCY06jfFsyi8dvOLeNxf3paB07aYGf4suXYI3hvFOlZF+nPrfjCgS++ZSTqCYMIMR78CvyuVPW+ikDZovIKfS/UdRtfIceJuH5JPW6yF41RNAgDFa1PK1u7kFwlb8CBj600W1aoUG9JyZRpDrZeEt/1BX81X8fe2IawyQ7vpthkRy6X5ykR9Z8W+raIIEBSKiFkO3FY/q012juzQQDC5MKRL5QB8QV0amN7fuCWiSbjXDkZgwpj77U+jq8RbOyP3UyelmWk8gD7p9/cU/sHZARMvNpcdKNNSGUPtEPAmjICBiSqRpwopc2An+nAovtDPtJpxMBLU4SXDFrVd9aO1xmdUjgH7ROOb9od/6U+chgHMIOTIpUJVFt3iFPr4xvpGN22cg4wgbUyi3lznjWeETq3w7MhV3rnH9QCay+0YmLtuhpiLZV/nKFZA7jy+5cGupvdrPPM2Xe6RZ2gr+37p9VY/1KWK6qTYP9SKSm+dUWmGGoYe7FoDKPvNev7o7rs8t42aKjNrH6H8aWBrWDJTQVc+oTZuAK4PyzQoOuZm58kCUCuLPyJPIZf9hgkOCxrdsYHQlIhi0jctit/wCR2UH5Kg0WFEgsAerEvRRO0GCD8BRaVPavnw1UDBS43wFK+0NuQiNmOWAMvgJ7yEB/8SanT5HA1WjJaQHMC52qAo22H6EUBc5vnzRTtCbXA6xikFypFizj0ern5F+b9rDsZ9fDb0c355zpZx/ZaWJkohjDr+1K0/cpqi8Bc2SXh1mrsV61uxUnEckFcMiIesIUE9epm7c1JKX2GngzMu+7Xdz7vYhw+q6DsueTwF0esihNNCGyDqWC75YLAhqqEEDqVcN685QePzpLQqe/fhrhe/Z1DbBgsFfHiBOywZJGIQhfQOcwu2H1ieB+UWaF4FE8k5CuFfLRQkciWgDBFVnFNQNylZxgnVWNjNbIGXrKlBd3mWw5E17yyc78RNGpI+0MFbNcHlSREjBKAnSfWjUoovhq24M2YwLNPDI7h3WfkQWT3WXm5vOlMzErQgstgBJFLp3IZYEHlR+a07nMFkbNVISfDiRoULUr4FgWsTn508VLwIStX7ujjb17iU7VRAaHe0sFTtd6Y3BGRJAa0Msyr1cHCBmoUlSoVqOPQUi1nxzUEuLQCkSv8jNw1MGgYdHITBDJCljD8U1nF3QgxkJCx4BEgqE5Vspo6eZhgmCozSSrJ1xhXdBaU+FAlFbohs0CjhTAbZRtT6CsgtgoTfT4lFJP825vcMwnwKzi0W5awZLw+YWMCvhXFxgRyuSqgQEScFgog4qih4rJoDJXO1K0nakvttPCpgrL1VuZo0jpl2fqPZhjkoToPOTE3TjuQ2xx0aXOtND5k1a0ZVu2/XXiqBcgLGzBBvq4BBnkYHeQaZ2VaYJBXQ1YmRRIllpVJkUSJZWVSJFFiWZkUSZSqrExyEiWWlUmRRIllZVIkUWJZmUODWrxsePCZ9wY+l9ffau40UsobFF5K6SOmX2oh5S2cjv8tQgpd7u8wCdioz4+98cISz/8GysV+P5FEDt1FZAOH7JQb0My2FgFC2LInEfa4UT4ACSlhnImmIVRse5+YclruEEngUH1Ig+NRH03BJLtFtXYN20EqTDVau7ZV7rYhp0EkkDUAD/ALfV7QQ9/fr9hnzvCetpgXc+bEhQ2V2Wur2mXsIrg/aoqa3RLSAXsQVuebUvrhdFg1VKVEqGNFidJt47wpD++14Ezhjv076d0OlhbTIib2Dft0dkNKwCbJjKDpvqkntICSghGlrqbkxQcmP805AptXyGRDMMOmHAz1sNwz+q2SqT8OdOcJHnKW2SedsVypuF2D+7mw/SIiRJQbcsdAGFxoqpkb2061ewghilOrWQEtEE43USdW+rw89efyrUFTeMevWIwvma8Du5YQpOWMIClMNdvXbe0vVL65aqmqTGSQjUV6BWX668zh66P+DF66JPCvq+y1+Ip7RthzybuIKkpVoMNlRKeVKeYYRbBoDOOrfmFcfbdvfovWXghYHR48kLwQT7aE+jTg2uP3c1WpbqMlGpWNIx6wqOjeQEU7H8OeCmYAtgtUC1AsANutulWwTZvavn8Dg9Rdvgdn6+++2m7eCfxiJ7IfS2PWccTytDhRxVW2Yy7Q044QrAgqGcsBrjnLTCNbZ46AJQAzjR6qn43PX8u0zvde/KxB6LKeInxjdmMOuJcaKDVSNbsEECYgNQww5dfVzNiVv4VG3GuusS00qGkQGYFbaKROwlJXBBpUD/Wm00N+bS64eU5+yM0JWP1O4dm4GXEdOoknZSvXaSjWy+lc8zbK+7DdHuRcCo8tFoyGlwQyYRxqICukloiHuxhGSLVSrkau6C4ZLErABrheovLJ02DOE1sjRWWObEMpF3fBcCjfcoxT3pkrp7cF56xvc37Jxi7ueBcJeQDZRVJeLm/OEc+5VXZ3C8CzG8JTl2rO5YKQZTZbo2wSM+V4mAp9jV82dcfl84t8DqZxTl+Krj0Av/unvJ+8+4deLw+fa7nnJgiWzAg43OxF5+lPxSIt4MNnxAeIT01kGBghiRujlED0YBH/aFYJ3CyKJ0sQKJiY1mlF4+yevdeG7rOut2Y05yAhLUR5P5lp6HWtJ9fCBURGrrxurktcKTmKcUUj82WBKDypgI8qX0rGtLvkdXfPt+VBc2wiVtqm91qOZ0wocj+ZMeh1bTPG2xVVJ3CZkRSvpsH6zGzNAjJbFQZIYCESlofH2ZPNB4a/G+s/ycZYKn1WexQ+q9ZP+QByVi1GqApEejAiwmJjdr0Pi8au5y8I+Tioe7fgqR9/KoxO3vmA57HyGyueDNNDFWHgDTh7dKIwLhG4lfBsIU8uhxUNVFkxqPmvWPBBPKdNNV6yTCqva5In2hzNEyVlv3iDqK5H88rugDdFXQ1o7IXKIjXwCJNyJNTdXlcEmE75p9Q/Z4DbhcObZ+INvyGdY6MiVLPxR1JJIYbuVDka7HYIhhpprB5hqEQpy3LiDmrBfCC5cn0AlgKEP5f5lOyxYeMpESXa8xqtCgrjWgQwGyrAYC0mABg6mSPpJrPObFwRpUlLPa6J2xxa2LkqsGPaucqywzCPosM8bF/ApXOsQr+0gY27C1/2qoevGoX0k5eKhHHIsTCyIqVD2jYU+APAPCnAnSJ2Eu4pFdKTxMoUTMMiF7PC0yu6cAOD7JYAztlUCzdwjyKt5Wkz1Wok5jlh9sQkGOpSHC/hNxkil4P5mAwM4J+dq3fU2P/AP9ahZk4NijC6Hg3dNBxRLyQZMVJep3+wcjzIcOFHmAK3ZgFCGdA5MDsBSWbC84uSP0+zhlyN/HQseMrK4NgRz37HN//T8yHPDh/S7NAjzI6udaN7nHTvFryp2/AFCc8cFJVdMwGzowiy050qeyEaUHNbnlYDqbyVJbtIQZwEaGhNUBrgOPPI98/J/puDvn/I2bL0Ch4lXzJKvuWi9KKk+MDHdiu8MwduamL0s3CgFlBKY0QpuuVpVAZVssSY7aKsFwgdowoARMx6x9sw5aPINgy9XhUL3ojEfKVaaHJ0QZBC9Wnf/zJ9SiznU0361LkFkz69Zv8/fYryp77Rif0zm80IW/O5d48VNxKKtaBPiWWatKApWrVg0hQ/7Ktan67mbpjc+Norn1V/Zy0uODpguRb0KXGRQAsoAbFmQGmrfRXqU6INrXF9ikgMrT4FSKH6tB+dPtWZmIA4nbSTzNZJr/G7OX5S/72fvBPzr83po4WQwNGeKSQwUkHenw5yjZPZzDHIqyGZjaIGHqbqKWrgYclsFDXwsGQ2ihp4WDIbRQ08LJmNogYelsxG9NBIGWtQK1KKGLF6nhYy1qK1xmTTamTyf1ZHkqKoIsZk4p4/iSf6dDwhli3UAk8G0PEku+DRgGlPvwYfKNhzYMeIx/hzfnUieGKBiFyglU6xOfqwpfAOtSrTbLFEIVAWF1IIUhRsZXFWytcm1l2kGEpFtJ1pZJxMIhL1gRYLXlRvyErQhHvvTrrBGzDc9+gfpzz7/qj1nU4TGvWVC2RRYPjY17b2lyTHimCuFqwECwv/8IUK9N2BhwF3OZ6kbSCwBCvVS1qUduCwSpoABerpx0qb5mcSypMlCMVcQTzOAJoqL/eBPTvUrxsrr0dJpOpXCSVgezlw0v9pctoCATFCBs8NKoTKURlio6KaUDLe6GAxH5bdwuDVM4YX4daL2iXEVxehZYWVAQHsBCLkifxgLSg1Q6SQCXhJqt/1+8t4UtU9qKgOpBNVnTHLxCqgWlqqI8q/Fuxyui2TXebbYnZ5kM5jTiyvqrvLozFWTJh7W2GYD6bDXGMzacaqPjNJUTcXM5MUdXMxM0lRNxczkxR1czFf6FXdetmxv60MmtuYF92838hrar4Qd3FmVouoFkFrvwzq67fE0ZNkXKHWpxQkYjFeLRjXIXSc1NGWY8Siw9XWckzUhqnl2HKHqm45Ful0avqJp06h2aMattmzLx1faLVmWo7x2zA1cOnRRgf6JhUXF1dDy7EXb3bFzs9rErik6/xhR0p27tCJlmNWjNx57aAD3KmWlmPSK1G/Nf/h7JNtkM1zs/t5QSdajhU6MDFnuS4wh1WTLcf2f5j7Il3+yq9g+Eibz5kX8DnHNd1yTMHIPG7NME83W44d79vB4cH5pX7bG28/lBA8C7+jV/0tx1oxcu5H65rmHLypylqO9dzb+HmTM2P8Dm08ZtWq0zZ8ZbqaajmG+BC0LceAIkT91KEsGj/1v6nlGLEtRg23HJvuyNRyzN2xmlqOfVrUw+32t+C1nDST00bTP2u95RixuJkW2milOTK10Yp2rKqWY+Pe7fNd0HhkaPqK5Lsxi5s/13rLMaKO0AJW7oxYGTn+n2o5NoxOjf2vCP9/VISf2E2o2orwF7dlKsKf2LYqivDvrSdv2m3ztJCZCa1bXJtS31eLp821rCPhgsmjtkw1ywvaVksRfuOFs/1X5T7otZk16dqdUQmuNV6EP4MRFSA3OhM7aHbwR3tF+P/50exwY7u/Qmdd9XJZZHrujM4U4fdmZJ1NzbCu2ovwW98T1pcf3h04N/aXXbOrPW/WcBF+RMvQVlEHWqbaivAH2ppn3z3eO3CraML+a+bf8Nq5ZorwZzCCk9i2Govw65nfL7WSBIfMbpGXcsFu0B4dKGcBEfJmRAjMadRvi2HR+G0cn3ZOpV7XfHIf2G26svJtB3wdAeQQn1QiAhad7LMZ0eDcqWyLRFh2P1oLAyAukyQnJLJVTWM1qeVA7LBIO1py1QM1YkVz+4AjNNsJ4PsE4JtLdJOKAL5P21X2YJVV2bDAVRQLyleve/liyHD/wwH5Q1bzLi5fZF353l0EF4qoGCvpQsGyt+lOdF3ssoDsDnbSyIWqq5y+fEGCTEDtX976988ln76LQvPmbd81fXl3MeGEFHIjxQkp5fWqKPvbkfH96zrVtLOkkkwNHCU4ZKGEL4xjqG0zdufSyY7PzUKXpH+4PvxAsQAvq9gDyLKqolQFM8BkZWDGoXY64f6wNNmxcA0RSxTAfPHi4Nqpo7sXCFlBZJHkzPbwikuUyPjO7PZe8pEyBfILtbeanbe5aKXbi/CNHQr3t05w2oK3a/ALIhWpIor+l2WkqmBWJiOzRDXDLMLMgY/SyFttWLbQLU6WxcoZZtAd1lID82d6YUfeHHXe+9VxZmVC5cqGDu6oIodHPYtIdaE8OFvCnDTzUlFNzuBtneUeFDXqviZww4Y6Y2+LI8fWbNgLAGiKAXCLAgCoWjTyRDFTRl9kYvvd7tZX7rgFZv4cEpo9TtGGYMqq97AvBCC/HQMA/VLbYY4mj/XflY9DbMxdbfk4012Y8nEKnKs6H+fLs9ih/xb3DNtnMUqPe2Rubx3Ix0lzYdrdjHbRgaSCP//8sxrycTJu7l46KCAueEPEgE5WFy6E60Q+jjsjd4x0gTvVko/T6sui/uLlet4Lc9zOBJjF79CJfJxHzkzMAdqk5pnDqsl8nHqSPb0TjM2DNp0LStS/8NsQncrHyWBkXmLNME8383EeLurjZHf0UMC8bTt/WzTmWpcazsfxZuScTY1zrkrzcWZ04R9M6fGEm2vqljB16oxNOpGPg/gQtPk4QBGifmos6/+DfJyt7a1fnbxexzejRUex9afz/Wo4HyfDlSkfp6tr9eTjNNhidD36QWjIMq/X1rkPW83Xej4OMTbXQo7JdFemHJMY16rKx3FfOuVm9Lws/1U7s1cM2mnzXuv5OEQdoQWsujJiZen6fyofJ45OjY08KnQShm3223ckXPT86aC3+J2S3snw7GSgjCdNJJ8w1WD7opW/UC6Fp8dUuzmpLspTpmwerJmXAL+BUvKK/Qqtik8t9t3abfizWg0Py2jHR97JUSeS5M84EqiwcPWjWBRSSTz3VEGpVD2N2DipDYelDwtzNfKDfwnnP4e34UypZXfaLFIgAgwT8IOBXk/BHoewVclKPh0rNT6T5qiS7ao/k9Yow+5y609/cyfdcYhw/jrpvdqZtObzwoa1dTPrtalBR4s3ua1/qZ1Ju1H68513+52cjTK9uGWRGUfUzqTJ+/Eu1TMsDDnYOzx2ZfHoMWpn0nbdCJIMPNAxdOXw2wl+XcN4amfSHm6YE/jV+U345IeB7NRVj1+rnc8fxZLs+2w+kLt7Vi2bOn+s3qXWbKbbonOt/86d6r3tb4NNDVMyQwDJCCVlhv92O/Hqi4BF+4sK4sJPzAEkY5R0rcESzqrB/pzl+4ea9R55+SUgmaCk0EML3w9/EB624bPs/rrzEfaAZIqSgkxKZTx3HmfOWpmT54j3qwGpLkoyqT8k89/8mJDdJ/wnFSbd3ghIZigpffzdCSN6Z/pu2tmocGz6E3gMzxwbYdwcg+h6+/zXiurVffs9zQyQLFBSu+kDBie03BmyLuXU3KBV7ccCkiWmkAco7ofIF4TP+tuuj/lZV4hhPZR0d1m3kfGbB4astx7sMm2ZSRYg1UdJJ84OP+hQMCB4gzyF7Sm6DbncACX1H92p5Q9u06C0hoH6cwMtWwKSFXbX3seRq3/2C1h9P2pQ7hUFRL4hSrrvGmN4YynLf+Ha7jP/bb0oHZAaoaR585Y88PjSOGS7ufsMUfGI0YBkjZL2fZ0x88nZHoGrD0SFThq0ZRog2aCky04zmsuanPA78OQlN+z82QxAaoySxnqlWZ8SdPU9FN723Dr5/Z6A1AQlTX0Z4dh5+Af/mTlu3bdZ/3MPkGxR0kV/SZ87vw4ELLa03ZCzP6A1IDVFSXn91iy/MvO19/IJ9lHFiy9CYWuGSZSBaN6Te3Lv9Ea9f3T91S4FkOxQ0priFV6d0lsGb6v/xXfshHQpIDVHSc9W305M4XwL29cuzmv+mkmwugQbJZl5bhrnfO8650Bqo4QjQ1+8JR22tGfRHLbcPHPZm3v2KWGThiyd9/Bx5kMtHLYU0KmohvH787JPneMs3/pkzPmm43Lwi4mcFKlIwqfIIKBrTOqA3qHK+URKrcuTeCIRUEJoFfsKpgwQFRTl0MjrnCihgn5JGjxV40HXhTTCmcNq6qFZE4iyjErlQCjfzcDrxQHXlc5+ay9ta29vd1CbCZVadnJhkVqRB92eng0Ilv09NMoG6NQHOEwyZO2OL4BleiVyIZJCAcYnFMGmyyo5YQMPis2DIVccJYqO/fMHPjj50LdgcWKzsQ61P+K3QFXfQ94CLSNpO5KFcDVlhOuju07sV5PT9TRsG+qCTjR+GbsUiTwFiF9GCNjAAVG1YaLfKx3X6GLxlA89QvOntmrwbJC/FWG1HH0sxWo5RtE29yxdUGH3p9zAdkWEnbRjqiFw9lhiD7ZoLSACSQnWpl9fB26P/oM7a+cFzrmClvmVTyPSAlhNGcECoo7an3gWjf353+mD/+j0AdFDr7bTB8faM50+8G5fFacPXFIbPvVVzA8uuN6mvuPHgGAtGkuiBtLC6YOC9kzJ2hntq+X0gc2CgG6HmqZ7758U/U9w5s+IGj99kMiICpAbHd0pqb7TBxMft/s3z2mf715ZM4cFzfr31JnTBzaMrCvx0FF3RsunD/ghW91N0q4GT5M9y2/7kj+xhk8fIFqGNn38/7F3HVBNZF8/uqgogg0QxBI7KsXeCwFCDUXAXiMJEA0EQxRQVERUFFTsiKjYEXtDRAXXgl1xbdgVu66Kbdfu995kJmQqZBmS7PdfzvEcmctMJr/73n33vfu79wIro7XsgytDJnmkfm3skZ6//9mJzs2P6EH2QQgjOA4dtZh9YDe4RifRpXmuW+YN3fPNthjf21h32QcWjAiBOY36bcEcGr/tzEqh4EeP+q5xmxpXe9l8ci7eG0V61vk7C8p+cOCIbxmJesJghxgEfgV+V7R6X0VgbNHxCn0v1HWbUibHiXh+Sf3eZC8ak2iwDXzug7Z2IblKDnCM+lRAb8nN62ae/J783Ds+tvvN+TkX3xKC7PBuiiA7crk0T4lo/1jo2/IAAhRONQi57YCF89EodmaBAISNC2uRRA6GL5BTL7YBI/sVH+jU2WNBw7+b/x3dMBU/LZ2xm8nTskRUGmC7L36eFLO4uUvCvZcJH/MaWbIAWDIjYGBE6cSJUq4Z8G86ceh+yCmdhgy6NEJ0yWBVBQUxY9+1ve2z4k3B2Wnpj17URZJxgDL4UeFysSp0hzi1PEd/68FtyucAE1S7/nbenFXHDnvF/bnNfMqvgN0sqNaBUbUWOlItlX+crFkDuNL7l75Iruy63eyDy8GtQ3q9eiE30Vn/Uo4dapNg/9Jw0v7WDpli6MIYwqFZGB2v1r87sdteh+3DRlokDjyCLw1sCktuKuDRJ2TjimF8WKxB1zN7J1kogFxZ+BN5jKjkMcjmsKTZmQgMkjKtiMSwXekvTFIH5V9pcKjQsDsA/bkjRRO00WDwP+5W3lw9nkANFHjcAEv5Qm9DFsa1xhp4AfSUSXzwf0qbFgFPo2WRYpoMnIdTZ64f1zWbnxNbc+zZy0mFeBuD9EKlaBGHXi/NxrSo9andqO/dHDfcnNf48IH1FiycTJhCmA0cKdp+pbRBYC7vkXBLNfWrTrcCZWER4sAJyPCALSSoTzcz+y+pc/RRLdc5BunzB7zg4CuqG5U8l7z9xQkrIqMJgW04FWyFtghsqEmQ0JmEcybNP3ToKvOa9f6tp92VaXxiw+BwqTBQzPWeIJVS2AI6h9kWuy8M3gfHrCRsolAqESkHeaREEcKVgW2KvOyWgBilZ3hPqsbGamINvOTe3eiCb+kQ3a7lnfvmcFFD2h8qYLs+aCQhYjQ9Hy/4drlTnTezifeYbqu9X+PdZ+RBZPdZebm06UxkJbDgMnSGyMVTuQywoHLNbrTucxmRs1IhJ8cNNTi0KOGLu2FbI8HvD+/Mu5aDIut3WoynaqMDhDqkg5ey3pjcGhlJDGgd7qpVBwt7UcOA6HCxOg7N1Tg7dp7ApRVL7eDfRNi5uo2CTm6wWE5gCcOf8hpuc2SBhIoFjwCb6milqqmzKAgLU3kmSTn1OtoOnQXFPCpSoT0yCzQ6CLNQtjGFvgKyVmFDX0QJhaHxsoif3i8Eh8R7fW+bvnhICEzAb0URmEAuVwQUyBCnhQIMcXShGsuhWaj0pm490Vqy08KnAsrWO3RlKlvPVUE+Tu8hJ3Lj2IG8xflpX8Lq/nSafn96+sOimCYsQF7ciwnygl4Y5FI6yDVmZdbCINcCK5OCRImxMilIlBgrk4JEibEyKUiUGCuTgkSJsTIpSJQYK5OCRImxMmf/NttVmHnNOXdHQR2zxxdHkChvcPBSjj4i/ZIFylsonf6beZ6wvbu7hstmA9GY6y9q4/VfT3nY7ySVRUB3EQngkJ3yqjSzrZmLBLbsCYE9bpQPQLaUcJ+J0hDKFt4nUk5LfUUSOFR/pEF6FLczmGSFVGfXsB1keieNzq6tlNE2JBtEBlUD8AC/0POCLOUDMxOHRzjseX5iqvkw+97libVV7DF2AYyPdkaX3WJSgj3YVt/pROmH02FlpqJEqGNFiZLRpW++BgMHOy3OqrtgdZXUhizSIqYP8P50elOUyxbZHLcEx+hjLKAExgwDSqJOmjVpt/HF5hUy2RDMsCkHt3oY94whVPK988SfcbnuWc6d4mZzJSd0GM+F7ReRQUQZkDsKtsHFnTRzY9uqoocQokC1mhVwBcLZJkpwFkzt2TL11QbeIolpM65VvVF6ELWEIJ3uxARSeifN4rotnSXKb646qioZMkhgkd5ARTZ4OnCl0R1BQuDgy/N/X3ERH0XEnkuOIqokFYFOFCM6vp0wxyiMQ7MwvhroLTCw/+K0dP15l7U+7kPJB/HkldCABtym+HiuiuoWKdOobBwxwaKssYGydj4Ghml4FwDbeaoDKA6AzaBLBYRpL/aY6ZNrN8h7+bUndXsZtCSU7kPisTTLOk5YmhUnmrjydswFdjoAguVLNcbSgWtu00Wjtc4EAUsMZho9VA7Vl4YOdTsl2CC4NDHHbt0AvCXig3upgVITadklgDAZMMJ0p7Nmi13pITRirFlnITRoaZAxAkNopE7C4XYINKgdktHZIafW5+17zLgvSHdZ+07Rw7IR8Rw6VBjOVZ7TUJyX07nmrZX3YdEeJC9FyA0TR8JLYrkkEF0gy2SWiMldDG9IdVKuJi5rlAwMm/aeANeLVD55LEB9l4dGhsoECUMpD3fB61CXCehjtsTgR0+n2XWC97n1HYb/llWQB5BdJOXl0uYcMc+tvNEt2E0ZwlOTas5lgC0Lx1MjNomx8n2YCn21Hfhr27MXjXlLCsYNaDlg3Sp89E95Pzn6h14vDZ96Deob9nl8QbAx5/uwWrP7tmcBn0IPJnzA8NEFw8AQIW5MVALRm0P80awSuHGAUB4sVjApTepwcnvPwl8O2QYffmRUbUOozqa8n6w09Drr5FqglQRGrYzWK60U52Fa0Wj5qoUYvHCxCDW+lIpRLDXLm2Q61/3I94drr6ePscIrxgu5n6wY9DrbinGwQ80JPGYk7Vdj7fmcPz0025BZqTBANhZSSWl4mIQEXRy/7DxvG0d48jV/QTSeVeukfACZVYsJKgKRXR5MiCg8sHU9nEOzru9a5PlxWK+e7rM+/lAYHr/1Aa9j5SeWnQzTW7XDwC/g3MgQSWAIcCthbqEwIgJWNFCxYtDlv2ybD2KeNtX7ksek8romPFF3lCdKYr84gF3dLvfyRsAboq4GXOwlyiI1MIVJ+SaUX3yq65RYD3d3182WD28Nu22BD+RWo3NsVAItL/4IlRRi2J6Ko8Fti2CokcXq7Y2OKGVZTlyiFuQDRSjPB2ApQPj/Ep+SO9l7CnVpG8J6rtOqoHBfiwBmQQUYrMUEAEMn83i6yaw3gSviaGKpxzUxzMFC5MrGnSlyVVOFuZwOc+8DLhfPcE44xQ617CV56VEHXzUK6ScfLpUEImlhZENKh7SVF/AHwPKkAHdKuaG4p5TJThIrUzC9FrmYFV5e1oMbsMkWeAM4k6gObmCM4qNXvrHqNBLznLD1pIY7tKU4XcJPqoZcdhdhY2CI6PT8SnnVnXPe1PcyblevAJNXopEb+SDmhTRGDJXX6R+sfB/kdeGfMG3cGrlI5MDmQHYCQmbC64tSP0dONrtw/IOfyyb5ojUWFpPxlNRKPPLs4JFmRyXC7OiaZd4/2aOH19yGzWa5He0aU94zE1hGAKqzPRV7YTCQNvTOVwOptJOlxv7iQBmw0Jqg1H77hnSjnuaO23Jneva6lNkXj5IjGSXHUlF6NUC+aUOQreOOAk/RhSV/hLOAEhjWDCid98pHx6BqLDGyXZT1AqFjVAaAiKx3/BqmfBR5DUOvV8SBNzJiPlMdNFnbIkih9jTiX2ZPieV8tGVPBYz21PM/e4rqp8OB6i9yOl7gZaYOWTensGFTFuwpsUwTG/ZUwGhPBRVtT1PqPY7fumeR2wG5ZdWxGZXasGBPiYcEbNhTT0Z76lmB9pS4hurengoY7aknZk8VdPZUb/YExOnEDpmtSyXLd/Ocwp2zPjmE7Lo6z4+FLUGaJ9OWIEYF+QQ6yDUms5lgkGuBzEZRAw8z9RQ18DAyG0UNPIzMRlEDDyOzUdTAw8hsFDXwMDIb0UMjMdagVaQcYsTqeSww1iaypmQjLSr5n9WRpCiqiCmZGPMn6cSATifEsoUs6CSSTiep2Q+GzH782T0ne3/O7nEP8ZuqKr7CMLGUXKCVzrBZ87jh8A61KtPcMJlCrCwupBBHKbjK4qzUbB1C3UWKVymLtTPyD5TLpFI/uGLBi+oNWQmW0OZa41jrO91dExLezvActIY2t9lwQIRYHgBeH/vYls6yCWOkkKsFK8HCwj8iiQL97sDDgFGOothNBJVgpXpJh9Kt+JzBfGBAezhxYmc71fASyoMlYQJxEG4BNFJe9oM9O9SvV1deD5CFq18llID1aMV3G8TPr4WA6CuHeYMKifKtqmFvRTWh5MJI9zARLLuFwVupOrwIQy9qlxBfXYqWFVZuCGAnEIlQ6gRrQaktRAq5WBiq+t1gkFwYrroHHapRdENVb5ZlYhVQlo7qiOOfhXX5M59pXS7kY+tytN5jTiyvqr/Ho0m9mTCX9sYwn0SHucbLpDFHe8skRd1cbJmkqJuLLZMUdXOxZZKibi7mCxWmr+jzcfZexx1J9QxChdW6q/lCnYvldYyMtjgfKt45LtvqRmXS4gqtPnVrSEIxXhYW18l0mtTTlmPEosNaazn2oD9Ty7Ha/Su65diHVSYfu53Z55PUefi3zLih6/Sg5Vhhf6YGLrv660HfpAcPHmih5djKJV4jTixI4aW5vpqQ8yTqm160HEtg1M5ofdCOVlqOHfxaL/Zt0A6vfTVfXu/ftw2evqqrlmPdGZVTWx+Uw9Fly7FrfflH9x2ozEudOe/XzmC3fXrVcuy5L5PyjvrqT6Egnbcc+54beqnZ1Vlem/f4dki/GBSn45ZjKYyaC9e55uBNFdZybOeIZit+v/CX+97RjZ7t/7DLQC9ajiE+BG3LMWAIUT81hkPjp/6bWo4R22LouOXYdz+mlmMb/LTTcqzD0rN+spo+/Jz47J7zr4bdYr3lGLG4GQtttD76MbXROu9XUS3Hhq7MMu6/qZ7PbEObkWYb121iveUY0UawgNUGRqxi/P6nWo5NoTNj/xXh/0dF+IndhLRWhH94AFMR/jv+FVGEP39hm/uOVUNdDvw57vPagAX4duvlyzZn2UbCA5OAAKaa5TYBWinCP3BO2zPmG+u6zekvqlE3sXctnRfhN2BEBYwbvdk7aJb4w14R/rpG8zL6u3vwt4VmWo7bEII/ttdlEf59/kyqS9KN6rRehL9TQEN+8DBfr7jqqz/WPTLGScdF+BErQ1tFHVgZrRXhX5gqsIp5nOqWM7Tql2V1ruILZummCL8BIzjA2GivCL/prGZfag9Y6T3P9/KnTvLn+HI6uivCj8xpWoTAnEb9tqkcGr+Nz2vb7lefq7yMe423/LH6LaGOAJLEFy6TghWd7LMZ0uDcpSREIim5H62FARCXyyYEh3BVTWM1qeVA7LBI+7bkqgdqwrJy+4AjxBkI8C0C+GYQ3aQCgO/gAeVNrDIteS1wFcWC8qt/Wb+mXi1JL/elL0IOXS0YgGf0/qPeXQQXimgYy+lCwbK3nwfQdbFLAWO3YIBGLlRN5fQViYPlYmr/8kxcz2PvCp84rUswy721vtiVkCGF3EiRIaW8XhFlfzMYv3/sAF07S6qRqYGjBF9ZIhNJAhlq2/TNcJ8xx9vfY4mpwit265JE/FjFHkAeqypJRShjMKMy2utGGUT3h6NJxMLOM0ymAMuXMBCenVq37wO2rGBnEWrD7dAnMEQmF9lwO/aJGC9XIL9Qe6v+M64V5p9pzl845NmL4ptnZPh1DX6AvyJaStH/skRUEcoyZFTWgwB9mDnwURp5q2YlB91hE+RjIhhmUNxdIzP7MT5O8YfSF/u+79qyPFvl8m4d2qOGHKZ6FpDqQnXgbz02QDMvFbXkDN7WMfM5IsPqRbwDSTOzerl9nqnbbS8AIBkDoJACAGhaNPJEsaWMvsiEc97j2rMO+Tgn7r05dE+j/g10muwLAWjBBMDA1wGYozmN8+/i4xAbc2uNj/N9EBMfx2ZQRfNxuFsjJ+/PK3Rc/+T3P98WTjmuB3ycj4OYopvnB+kBqeDUqVNa4OPcGlUpu+uAkc7bbyv21gx+E6UXfJwNjNqJ0QftaIWPk+fDGd3Kx9gtsUnsrqYrRgzVCz5OAKNybPRBORxd8nH6X05+cvSUk2dseqfEg7t2GOoVH8eAUXl3Bura2dUjPo59TauntbblC2Y8etJ07uEePXXMx9k3kElzSTrXXIXycWw2ia473VjtujRz/qrkEXvT9IKPg/gQtHwcYAhRPzWW8/+Aj/N07c2QKP4X7wNtA/ssXBcXo2M+jsEQJj7OtsHa4ePEXkqbuuRUumtS1JIh0gMdt7DOxyHuzVngmHwfzMQxuTq4ovg48094riyaMNwla0Nw65+/Hc1gnY9DtBEsYLWNEav4wf9TfJzpdGZsfJ6kncQ70+lAro/02eNh+Da+Rv0nwNxJV7kwPIScYapB+KKFsyQiHGaPqaI50bbKLFOuENbMC4afQDnyjHtsibG5c42fE20enDvyBf37kSM56kLS+KvuD0yYj3oqFsWoJOY9lXFUqp5GbJzUms8JcQOj0twJ/iPkf45tzXcLdss39hdLgcLEIndg16OwxyFqVaoyjk6VGuekWavGdsXnpC0e/zXyt0YDvVcmre47fdqpfmo5aae7LDp8v5orb3tXs7fdem15o5aTVitojonh2fO8OT3tk190ahGrlpPm0vPX739+3e61qu6B+Xen94tQy0l7UP/c6NB9bXmZv7ew/rxiyR61nLSWsl7vKs+YxktfmC0JzHv0Ui0/v8XOpwZX/jrrOm927veCqz3XqzWbMUu94jP92iiP2Yc8f2bmfukIRIao6FDNicXZfc7w9/V7ZC2IjO4MRNVR0atppvaLG3V1SJj993Tep60bgKgGKvo24/N3t65LnBYftH168G+3QCAyQkV1TzYunp61WZBocM2134CbO4CoJio6m7q42rdOIrf54mpHXqd3/g2IjFHRF487HoOmZXrsrrZ7y9lT+84BkQkqSk5/XnhSfs1tXYLowZ/G2+8DUS1UVF2yYXVc7nefNfv2Ptl75S58jdqo6E0Dl03zj8Z5pI+8U/XRChv4WXVQUetnhttq5WZ6LO4UL16efC8EiOqiopP+JjeKO5912FJH+nxowYpQIKqHikYlbZzL6WPreDjv7bx7ftY3gMgUFcldz9/b7j3TcbdnrWV+X+rVBiIzVHTm/LE0xdmW7slFee1erUkfA0TmqKhKaK+84uRdrhkWjXMm5vYKAqL6qGi49ZyVI5et9Fm7/FZY/ZMfTwORBSr6tHx9/8/vP/ms3uZm6zes4XMgskRFrg8GHfO8luE+6363U5967OsFRA1Q0eZi++m752xwnb7q54r2bQLhXVaoaEG2kWHHbZe8ZzwZ233k8NMmQNQQFb2THHz7qtdZftzcTh03/pjjCkSNUNEjK5PGt64VO85q13Rvv1d1jwJRY+x7dZjR89OJON4++3iztoODlwFRE1TUrf3dQVaRFt4LJ/d6devureVAxEVFjk9CY+Urz/vMnLa17aHbTS6Qki2bcmiSLdOKO943m/eAtzCwScfnSz/YUJgNTZMtZ9CZKLOggztTT57hp20rmnSuYUw6/jCRHxUulYkoGAR0jUlboXeoOJ9IqfWIUKFUCowQWsW+jJQBooGifDXyOScqKKNfEgv2glEj6bqQ+sI+biM1awJRwqhUvgg1Hz95aY2NOT28d1y6FJq67mUWi4RKlp1cWKQ2fCRdTM8CbJbdRmrEBujiBxwmOXJ2JxLDMr2yCAlCoQDvJ5HCpsuqccIFHhRXCLdcgZQobuX12LjKSu6d07laTsrNmNv4EKjqc8gh0BIR2ztZCBeXEa7PI/QiXk2m62nYNtQWnWiiEnUpQoQKsH8ZJ+YCB0TVhok+Vpo/U3Dmd+t1vJ1PHdPfOTovJ5yWo4+lOC3HJGxrr7YtOtidKQPYdshgJ0VMNQSuKUbswQ6txUQgKcGqvLC2ze0qVb1W+HCyr18QVik/jYgFsLiMYIGhjq4/8Rya9ee/7IN/lH1A9NC1ln1wYhRT9oHzqIrIPrjwpNjidvVmXqu/9u7WqOY5ExYXS6IFYiH74PAoJrL2klFayT4obHgx+nlnqevKttJBx16HHtN59oGUERUwbvQ0UqK97INlGxf+9fHTUJclj1KPyr5F4s9VdJl90JBRdR9H6qk7w3L2wdBU8wipaxXBnOZDayRue9Zdx9kHiJWhpY8DK6O17IOWjQV1kiIEDkcm3v5Vc6ChVA+yD6SM4DiP0mL2gXmkfYcpd+64Luy8/7zRQoMjepJ90JARITCnUb9tJofGbzuzUij40aO+a9ymxtVeNp+ci/dGkZ51/s6Csh8cOOJbRqKeMNghBoFfgd8Vrd5XERhbdLxC3wt13aaUyXEinl9SvzfZi8YkGmwDUyajrV1IrpID0IDF5AroLVnkOE16bfxW75lVTq8cmfPeghBkh3dTBNmRy6V5SkT7x0LflmQIUDjVIOS243NCJmsUO7NAAMLGhbVIIgfDF8ipF9vMU/ys6VOmOM383fPy+tu3puCnpTN2M3lalohKA+zIJf8736o4ea7q0XjPqPZtTVkAzIERMDCidOJEKdcM+DedOHQ/5JROQwZdGiG6ZLCqEWaKUQlP7Rx3rrUq/H756du6SDIOUAY/KlwuVoXuEKeW5+hvPbhN+Rxggmr93bZwRvTO8dx73aVt2CwvBxZUWzyJSbWnJ+mPf5ysWQO40vuXfqjmvyTNyNk13sG+2YqaB3x01r+UY4faJNi/NJy0v7VDphi6MM7i0CyMjlfr353Yba/D9mEjLRIHHsGXBjaFJTcV8OgTsnHFMD4s1qDrmb2TLBRAriz8iTxGVPIYZHNY0uxMBAZJmVZEYtiu9BcmqYPyrzQ4VOCKAejPHSmaoI0Gg/+5qLy5ejyBGijwuAGW8oXehiyMa4018ALoKZP44P+UNi0CnkbLIsU0GThnj2+M4Z5J8lh5WbymneeoJ3gbg/RCpWgRh14vzcZU+/7TQPx1qPMC3rveRQ/55eVfwI2cBYTZwJGi7VdKGwTm8h4Jt1RTv+p0K1AWFiEOnIAMD9hCgvp007Pei+NmThs81tQW8e0ShtfDswpKnkve/uKEFZHRhMA2nAq2QlsENtQkzKYzCedMmn/o0FXmNev9W0+7K9P4xIbB4VJhoJjrPUEqpbAFdA6zLXZfGLwPjllJ2EShVCJSDvJIiSKEKwPbFHnZLQExSs/wnlSNjdXEGnjJDiK64Fs6RDewvHPfHC5qSPtDBWzXB40kRIyaVOWzyuHP9UN4yyr9OvqtseQp3n1GHkR2n5WXS5vORFYCCy5Dd4hcPJXLAAsq1xbRus9lRM5KhZwcN9Tg0KLuczjjUdGTazNcF93x/8T7lfMVT9VGBwh1SAcvZb0xuTUykhjQOhqoVQcLe1HDgOhwsToOzdU4O3aewKUVS+3g30TYubqNgk5usFhOYAnDn/IabnNkgYSKBY8Am+popaoptUxcmMozScqp19F26Cwo5lGRCu2RWaDRQZiFso0p9BWQtQob+iJKKNqkG4RulM10X5GV7T8tas1OQmACfiuKwARyuSKgQIY4LRRgiKMLVQKHZqHSm7r1RGvJTgufCihb7xzIVLa+hQryOXoPOZEbxw7kb6VLVlc3HOK0r+jr6Nb2wz6yAPnHECbIr4ZgkM+lg1xjVmYtDHItsDIpSJQYK5OCRImxMilIlBgrk4JEibEyKUiUGCuTgkSp6ppEJlFirEy7B/36zBtf6LJr2KxYy/5ePBLlDQ5eytFHpF+yQHlLpNN/M88Ttnd313DZbCAac/1Fbbz+6ykP+52ksgjoLiIBHLJTXpVmtjVzkcCWPSGwx43yAciWEu4zURpC2cL7RMppqa9IAofqjzRIj2ohBJOskOrsGraD3DBao7NrK2W0DckGkUHVADzAL/S8oGn7Gp0ddcLEO85tZ5O9h7cuKU+srWKPsQtgfFSILrvFpAR7sK1+MJrSD6fDykxFiVDHipoDsm53VjvPzS5zT096596z+jQWaRHTB3h/Or0pymWLbI5bgmP0MRZQAmOGAaWQ0Zo1abfxxeYVMtkQzLApB7d6GPeMPlQyMPns6gutF7huvzfe3erFw7c6jOfC9ovIIKIMyB2F7RdHa+bGtlVFDyFEgWo1K+AKhLNNlOCs6ia48b7XUe+Ua7Hz+Gu6z9aDqCUE6fxoJpA2jNYsrtvSWaL85qqjqpIhgwQW6Q3U0RWSh9ntQ92z/zpsmnTx4lR8FBF7LjmKqJJUBDoxjOgEjMYcoyQOzcL4aqC3wMD+i9PS9edd1vq4DyUfxJNXQgMacJvi47kqqlukTKOyccQEi7LGBsra+RgYptFjAGznqQ6gOAA2wzEVEKZN7Oqx6fw4kWDtJd+rPZy5q/GHnUg8lmZZxwlLs+JEE1fejrnATg+GYPlSjbF04Jq3H6PRWmeCgCUGM40eqsGpTXvP8xnoHPdg9P7k5t3wrNfqfHAvNVBqIi27BBAmQ0aYHgg1W+xKD6ERY806C6FBS4OMERhCI3USDrdDoEHt0Dw6O+TU+rx9jxn3Bekua98pelg2Ip5DhwrDucpzGorzcjrXvLXyPizag+SlCLlh4kh4SSyXBKILZJnMEjG5i+ENqU7K1cRljZLBYTMR4HqRyiePBaiPnqiRoTJBwlDKw13wOtSFhj5POR+84i/H9SbnpEs39KmLd5GQB5BdJOXl0uYcMc+tvNEtAE8hhKcm1ZzLAFuWXRM1YpMYK9+HqdCX3cOPsza3eei8eeU+g3Hb6l7CR/+U95Ojf+j10vDZO+qde3H3y26xguiRsxeL/2YBnwRGfMDw0QXDwBAhbkxUAtGbQ/zRrBK4cYBQHixWMCnNtbokwmvSdV7e/XD7LhcWFuCVpryfrDT0OuvkWqCV7oxaqa1XWinOw7Si0fJVCzF44WIRanypt2NN8yq3GFedt2b09TuLllfFx3+reiH3kxWDXmdbMQ52qDmBx4yk/WqsPZ+TNlGzDZmVCgNkYyGVlIbH0/zRsoN/1hEkmLyq3qpbd3xqWzUn5QPIrFpMUBGIjGZEpMVEbF2fz6FZ13ct8vw4rFdP91kffygMj9/6gNex8hPLTobprdph4BdwbmSIJDAEuJUwt1AYEQErGqhYMejyX7bNBzFPm+p9yWNSeV0TnugElCdKYr84gF3d6AnljYA3RF0NuNhLlEVqYAqT8k0ov7jVnJstDmxcK0j4Ff45q+Z6PNe9Gp1joxJoefFHqKQQw/ZUHA1uWwRDjSxWb290RCnLcuIStSAfKEJ5PgBLAcL/l/iU3MneUygRJa7nOq0KCve1CGAWVIDBWkwAMHQyL6CbzHoTuCKOJpZ6XBPDHCxEru4omCJXhxUY5sl0mHsfcLl4hnPCKXaoZS/JS486+KpRSD/5cKkkEEkLIxtSOqStvIA/AJYnBbhTyg3FPaVMdpJYmYLptcjFrPDysh7cwNJL0QDOJKqDGyRGEZ1vrDqNxDwnbD2p4Q5tKU6X8JOqIZfdRdgYGCI6Pb9SXnXnnDf1vYzb1SvA5JVo5EY+iHkhjRFD5XX6ByvfB3ld+CdMG7dGLhI5sDmQnYCQmfD6otTPJmGNzTVWP3XZv7mg+nQ7aVecfirxyLODR5odlQiz46T7309qzjdwzN0713B3m/yk8p6ZwLguVGd7KvbCYFhDNjpfDaTSTpYa+4sDZcBCa4JSh40OcbOmLXffPnbX0jThzDF4lBzJKDmWitJfJr2aO32+7rzi++pL1aZYRbGA0gZGlGKi89ExqBpLjGwXZb1A6BiVASAi6x2/hikfRV7D0OsVceCNjJjPVAdN1rYIUqg9Xfgvs6fEcj5asqe+UUz29HPkf/YU1c/co+5rii8OcN+1xsrF7NO1lmzYU0KZJhYshVsUk6XgRlW0PY2XrH/du8M016WPLM3M3Dr0YMGeEg8JWEAJDGsGlAoiK9CeEtdQndtTZMTQ2lOAFGpPF9HZU73ZExCnEztkti6VLN/Ncwp3zvrkELLr6jw/FrYEgkimLYGNCvLFdJBrTGYzwSDXApmNogYeZuopauBhZDaKGngYmY2iBh5GZqOogYeR2Shq4GFkNqKHRmKsQatIOcSI1fNYYKwtYU3JRlpU8j+rI0lRVBFTMjHmT9KJAZ1OiGULWdDJUjqdpGY/GDL78Wf3nOz9ObvHPcTn+VXxFYaJpeQCrXSGzZrHDYd3qFWZ5obJFGJlcSGFOErBVRZnpfzaxLqLFK9SFmtn5B8ol0mlfnDFghfVG7ISLOGbM/XOt3jg6bxk4R/f25+1oWVSGw6IEMsDwOtjH9vSWTZhjBRytWAlWFj4RyRRoN8deBgwylEUu4mgEqxUL9GA+rbicwzGAwPaw4kTO9uphpdQHiwJE4iDcAugkfKyH+zZoX69uvJ6gCxc/SreChv4teLvqDw+vxYCoq8c5g0qJMq3qoa9FdWEkgsj3cNEsOwWBm+l6vAiDL2oXUJ8dSlaVli5IYCdQCRCqROsBaW2ECnkYmGo6neDQXJhuOoedKguoxuqerMsE6uAsnRURxz/LKzLGeOZ1uWE8di6vFzvMSeWV9Xf49E0CRPmMRIM8xQ6zDVeJo052lsmKermYsskRd1cbJmkqJuLLZMUdXMxX8hwUd7L1KV7Hee++3Sx0+ObDdR8obZjE7N+z3/jkf3Yr39YwdsWpMUVWn3q0DmhGC8Li+sKOk3qacsxYtFhrbUcS57C1HLsaExFtxxLaXXNcOjmmW57uvqPm/+4ySo9aDmWMIWpgcvoKXrQN+nmzZtaaDnmE+l3o6n0vU/876vmTJLNMtKLlmPdGbVTWx+0o5WWY0srZw++PPWiZ+73LpdC/G+N04uWY89jmJQDrInulcPRZcux0ErFaf6iHK+8F4smhSw+OEOvWo6lMCovXDfK08+WY1fuFrl9/+bmkyW99del9ZPX6LjlmBuj5rg61xy8qcJajvEC040C2ilcE371bGdqOdBJL1qOIT4EbcsxYAhRPzWVQ+On/ptajhHbYui45di2qUwtxwKmaqflGLeO3/i/ow7yd37luPgJRq1gveUYsbgZC220NkxlaqMVM7WiWo7l/bzfwvVlS5cVxZuHF7gNWMl6yzGijWABqwBGrGym/k+1HFtJZ8b+K8L/j4rwE7sJaa0If9VYpiL8SdMqogj/eOtfB7+bBXjNbXfj5IugLXgSWfmyzVm2kfDApHIsU83yO9O0UoS/6EeboCwbU6+9xjOme9Xa1FrnRfj3TWNCBYwbvdk7aJb4w14R/mGP1lhy+oZ4ZA3ds6dZFZt2elOEX8Sout66UZ3Wi/CHpUQ0qDavpsPCYbcPru58KEXHRfgRK0NbRR1YGa0V4bfPX9P6wR+DHRctmbZx0cSsqnpQhB8xNrTgJE3TYhH+NzVMhy+UFDrkRvbJ3TzlynY9KGcBERIxIgTmNOq3pXFo/DY+r227X32u8jLuNd7yx+q3nfB1BJAkvnCZFKzoZJ/NkAbnLiUhEknJ/WgtDIC4XDYhOISrahqrSS0HYodF2rclVz1QE5aV2wccoUI4PYsAvhlEN6kA4BsfW97EKtOS1wJXUSwov/rvnT5XbXfqkdOisRe9OlTbiu+y+I96dxFcKKJhLKcLBcveXo2l62KXAmNOsRq5UDWV01ckDpaLqf1LM9tbD57y0x1nG236PedZ4jpChhRyI0WGlPJ6RZT93cb4/VNide0sqUamBo4SfGWJTCQJZKhtszzziSAn9rNXmtizqMn7gU3xYxV7AHmsqiQVoYx4RmWE60YZRPeHo0nEws4zTKYAy5cwEJ6dWrfvA7asYGcRasPt0CcwRCYX2XA79okYL1cgv1B7q9W3Z930mDjXIX5Uu9kGk9z749c1+AH+imgpRf/LElFFKGs4o7Lc9GLmwEdp5K2alRx0h02Qj4lgmEETfjZpN3LWWu9Dlaq//P1Gjwfl2SqXd+vQHjXkMNWzgFQXqgN/wMFYzbxU1JIzeFtHJAaTNrba5H7E7GaTpmmxA3W77QUApGMAFFIAAE2LRp4otpTRF5loFrZiWrB5FYfE9nVPiARtH+s02RcCMJYJgEzvWMzRXMX5d/FxiI25tcbHuT6diY8TNr2i+Tg3X+WP2X7Lzy39daP95rsm1dUDPs4f05mim7nT9YBUkJeXpwU+zrhmR1KXTg4U5LzkcNq9Ss/XCz5OJqN2lumDdrTCx4lrmFDvps9p570ukjV7BQcN9YKPE8eonDB9UA5Hl3wczuO/Q258Hum1+tWdSpJawxfoFR9nKKPyXHSjPP3k4wxs3z1u5iGFa1aecdSPXnYvdczH6cioucY611yF8nHMQjv3Hp+f47Bm8MS+l8S9hXrBx0F8CFo+DjCEqJ+6mvP/gI/Trf3dQVaRFt4LJ/d6devureU65uMMjWPi49jFaYePc8l8xz3njbvdE/JykuYMkp9nnY9D3JuzwDEZGMfEMXGMqyg+ztDD1+vbbJrrvrrhzRvdHnw6wzofh2gjWMDKjhGrBnH/U3ycNXRmbHyepJ3EO9PpQK6P9NnjYfja9Eb9J8DcSVe5MDyEnGGqQfiihbMkIhxmj6miOdG2yixTrhDWzAuGn0A58hyfhMbKV573mTlta9tDt5tcoH0/ciRHXUgaf9X9gQnzUU/FohiVxLynMo5K1dOIjZNa8zkOsDCXuRP8hx+VQ8e25pv2VuQb+4ulQGFikTuw61HY4xC1KlWZTqdKjXPSrFVju+Jz0oYH1un9LOgkf+GDD+fWd1wvVMtJ43674nvvY13XNZYdMt2/zT+glpNmbDQ98vpPBW/N8LFdTeIbKNRy0nYcN7vzM63QbfG6XY2nHhvsp5aTZjnqUPfxvdNcZ/eMOSSRNstTy0njDQ5/fnct32Nekd3+qd1OBqvn59uEb46dEOO8pHG3KmMXTeSrNZsZZPLq9baOLz1WDBqcfXPR5OtAZIiKDHd+P7+vksQzxzK20ebcwd+AqDoqqjpkwN9Oa3P5+56eShgbsDMMiGqgojZ3vVc/mRPpszH95/dhb9qdAiIjVNSozdcP79+NcYlf5TDK2OTtayCqiYruFb3fGPF3IH+5v9HI3fc6wuICxqhI8OTZ8C0b4r23ndu4rPL5kNtAZIKKZvuYtL/tms/LWWoQtvJjlStAVAsVTap6cllc56MuaQsvcPcP29sWiGqjom4v8qPH+gd6b9rz/GubHvYeQFQHFVWqxd92t8F21+mu9QuvFm3JB6K6qKil25Ci2i5zfVLDWnt459S5CUT1UNHtrtF5nQZGOs0a7Zdo03zVWSAyRUVPDqbOPLnA2H3666bH362ush+IzFDR7kv7ZzVI6MxfsexVXO+qz+FXNkdF/c9kPo9XNPXYH7Xh1ckYgS0Q1UdFj7pO7OVww4u/x2q2afU2+6cBkQUqenUpwG3Mb/0dc9a0/ulwXgYHmyUqqhnz/kVK/2lec4+2HXs+a9ZGIGqAinYtqzs+4tJmz/hRBms/xJlDkRUqahJyp2df447eazssm3ns2kn4WQ1RkWv8wVZ7b7l5zbcy21u9yjoDIGqEiix2Br/Zemy9Z+auz2camPVKAaLGqMjp0ZyojfHbnDZa2PY5UKffbiBqgoo2KczrfFo+3yNZsaJZvcoZ8DW4qGjLnpd3fvIHC9bNS7Tuu67nCVKyZVMOTbKlyNTCuP2l+16LRo/YcmGgfQiF2dA02XItnYkyCzq4M/XkGX7atqJJ5xrG4IPT1fhR4VKZiIJBQNeYtBV6h4rziZRajwgVSqXACKFV7MtIGSAaKMpXI59zooIy+iWxYC/YM56uC6mvDZ9jEq9ZE4gSRqXyRSi/20hHgV99UWXehvuO9Vr3afmKRUIly04uLFLbNZ4upmcBNsvN4jViA3TxAw6THDm7E4lhmV5ZhAShUID3k0hh02XVOOECD4orhFuuQEoUAx99cth10tA7JX/Ec4c7333xIVDV55BDoCUitneyEC4TRri+ztCLeDWZrqdh21BbdKKJStSlCBEqwP5lnJgLHBBVGyb6WKl/m/XHvpvle+4ouDZ4cdGxvoTTcvSxFKflmIRt7dW2RQe7M2UA2w4Z7KSIqYbANcWIPdihtZgIJHXNodoxi6pu+puXdTGVM3jg0+Ty04hYAMuEESww1NH1Zx3nv+wDNrMPiB661rIPHsQzZR+ka7ZWljH7oPieYuzKX+/dDlll1K0WMSyExcWSaIFYyD64E89E1j6t2WL5T7MP3IveL+y/6obzvnmTWx6fJFquWxoGzD5gRAWMGz2NlGgv+2BW/OPM/hZ7vGIHfOy3J/T9Mb3JPkhiVF2UblSn9eyD1j5fPkxJs3TJ6bTSquDtmhE6zj5ArAwtffw0hZdSUdkH63+ENvu4eYfTvEYmaQ3vxeDPA3WUfcAITnq8FrMPOjb4Mu9Mtw2uh6ZbmFb1HvdTT7IPkhgRAnMa9dvWc2j8tjMrhYIfPeq7xm1qXO1l88m5eG8U6Vnn7ywo+8GBI75lJOoJgx1iEPgV+F3R6n0VgbFFxyv0vVDXbUqZHCfi+SX1e5O9aEyiwTbw8SK0tQvJVXKAFcoXVUBvyReB1r92dFnmNsPjzy4Lanw9Swiyw7spguzI5dI8JaL9Y6FvywMIUDjVIOS243POL9IodmaBAISNC2uRRA6GL5BTL7YPHG9e3/fxhiBDIJxRNT7kDX5aOmM3k6dliag0wA4cv57S6Uqi18xKB9u/OdpAygJg2YyAgRGlEydKuWbAv+nEofshp3QaMujSCNElg1U9verUVEH8cZ+9M64unlNTllcXScYByuBHhcvFqtAd4tTyHP2tB7cpnwNMUO2g+Lv1GgY946c5H+s34+nzz2z0MGJUbYyOVEvlHydr1gCu9P6lL6e1Smnd+Zb7nBEKv53zQmN11r+UY4faJNi/NJy0v7VDphi6MG7g0CyMjlfr353Yba/D9mEjLRIHHsGXBjaFJTcV8OgTsnHFMD4s1qDrmb2TLBRAriz8iTxGVPIYZHNY0uxMBAZJmVZEYtiu9BcmqYPyrzQ4VJg/G4D+3JGiCdpoMPjls8ubq8cTqIECjxtgKV/obcjCuNZYAy+AnjKJD/5PadMi4Gm0LFJMk4FjFWF/dHeHw45LauT9GG0wUIK3MUgvVIoWcej10mxMouDmx+8TO/LWPXp3d/nWvsNYOJmYC2E2cKRo+5XSBoG5vEfCLdXUrzrdCpSFRYgDJyDDA7aQoD7dTD/+m/GbgjkuWw4dmlcQP6oLnlVQ8lzy9hcnrIiMJgS24VSwFdoisKEmYSOdSThn0vxDh64yr1nv33raXZnGJzYMDpcKA8Vc7wlSKYUtoHOYbbH7wuB9cMxKwiYKpRKRcpBHShQhXBnYpsjLbgmIUXqG96RqbKwm1sBLbjybLviWDtB9P6u8c98cLmpI+0MFbNcHjSREjJpr7Hh6Q8rPzoKldz+fetC+Lw/vPiMPIrvPysulTWciK4EFl6EBRC6eymWABZWrzqZ1n8uInJUKOTluqMGhRQnfkBlW7Rs83OOTOCZpbcysVpF4qjY6QKhDOngp643JrZGRxIDWvVladbCwFzUMiA4Xq+PQXI2zY+cJXFqx1A7+TYSdq9so6OQGi+UEljD8Ka/hNkcWSKhY8AiwqY5WqppSy8SFqTyTpJx6HW2HzoJiHhWp0B6ZBRodhFko25hCXwFZq7ChL6JetJ5kvY/dft0l2Whj4xMPniQSAhPwW1EEJpDLFQEFMsRpoQBDHF2oNnFoFiq9qVtPtJbstPCpgLL16bOYytYnqyDfrPeQE7lx7EAurjxyX72vxa5xBgX57bMq72EB8qg5TJCHzMEgz6CDXGNWZi0Mci2wMilIlBgrk4JEibEyKUiUGCuTgkSJsTIpSJQYK5OCRImxMilIlBgrc3HauWspghGuOyZ99pL6j69DorzBwUs5+oj0SxYob1vo9N/M84Tt3d01XDYbiMZcf1Ebr/96ysN+J6ksArqLSACH7JRXpZltzVwksGVPCOxxo3wAsqWE+0yUhlC28D6RclrqK5LAofojDdKjkmeCSVZIdXYN20H6ztTo7NpKGW1DskFkUDUAD/ALPS9oUJ3iqX6Ojl5bbx8M80n/q7A8sbaKPcYugPHRmeiyW0xKsAfb6rCZlH44HVZmKkqEOlaUKJ0wkE6/b7fIJ/PH1tpBHYsaskiLmD7A+9PpTVEuW2Rz3BIco4+xgJIvI0odZ2rWpN3GF5tXyGRDMMOmHNzqYdwz+lBJYuiRtks9nARxdyaIY8Li7XQYz4XtF5FBRBmQOwq2wVEzNXNj26qihxCiQLWaFXAFwtkmSnBqxZ/p2Tf2l9Om9Hv1V9b3MNKDqCUEScQIku9MzeK6LZ0lym+uOqoqGTJIYJHeQNkEr+3jW9jPdUOdQat2teUb4KOI2HPJUUSVpCLQ6c2IjvVMzDHK5NAsjK8GegsM7L84LV1/3mWtj/tQ8kE8eSU0oAG3KT6eq6K6Rco0KhtHTLAoa2ygrJ2PgWGygy78eaoDKA6s8kg+gCp/mPau8ET/Si5Sl71RfypGZSXUwx92IvFYmmUdJyz1CJlg4srbMRfY6bYQLF+qMZYOXHPzWRqtdSYIWGIw0+ihivKs7BbzfA0/r/XmNrXbTB6Ft0R8cC81UGoiLbsEEKbKjDC90XCxKz2ERow16yyEBi0NMkZgCI3USTjcDoEGtUNb6eyQU+vz9j1m3Beku6x9p+hh2Yh4Dh0qDOcqz2kozsvpXPPWyvuwaA+SlyLkhokj4SWxXBKILpBlMkvE5C6GN6Q6KVcTlzVKBoZNQjLA9SKVTx4LK6sla2SoTJAwlPJwF7wO5bf8+qJHwmbLCNdlC+063N/9k9CxEXkA2UVSXi5tzhHz3Mob3QLwxEN4alLNuQywZQlP1ohNYqx8H6ZCX+PSxk/PSNzgseRSmGFuYrvx+Oif8n5y9A+9Xho+s3/ZPduY8dN58c3Hy7xvDdzEAj7DGfEBw0cXDANDhLgxUQlEbw7xR7NK4MYBQnmwWMGktNsN34xp+zDNa8lm+wNOr5tn4JWmvJ+sNPQ66+RaoJXOjFrh6pVWivMwrWi0fNVCDF64WIQaX0rFLJz+4EaL4FGCrUuXj8iY32ACXjFeyP1kxaDX2VaMgx1qTuAxI2m/GmvP5wQla7Yhs1JhgGwspJLS8Hge9Liby+s8x5n5joX2E/5wwLNqnZQPILNqMUFFIOLGiEjbZGxd38ahWdd3LfL8OKxXT/dZH38oDI/f+oDXsfITy06G6a3aYeAXcG5kiCQwBLiVMLdQGBEBKxqoWDHo8l+2zQcxT5vqfcljUnldE57oApQnSmK/OIBd3ekF5Y2AN0RdDbjYS5RFamAKk/JNqLtFPWxpOeGnsUvqtMeLN+4yPYIffHSOjUqg5cUfoZJCDNtTcTS4bREMNbJYvb3REaUsy4lL1IJ8oAjl+QAsBQj/X+JTcid7T6EeSoT1XKdVQeG+FgHMggowWIsJAIZO5u10k1lvAlfE0cRSj2timIOFyNWsBUyRq4kqzHfQYe59wOXiGc4Jp9ihlr0kLz3q4KtGIf3kw6WSQCQtjGxI6ZC28gL+AFieFOBOKTcU95Qy2UliZQqm1yIXs8LLy3pwAzbZ5pCqmUR1cANjFC8X5hurTiMxzwlbT2q4Q1uK0yX8pGrIZXcRNgaGiE7Pr5RX3TnnTX0v43b1CjB5JRq5kQ9iXkhjxFB5nf7ByvdBXhf+CdPGrZGLRA5sDmQnIGQmvL4o9ROwyDljWaWVnvEHTpyeHGSFHzaVeOTZwSPNjkqE2bF6/hPLw2fb+uQMu9p4iMHo8nZt4oDZUReqsz0Ve2EwkP5cmK8GUmknS439xYEyYKE1Qamo9dhPuVbbneevXJz1suClMR4lRzJKjqWi9Nl4191isa/L+lNzToZuLh7HAkpgWDOgdH1hPjoGVWOJke2irBcIHaMyAERkvePXMOWjyGsYer0iDryREfOZ6qDJ2hZBCrWnO/9l9pRYzkdL9tRhIZM9Nf3PnmL6idk4aIf7hz2eS++Mmvy9bcxjFuwpsUwTC5aiN6OlsK5wexo6vnla89y+jsuuh4cV9rHdwYI9JR4SsICSKSNKnIq0p8Q1VOf2FBkxtPbUVGVPd9HZU73ZExCnEztkti6VLN/Ncwp3zvrkELLr6jw/FrYEuclMW4IdqjOV3XSQa0xmM8Eg1wKZjaIGHmbqKWrgYWQ2ihp4GJmNogYeRmajqIGHkdkoauBhZDaih0ZirEGrSH2STKiexwJjbQ9rSjbSopL/WR1JiqKKmJKJMX+STgzodEIsW8iCTvbS6WTZ80+rbAckCQ6e9fnd9Vd6M3y5jpI8VLximGJO5iUli8JgTSj0ATXIOa11XHz8vHgB1s0mt+/pN6WZjU+bMvmVxNKNVQWywHFikeomuq9ArjhSIisrPb0VnxOXCGxdVyeac86gRAr/0gCFi8K/RFwWgn+Z8iM2Z+3Cwe5Zm7d4Ozxpd5st/5Gx2nUJFtyJQrlEOEZKzRnqH97l7PJFOQ5Zq52Mujw7k8OM/kD0UVwfsqPkU6qjRKypWc6VKhZob2oi6iiRs+BaIdojOkpM/qRpiaNUMtApUbs2zrLZhwkc5z1TWt25vvuv94yo0TlNVMd95Q2IdEAhOepAAUl4BwQS1Ibso7MhqdkPhsx+/Nk9J3t/zu5xD/G5wlV8hWFiKbnIM535sOZxw+EdapXquWEyhVhZoEwhjlJwlQWeqUcnoXYrxauUxWMy8g+Uy6RSP+j1woslaePF/Qhj1Nve7LLl3kCHXQvXOfaYvG8v3Rg1HBAhlgeA18c+tqWzbAKcGYFSWE0aFg8TSRTodwe7FBgpLYrdRNAjVu6bpEcweJPnAT32cOLEznaq4SWUB0vCBOIg3KAwUl72g31/1K9XV14PkIWrXyWUkfZoxb+xYF5+LQREXznMPVZIlG9VDXsrqkVZLox0DxPB0n2q0V4dXoThW7VLyH5fipYmVxp/2E1IIpQ6wXpyKtVU9VfIxcJQ1e8Gg+TC8BIDohyq++mGqt649sRKwiwd9xPHPwu+/Z/zmHz7O/Mw85Cl95gTlxP9DbGcZ0wOOqxKDjpAh7nGrrYxR3uuNkXtbczVpqi9jbnaFLW3MVebovY2tp8yjx3XsUt/a7es1HUN6zduUFVtPzXpy8vMovUzBIcedL58ZrP7FpKDDq0+5UAiFvRmwUHPptOknrYtJBYu11rbwgeLmdoWRi2u6LaFopYWnWeceuuzrWO1gDtdfhPrQdvCO4uZmkCdXqwHvdcuX76shbaFrYeuzBLF1/NKMx38vqFF6my9aFu4j1E76fqgHa20Laz58Umf3+4f58/8I/H+wRUG+EbPumpbmMSonCh9UA5Hl20L48427fxjBMc796TdujppG/H1EXXdtlDEqDxf3ShPP9sWyq5cWFtcUMspt774k28Li9Y6blvYm1Fz1jrXHLypwtoWPr6ReO7Dgode+z2Spk+dOPaqXrQtRHwI2raFwBCifupBDo2f+m9qW0hsraPjtoVhS5jaFjou0U7bwnZmAqd2Ht/4GYmBFl3Sufh+3Gy0LSQWSGShFd/YJUyt+AYuqai2hQf2r3sQeHOR8+FT3YsNG8sMyj+FCVgRbQQLWDkyYmW35H+qbWEOnRn7r5HHP2rkQexIprVGHo2XMjXyuEe2nSw08nj18OiZ91+7e2YF9Us6+251EYsVK1i2kfDApMFSpr4HVZdqpZEH3+ONz9c/Fzgceb3tZm7dFvj68bpo5PF+CRMq97RrDRn3DpolD7LXyCPtc9LZeecqeSdNj/lyqMGwSXrTyOMso+qydKM6rTfymHyqbgfjb5cEcY1GhhvNjjHRcSMPxMrQdmIAVkZrjTymJ9e6svPAdPdNBs/b1rjAu6MHjTwQY0MLDjA22mvkwRnb/82XOVuc1/TNckueXD9LD0riQITOMiIE5jTqtx3i0PhtfF7bdr/6XOVl3Gu85Y/Vbzvha5EgicDhMilY0ck+myENzl1KQiSSkvvRejoAcblsQnAIV9V4WpN6MMQurbRvS66coiYsKz8YOELFcHoWAXwziG5SAcA3bWl5kzNNS14LMoiUWFB+9V5HgmxXxd13yl0XWdhR9ju+2Og/6v9HcKGIhrGcLhQsnf3nUrpOmClg7BZq5kLVVE5fkThYLqb2L32fdUgo+vM3ftq34qG97d6cJGRZIjdSZFkqr1dE6fATjN9/11JdO0uqkamBowRfWSITSQIZ6mMdtr2wNbd9gs8Mt/Xvo6NHWOLHKvYA8lhVSSpCGWmMykjQjTKI7g9Hk4iFnWeYTAGWL2EgPDu1bt8HbFnBziLUhtuhT2CITC6y4XbsEzFerkB+ofZW7yb1DX48Zj9/+5DECR7bax7Cr2vwA/wV0VKKHroloopQloJRWaP1YubAR2nkrZqVHHSHTZCPiWCYQS+y3j0bEbPIY3q/9TtfJu45Up6tcnm3Du1RQw7TxQtIteU68Adc1tBLRS05g7dVzPV0PWa9zWfu2Sn8zQ/9Z+p22wsAyMYAKKQAAJoWjTxRbCmjL1Szbef3dZea7uanNgx5U9DqTT3CUqbdggEQgDgmADKDlmKO5mHOv4uP4/RoTtTG+G1OGy1s+xyo02+31vg4b5Yx8XFmLatoPs7mn14v3UyqeC7ysOv4rvaHQD3g47xcxhTdvL5MD0gF2dnZWuDjFA38Ih+6otB7VdSAZ2lfvGrpBR/nGKN2duiDdrTCx+lU7JTk++aw58alxwpD/9obrRd8nFRG5czSB+VwdMnH2eB/cesO7xj3hY3WpTiErnuoV3wcOaPyRupGefrJx3mdfUhWZWQbh7iiY6+3df2VrmM+jgej5rrqXHMVysfhJsninowTOK6q0zRvpIdlil7wcRAfgpaPAwwh6qce4fw/4ONsUpjX+bR8vkeyYkWzepUzNuqYjyNfzsTHcVmuHT5O/3s1fl/S7y4/Y3x+v4F9BINY5+MQ9+YscEzCljNxTIYuryg+zide42nmg856zVv6dkng97RM1vk4RBvBAlYujFh1XP4/xcfJpTNj4/Mk7STemU4Hcn2kzx4Pe4uPlPSfAHMnXeXC8BByhqkG4YsWzpKIcJg9pormRNsqs0y5Qlh3Mxh+AuXI27Ln5Z2f/MGCdfMSrfuu63mC9v3IkRx1IWn8VfcHJsxHPRWLYlT+w/xo1dOI2e2t+RwLWNzP3An+I+R/jm3Nv1F/Qb6xv1gKFCYWuQO7HoU9DlGrUpV5dKrUOCfNWjW2Kz4nbTO/s5Wp3VWnpeFTAg9Uck5Ty0m7npK1O+YPOX/ffseoIlFCkVpO2rXa86RzLV87H34nlvdNO9FHLSfNq8Mj//S2S/grDsRvH1qU3UgtJy0hevW0ITO4Xkmn7UZ1+tj7m1pOWqMXJ5dJ8q34eYeq357+cluBWo2PrkuXcgTN97pvOTJ4XsF7V0e1hlXzcodO4p519d4+eXnwpEO3PgKRIfbAoPXdm29Z57qrYdP3cTV+uw9E1TGRbGVOw8YzHBamXqvLO9JECkQ1sJe3HFkQ+iTMa3P7gC2K2bdrA5ERKtrh/6fLp9+jvRM2jvrW9+uwRCCqiYoGjZTN/5wVyVsnFHTfKNsHi2EYo6K1q1rcmbZ+oPOMZe1aezWoGwJEJqjojldy5IE+RwQzR1+/V7vLgr5AVAsV1d97+mqs7023xGHb7nU8mlEPiGqjIlnN1CPH+3TnbWgT3PzT7obmQFQHFb0L61N71YShLuv3vvGoW/vmViCqi4o4KdZehQFVXTYeP5HoM2jWCCCqh4q2VloyObzaR5/dVq3cdmY9aQFEpqio55o6Jxe0TfKedyfo4tcpXo+AyAx7jYf9uJGvGzvvS6gWeLvPoV1AZI6KfgVZv205NoM3a1aMx+uRUjcgqo+Kjgg5y9ed6+I216/JU+8esZ+ByAIVjZsWM27nwQmes3cljXjw5FpPILJERV2evN4Z65HnNXforI5rjz1/AUQNUFHieIX38Bl1BDOHTti2KC7FB4isUNHvVV9eqhZrKtjT+ZthjezxhUDUEBWZjvZo1qlHpsvhHw/kTSXOS4CoESqamjc1e1my1GPx8ROWZx+chcg3xvQlabih+YYb7od/O/WL98ATDoAmqOiCm+9x6ce/vROajbeUBSQsByIuKno040XU1JfVeatOn89tlnjLhZRs2ZRDk2yZdnGlkW3cdI+tt74Nv/TL+D2F2dA02fIonYkyCzq4M/XkGX7atqJJ5xrG4Ldl1fhR4VKZiIJBQNfcuBV6h4rzibRriAgVSqXACKGdMMpIGSAaKMpXI59zooKyVsgAe8HvKfk0nYx9bficghTNGsmUMCqVL0Lt/7ddPPKHsK7XzBTuKO6BG31ZJFSy7OTCQtefU+hiehZgs/w4RSM2QBc/4DDJkbM7kRiW+pZFSBAKBXg/iRQ2bleNEy7woLhCuOUKpERRmPbiGH/LJ6cU6T1ZlVsNV+BDoKrPIYdAS0Rs72QhXAWMcB1O0Yt4NZmup2HrYVt0oolK1KUIESrA/mWcmAscEFUrN4ZuXAdN/QZ9u+18pPOAdt0e3+ETTsvRx1KclmMStrVX2xYd7M6UAWw7ZLCTIqYaAtcUI/Zgh9ZiIpDUPYsHNuZs67raO+l+rfs9m77klZ9GxAJYBYxggaGOrj+/c/7LPmAz+4DooWst+2DTCqbsg6AVFZF98OGv0VEfrl7zXnjtiuuh5nWfs7hYEi0QC9kH61YwkbXnr9BK9oHcqaZ74lNv/oLb1YIW+85prvPsg0mMqIBxo6eREu1lH/xcO2HR2H4mTlkmd/c/XLmghd5kH/gxqq6vblSn9eyDKwMaDjGMmOh2ONm+7dZz8+N1nH2AWBla+jiwMlrLPpi/3Mlg1ZDZjrncYdIuy1bjCyboJvtgEiM4QSu0mH3Qu/FE78Rre1zmGgyp9mZg1HA9yT7wY0QIzGnUbzvGofHbzqwUCn70qO8at6lxtZfNJ+O1boj0vfR3FpT94MAR33YW9YTBDjEI/Ar8rmj13qzA2KLjFfpeqOs2pUyOE/H8kvq9yV40JtFgG3hnM9oeiuQqOQANpG2ugP60davZnJOE7XJcf3rN0pwqvnUIQXZ4N0WQHblcmqdEtH8s9H4qhACFUw1Cbjs+58RmjWJnFghA2LiwFknkYPgCOfVi637ySN8XG3bxVnV6nnfWOe0Yflo6YzeTp2WJqDTA9v7eqn5oQC+fhYa7zhp3zStvzXsI2C5GwMCI0okTpVwz4N904tD9kFM6DRl0aYToksGq8p7e9hk+8IRrirvNosYxRR/rIsk4QBnkkstVeY7+1oPblM8BJqh23/efa9485bmk5vaNvTapxQUWVJvAqFqFjlRL5R8na9ZEsvQeyIpmj8YObWbpusbQb1Mzh5w8nfVA5tihNgn2QA4n7W/tkCmGLozHOTQLo+PV+ncndtvrsH3YSIvEgUfwpYFNYclNBTz6hGxcMYwPizXonGjvJAsFkCsLfyKPEZU8BtkcljRMFIFBUqYVkRi2K/2FSeqg/CsNDhUC0gDozx0pCoyPBoO/e1p5c/V4AjVQ4HEDLOULvQ1ZGNcaawII0FMm8cH/KW1aBDyNlkWKaTJw3D1u8NuFRvGWWUYpPnR6i2+zXBXpp0zRZhK9XpqN+Sv6yIXQ77OclvRpP6b19xUfWDiZ8IUwGzhSlL1OaYPAXN4j4ZZq6ledbgXKwiLEgROQ4QHb0FCfbgb17tGtielXn1VrVk4xys/Ft6IzKnkuefuLE1ZERhMC23Aq2AptEdhQk3CCziScM2n+oUNXmdes92897a5Mwx9zG/uJw6XCQDHXe4JUSmEL6BxmW+y+MHgfHLOSsIlCqUSkHOSREkUIVwa2KfKyWwJilJ7hPamao6uJNWmiupIu+JYO0M1eWd65bw4XNaSFqgK2/IRGEiJGnVJiZHH28cfKgoOfbwbNEk/siHefkQeR3Wfl5dKmM5GVwEbrVIhcPJXLgBRUXknrPpcROSsVcnLcUINDixK+ZXVd082Tq3guzzwY0Gdo5gg8VRsdINQhHbyU7VkM0cpmRGvDSq06WNiLGgZEh4vVcWiuxtmx8wQurVhqB/8mws7VbRR0coPFcgJLGP6U13CbIwskVCx4BNhURytVTall4sJUnklSTr2OtkNnQTGPilRoj8wCjQ7CLJStkKGvgKxV2NAXUULxNnfW0jCvN24H3j140bD25SaEwAT8VhSBCeRyRUCRzQgFGOLoQnWSQ7NQ6U3deqK1ZKcNWAWUrQ9ayVS2fqAK8nz9h5zAjWMH8s7vxqRNPljXY9Wafh/P1hKX99QIQt53NRPkdqsxyE/RQa4xK7MWBrkWWJkUJEqMlUlBosRYmRQkSoyVSUGixFiZFCRKFSuTTKLEWJkUJEqMlSn1PV1QvUYDp7UeYbMafBZ8JFHe4OCl3oQS6JcsUN5O0+m/mecJ27u7a7hsNhCNuf6iNl7/9ZSH/U5SWQR0F5EADtkpr0oz25q5SGDLnhDY40b5AGRLCfeZKA2hbOF9IuW01FckgUP1RxqkRw1MBZOskOrsGraUNU/V6OzaShltQ7JBZFA1AA/wCz0v6GtQ1eNrZC2csw+P6X4srHhoeWJtFXuMXQDjo6nosltMSrAH2+rOqZR+OB1WZipKhDpWlCgN+zgp71IlOS/nUVornwOHKrNIi5g+wPvT6U1RLltkc9wSHKOPsYCSOSNKn1eQDx+Y/DQbX2xeIZMNwQybcnCrh3HP6EMlwT9a98tNa82Pu9RlpZFni1o6jOfCFq7IIKIMyB0F2+C+qZq5sW1V0UMIUaBazQq4AuFsE3Wyprd9t29/7PHIbrV1TSXBxAV6ELWEILVlBMk8VbO4bktnifKbq46qSoYMElikN1AT6/UfN+SPxV5bOx5I/M63xTezM8SeS44iqiQVgU5lRnTeqGK6Zzg0C+Orgd4CA/svTkvXn3dZ6+M+lHwQT14JDWjAbYqP56qobpEyjcrGERMsyhobKGv3dGCYPkLYzlMdQHEAbKc1W+rKFqbNTRx25frNpy577QZEWCyxqYk/7ETisTTLOk5YmhUnmrjydt0GdroYguVLNcbSgWt+R7O1zgQBSwxmGj1U98fuG13NNN999clRj3b8lZ+Mt0R8cC81UGoiLbsEEKbTjDDtS9VssSs9hEaMNesshAYtDTJGYAiN1I083A6BBrVDZ+nskFPr8/Y9ZtwXpLusfafoYdmIeA4dKgznKs9pKM7L6Vzz1sr7sGgPkpci5IaJI+ElsVwSiC6QZTJLxOQuhjekOilXE5c1SgaGTexGgOtFKp88FqDusFEjQ2WChKGUh7vgdSi/5aRL9uYuhesd5o2vtCpn+87xeBcJeQDZRVJeLm3OEfPcyhvdAvDEQHhqUs25DLBlCdmoEZvEWPk+TIW++FN8hQWL1wpyAyeKXZol/IaP/invJ0f/0Oul4dPDa3zRj7RPXgf73DmXcuzVOxbwCWDEBwwfXTAMDBHixkQlEL05xB/NKoEbBwjlwWIFk9K+Ri/22Znt4rXQ77NxWspzPJW8qvJ+stLQ66yTa4FWbBi1YqFXWinOw7Si0fJVCzF44WIRanypS5KkRA/uGurhOGNd1cHGnTmH8YrxQu4nKwa9znqPaDvUnMBjRtJ+Ndaezxm5UbMNmZUKA2RjIZWUhseXT12NB/NMPBN+frJtbN+5KZ5V66R8AJlViwkqAhEHRkSabcTW9XMcmnV91yLPj8N69XSf9fGHwvD4LXzkCP3EspNheqt2GPgFnBsZIgkMAW4lzC0URkTAigYqVgy6/Jdt80HM06Z6X/KYVF7XhCe6AeWJktgvDmBXd3RDeSPgDVFXAy72EmWRGpjCpHwT6u3tky9V7N7UdM30532+s2ID/jS2Gp1joxJoefFHqKQQw/ZUHA1uWwRDjSxWb290RCnLcuIStSAfKEJ5PgBLAcL/l/iU3MneUygRJa7nOq0KCve1CGAWVIDBWkwAMHQyn6ebzHoTuCKOJpZ6XBPDHCxErqZuYIpchakwv0CHufcBl4tnOCecYoda9pK89MDTu02QfvLhUkkgkhZGNqR0SFt5AX8ALE8KcKeUG4p7SpnsJLEyBdNrkYtZ4eVlPbgBm2wTSNVMojq4gTGKok35xqrTSMxzwtaTGu7QluJ0CT+pGnLZXYSNgSGi0/Mr5VV3znlT38u4Xb0CTF6JRm7kg5gX0hgxVF6nf7DyfZDXhX/CtHFr5CKRA5sD2QkImQmvL0r9jOtaP7/K5aeC5AG3LZ/uT5uO008lHnl28EizoxJhdrSusfYtp8l4r9V3+wXmXSo+Xt4zEzA7akB1tqdiLwwG0r825auBVNrJUmN/caAMWGhNUApYb2Pa1ecv7wVLrqd3irjsjEfJkYySY6kozXln8+7aqkTPOFvbjGHbJpU3uxSiBIY1A0oXN+WjY1A1lhjZLsp6gdAxKgNARNY7fg1TPoq8hqHXK+LAGxkxn6kOmqxtEaRQe3rxX2ZPieV8tGRPu29isqc1/7OnmH4GuJwYO7Nxd5cDLhNrXxo1RM6CPSWWaWLBUnRmtBTcCrenPY1W2SbfmOKZGjIso9dqgzAW7CnxkIAFlGoyovR5YwXaU+IaqnN7iowYWntaU2VPL9HZU73ZExCnEztkti6VLN/Ncwp3zvrkELLr6jw/FrYEWRuZtgSbVGcqBXSQa0xmM8Eg1wKZjaIGHmbqKWrgYWQ2ihp4GJmNogYeRmajqIGHkdkoauBhZDaih0ZirEGrSDnEiNXzWGCsXWZNyUZaVPI/qyNJUVQRUzIx5k/SiQGdTohlC1nQyR90OknNfjBk9uPP7jnZ+3N2j3uIz/Or4isME0vJBVrpDJs1jxsO71CrMs0NkynEyuJCCnGUgqsszkr5tYl1FylepSzWzsg/UC6TSv3gigUvqjdkJVjC+DbLvB+2OO6dtGjeoiMP3j2js4SGAyLE8gDw+tjHtnSWTRgjhVwtWAkWFv4RSRTodwceBoxyFMVuIqgEK9VLOpRuBXY864AB7eHEiZ3tVMNLKA+WhAnEQbgF0Eh52Q/27FC/Xl15PUAWrn4Vb4WrerbiTzy/Lr8WAqKvHOYNKiTKt6qGvRXVhJILI93DRLDsFgZvperwIgy9qF1CfHUpWlZYuSGAnUAkQqkTrAWlthAp5GJhqOp3g0FyYbjqHnSoXqEbqnqzLBOrgLJ0VEcc/yysy4/XMa3LV9dh6/JVvcecWF5Vf49HFzES++NUxP5rdJhrvEwac7S3TFLUzcWWSYq6udgySVE3F1smKermYr7QMpcvDXrF8Jz2HeINWzx8H0/NF+rn6uBePDTRJedqUf3UNcHrSYsrtPqUA4lYjJeFxfU6nSb1tOUYseiw1lqOFWYwtRwLz6jolmP7WycfKYjxdlvsd1ohG5TE1YOWY1czmBq4HM3Qg75JZ86c0ULLsRd/OtWoteFPj5wz/VMOTOlorRctx7YxaidFH7SjlZZj35/sdbc/YeKyu1ZxP3FKDp7KqKuWY/GMygnXB+VwdNlybN25azF+a/p7rah8ZVnI3wkd9Krl2HBG5bnpRnn62XJs2ovEpKpD7vNn/BzyrPmqfI6OW451ZtQcV+eagzdVWMuxoyddW1hZVXLPSx+/songzx560XIM8SFoW44BQ4j6qTc4NH7qv6nlGLEtho5bjgVtYWo51nOLdlqOGdibP567+TgvznzLgfXbnuL5wGy0HCMWN2OhjdaYLUxttLy3VFTLsZe1BybWeiTz2HzLpGjhlj2zWW85RrQRLGDVkxGrVlv+p1qOFdKZsf+K8P+jIvzEbkJaK8JvnslUhP862XayUIQ/vK97u7OtL3lmHWgn25XnvofFbHOWbSQ8MKmbyVSz/CfZRlZEEf4jnxvm1uC19Mys1bXtioNZ+CKzuijC/3ILEyrXtWsNGfcOmiX+sFeEf8L9Sa9HSG0Eay7PGNah+SB84Q1dFuE/xqi6HbpRndaL8Hda+abeoBpzXBbnCYODEnpa6LgIP2JlaKuoAyujtSL8iZur3TKvVEuw5nryg+rZfcz0oAg/Ymxowbm+RYtF+KfLNjxcUrmRa+zBnRv61Y44pQflLCBCxxgRAnMa9dtucmj8Nj6vbbtffa7yMu413vLH6red8HUEkCS+cJkUrOhkn82QBucuJSESScn9aC0MgLhcNiE4hKtqGqtJLQdih0XatyVXPVATlpXbBxyh53B6FgF8M4huUgHAd0lmeROrTEteC1xFsaD86gXvgjoHe2T47D91pkXk6cv4RnX/qHcXwYUiGsZyulCw7O3jTLoudimw8VemRi5UTeX0FYmD5WJq/zKiQZeeVYPuO+Scu39w3KZq+KOUqs7IjRQZUsrrFVH29zDj98/I1LWzpBqZGjhK8JUlMpEkkKG2jeGxkZE2YZ+915te/vPs5BZ38WMVewB5rKokFaGMJYzKiNWNMojuD0eTiIWdZ5hMAZYvYSA8O7Vu3wdsWcHOItSG26FPYIhMLrLhduwTMV6uQH6h9lYrv8qpXXXiZredit9uyZ8cccKva/AD/BXRUor+lyWiilCWlFFZg/Vi5sBHaeStmpUcdIdNkI+JYJhBiUYZP7M/VPY80KW2zSrH483Ks1Uu79ahPWrIYapnAakuVAf+gDOZmnmpqCVn8LYu2L16Vjfb0ycpcGj4MdMm1XW77QUA7MIAKKQAAJoWjTxRbCmjLzJxIe9Qp6a3znhkz6j6rdmn3BWEpUy7yb4QgElMAGSOzMQczVucfxcfh9iYW2t8nKdbmfg4U7dWNB/nnsGFiw0W9HDZnPF2U/t9E4P0gI9TtJUpunlxqx6QCnbt2qUFPk6tv1rcfFurp9fmLwkugUFjn+oFHyeHUTub9EE7WuHjREx+a7/hxFqftE1dhvX+27CtXvBxFjEqZ6o+KIejSz5Ozu3V2aPt3jjMrmdUu/j5rji94uOMZVTeQN0oTz/5OH8a+HyLNarrPDPN/Pu5jdU/6piP48ioOTuda65C+TivPYaFnIw665FoerAo5WOfTnrBx0F8CFo+DjCEqJ96m/P/gI9zwc33uPTj394JzcZbygISluuYjzN2GxMfp+827fBxWq3I97eZNoq/7Hq7xyf2/JbFOh+HuDdngWMStI2JY+K3raL4OP2NWr0e8qanR65lQo8D1XkfWefjEG0EC1j1ZcSq7bb/KT7OHTozNj5P0k7inel0INdH+uzxsLf4SEn/CTB30lUuDA8hZ5hqEL5o4SyJCIfZY6poTrStMsuUK4Q184LhJ1COvEczXkRNfVmdt+r0+dxmibdcaN+PHMlRF5LGX3V/YMJ81FOxKEYlMe+pjKNS9TRi46TWfE5NWJjL3An+w4/KoWNb82fW2JBv7C+WAoWJRe7Arkdhj0PUqlTlXTpVapyTZq0a2xWfk5Z1xbrpj2tTXdbaLTv/6e3ScWo5aWv6nrCpn/yb4yFhs22PGnpaqOWkTZ0Yx+1Wtaf7HMeOO3IEAVK1nLSXz4wOtl3yzXXvK5HH5I+titVy0oavaVWba7nFc+6P34q8L/wpUctJc/15aoVkUrFPUmHdTC/TR2PV8vNvdlsmX/iymiBxqN+2NKcJqWrNZjIfzVnrvWsPb+egqPatInyOAJEhKuoTmjFj6vuXruti/jjZsrZBChBVR0VLJ6afDGhq4pgnT7P5PtxnExDVQEUu9TdvsU//5pIyK/HytntLfYDICBU1Ulh0fndDzku4+5vZPs+uMJG9JirqXv9KpXp/yAV76vUNN3uabApExqio/zyX4pHhJ/jZg5Z/3fyrfwIQmWDfq/EfK9zc73lvOVu5helL805AVAsVRd2z3sifWp+X/XDJt6cL958Aotqo6I+VU34ZH0hwSTAWBtQb0n4WENVBRbULe08WJ1f2ydsfNEFR88QjIKqLit6+fWryfIOh08IuxebvVjf5AUT1UJG3R0j6tK0R3muvhT5fcOXwRSAyRUUOrfg+Tzss5+0cMaKrQVDATSAyQ0Wv6jxZ0KnuAveMv694Xf2r/i8gMkdFdQumv0x68bvPokF34yWHPX8DovqoaMnmnicP9mgrWGu2vfJI40prgMgCFdnFJ60fc/yX29y32Y7df/yxEYgsUdGQfq87Kpp1clmadOfHvCNmUMsNUNEMP5OOdfeYumUOW259pYbiCxBZoSK3xfLTp5+ucZ312nD2nYZnzwBRQ1QU0KKWieyDB+/AjYOHzTkWEMNGqGi5SX7f7rM6u2Z/WnBIGtwgGIgaoyL39J5/Ls/t7LOwONdv4sgdC4GoCSoqqlprqmmIOy9VUXlY68Ohk4CIi4ou/DFqaf8qj7228g657l2+RURKtmzKoUm2bCG+/myr3QXv2BFHrgzJez2XhWTLe3Qmyizo4M7Uk2f4aduKJp1rGJOOP0zkR4VLZSIKBgFdY9JW6B0qzidSaj0iVCiVAiOEVrEvI2WAaKAoX418zokKyuiXxIK9YMx2ui6kvrAD7HbNmkCUMCqVL0L53VZFvxkprzTWYVno4phWky1qlydKVLFOLixSG7WdLqZnATbLou0asQG6+AGHSY6c3YnEsEyvLEKCUCjA+0mksOmyapxwgQfFFcItVyB1js/G8KPnBW8cV039Xdi897hb+BCo6nPIIdASEds7WQiXLyNcvbfrRbyaTNfTsG2oLTrRRCXqUoQIFWD/Mk7MBQ6Iqg0Tfaz0bNWbE8YL2rnvedXCvMEAey7htBx9LMVpOSZhW3u1bdHB7kwZwLZDBjspYqohcE0xYg92aC0mAkndevXBvvr1ph1wPjJ4+SaDrUPXlZ9GxAJYvoxggaGOrj/3OTTrz3/ZB/8o+4DooWst+6DZDqbsgyLN1soyZh9USph+PWbfWt6+VYKcQdYbd7O4WBItEAvZB413MJG1a+zQSvbB0eX1Wo54b86fMXBznwE/k6J0nn3w13YmVIp0syaWIVKiveyDgiz++Kshcz0P3/m+8tWCm7v0JvvgIqPqcvTVnWE5+2DzoKCPB6dH83dOfbI4YXkyoR+S1rMPECtDSx8HVub/2LsOuCaW5x8VFcWCYK+xowJi70oSOqEoiL1ECBANCSZgL1ge9t472EGf2BVQ9KlgV54VuyL2hoq9/Xcvd4G72zsSOZL8/T0/H9+TW+5y+c7szOzO7HcMdvqgE082ZP/kDuJJ2XujWtU/S86qG+f0AWZsGMHJ/NuApw8WlX/DDxaGeO6tUH7sRe+KZiZy+uACK0JJ2rjtPo8hbju9SiL+0aGK6+TNtUs+rz82hRyNYj3r/JzEum8cCMktI/FIGKwQg8GPIO4anbevIjC2uL7C2AsP3cbrdg6Bsn+Jfm96FE2M6LEMLH0Ib+1CC5UcgQTOJBdCb8nTT7vXsW5203FmkeKXGkmqtKMk2eHdiCQ7djm/SIlq/zjo21ICAhSOUkJ+M2feu2S9cmdVMYAIvbAJkqmA+oJxtLN1EHU9V/F9pMehhXVe+HbtMZc8LZ2Im+nTMncoP8B8x2RIJw9OFcaXq7GimvDdIg4Au5vMBhjQKKMEURqfAX+nFY/pD/1IpzmLLC0wWbJY1Ss+l2qn/2rgtEC1PvJTndpPrLDDOEAYzqPCVVJt6g4LagVCP5veTQoWAFNEKxhu2Wp431rO8z+tmx0x5JE3B6Ldzyra9UYSLSo+nq9fA7j8+5e+H3BqZPSobOftLZvOK+5r19Jo/Ut59rhNgv1Lw2nrW3tsiuGO8QGPwTEKr1S5M6LdHse/+w2sOivgMJkauCKk3IyAW5+wGlcK88NSPbqeNRcpwwDkGuJP7DFBuY/BFoe5zc6CgJLo5BGpabv8X5gmDuRv6bGpkL4TgP5UiGiCNhgo/96dBT2rJxDnAQVuN0AqXxhtKBV8G6KBF0BPc4gP/ktj09RwN1o5UspwAqfv14aLvlSLEywo+j2114Wbt8k2BuuFimgRh1/P18Zc++vRq637HLcdvF1mUu1R8RzsTJyDMJsJEW2/ljfBYC7olnDDPOLX7m4FKhVqaWAkph6whQRD17lG1/yKtmvvtTVNei/z3tA25KqC3OfSl7+kwcI40YTB1h8FW4YdBhtuEjKZTMLZcvXft2ir9Ip+98bT/vJEZ2rD4HC5JFDK946UyxG2gClgtiPuU8D7oM7KFCMkclmQRslHyiJC+UqwTFHpbgmoWXqW90Q1Ns4zrEeUPHgnU/ItBqDbusBzvzJ0alj7wwjYrg8aSYgYEoD2N1x7leq6UBBfwXKfd7na9cnhM/YgevisuZzfdKZWJXAQMvSHyE1FhQyQUNltJ2P4rCNyNbTIqUiqBlULnbeOfzvswRq+d3TRUUPtc3wnkku1cQVBp3TIo5w3JrfBNIkFLf5OgwZYxIua+48Ol+bFoX6emh17TxDSSuX28HfU9q5ug2CQGyJVUaqE4Z+CGu7KmIOEggWPAIvq0RpRI6VMdUwFmSQFlOtge3wWZAtQRYXNsVmg10ZYVU0bUxgrYL6KUP0gJBQXq5YrN/GWSrBwWoZTz1PFf1ISE/BbIRIT2OXCgKI1KxR8raN6yGNwVCbDW0+1lty08CkE2vrMBDba+ksJBORZJg85tTaOG8gldX951Rk20XWbW4mqNVo4XuUA8qTdbJDH7yYgf8QEud5VmeUJyA1QlYkooiSqMhFFlERVJqKIkqjKRBRRElWZiCJKoioTUURJVGUiiiiJqszMVXW+tdzd1Gtjv5CzM/d52dNK3qDyIrWPWn7JQcnbYyb51/M8YXdnV2mXLWZBQ649syTL31qz2S+SK9UwXMQSOPSgvATDbKvnIoMte0JhjxvNA7AlJVxn4mUIuqX3qSWn+b4iDRzUL+lxPOoSTC9loPauYTvIhTv02ruuocm2YadBlFA0AA/wA3Nd0NfTao/eW6u6bb7vMPaRR+qAguTaCncbOx3mR3fgbjebdsAeLKt30hP+bFhV0pZE5MUKiVJYstvzV9v/Fh20drVu3z2uLodlEZN6en84tXmUS5xyhtt04ehjHKC0kBWliB36NWm39SXmFTbZMMyIKQeXekTtGXOqxP/yiRVOb4e6LR8YHN375e2xRsznwvaLFxjzuUfBMjhJz3xuU232EEIUmIezAnogkm1CZy09/Zzu/lVKPKmJ07wLneJ+mkDWEoK0mRWkhTv0y+s2dJJpvrl2qypXZbDEIrOBetT9a9Nhj5p6JVi7/ft97doochaReC49i6gdKQx0JrCiM3QHERg94TE4xhcB3mKz5l9ESzacc4n1ce9L34ine0IzBnDrkvO52lK3kUq9aOOoByx0zQ3o2vkYGKZwGMKfQ21A8QBsTgmFkKZdeiI7IrrtFNe1K/tWE1++dpe82YnlYxncOmkwPytONXEF7ZgL7LQcguWL0rEYEJr3TtDL15XDwJKCmcYMVc/UFRUOre3tcjhiuxv/tA3ZyZVyBveigcozZOCQAMLkxAqTQ4J+zi7/FBo112y0FBq0NJiOwBQarZNwuD0GDW6HnjLZIVHjc807TLknjnGJfRvRoVot6j50mCScr9mnQeyXM4XmjTX3Edke7FyKhK+QjoSXpCpZIO4gdTJL1MNdLG+I2inPM6xrlgzy/CYCXC+gYvIogLoiUS9DVQ5LQ2k2d8HrIL9l7Trr+i+y++Qe7XdMeX3wrdXkEAl7AD1E0lzOb85Rz7kVNLsF4ImH8JRBzbmtYMmyNFGvapKymvdhI/qaXWxGwPpnEzz39HjewuXBmCLk7J/mfnr2D7+eHz7h3cb8u7b1AadZ1h6r9tV9EMYBPpNZ8QHqY4wKA3OscGOEBojOPOof/ZjAy/pLVCHSCDahdTw2qvGt4yW84i5Fqtb0nPiKLDTN/XSh4dc5L64FUunLKhUXk5JK9hFCKnq5r/KYwQuXBuHGFymYtjO3PXIutlB4wCJpy/2jQyVkwXhh99MFg1/nWjCO9rg5gduMtPVqVHNn3uxE/RZkNbQYYAsLuSw/PE4n3/u61Om5y+EvqcOtmvxsTq6qFWkeQK+qJQYKAxEFKyK+iYRff8Zj8Os7F3rm9OvU0T0650eE+fGb78ky1nyi7sUwnbUrDLID548MlQWGgrASni2UqNWQ0UBbFYO7f90WH9Rz2qj3peuk5ro+daKJeJ0orfrFEazqXh8saAa8Jh5qQGcv05DUwCNMmjdBfnHn2w9vDw166Tj/dfXrxaskklupl2QKbLQDBnb+WCkpxNABVaPBb4phqJfF6uyNa5SGlpN0UAvWA6k1+wOQChD+Ozem5I/1Ho9uoELx50ZlBYXrWgywqijAIBcTAAyfzM+ZJrPJJK6o2sRRj2tqmoODzNX2g2yZq9VazF8wYe59wOXCad4JUVTfap1kzz0qkFmjsH7y4XJZIHYsjG5ImZCu4QXiAeCeIsCdcn4Y6Sk62UkqMwXba9HJrMjjum7cgEV2Z1gyOxu1cQNzFJbJaWW1u5FE5ET4k9Lu0JaSZAk/qSR22T2I0IE+QafmFjlSyinpdRWvss2s04nxIgzjFj6YeaHpiLnmOvODNe+DvS78FbaFWy0XmQrYHFidgBUzkeWFlE/gV8eYGhXbecWKuz9M8905gySfIgL67BDQZkcRyuzoM7Voqx1zzT0PVIwMcB8w81VB90zA7GgPxemAql7oDUYbJKflASm/naXaftJAJbDQ+qB0aNHa3XXf/XKcP6XBuIuiGHIFYhEhHSVhvijVe/AyuWzpL6LDtfc/HvrE6R4HKFmyovQ9KQ3XQa0usVa7aPgCYWCkA0DUqneyD9M8iu7D8OuFseGNacxn1EaTjR2GFG5PX/4/s6dUOh8D2dPgJDZ72jHpP3uKy2fTiAYLWtnwxTPPdm6olL0cyoE9pdI0cWAphiSxWQrvpMK2p89WOsvmjp8uXthyyshqqfEzOLCn1E0CDlDqyIpSo8K0p1QfanR7imkMoz0FSOH29BWTPTWZNQF1OnFTzNamSLW3c0ThTvs/OIbuvDKnBwdLgqxEtiXBFe2eymsmyPUuZitHQG6AYjYEBx5h6hEceEQxG4IDjyhmQ3DgEcVsCA48opgNwYFHFLNRIzRaxRq0ikgVo7LncVCx9oYzIVsYUMi/xyOJIFUkhEzN+dNkYsYkEyptIQcyyWaSycqD9/tMy/rsnnRwX9KuYQ/I5/yK+0oUUjmdoJXJsNkI+OHwjjws03yFMkKqIReKkI6K4GvIWZFfm8q7iHgVXaydhV+gSimX94AeC17M25CVYgk9MxztzEtOFs7bPjrzmEN3ayZLaN5TLVX5g9cnPrahkzJyiBzWakEmWEj8EySLwL87iDBgliMzajNFJARVL21TuhEwkfuBAe0g4kVNE5X2kqhCZAqxNJjkAC00l3vAnh15r5fSXPdXhue9SqGA9WjkfPzS/rTyGIi+KnhuMEKmeauSxFuhJpRKMtJdEQRptwh4i5SCF2HqJc8lLFaX47TCmgUB7AQik8hFkAsqjyOKUEklYdqfzXqpJOHae3BVfcukqibjlqksoBxt1VH1nwO/bHWAzS8XPUD45XcmjzmVXtV0t0d/shb2v9YW9r9nwlxvN1mWZzg3ieDNJdwkgjeXcJMI3lzCTSJ4c4lYKNn+zM2zjXLcpv/VeIKIX35hnlho49I6zdVrhC6JgWV8zReEZtOcK7T66OUKhYyXA+eawyRJE205RiUdNljLsRKH2VqOrT1U2C3HPH4+s36QHiBYu2a2fV27dZEm0HKs6GG2Bi6vD5lA36Rjx44ZoOWY67Zqx5Z/thJuPxmf1nW4K6WZi5Fajt08xCadNFOQjkFajk0It9+5L+eay3aHcQmpPxODTKLl2G5W4aw1BeHwjNlyrNLcFSe//7PfJWXjoTOXW34fZFItx2ayCm+EcYRnmi3HOkxLvWb+0lUwL/26bY766lEjtxwbwio5b6NLDt5UaC3HxrTqPDM7o5f3xnnjntR5FFLSJFqOYTEEY8sxYAjxOPUDjyFO/f/UcozaFsPILccWH2ZrORZ62DAtx9q0/rJOeDzIe8m8Zds2vL5Ezmlz0XKMSm7GQRut+YfZ2miNO1xYLcdSKzcUN8iJdtkYVrT4P8W2byr4FKZgRbURHGAVyoqV/+H/qZZjH5nM2H8k/L9Fwk/tJmQwEn6nFDYSfrOUwiDh333s1Ohp/u0cJ513vT9xcuoSDk+bc2wj4YaJYwobZ7ltikFI+G/Z2vlPGuXumFhr6NqfM8eRmRWNQcJflRUVoDcms3bQ7+APdyT8tSIPr+3vusFrhmp5E8/Jl0eaDAl/9mE20d02rCMjRGdwEv5H5bPqTRrbVzj7WIk163f36GpkEn7MyjCyqAMrYzAS/p8v1f3H+X1xXZJpW+1Y+vUjJkDCX5UVHLMUA5LwF3Opu/zVQBef2IXdYiosUCSaAJ0FRAib04wIgTmNx22feAxxm7OgabNfXa4Itt6tHXdp7Rvy1q8FdogvXCkHHp0es5kz4NwmN0Uiy70f58IAiKuUkSGhfG3TWH24HKgdFhnfls56kGdQ19o+EAhVPgLwzQT4bqWGSekA32P0MEnPg1UVc18LXMWxQH71Gburni9//rUw+px5QpHnpV4XvHcXJYSiGsYChlCQ9tbqCFMXu+VAd3/qF0KV0UzfIGmISoqOL39uSS3iaSPw3NBRHbPqk8NZygkp7EbECSnN9cKg/X2ewvb9rxk9WNJqph6BEnxlmTJIFsjCbZPhxz+2Ka2I12GPaSdsDjbvT9ZV4gF0XdWOFIYwjrEKY4dxhEENf3j6ZCzsPRXKCOC+JIFw79TGoQtYsoKVRZgtv0WXwFClKsiW37KLergqAvsBHa1Kli0b9LZ9ae/lE30e1jmV4Uf2a/AD/CJGyxH9L3OHCkNYK1mFFW0SMwc+Sq9otVLuRrciUjVEzTKDDqROdyz+5qJrwsv1NY8/+FiuIEvlgi4dHHBDDo96ptN4oVo49/ykZ5SKW3KWaGuJtMqbMw6xwiOJh3y7t+9yy7jLXgDA3RQcgAwEANC06BWJEq6MmWRCfPVywqWxy733xRfPOvXoUoBRD/tCALayARA/O4UIND/z/n/V41AbcxusHqfiUbZ6nO1HCrseZ/HFa6lnrezc9zq4DvNxH1bHBOpxLI+yZTe/HzGBooKtW7caoB5n3TLLVX7de7glX13ttflBl+MmUY/z9AibdK6YgnQMUo/jM3Z0y4RRd9z39P808+i7TvtMoh7nKKtwtpuCcHjGrMe5eSyxzgpektuMtKOZkT5xASZVj7OcVXhTjSM806zHcfo471PK6gDHA0N6u6TdnrnEyPU44ayS6290yRVqPY7ftFeZsl4rHJc2rJ480LLvT5Oox8FiCMZ6HGAI8Tj1C+8PqMfJLFF+QsVQd8HKiKL9Gh8KG2PkepzlR9nqceRHDVOP06xfdkDHSQni1f2TrMdVKzqa83oc6tqcgxqTxUfZakyijhZWPc6M2PTbB28sEcy/tHHA4U8LjnFej0O1ERxgJWfFqvfR/6l6nK9MZmz4EVkzmXe86ECKj/xJVr835ExJ90h4dtJVJQkPpZ8w1SN90cBJpg6Hp8e02ZzRdppTpnwJ5MwLgZ+A1LzzlwYt6V48y2ubINl1z7K4IMb3o2dy8g7S9K+UHzBhPnmPYiG0knruSUet1D6N2jipsTOvPSTmqiyCfynnP4c2dvZqezCtrJ9UDgQmDXIHdn0U8ThMrBpRfmMSZau93sKOzfq4pSREec3MTrhOsfJAfCqlXENUrUfzv7bOo4B+BWpSoPh2JP4ovIclrIcaplDCbpbBfL16j2yw27kow36G4xy+f7TviXk32d4Y4ZdI43pQZkdVSOXxTggRNU1HoRUtn1oINU3+VzfXfrheLkqO/6kYwusRwmFNE8cdNPgAocEQIdhBg9aa1rIphlBBu8DVFZF1CF9Qe0P9soO5CXskijXHjf1cpfFr4d4XB+4+XVKJ3HS8BIOiENe5DiOjbHGg+CgnA+nJj1qm0ja89QSqei8p3P7BECLPOzRCP6tsPJzW4r77Aucj851LTM8gb9fhD6Nv1xEDhYER35INI6oyFf0NjLD8Fl7KAnDKV4smd1uSsPqWU9yK1xPKeG39Tp6L8GGItoKay4WBz/1ybPg4lkvFDf93JsPf5EeVqjv4xZz3CbO/SWuHkA2/BdZvkamelmkdUstLKlFHqjT1rJoEjMa6Q3Zb3Yx77Q1dzpwNC3XZu2HHjTW8NiLGt6J77jyD+pj1igDHY0IEua0lMOsx1jSzrmcNRikh7NkCAUB+31l1/Y9MX3TWe5P6sPt6dTMnamMENb0oSnM1P/tONXpc2HcI1XIBgpL1YBMMKkb7jixOoXaylCn4YiRGhydNifk2zsljRuLT3UsbhO62wspawHd3HgWWbtogGAufe9u1MGo6L70ZjhMsm6LhdN8Wwwmfmj/wqUSbmmYtcgTlTqa7bWjb9maRhPrHi4llQ4ix2Kdrag5qESBOKDFP9vNpafKqHE/9aYpOdJ+3fFepJlLTlL9oqFz0jsviinRvcErsJ4q+tHJQyc4Wp5nfjL4LmndUD410LAOQPoSavPehHCz0isn42pgsBA0Hmge93d0xx8faOW/al1PTJptnbbohmiMAjF8GD9HorMpNMcD02sur5kTRF22vM3TT1FLnN50S3xHEj3Hrf27xPyGUtLNhK6hibHE0LFETFfpQgAY+UX/yGHzo0qcf1tj1nC1OPOPzj+uvmHrkauxc80TfymPaXqmceyJFwZdqH1CabuqKC+yEzVroNDNLR69PK1P2jcfm7vaWvT3q1WB6TXrReO6YHvvWUVVTNb0ZkTyd/CqpBebpXP4jKil2QW/3/VvivB0fNbtF5emkjhuCp9M6FyswIVQyyRA5ehpceTLZ+/sYZ6+5C+wvNij5ajtZGgH4rfzfoumkukoO+iIOhtJEElDaAINytEqqHjSdOmPEa15ixYAPbh7RU+L/VXQXtmfA6LdIOqlmiAOMgE6zYBRVOVUfks6KuSSduQYAidKWByuqjb/R3jvx4oRQr2bpfxmVoHOwHa4rSILO3vYYSrhB/cVkUCtnznGy6nhRFNvm4ZGEUyOdEN4UvaVYQZNvQMDJK60ZItH+4OkJGh0QurJf84FwyzFQKYf7bFB/gXhCpAqsCwPm8tCF1ZmtzKxL3Un2mrtu8VAbH7e2Bii102bqqAks4OF3Fk+F2zPQ4+GigOjpL4oiQoOL4Xcofs/YHq98tthcryMzPtR9YW616jcofguK+mCAuuMqKupF/mTUp7VJ509PzBQt9Lom9RdsemoE1KGuf86mol70T0b9WfbTpJymaxwX942rbv7jRF8joX6/XhoF9WJ/Muoveqo2bwy2E+5I9ww6v/hSuJFQ7+xFRd3sT0b9Y7lO9UWfrzmt+L72YsnxNUYZCXX+aCrqxf9k1D+X3XknW+rrsuHkjNSwLdnDjIR6zAIq6iX+ZNRnvLV9e3XNLM/JdnZb+20f42wk1OdvpqJe8k9Gncq7biTUDyZRUTf/LdQ1VScGR94qd48f7w6NXiV9q9Zm48CWvR0Px356KD5tq0S8O2KVhF0uFLvelho5lmJC/edfuzda25sJ9/evunJzuBeKvZiMeunCR11n6uVPn7O2nK+Z7RbdVfHv/HqXUBzQv0O9XNqr7cd/19RzS/DI6DawwZXzOm6wsEnEN4wqkdJ/pESi9tneO1X/rHN82rILnezrVeRIIsGV/L4UiR7nMq3IAZWirud0DiQSdZUqEYs/UiIvylRYOaTrWre51SS96wQMv8KRRGb3rjgzZUVJwYFdFx6ndQ9+xIFE+JWovqLMHymRjJgVXXKm7RHumG1tFiYp2Z4jifzbbEYdVfVjoqTM52Lvs6fmcyCR3l2oEin7R0rEfOGR5yuX7BHOfPvhQqusG9U5ksiHZRu6f373wWftdje7Hv1qPuVAIqFDqRIp90dKpHLUsJZtutu47V+5vmaV2tVLcCSRFxf93YYU6y5MWtf4p+M55QEOJNJ2JlUi5f9IiSx1+VK90ziBaG+yoN+i/nsFHElk2MRxwxISIz2n7Zw94P6jqx05kEjOWqpELP9IiVCbUHAkkd8s/2aTSN89VIlUYJJI94f3fErKL7iuS0wpOnF/XTLlY2m/UFlwBB/Wj5HFAs/aMZVy1/AJDobl9xK5PLdQCy/pQ+K6vJbC4e6UULdpVbfbFcm6cpfpFRDg6noUq5kz79RFvP6RVo4dbgtGLxS0bq8sVk4YoYTHBYPRCmR9ZXL37TPCvPZe/Me8a3J1cuEZunZPB/0ZeceG98OjmXDtYT/3/lHLOhcwPQ2PrRyEWB11RKSno8Bo6MVUvZiSNBJUYlqBxGV7ZLmFHYcHijZXTrBo/nLsNdoxymDdgClgQhp+86qs3xxoiQkcocQ0UI9z5RawtxZbu7Wmnzp92mLZ1W395IMdGje/QM5JYJ25DAX/qAts8NsYB34aK1JBjyVoZgRk+GOq8h37vZF3i9vjvA71KnLIN77K09+0FAU9wWqXxxTQzmjA+g0wIXAHY2XCDmagW73nlZIfO24OEkt6VZw7rXAcTAOrNBYHs7FCQcn5dHAwxdcsta7+y0M0r83lv0f9W70uNw6mWHzYqB4Dj7smXBX1XCA5H8iBg6kJsWKc5zkV9KPiy9fBzOgX4jEsQOWRULzn4pQnCw8a0cGcq8D2zYGW/IkOxvXVjeKr71bxmj1IpDyxqGRT4zmYcazw+xsHfiM4mKrJdo2v/Ar2XJcxo2LLL+eyjOdgtKYA6WDAhMAdjLUJO5hpxaa5SuKvOqXsSK9QKevCgMJxMLM7sjmYMh0N4GD2NapVNnNfG8c5LUc7FNsQdp0bBxPffXGFow/Lu84wi5nb8xkvkQMHM7Uj2zzv35FjB/P6V7dO0/p+E+zyuHDyU2LwayM6mNas3xxoyZ/oYEpLom0fuEz3TnRQDCnfKs6IDiarAxv8hzr8rziYBucmflFY/RRNujcp5kHmuDrGczBaU4B0MGBC4A6mIpODiVkwJ/Klx2fXpcMrq1fOtCVb9xIusE1ChO4HdtppbuCrlWFSfhDQAH6kGpIbhcslgdJQpTwIqAdGdhCM/R5GfBQhCVHrdHDnV6fGt95erSLYZvUkumjW+YolxMrAYdIg7U2oV6cX/Guu63ouqqkzz8ELLBJ3IqkOAMQOnogDPBAi6IMRB3jgX+oBHu+/7nb1O/nCcerZvVHmb32uUA/wTOkVO/FmeH+35UdjVjxePrsrMV6Uhz6no/MBH+oHIw74MFot2CceFyM6VXywbJi4eRenlI9LGrxqtm54QaTF+dQ5CuRq6YWfd6MZM3hcMlxs0O0Y4kUtFJFy+SA1+A6KEO2XLZH7M+Zyxzp07DEecdCISVZWLrmzLTBSHhGpQp8zOuSzK/vCnrmu0VEzLy/xuRLLKrKSIs2T6EQIxEBhCC3dk01oYDIawwOZiUUagwpvmaid95hsiDnK5GzqwbeEcalMoZaqsP4q4CNIBhMpq3G9/V7wzqU4L/l7kOeV8lVbUmVV0isyAp4K04JPOV8KP9WB7qUc8j0wVvz1jEhBn5lu07sL+p1XujkWMJ6FQp3vwSbUbHfagTG2U3XlcGUH/jsCmCgkeIJdoY1KV60pnjIobHPvq0HrWBXdDFo6Ou8AdpVzLgt73C4dFSBcumNzTMVxl17pD3Dpm/5qZ7u23w3h7toRlmdqX5luIJfOn8Dm0vnj/nPp6BOW1TeNWXBgslN0naOuqV33dzU5l86bwGZIBo//33PpUYKsJVPG8MXrTxadf2zTHbEJuvSj49iEBibj/4pLL/Eyoo5je1vRJLsxM5fvX3fFYC5d7D+1/7bVZi4rhnzcXCV5TDcOXHrUWDah3h/DuUs/0en2gGWSzcKd4cPu93x90c6kXDpmlxhdOlBx3KVX/gNc+p444cwE77viHaGfmqza3HqWgVy6eQabSze//p9LR/fk+PrLWdRH6rNJcjnl1NK9C0zOpX++zmZItl7/33Pp/Udtnlih5niXbZeKH53TX1zBBF16b1ahmRtWaMZ06WNn9F2blNrCc/oLnxdNeRb9DebSf/OMC5tQD15jE2roNc5d+vq6YdFBN2cKljhmRbWPHb3DpFw6ZpcYXTpQcdylV/kDXLp46eLl9fzruW341K+naJlNBwO5dMfKaSwu/WiltP9cOkpa0eqyDzOmWHtv6PZk/uXwQd1MzqW3h3JlNCSWlQ2aRTQJl36zZezQC9aTheu/mE3zcr7R0ARd+tNKbEIDk/F/xaUHjvygsC1RVDx1SUazjLD5Vw3m0n/zkCSbUJezCjW8UhrXLn3/rcnXJH2GCo+cSe3Q83vRrybl0jG7xOjSgYrjLr3qH+DSW2erKlhYxDklZycMO1jjelEDufTvXdlc+riu/7l0pLSytx4+PPT+Sc/lPTzHpY5va2VyLj2nK5shOdf1f8+lX5utdnI+WsJlwVkP1Yq7Zz+YoEvfyCq0cYYVmjFdepWGxxMSDt5wi5YM6fVRvvqGwVz6b56yZxOqP6tQbbty7tJtr9aOsrnd3nX69DdTPHutq2ZSLh2zS4wuHag47tKr/QEuvenQWfv/SXvtcTCrR3dF+psGBnLpZeRsLn32sP9cOlJa5Rsqd47Obiye1+JgpeDKl1aZnEs3k7MZktvD/vdcuuWklp3N9zcUTpPeHV62m299E3Tpe4exCW22YYVmTJfe7uiSSXWfKX123ZV93vVXv+oGc+m/SdPCJtQgVqF2Hsa5S3992vpcg/ueTosXXPrucMb2uUm5dMwuMbp0oOK4S6/+B7j0MV+ex2dumCJOvt/639Nb3OMM5NJfz2Rz6Ttm/ufS0QHYisG3vy7YJFxkXdmp2EkVu38whkt/PpPNkFyb+b/n0u0zfOv9/DrVbWM/24HfnJ53N0GXfoxVaDsMKzRjuvTht+Mm/ORlekW3U2w5uKRrPYO59N/k+WIT6kpWoUbP5Nylezev9G+1PYGOOxesF3YYu3ePSbl0zC4xunSg4rhLr/EHuPRuro7u2X1nuSRdyayycl3IBgO59Lvr2Fz62nX/uXSktA4kn3iX1bGt419Dbfp3Gn3rkMm59Jvr2AxJ2rr/PZcuaXHh+WSJk3DWuHELBMcasZ8SNY5L380qtLWGFZoxXfqqlmPubHy3zTvJQ1D7SmDSDIO59N8kimQT6kxWoY5Yx7lLn9pkqfeDBse9Zy+cs/Dw/bdPTMqlY3aJ0aUDFcddes0/wKVvXFqnuXqN0CUxsIyv+YLQbAO59KZ72Vz68z3/uXSktKTy2v5b0ve7pbj+0+JNrcQ5JufSG+1lMyRWe//3XHqEvHsbm17/OO2ZaV/ih13/fibo0n/uYRMamIz/Ky7935QX1oefxLjPOnz99ZneD8sazKX/JtMwm1CvsQr12B7OXbpnhqOdecnJwnnbR2cec+hubVIuHbNLjC4dqDju0msxufQWG3uk9kuIc9m6sfzZYxM+LCXzSLmqlJHhZI9uo50OSlUQmWCphEgpB98IXmoAfoT/RzY7EvBD4HNhzx1XlUStDlWGh8MWPNibqou6OxHq0zhx4o5hqX2cpiyobJbc5PZAMES4ud2tJkQtvZQs3t9a7l4j7acbGCJmzx5Fxyzxo4ai9YtKT1wa+7UZGCqGDz09/eW9+fsQt6nJ6bZtz+fIwZAZPrS+wYBOztFvnWJfvh829tvJOmCoOD70eKzP9OSWTTzmd3xovbFj3RgwVAIfWlBtcqe4fcU8d6k9Svp3O34EDJXEh/r/U6PFzXt2HjEbUio/kg1oDobM8aHjQ28O37vvm/DwZ8sn5xyH/QuGSuFDk6p3vtT52FfRrmZFFQ9inPuDodL4UOKl5ovHp/Z1mXZfGVVz3QyIhgU+dLDS8wVPJAcc51uVPzev4Q1zMFQGH+qYrtotOKQSLQv4bJE45PRpMFQWH7o39MS7226jHDcWX3z3r3UNx4ChcviQ6OQd22J/W3hviN0yq/1xqypgqDw+tGXuti+Pq333iT298KIkZsUBMGSJD7msLJrW6JC7V+L33Zv+jh0Jv3IFfOjU1tlv1shPOe6Vtznffm3Pl2DICh86+4/30mfDrvhM69dwyyNR855gyBofcp9To1qSSz/XxTlt7t39+PgSGKqID513npZwvWhj8cy38uTajY80BkOV8KEXFR7Na2U1z33rp8teVz5W+QWGKuNDrn8d3jPpqatgcevidfbc/QxFWQUfWlhTdv9TjzHOs/oGHJQ39L0IhqriQ+vmPRqRVGOv465p1X+WirfwA0PV8KE6l26NiCrj6T2nf5c7o/tfnAyGquNDSzo9HtKx8kfx7gGzOsVXu3IGDNXAhy49XOc48Ei8x9wQ0evTWTvgA2viQ6/iY6r/GFXcKWnekQ4VHE5PAUO18KHND7qP3Pu3t3D/leKT+U5doPbWxofGnx0sXXWvt3CKsEnl5bJt78BQHXzo/eNfm6t1jhNsLdPx3MtlqbFgiI8PPTu7tPvlfc6CJVfik/ukBJibuzsNIlmjuuAv0ijWbHlhj7SNm+fspRXFIQnJ5RFmg2YFqXaNR9g1jYmqzWSiKgUnJqxMPe28envmmLM1x8WQIwvnUeFyZRCl5zKcuUxci43wO/gSTVdk4EwhA2GYRC4HRohoAmav0yqDaqCQr0YPevABXe28jTPP4Riw85+FiIb1vrbOPLNjNCZGNq9niXVvhnGEVPMiyO92xHpJQOXBXb2Weh7+llrleoH6QlPCggOp0x2Lv7nomvByfc3jDz6WK2BYEAMAsoUAdUaFBVVB0FD1mF70i216SIFqqGUApCBpoDIsXKmWwXE+eD+ZHGPpJPSEL1EBTYpQhskCkSgOS1/3TN73iPf2xncvOg4aTCYCLqX9HBqSeYa4jhsgXGascGX/YxKkgUUKShpoh0+0oFxxRYSCoDlMMkzKBwFIRKiUP0SilmoMAVJ+iZtyzKtH33RevansgtvCfzqR5Gfuhz+WJr7cEa6lZ2mHK7sTSnrL7TFlJwFXRH/g6gaA5YUM/CaM0SBKUiqQSLDer3uZs6nPDtHs9kuiJ0r/aUAGi3gmHSztSGGAZcYKFlB13P/UYfI/AXWKDlu8y1KYGCt/02m8uRvpW5V3hiShkggpXyxVhESE0v1QSQaME4tobyU8EVBN8E8ABngAP1gSGKFUAWOjBCtxGVBdOfYB9vgH4eNqfqBEwR8i5asjw8PlMiChIUowCO7XPDJSAW+Fu2gKuNSRy8aAX8Eu2vNFoRJFiBSTbz/vAfxwYmcKeoYIZUiIHMwOacRIqVSB/U7ESCU/DCiBjr6RGqGzwkbTCeov6CjwcGDbrkGBm4kQe3A7ga9cqp+vrJDrK/EXQvdOOpG2OqzmFJfD62PXFmleLJZDZ0m1QAV0lvMBQpcgQr1RU8IRWP8U/ZxlPZI+Yt1rNaqHAyZj6F8r3FxU6LQuXhD1+XDLpCKL+eQ9Bwa1IK5zbSggKvGsqAC9MTKPcQke8ed+N324jFu7B/P9VZFSW2wWk6UlU+e1CzYO9g78CfwW9g5NkCJLC61+Z8OFUPfV2+YNnzCwfiMy67i39kE0seUdKwzRTWYVncI4oss/nCnBYnhq+SrBwgS6BCg1dbg0UBYMzbvGCyDFM6rR6uBbLVa6Hv67uNW68cdKk40Q9jy6EdJc5loo4Xa4lXFDCYXXHLMytCiFDY9G/tBZAURGSDV+UQ9gTkwp8frY4ls+ia1G/lg24+Zq8jINfzB9mUYMFAY48azgLKWAUzQfcBprvFSuB9cHnQZWpXN2y065RbX84n2r86+55CWKNl9FX6LkDhUGQpNZEQJzGo/b+Exx2+lVEvGPDlVcJ2+uXfJ5/bEp5GhUDGI0vp+TWPeNA6FIJdVEa3J4Lx4JgxViMPgRxF2j+QBbVQQ/HM4oYGxxfYWxFx66jdeNrIuyf4l+b3oUTYzosQxMSQcY30alKx2BBCak67etgL1AHgyQ325e63/nZCT0d4vy77Ns3slb5NZIxf3g3XQjpbmcX6REtX8FzTYAgJLS8b6GNCXkN3PmbU6nRUpsqbWqGECEXtgEyVRAfcE42tmG7lMtex422XvL7LZNN4VcDSZPSyfiZvq0zB3Kt89S1YNXdh97L1yTU61YQMv1BWYvAIAtZAUMaJRRgiiNz4C/04rH9CebFlSZs8jSApMli1W9UmaPxY9kO/eknm/GXfzL/6qVuwJYSiAM51HhKrAEz/OsEgKhn03vJgULgCmi3ZI6bvSiVW+F+5Ks/EfVbP6YA9EOZRVtgJFEi4qP53fTK9QqI85jz5HCfDUze+L8FDevqKMbXC9IbqRTe0so6Ks7zVWuHSPPHrdJO1E5v5322BTDHWNdJscovFLlzoh2exz/7jew6qyAw2LSt6kI28pGwK1PJ1lwsFQlBVCo6U6yGAOWzUXKMAC5prkt9pig3Mdgi0NNWyO4sQRrfnTyiNS0Xf4vTBMH8rf02FSYmgpAfwqU/z5V+QdDorXUgrZCEojzgAK3G5ThUhWMNpQKvo1Gx9V8gB7mWLF/aWyaGu5GK0dKg9BOZMeSAVUCzbO9DwXXio2buKE+2cYEYP1t6DYGv56fjWn64k2x8od+uE11aTD49T+zr3KwMxEFYTYTwpw2dbOuCQZzQbeEG+YRv3Z3K1CpUEsDIzH1wNpvIbFcFLktweGYj8uiE8NrHHziepuEpUXuc+nLX9Ig1yaBb4vD1h8FW4YdBhtuEuoxmYSz5eq/b9FW6RX97o2n/eWJzqTvVraHFCsx4XtHyuUIW8AUMNsR98E6JUxnZYoRErksSKPkI2URoXwlWKaodLcE1Cw9y3vSpEAe1iNKrpjKlHyLAeg+PVHQuV/ZHWv5BnddpWqsTg5DDAnArj3ff4zZtNcjKsznnv9rBbn6pDj2IHr4rLmc33SmViVwEDJYQuSmokKGdEg8dIIxfNYRuRpa5FQkVYOqhYTP7LzZ3l4Zj5yTaxQtnqjcdJQEXxlcQdApHfIo5/VqNpgmsaB15YRRigzN/UeHS/PiUD9PzY69JwhppXJ7+Dtqe1e3QTDIDZGqKN3X4J+CGu7KmIOEggWPAIvq0RpRow99UhxTQSZJAeU62B6fBdkChFx9m2OzQK+NsKreGLYwVtC0isRVPwjdHqJ8v6XHV+1x31p/wpY69g2GUBIT8FshEhPY5cKAAlNxRiiAiuOOqj6To+KH1N8/fc4M4aLj28UrviSOJX8fGOSNJjsoBlvMtK6zFgAdU2nC19F4SRoSWKq1RLwIvQImXxu8ZERMqn/dcsIjqtW23/v7bC6gDYZ2Y+kJooknFXJLEDlEayFvYPKQU2vjuIHc3WzTz67jYwTrjwV8WFZyyT0OIFecZIN84EkC8oacVWWWJyA3QFUmooiSqMpEFFESVZmIIkqiKhNRRElUZSKKKImqTEQRJVGViSiiJKoyb5SsaZ+0U+I05UaXhzuKH2xGK3mDyouuBKGUX3JQ8taISf71PE/Y3dlV2mWLWdCQa88syfK31mz2i+RKNQwXsQQOPSgvwTDb6rnIFEFYciAQfwC2pITrTLwMQbf0PrXkNN9XpIGD+iUdJ9lOEC1FHweTLAO1dx0OVuQux/Xau66hybaBQDJcpcSyCkpYFchcF9Rue91+oY9KClIavH5QXRK9syC5tsLdxk6H+dHjuNvNphqko2BZHXQcGYczYVVJWxKRFyskSllvSxdt9cTHZ82MG+6BJ8/FcVgWMamn94dTm0e5xClnuE0Xjj7GAUourCjZHKdvPrDFaba+xLzCJhuGGTHl4FKPqD1jTpV0e9PS5kOxl45L0reNv2h53MaI+VwHW1yJkAk5eLZNcVy/MLapNnsIIdLAE6QMg5VPwAORbBM6GHh94N/r5Yd7rDtzssKmd+O+m0DWEoLUlxUkl+P65XUbOsk031y7VZWrMlhikdlACU613DH48w7X3ceX7nYRfCNnF8yJ59KziNqRwkCnJSs6tY8TgVFjJsf4IsBbbNb8i2jJhnMusT7ufekb8XRPaMYAbl1yPldb6jZSie+y6uYIqQcsdM0N6AjbfWCYGsAQ/hxqA4oHYPusn6vTLU37anm09enLPd2X9Bl4y3f5uZnkzU4sH8vg1kmD+VlxqokroBXnATvNh2D5onQMY8ZE7zkxgVUOA0sKZhozVBdjvnvPOfjKbeP4ZSP79YskrwRLOYN70UDlGTJwSABh+nycDaYsPZ1d/ik0aq7ZaCk0rJvoCTyFxqfFjvYYNLgdsmGyQ6LG55p3mHJPHOMS+zaiQ7Va1H3oMEk4X7NPg9gvZwrNG2vuI7I92LkUCV8hHQkvSVWyQNxB6mSWqIe7WN4QtVOeZ1jXLBlQmyEXAK4XUDF5FEC93gW9DFU5LA2l2dwFr4P8lmV3q38skXT33hvfu5bHt3AzcoiEPYAeImku55tBp5xzK2h2C8AzEMJTBjXntoIli8cFvapJymreB9cJJDp/WTQYMC2loU+i5N2dqSPnbyVn/zT307N/+PX88LlWqX7rvUddfVKqHmh16X5wQW0SxKctKz5AfYxRYWCOFW6M0ADRmUf9Qy8bYavFLesvUYVII9iEZqVIOFByxSCv+Z1Lt7r0PpZ87qqE5n660PDrnBfXAqmUY5XK1/OmJJXsI4RU9HJf5TGDFy4Nwo0vUjCDTze+O6peNa+9M9+f7XuwXyJZMF7Y/XTB4Ne5FoyjPW5O4DYjbb0a1dyZ53hBvwVZDS0G2MJCLssPj9iT81e07m0t3rS14s8+nVbWoDA+aB6AYHzABwoDkXqsiJhdIPx6Eya/vnOhZ06/Th3do3N+RJgfv/meLGPNJ+peDNNZu8IgO3D+yFBZYCgIK+HZQokarHTzVMXg7l+3xQf1nDbqfek6qbmuT53oebxOlFb94ghWdevPFzQDXhMPNTTcFoHyyCB4LJeveRPkF/800nZCY/czjlOnX7y3/ea7NLLyMQU22gEDO3+slBRi6ICq0eA3xTDUy2J19sY1ykmjUXkPasF6ILVmfyBUFhIK/50bU/LHeo9HN0eh+HMKBwj2MXRVwq9zXudmhwNWFQWYgz0GGD6Zm5p84oqqTbokrorw898CpaQ5OMhcDT7Plrny1WLejAlz7wMuF07zToii+lbrJHvuUYH0Vct5RcojZOFyWSB2LIxuSJmQruEF4gHgniLAnXJ+GOkpOtlJKjMF22vRREEZ13XjBiyysy8COGejNm5gjuLERQQdGOFPEHRg8JOodGBUOi8qHdhv031Rb0TQfTHZplouMhWwObA6AStmIssLKZ/Vjf4+9fPEWPedHRKbbW5vNZgknyIC+uwQ5Ms9tD744JElb6oIk27WShra8bxrQfdMwOx4CcXpgKpe6A1GMy6mIXi2mECq7ScNVAILrQ9K1yq3KhfYYrJwcfjz8JEVB5LJBIoI6SgJ80Vp/KCUtou6DPZe1ds+xir0+C8OUDrBitLOizSGJtZqlx5SNQAGBkY6AESteif7MM2j6D4Mv14YG96YxnxGbTTZ2GFI4fbU9v+ZPaXS+RjInlZntaevL/xnT3H5PD0k3huw+oDLtMEdJBkP68zlwJ5SaZo4sBSVWS1F0UK3p62qFy3bYFU/1xVb4pYd+nyxNAf2lLpJwAFKry+woXTzQiHaU6oPNbo9rcxqT19rF/h2Jr8moE4nborZ2hSp9naOKNxp/wfH0J1X5vTgYEmw/ALbkmC6FnJ7zorZyhGQG6CYDcGBR5h6BAceUcyG4MAjitkQHHhEMRuCA48oZkNw4BHFbNQIjVaxBq0iUsWo7HkcVKw150zIFgYU8u/xSCJIFQkhU3P+NJmYMcmESlvIgUwcmGSy8uD9PtOyPrsnHdyXtGvYA/I5v+K+EoVUTpZJKRbDZiPgh8M7cIIXdYQyjK9QRkg15EKQPZU/Ajs2hvzaVN5FxKvoYu0s/AJVSrm8B/RY8GLukc/sbhRLGPfB6Vjc0u1uS+MDv8d3vZrFZAnNe6qlKsjPSnxsQydl5BA5rNUC74MR/wTJIvDvDiIMmOXIjNpMEUlxBgPq28iZF3UWGNAOIl7UNFFpL4kqRKYQS4NJDtBCc7mHLCSUdL2U5rq/MjzvVbIVPtm9kXPcxLNp5TEQfVXw3GCETPNWJYm3Qk0olWSkuyII0m4R8BYpBS/C1EueS1isDgtktJfK+EFWCYlcBLmg8jiiCJVUEqb92ayXShKuvQdX1RYm75apLKAcbdVR9Z8Dv5x2ls0v7z9L+OWWJo85lV7VdLdHd7MW9q/XFva34sxNluUZzk0ieHMJN4ngzSXcJII3l3CTCN5cIhZavujW9OgzfOFfe/5tH+5SpHyeWOjHxIAPk6xtXbZaTrPIGhx2meZcodVHKhKVjJcD59qaSZKl/JaN2Bw51Cnh1WdpO37cOzK9HZ748wL/UQFTqTsrYHUiZajg+4RLFa5ifhj+DN0SglTSYdbXorPuUX5Bj5PbSf/irHvptK0ZsDLr8S8tRchWJlFLo9oE+ySkEIiENJ2hEgVwcsgvPrfLkSZF+40QLul37cnyVtOHkxOCTpon0BOCxADXi1V4QmE/hCQKVTixE2b8/jVK4UTxQACt1mgkJSX90ofsj08WDOSXipRLVFieUQ7DF3TlROO2bTyHDXZb02vpgJ4Hn5K3Ecz98IcgSFSJkcKQzlxW6YwxBekAa/RLn+qiOs5hMjVGWxxIEhNhQpDCqTh9ZW95x6aeSbvcX+yf/tKJLBzNExGbuLkjhSGcYFbh9DAF4UD55BUO4ZmYhNNOEAY/EpMJeB01uFWqCBytIV3swleGS4ZDjsYW2E+5v4GeUe1sv26LK39dkNjm0Zw9s67vIp9j98/zfPo5dtJoYQivK6vwmhpHeDoQaZrlI8EuuRJUh8oUoxUgCAbiA+JSKBVQdOBfcuVIbBD+6ACHwiSjNBeQcnx+oaYq3LuY8MCpgLOrpv17ncKGFooqi8YvF4bkKrNKrqjRJQdvghkVvUplrDT70bChEashHB8osNn9bL37hmeng1alxO8lG0LGmCl3hPMNb3s8hoArjlO0sKo5ZgjxOLUNU5xazWys37HkHJ8j5gmPGrUda0vO1Ik0Gzm+KukImXQkvXcbU2VbYwFkHVLn2QzCCGRDpMowaYRqND9c80B1eXdNNZe7oodUga9fmINXalsMtnelZxXJ4+UCwH/ClaoIF5k8QvPBqHCfcTY0cea5XQLYL0dlG+eDkLbmJcaqN+Rq2JXABjs4ib2jThF9/NJnlyz3t3afH1HJJnmYVQ5ZLYmn0tVSO5LfOplKblbQdTJAzgki54iyI77NnHkOl/QqdK/knyeE4StHSFUqGUPPiquuVVc18X4gjMuafO7TDIebBZ/C1HIJio3gAKuarFiZXzKozSX2MUviSy74SzDYuRNz55e5FI/4iItCB+Gv4phvo3pVc2JhQPwq/H+ZvGEP+Q7tcrstkxn7j4T/t0j4qd2EDEbC//kSGwn/Qbrt5ICE/23lrBVHfgx1/Nu9/N6xzyeSj7sU7LQ5xzYSbpjkXGLjLL9Pt5GFQcJv0/XdObtYG6+Vz6vUL5IlcTQ6Cf85VlQOGtYasq4d9Dv4wx0J/9Foqw4lV3VzPXRy7qwmJTeQMxTGJOHfyCq6+cYRncFJ+OtKru46Pyfdef7Dc7NG2l+bZ2QSfszKMLKoAytjMBL+k2/dr4lelvSZMX+qebtnOatMgIT/HCs4By8ZkIRfPLb/38rhZsKDJS3KiRK2kPlkjEfCv5EVITCn8bitHVPc5ixo2uxXlyuCrXdrx11a+6YVmUcAO8QXrpQDj06P2cwZcG6TmyKR5d6Pc2EAxFXKyJBQEMOppdhWjT5cDtQOi4xvS2c9yDOoa20fCITOXAb4ZgJ8t1LDpHSA74jLBT1YVTH3tcBVHAvkVy8+f/r7K30eu84NaDrkuGWouuC9uyghFNUwFjCEgrS3aZeZutgtB7q7+7JeIVQZzfQNkoaopOj4svHc+T0bTK7lPDXr5M1SddPcKSeksBsRJ6Q01wuD9nct6/efednYwZJWM/UIlOAry5RBskAWbptH2W/Lv4jZ7Bxd1nFWp60byNXn5sQD6LqqHSkMYYxgFcYQ4wiDGv7w9MlY2HsqlBHAfUkC4d6pjUMXsGQFK4swW36LLoGhSlWQLb9lF/VwVQT2AzpaHdXZ7s0/r5PEq9pmvB2568xGsl+DH+AXMVqO6H+ZO1QYwvJmFVZHk5g58FF6RauVcje6FZGqIWqWGVTjjt8cyb3t7lPOLnZ/fvJm04IslQu6dHDADTk86plO44Vq4dxz22X9olTckrNEW8HWrXpW+FxPuDVpfK/AH+NrGHfZCwBYSACQgQAAmha9IlHClTGTTKxeOF6xveQL17+3PO2cIU10orgywx72hQD0ZwMg3vEyEWi2/39Wj0NtzG2wepxTV9jqcQZfKex6nEorXZP3VbH3Wdyztv3aHhnlTKAe58QVtuzmzismUFQQGxtrgHqc9qtWu88efMF57yJLdfskvq9J1OOsZpXOdFOQjkHqcdI7FW9S7Phjt0VlxxSLnbe2lUnU40SwCmewKQiHZ8x6nBNXYrfYBLl47E+XBMQt3JlsUvU4YlbhtTeO8EyzHude+LaQYi87eO+d/MX31rYui41cj9OAVXKWRpdcodbj/Btj537ufRPHuZf9FZm8tD4mUY+DxRCM9TjAEOJxaoc/oR7n/eNfm6t1jhNsLdPx3MtlqbFGrscRX2Wrx+FfNUw9Dr/46OWPPW2Ffz/7XiYs9ZWa83oc6tqcgxoTt6tsNSatrxZWPc7DIAHv2ZwqXnM7Vbq+1uxRJuf1OFQbwQFWfFasylz9n6rH6chkxoYfkTWTeceLDqT4yJ9k9XtDzpR0j4RnJ11VkvBQ+glTPdIXDZxk6nB4ekybzRltpzllypdAzrwQ+AlIzXt2dmn3y/ucBUuuxCf3SQkwZ3w/eiYn7yBN/0r5ARPmk/coFkIrqeeedNRK7dOojZMaO/OyzgGtrCyCfynnPyWNnVs9PJdW1k8qBwKTBrkDuz6KeBwmVo0oOzGJsnLmHCerjhdFsW0eHkk4NZK8F1REiBZgBY11R8iMV1ozRDpkhTsD2uErrpg8qIfkf4PJQ9fooAiDlBxARCaH9BSwRe5RAY56ZybUf/61e6O1vZlwf/+qKzeHe23K9/Rl6cJHXucTm9TTexyd2PzNecMmkXKnqBLpwiSRmAVzIl96fHZdOryyeuVM2wHkPVEXWDwTQY/IGJeXmhv4auD1Nf0uI9Uw5MV6tYUq5UGQjhGWBAZjv4eFwxGSELVOMQj1iGQJsTJwmDRIexPq1enbuZrrutKAAjDvQjB3ChFFfZBUfe0pBP0ShAiu4xD0S/AvlX7J+6+7Xf1OvnCcenZvlPlbnytU+qUpvWIn3gzv77b8aMyKx8tndyXGicOov03PRP1gBD0Tk6QtIHsALkaktGbtOd5h+LZgcZT32PTSaf52BZEW93T4kEMIytUSFfLcByFP2imjNJ60gP0dB6nBd1CE5BqM3J8xUzPWoWOP8QiWKCZZWbnkzjYQEEVEqhgC18xRDRuOGuGdVGaboNmA9LWsIisp0jwJwXWMDxSG0HazCm2tYYVGmGAzsUhjUOEtE7XzHpMNMUeZgr16Tnjra5lCLVVhVXfgI0gGEymrld1bvhrQ+LLHomzzZ89fBs2iyqqkV2SEZIhcS2DBoyS74Kc60N2VQ75cX7/prtiEOpNVqCNO0bi+WBso4Mou1fCzIMGj0qSwKroZtHT0Nh3YVa5VPMoet0tHBYhO947NMRXHXXpXJpfe/eE9n5LyC67rElOKTtxfN5pcK+sXKguO4MO+smS3Dv0VU0/rGj7BwXApIpHL8farMtg4D5J32yMBtr/frcuc4RkuO/tFR1Xr7iVgegVEvKTrthTQjP4hBDEFbVvK1pl3O7igdWRlse67YG6q4QujyRemehzsUaypd9SlastufKtal9rgBfkV8w0JPa2fHa8k2uixzjLI2X56f+sCzjG4hPeHWB11RMyxKDBqG6Jf1ZhGgkpMK5C4eKpbNfQqe99rl2zHsS1pDe7RtpSDdQOmgPMJfnMz1m8OtMQEtpMxDdQjx2YBeYbYqKeO2UvsRZ+EXrPW9O/zq+jdF2S9hHcbCv69wWzwzzYO/LQKsYI26tbMCFjtDL4JUiJv5IvXljLvI9qb+XVw4+b9cn7TUhR0N98ujymgOZjBdtiEwB1MNxN2MItWn726XDzAdceYz15yv+EVCsfBrJzO5mD6TjeAg7l4Qh1kduqR25SpJR7N2P/NnhsHE3O8WNnX6TNc4pKT56RPHdSGAwezdDrbPJ88nWMHM2dl5XW/vgW4zvDyPDtu0CBPIzoYBes3B1ryJzqY6is/FP/48ZbrdIdOd7qefDDQeA7GhRX+lsaB3wgORlp04F7rr9muk83S0xz2F91tPAejNQVIBwMmBO5gHE3Ywch9T6WXKl1dFOuhiK7+WZxTOA4meg2bg3FZYwAHY7W39RGb2ns94i/6D/tuJ47lxsEEd+7Qrk7Frz5r1q0ab5GW4sGBg5m8hm2eK9Zw7GBmVGwtun95h+uydX23lfC+tNKIDqYv6zcHWvInOpglkipD1h595b61+56GC7JLPTeeg2nJCn9t48BvBAfT+u2Q1WMTrTzWrOuWc6a8dKrxHIzWFCAdDJgQuIMRmLCDyVxV51vL3U29NvYLOTtzn5d94TiYnF1sDmbvLgM4mCSvVL/aY2zdl4wsNqfprqd7uXEwIxpd8yvarr3X1jTpvcx7Q7lYwWTvYt0o2sWxg+k6LOBE5w7nvFcWH/N6nU//HCM6mFOs3xxoyZ/oYLpvbjJ7dYaF85EW3Tpuqzirv/EcTAwr/LONA78RHIyk7i+vOsMmum5zK1G1RgvHq8ZzMFpTgHQwYELgDkZowg7mRsma9kk7JU5TbnR5uKP4wWaF42A2p7E5mOA0AziYbeNt/U9NmOq5cO3rXV9fLL/DjYNZFLktweGYj8uiE8NrHHziepsDB7M+jW2ez03j2MEMDv/U66PnX47ba+Y8sLq70MmIDmYM6zcHWvInOpgx7xo0LPL5rPOGO2ue3Pi12tV4DqYHK/xdjQO/ERyMu9mmn13HxwjWHwv4sKzkknvGczBaU4B0MGBC4A5GxORg9O6pYKOVXuH3VKhxt/bbf0ZNEi/9/u7TssiUlDw9FeyPJzx0rlxXPEtgV3tuS8HMPD0Vpk3YU/OaOsBjacCOntUSbs3O01PhbmiLZwNW3fdM4hWLSasQtDBPT4Umrg+CXvCsnOY+3hBZURbwOU9PhcdjfaYnt2ziMb/jQ+uNHevG5OkvtaDa5E5x+4p57lJ7lPTvdvwIGCqJD/X/p0aLm/fsPGI2pFR+JBsAe1mZ40NOfWwW9Ws+xH3DwaTwwNvrYAesUvhQqyfxk2IyvByT0lULHHJcvcFQaXzo8+xjyQMGtBD+PWlAjYDts2CvCAt8iN/nVwPnplfdl+2ZOPHas6nbwVAZfMhWHpd4d+FJ9/htD/cuOuyVBobK4kNTV6zdlLqwmGj+1got3GxdssBQOXwofV7LhUWfrvGZvmWrnW+trm3BUHl86M6m5t7fi5x23ffZrM+3i1t4YMgSHwro8nbuzfetvKJ8WlmW/dr1HzBUAR9abPUx/p7knesG2wrNvqQXGwKGrAh4A4our3BA7bN0ZtzdrQ6tIPLWxAPnl0oYs2CFR9w19+ffkxPqg6GK+NDCJlVmfXtQwXl5r6xZjU7VLQWGKvEYW3FUJh44YWL4CS8bYcKVH7WLN8qeCIaq4ENK8ZdV6xff8lj5769HDc2LTwJDVQmh2HzuPmjJDZ+lvZ8X6bPnagcwVA0fCq66qHSrabZuM11iNo+Y5V8aDFXHh17Ve1M2rNp6l53tNz6Jf7RyBBiqgQ9VUd8/2r7NZs+oIZKEDd9LVAJDNfGhePP0b5d8hjnt8f6a07hPSAAYqoUP9ShbJDzSYovzuo+2LcwyRKPBUG18aMc3/9gmDmcdd3Q4u/9lsfOzwFAdfGjteHvvnDvB4k0fX5wO+dR0FBji40Mb65xLOfMxRrCq3CLJ0oRVb2nNQuryGJqFHJamzS5/YZ1oo1nK6ho9buxCmA19m4U4MZmoSsGJCStTTzuv3p455mzNceT2VyWdR4XLlUEIBiymALgRfgef4CyVKWBYGAYCYmCE1NKQMKnOlFdUA4V8NXplIz6gazGXjTPvbgZs3Yg6veULwuPdGXoxglrmMoJqXgT53aJOp30fwe/uM2lfEcETwdtFHBKCcnxIKwYAdDODiZOmKmz3lKFXTNymhxSoBnb2PEgaqAwLV6plGAUYeD+ZHFs6EXrCl6gg660yTBaI1pDM1b86bfX23Pdr3j+j5eP9yRQ+2s+hU/jkDnEdN0C4drPCtTbDJCI5Ot2knpGcHT7RgnLFFREqieCHSYZJ+SAAgXQCQySQi4OR66fZk4ybPY+9E27paj7yzMpO/1LYHvDHItgeiBGupWdphyu7E0p6y+0xZacx/ugJXF2CmI4gXZBSgUS3BC5Z/vi9DlaiXU8HB9TrNfFpwWnwOABrNytYQNVx/+PM5H/+Y8/+LfZsaoRuMPbsqTfY2LOdbhQGe/bJL80uyB0thbsrBN/b3utoIIfOkmqBOGDPjrrBRjYsv2EQ9uzEjPufvNv5ue6fspDXO8ezr9HZs3uzogL0xkSZPvLbYOKOPXvhDUerofx7LslXhh65sWv9fpNhz3ZgFV1N44jO4OzZDWXxxwWXvrrOOZryKPLOPL6R2bMxK8NIfwysjMHYsz+tt6ksjfYUrJsiP9rxvBk5hWEc9uzerOA43TAge3a5nO/L2sS88ombd6GH0xqvoSbCnu3AihCY03jc5sIUt51eJRH/6FDFdfLm2iWf1x9LXpybi0GMxvdzEuu+cSAk2Az5sKMzEQmDFWIw+BHEXaP5AFtVhIYnGhhbXF9h7IWHbuN1Cpyo+5fo96ZH0cSIHstA+ROA8W1U1s0RSMD2iX7bCtgL5MEAHSm1rJBZrJ/A6UDCKn/ZwNmtKNkkeDeCJAq7nF+kRLV/BT1SCAAKfYKfgKcpIR8ehnqiF/dLVQwgQi9sgmQqoL5gHO1swxSV6gasau6x5OiT72F3T8nI09KJuJk+LXOH8m3IdO2m+JXVMtclr2KeLDiV8Z4DwBxZAQMaZZQgSuMz4O+04jH9obckMWeRpQUmSxar+jzWrWdUptJ9d5/p9Ta6ptW2wsjkgTCcR4WrpFrqGSyoFQj9bHo3KVgATBFtuWUzNk1wPSNcMfRKSserEV4ciLYqq2jNjCRaVHw8v5teoVYZcR57jhRmBfcFd4Kvl/Bc7Tr9zIgpDYOoCT8EsZ3mKteOkWeP26SdAkTOb6c9NsVwx+jK5BiFV6rcGdFuj+Pf/QZWnRVwWEz6NhUhAUkE3PqEbLJSyG8kVdOdZDEGLJuLlGEAcg0NCvaYoNzHYItDTa0J3FiCxB46eURq2i7/F6aJA/lbemwqtLwNQH8KlP8+VfkHA+WvfLug9SkCcR5Q4HaDMlyqgtGGUsG30ei4mg/Q0zShgP/S2DQ13I1WjpQyMMiXWZVqJ3Dt6zI/oFRP0ZCeFmQbE4AVHdBtDH49Pxtzs+JR34UvH3luivIRLPfeGMHBzoQ9hNlMCA+uUzfrmmAwF3RLuGEe8Wt3twKVCrU0MBJTD6wmCr2K+NxluPfNWc5TBwwVxI2yIdNbWuQ+l778JQ0WBiM/Blt/FGwZdhhsuElwYzIJZ8vVf9+irdIr+t0bT/vLE51J361sDynGI8H3jpTLEbaAKWC2I+6DZCSYzsoUIyRyWZBGyUfKIkL5SrBMUeluCahZepb3pEmBPKxHlHzsFlPyLQaeUrpV0Llf2R2rw4O7rlI1RoaDIYYEwLt4vSJeJZp5zP065NWvuVO6kMNn7EH08FlzOb/pTK1K4CBkSIHITUWFDOlNnXnxtxjDZx2Rq6FFTkVSNahaSPiud17oUTwwy/Wv8pm7Xn16Q2n9jSsIOqVDHuWclMYG0yQWtCbfMgqTkLn/6HBpXhzq56nZsfcEIa1Ubg9/R23v6jYIBrkhUhWlJA7+Kajhrow5SChY8AiwqB6tETVSylTHVJBJUkC5DrbHZ0G2AEWK2RybBXpthFX1xrCFsYKmfhdX/SAkFLUmfi9+o+FX4QH/RMUl215tKYkJ+K0QiQnscmFAsZQVCqDiuKNyZ3JU/JD6+6fPmSFcdHy7eMWXxLH5Mv8x2GKmdZ3OLH5Ua6kLix8vXxs8qXrnS52PfRXtalZU8SDGuX9BKVlh4uIWUVlNhdwSRA6ttZB7mDzk1No4biBP2x4d0ePFaaf5P2rmjKk27xoHkNe8ywZ5mbsE5J6cVWWWJyA3QFUmooiSqMpEFFESVZmIIkqiKhNRRElUZSKKKImqTEQRJVGViSiiJKoy25Z7EPXu2jKXVWnmrx56NrSglbxB5UVqH7X8koOSNzGT/Ot5nrC7s6u0yxazoCHXnlmS5W+t2ewXyZVqGC5iCRx6UF6CYbbVc5EpgrDkQCD+AGxJCdeZeBmCbul9aslpvq9IAwf1S3rQ+7e+CSZZBvLECDywqF+av4Ym24axmSuhaAAe4AfmuqCm/opEUc2ZHrGq1IdbApd3LEiurXC3sdNhfvQm7nazaQ2iwLLa6iYyDmfCqpK2JCIvVkiUakvjW9dq1Nk7+VrFaz9qvr/IYVnEpJ7eH05tHuUSp5zhNl04+hgHKOXcYEPp2g365gNbnGbrS8wrbLJhmBFTDi71iNoz5lTJXzmbcgbI7YXz7XzltUdNExsxn+tgiysRMiEHCWxr3tQvjG2qzR5CiALz9FyDHohkm5Dg/FoY92Hq/hrC/assQ4OCt4lMIGsJQTJnBSlHz7xuQyeZ5ptrt6pyVQZLLDIbKPWH7nF3M596LTuwN+uzm90hchaReC49i6gdKQx07jPmdCE657Q5XS8mx/giwFts1vyLaMmGcy6xPu596RvxdE9oxgBuXXI+V1vqNlKpV9tj6gELXXMDOsJ2HximS1CpzqE2oHgAts03CyFN6/x81Cbp2q2Oq/m8YWc8u5I70Flg+VgGt04azM+KU01cAa04D9jpCxAsX5SOQRbuJP18XTkMLCmYacxQNegqbTl4jb9oY/UxjxfVLt2GbImcwb1ooPIMGTgkgDBtZoVp4U39nF3+KTRqrtloKTRoaTAdgSk0Pi12tMegwe2QN5MdEjU+17zDlHviGJfYtxEdqtWi7kOHScL5mn0axH45U2jeWHMfke3BzqVI+ArpSHhJqpIF4g5SJ7NEPdzF8oaonfI8w7pmyWBTrUcA1wuomDwKoJ6epZehKoeloTSbu+B1kN9S/LPbl3NVZgtS6vyUHjg8mHIOCXsAPUTSXM5vzlHPuRU0uwXgKQPhKYOac1vBkuVzll7VJGU178PWqHZD10gHr0nvBUtuJLfZmDo3gZz909xPz/7h1/PD5+LJOrvCTts5LRy2J2WRvEI3DvDJymLDB6iPMSoMzLHCjREaIDrzqH/oZSNstbhl/SWqEGkEm9De3NhX3cVzvdvkYUODF7c/3YAsNM39dKHh1zkvrgVSOcQqla0mJZXsI4RU9HJf5TGDFy4Nwo0vUjCju42oFdd4hvvmvbOe73PfUJQsGC/sfrpg8OtcC8bRHjcncJuRtl6Nau7Me52l34KshhYDbGEhl+WHxxSbpbWaz7B0O5I4rFXV8s+aU9o6aB6AaOuADxQGIulZbIjsziL8ug+TX9+50DOnX6eO7tE5PyLMj98kRyn4J+peDNNZu8IgO3D+yFBZYCgIK+HZQolaDTtyaaticPev2+KDek4b9b50ndRc16dONAuvE6VVvziCVZ0v3a/rmQGviYcamgYWWJNFeIRJ8ybIL747+cW0O7sOe8e9uu05ceKNVWTlYwpstAMGdv5YKSnE0AFVo8FvimGol8Xq7I1rlKatPOmgFqwHUmv2B2Ara/jv3JiSP9Z7PJohmuLPjdrVHq5rMcCqogCDvUR9tZPZ1+QTV1Rt4qjjFzXNwUHmqlwWW+bq50MC8+5MmHsfcLlwmndCFNW3WifZcw8yoXo5L1IzOrohZUK6hheIB4B7igB3yikt7XSyk1RmCrbXojdjJY/runEDFtlrHwM4Z6M2bmCOQvUY0fOL8CeInl/wk6g9v6g9u6g9v367pxf1RkRPLybbVMtFpgI2R58WhAubbxlc96ml9xLJkU3blllMILcgFNBnhyDfBkPfD62a3mFCZ4+FD4ue3FJa9q6geyZgdqyE4nRAVS/0BqPRj9MQzbSYQPqdRo2rG0UfimhczPGIveT5z1IS8lajbo0aqShNef6wz7fuX11m3Vw058GscVygpGJFaeBjWhsm1moXTb9rGBjpABC16p3swzSPovsw/HphbHhjGvMZtdFkY4chhdvTHv/P7CmVzsdA9vTUIzZ7uvrRf/YUl0+TbSJ7uw27vGNvzgr+52XSBQ7sKZWmiQNLceIRm6XY+aiw7WmHSh6Lxzet7xi9xWrz2LYbUjmwp9RNAg5QWs2K0vRHhWhPqT7U6PYU0xhGewqQwu2pn8mvCajTiZtitjZFqr2dIwp32v/BMXTnlTk9OFgSuDxiWxK01ULuz1kxWzkCcgMUsyE48AhTj+DAI4rZEBx4RDEbggOPKGZDcOBpKQbpHHhEMRs1QqNVrEGriF70UNjzOKhY68mZkC0MKOTf45FEkCoSQqbm/GkyMWOSCZW2kAOZBDDJZOXB+32mZX12Tzq4L2nXsAfU+iGJQiqn96dnMmw2An44vAMneIFt0fkKZYRUQy4EW6SycdhSeRcRr6KLtbPwC1Qp5fIe0GPBi7lHPrO7USzhBovXd6qHN3FKcpGqNxWdp2KyhOY91VIVbMJKfGxDJ2XkEDms1QLvgxH/BMki8O8OIgyY5ciM2kwRSXEGA+rbyJnXNBMY0A4iXtQ0UWkviSpEphBLg0kO0EJzuYcsJJR0vZTmur8yPO9VshWu69/I+VuTzLTyGIi+KnhuMEKmeauSxFuhJpRKMtJdEQRptwh4i5SCF2HqJc8lLFaHBTLaS2X8IKuERC6CXFB5HFGESioJ0/6MERNr78FVtZfJu2UqCyhHW3VU/efAL0dksvnloEzCL/c2ecyp9Kqmuz06mLWw31db2N+HMzdZlmc4N4ngzSXcJII3l3CTCN5cwk0ieHOJWCgzcfDTdveripfP7NCFtzgjK08sNGjhPxfiPFM9Dgx92LiheHwQzblCq49UJCoZLwfOtS+TJEv5LRuxOXKoU8Krz9J2/Djy0qg8nvjzAv9RAVOpOytgdSJlqOD7hEsVrmJ+GP4M3RKCVNJh1teis+5RfkGPk9uhT3HWvXTa1gxYmfGe0lKEbGUStTSqTbBPQgqBSEjTGSpRACeH/OJp1SP3b7hmJ1i7sMvZbU+ti5ETgk6aJ9ATgsQA14tVeEIhCEIShSqc2Akzfk+NUjhRPBBAqzUau3fv/qUP2R+fLBjILxUpl6iwPKMchi9I2fi98Xh40HOs15LFlc0/b5TcppCo4g9BkKgSI4Uhnc6s0rExBekAa/RLn+qiOs5hMjVGWxxIEhNhQtCF9EdEN5rtP+Ox86Fsfc6uDeTUmLnmiYhN3NyRwhBORVbh8ExBOBC6vMIhPBOTcNoJwuBHYjIBr6MGt0oVgaM1pItd+MpwyXDI0dgC+yn3NxjKs69LOou3dxX8veJLvPWCJWHkc+z+eZ5PP8dOGi0M4b18wia8DBMiCiITaZrlI8EuuRJUh8oUoxUgCAbiA+JSKBVQdOBfcuVIbBD+6ACHwiSjNBfQnCLp6sbbX5VyX/9XkZ01jm4YSeutgyiLxi8XhuROsEpup9ElB2+CGRW9SmWsNPvRMkUIuyG8G/TJ4cCpNj5bywwcUyRxEjl6NGeMmXJHON/wtsdjCLjiOEULq5pjhhCPU/sxxanVzMb6HUvO8TlinvCoUduxtuRMnUizkeOrko6QSUeSw1SIKVNlW2MBZB1S59kMwghkQ6TKMGmEajQ/XPNAdXl3TTWXu6KHVIGvX5iDV2pbDLZ3pWcVyePlAsB/wpWqCBeZPELzwahwn3E2NHHmfYTYL0dlG+eDkPYMPaQlFsjI1bArgQ12cBJ7R50i+vKddzerX6uj+5Z6DmkjTxchc4+ZE0+lq6V2JL91MpXcrKDrZIDcO4icI8qOwDZSd5/qVeheyT9PCMNXjpCqVDKGnhW8fe6jldIxrovmD/pYYdb7FgWfwhSsqDaCA6zOsGK137ChDrGPWRJfcsFfgsHOnZg7v8yleMRHXBQ6CH8Vx3wb1auaEwsD4lfh/8vkDXvId2iX2/2ZzNh/JPy/RcJP7SZkMBL+zc/YSPiDnxUGCf+kmB5PKypGuO1vsSzFt/fWTRyeNufYRsINk/XP2DjL5z4zCAn/glcBvr3ebXVeyE9/9HbFuNNGJ+Efw4oK0BuTWTvod/CHOxL+slXUb1eO4TluaD10e/9g++UmQ8Lfg1V0XY0jOoOT8C+/Hvxg3rqePtv8tszP8Zjx3cgk/JiVYWRRB1bGYCT8pTbElt3RLdR16mzP4LbXxZdNgIR/DCs4wc8MSMK/ptqUkjXvVXeZZv267qroUKUJ0FlAhHqwIgTmNB63DWCK25wFTZv96nJFsPVu7bhLa9+Q6d4tsEN84Uo58Oj0mM2cAec2uSkSWe79OBcGQFyljAwJBTEc7HKtDNaLy4HaYZHxbemsB3kGda3tA4HQqOcA30yA71ZqmJQO8G3wvKAHqyrmvha4imOB/OqnRg2QLposcFt2ymfHZ7d0s4L37qKEUFTDWMAQCtLeRjxn6mK3HOju4Of6NcLWTN8gaYhKio4vPVo7lYl9eMAran3Fk4ca/1xGOSGF3Yg4IaW5Xhi0v2LW79/+ubGDJa1m6hEowVeWKYNkgSzcNkse8I5a8hZ57lVm9mu+6yOlzxzxALquakcKQxgNWIVhaRxh0Jpj65OxsPdUKCOA+5IEwr1TG4cuYMkKVhZhtvwWXQJDlaogW37LLurhqgjsB3S0+rh7Ve/rHg+ct0y/s/tIx4hvZL8GP8AvYrQc0f8yd6gwhPX9GZuwnhp9mUHU1egVrVbK3ehWRKqGqFlmUPwH3557Z8d4pPgGzVTn9O1akKVyQZcODrghh0c902m8UC2ce/Z5rl+Uiltylmgr8uWCJS/nRPssKv8t1CLJQWzcZS8AwJEAIAMBADQtekWihCtjJpn4687c+BJ2353Xx59pMiXgTQuKKzPsYV8IQGk2AOJfawPNgf/P6nGojbkNVo8z4gVbPU65F4Vdj7Pz1pqhD8pmex5c1G9gelZ2qgnU46hesGU3B74wgaKCFStWGKAe51G/LWqzlk4eG+/8267uwidZJlGP48EqnbamIB2D1OPM8qnt+X6PrfuuCVkf1jxSzTWJepx6rMIpZwrC4RmzHqdcmGV0rX/fOC4vkz1li7lVlEnV43x9zia8x0ZfJppQPU5IkyI86wkNvNZnzZ9jEzbttpHrcS6xSi7F6JIr1Hocxx/t3kyt39E17q7148bfkq+bRD0OFkMw1uMAQ4jHqYP+hHqctePtvXPuBIs3fXxxOuRT01FGrsf5+oKtHucCPaQtlHqcZInV9VPW1q4J3VKOPp+6RcZ5PQ51bc5BjcnHF2w1JpkvCqseJyLjia/1RG/HZWYhnb99fhbGeT0O1UZwgNUFVqySDBvqGLseZzCTGRt+RNZM5h0vOpDiI3+S1e8NOVPSPRKenXRVScJD6SdM9UhfNHCSqcPh6TFtNme0neaUKV8COfNC4CcgNW9jnXMpZz7GCFaVWyRZmrDqLeP70TM5eQdp+lfKD5gwn7xHsRBaST33pKNWap9GbZzU2Jk39yHQysoi+Jdy/jOosfNfcx6mlfWTyoHApEHuwK7/H3vfAdZE9r0dFaWLoiKIYOxYQNS1lwVC6E2w7NojCRINBJMgIhbsFXvBjg1FRbEr9t67q667NixrW3uv371TAjNzZ0hgSPL7f8vz+Dwyh5lM3nPvOefec+57hpCPw9SKq1LCpkqHvDRf+7YXRMtb3D+w6WSSL40FA63Airh1R+hMYIWLKIesCGfAOHzFF5MH/ZB8EZg8dI0OSrFoyRNEZNUg3Q9skXvQm0C9HxvqP8ZtWVXJw8xnR0/HhZkJobRiJcTpS6uSR17nE5v003t8ndgs2rzh0sje23SNRLNpJGNmWuLzoE/+8wY5qBdObtyLuifqB4tnNMyIjHV5id8gVAOvj/e7TFTDkBfr1RarVEghHSMsCYzB/g4LhzWS/mqdYhD6EclyIcrogTKp9ibUqzO3c/HrutKAAjCn3oG06T6Ioj5Iqh5yB0G/BCGC6zgE/RL8R6dfCht3u2PUiWdeY89sS7V4HX6VTr80ptvykTcTegakH8xY8Ch9akdSTh5GLTI9E/2DEfRMbJq2huwBhBrROTDLj6vazFoUtF3p3fr2rv2tiqMt/unwIYcQ1GsFVMhzF4Q8mjtGaTxpDfs79lGD7xDfP99g5P+OmZoUz7aRwxEsUWy6svfLn20gINIkqtCB61P/U790tjnjNTF27GGP6h2vc6rMXIQ/CcF1TAhKQml9OZUWYlilkSbYLESEG1R4y0jtvMd0Q85RtmCvli/R+loer5apsKo78BEUg4nU1cBO23oPe7zUe6/LvmZBwVVX03VlHpqokfRTaAksBLRkF/xUT6a78iyU66uI7opLqa05lVrnDoPri7OBAjHYZTg/C7pFAI0mhXOgm0FLx2zTgV3le4inehB26aA3otO9VxNsiBMuXcrm0jvdvxNurjjvv2z3/tIjd9QcT62VjYqVx2iEsK8s1a1Df8XW09o5PCYGLkUkCgXRflUOG+dB8m4PJMD0hoNsr4CIl3TdlgIjo/MtkpiCsS3VWCyofKu4dWS2WPddMDfV8IXR9Pg1N235evhg0MyRWU//MX+VTW/wgvyKhYaE9KbrxZxjcAkfAbE66IWYY6lA2v6WflVjuAaV2KhA4tIjIL31nQmbRGl/R0SPm76+AWNLOUY3YIo5n+A3d+P85mCUmMB2MjYC9cixWUOeIS7qqS7hm1OrlRkrGtNLWe3k9ps51HEJ7zYU/AJO+J//bRoVYsVt1I3PCFjtDL4JmqqD1nG3iJaiuLv57gVMAcPB9HXHJgThYGRsDkZvPh83rfZKns9HM/PgiH4nW3vvq56WvCCpZkoBPp+mi855zVnsFJp+dOzjf7dNtC/A53PKY8JvJ2JWh89sMW3gmT7WoQX4fI5W2FtnkKM8fG0p0YQ3d8SLCvD57HYu659QPc9756blE+N7/TG9ILchs/MvyW2I6PxLNupFdP61IEQLqvbu2Ts3wye1y1+Bj/74CIkZLQlRuX3lV9vHdw5ZUuvs249hweWByIoQ1bLx2/Bi3+zg3SPjRkvsqsUDkTUh8u10LGp4/ZPeM6qv++IzYf13ILIhRDl3hzZwaH/ZLyvq13uKub06AJEtIbp3dVzVVOv3gcuazDk91ulZABCVJ0TN/JQfmuxd4rNkaNJB/yP+W4HIjhCtiR1RLe1E1eCV9mtG1pnRvQIQVSBEZeK2H3Oxey5e+rV3Ro9D5j5AVJEQvfl72+W1MQNES/6Ne1l67bb1QGRPiD48H9d5h3OHgJ2SyIHjYixVQFSJENXo+GL7mpPpolUfZjRNuZqRBkSVye81eJ7L0PGa8OWWV5svmPIkGoiqCFhpoBwI0fovQ2PrzggSrav466m/JJMcgagqIbqbuK9jTE8/vxlPHEcd6PutOhA5EqJRdw+WutuwpdeyrvVanqgyeBAQORGi74vWN1zXeIjXnn7H/7z59fU6IKpGiB680WTeazsxaNy8am+7D/1jCRA5E6Lmjod33X/5OmTRpAGzo7KPQKCqE6LYuz+Wjh12wDtrfvs6fzZ+3gCIXAiRrFXt2W+7+IRuTuluv7LRvrpA5Erqa3sb8xu3vvqsvhT9plb1BEjaWYMQ3RfXDxr6SCVetCw3u/2HBVOBSEhOh6i3i5KjAkJ3erqM2dB9RH0GUVVNAQtR1QPF75Ia520C5n7+263tdKuLPBBVxbCZqCoxuzctPHZKvHhD3tAz1YdlUJeu4iEJCqUUcfqCLQCuR9whJM/LYm3q1HEgIAZGiOgAqONxC7qBQr4ac1VNCHRdSLiBZdULSBuMyhxGwIbsL/RroJl/GhV/EeR3+6f6wnZPHsYGLL/45Yj9kBobeTyMynOCEDb4+eUFWz20I1iVCl/oFRO3iJSBoYHVPUllsMWRUi3Hjp+A95MrsKUTOU6EEhU8ca2Mk0ejK9WGpjQsVXN40JrFre/KDu5YTi0f134Os3w8X8R33ADhsuGE69O/JhHJMY866hnJuRMTTZqvLk2sRCOMkwyUCUEAom1hzV5nbpGjPDS8xmb/TfvMjkWHKmrQKg2JxyIqDUkJ39qr4E4Mdl9k8b8HNtgZ1eZ6AleTPBRFFvzJ6EAiwfJs2Uuscm4cMrmh78mTnWdSLXWRjmDxAJYNJ1hgqBP+pz+b//mPuaFIzA30CN1gzA23X3AxNyzVz1fqyNzwssNvf9kdrBSYO1c61OnDufs8Oku6BeKBueHmC66D7sf1c5ZFZW7o4rqu0Y5LA0LHfq5p1shhTaLRmRu2cKICxo2JVpkWtsHEH3ODz4OyLWbF3/da4V42RPqgbX+TYW6YzKm6wcZRncGZG4SlMjcoJ/cQbXL8Hq08POmFkZkbMCvDevT+OCJKKSnmhhNDhHaD5+4IG7ejWsDKaXnrTIC5YQsnOEtfGJC5od44y7tuK6VBUz+8jb798RC1KZvxmBsmcyIE5jQRt8WyxW2nFklCvrep6j8609X8ae2U/dRoNATEaMIo3xDdNw58tM1wYTcBMhIGK8QY8CuIu5KFAFuVBucoAMaWGK8w9iJCt+E6BU70/Uv0ezOjaFKixzLw+DeiLS4jVPICGhj/Tb9tBewFCmCA/HaZgiu9D5295Tf+37lttw1924+WTYJ3Iw4oYJcLi5To9o+HnreHvxHVV4xBKGwkFmz8plfdsSMGEDku3KRyFRi+QI52thZNrIVbVz4OXVX1ucrKeRiV1tjSl7yZOS3zRYUBNtru3LLLNs/EW3M+mB/o3KouD4At5AQMjCijBFG4z4B/01zA9sOkw7Lg0KU1pksOq9rE/Mzcp5LSgRvTN69KvXX9pz1GZAKUIR6SoJJpy56xoNbbJ8rttwbFC4Bpqt0TkV5bPDAyeFPr1+/GrMlx40G1Kk7V9jaSalHx8Yxf9Qq1bEIK2HOkMkfc7Xo74NQQr/QaFyJTsm7spSf8EIeq8Ku8t5X2IGxSDqqoJMcDm2KEY5SzOUafq1VvDW611Su7R2/HKV33UckDKsPiVw3c+oQnmWWwtl6mR8f4JiJlHIAcL8HFHiPNfwy2OMxvFA+LSnXyiPS0XeEvzFAH8q/02FSY+hqA/tgH0UC+Lxj8Ca+LW5/iHVIAFLjdANsgwWhDGS90I5ufA/RwAiT4P9ymqeFutDJJxsJe8kdWl7SWDZ+Jlh6z/7u652Kqty3XFSs6YNoY4nphNqbap9sNkj76hW1b2LaeddMum3nYmZgIYTbzQbRMT2+AwVzcLeG6BdSv3d2KVsarZdGJ2PDAaqLQ3FrCu3/vuHwkYNcYB6/AD/eoDQ+t85/LXP5ShCXBBoPB1hMF2w13DDbCJAxgMwlnytd+27SlMnT8m5fBHldGiinfzTZShtUwCsMSFQqELWALmN3J+2AhLDZm5fGDJQq5FB/kSXJNrFAJlikq3S0BPUvP8Z4MLVDFekTJ1V+zJd8yALqvXhV37jsEYnV4cNdVpsYKsTHEkAAM8Rj/vW3nUeFTtz8tVevkje7U8Bl7EDN8xi8XNp3pVQk8hAyOELmxqJABNqMye80aPuuInLMWORVlqMGhhYTvw6bBdrNXV/IZ0/rFb19821KDahtigKBTOlQp7wXRbthI4kDr71dGqWK36JycICuIQ+0CNTsewSCklSk84N+oPfwD+sAgt79MRSuJgz/FNdwOmIOEigWPAIvqZFzVSC3THVNxJkkx9drXg5gFr7xRBzKbYLNAr40wxzAMWxgr4PW7xNCXIqFoOGLR0NU314WPaWVV7sDg8Ju0xAT8VojEBHa5JKDAhjgrFGCIE45qIJujMpmef3RryU/74xJo+bf0FVfLv2layBUmDzm9No4fyEeZlWs+q21M4CJNuxV7nzn/ygPkg99yQR7zloQ8jreqTDsScgNUZSKKKMmqTEQRJVmViSiiJKsyEUWUZFUmooiSrMpEFFGSVZmIIkqyKrNDmuyD2WKR37yphzRHrC2WMEre4OBFjj56+SUPJW/xbPqvFXzU/dZmK781ZtJ+155UoOq/Er7ZL1Io1TBcxBI4zKC8HMtsq+Unh+2OY2F/YPwB2JISrjOJMgTd0vv0ktNCX5EBDuqP9KCWmfYSTLIbyBMjYEUe9lKvvWtnPNuGMWkooWoAHuAX9rqgztN+DH3U6XlIepxbZo2JeduKk2sr2W3sizA/+pJwu68Y5IRgWa14iYzD2bCqoi2JKIgVEqXZ87vG/HOtvte6Bm/nrus/NoDHsohRXcLen8wc4pelnBQw0Sf5MA8ohXGi5PmSufnAFac1jiDnFTbZMMzIKQeXemTtGXuqpOGUT6U2dvw3ZLT1WRdVb9s3RsznejYmBhEyIQcPTw9+qV8Y21CbPYQQRRfg+4QeiGKbkOAcS/HN7fe0SsDMiK0zU6+N6WECWUsIUj9OkMJe6pfXresrx7+5dqsqf8hgiUV2A/Wy97oWbn7ZQWu8rFe5hXWhFS6Sz2VmEbWSkkCnLSc69V6SgZGSzTE+6xoWYtbks2juyrN+y8MDuzM34pme0IwF3JrUfK621C1JqRflPv2Aha65AR1huwsMU2MYwp9FbUAJYGti5gZU8dO0vzjb9fiz70LvsQ1jKgY1e05tw2yN5WNZ3DpFWJgVp5u4YlpxAbDTbhCsCNQYgwwQlV/p5evKY2DJwExjh0rze501ZXeo/af+2WpLN7taZ6mWSAzuRQNVQGTgkADCJOCE6bmezq7wFBo912y0FBq0NNgYgSk0ISN29MCgIexQApsdEtU/26TNmDshGX7LX2vaOLnQ96HjJAlCfJ8GsV/OFprXx+8jsz3YuRSJMF6WBC/JVPJowkHqZJboh7s43hC1U15ArGuWDAybAV8ArudRMXkqQL3hF70MVXksDYVv7oLXQW+H/xyeutb7vc+u121dxW1vU1uelsUewAyR8MuFzTn6ObfiZrdg9y8Ijw1qzq0FS5bIL3pVk9ji78NFkv7ri5tj3R1bB6bWO/ZX0IIKWdTsH34/M/tHXC8MH6ereU8HN98UOsq/oUWP3j0G8IBPR058wPAxRoWBBVa4MRgHor2A/qNfFzXbzhJVf5mGS2lPt0hrfVmTFZ7TceBVV2X3SKrS8PuZSiOu815cC7TiwKmV0iallVcHSK3o5b7sMIOXIJMSxhepmFtJiyftbbVRtNSx2eDgViMvUBUTit3PVAxxnW/FeHkQ5gRuMzLWq6lNxIKAL/otyJy1GGALC4W8MDwi1tY46T5oSkjW9tAte83s99AohfAHICiFCEFJINKQExGbL6RfH8Tm13NmBb/r0a5t4Ph33zUWR26+peoY/0Tdi2Haa1cYVAcuTIqVR8eCsBKeLZSo1ZANUlsVQ7h/3RYf9HPaqPdljkn8uj51op+JOlFG9YsXWNWt+1zcDHh1ItTAyZMwgl94hAl/E+QX93g+IyJOeS90ruuG9/7mnVtQBx9bYKMVGNj5Y6WkEENPVI2GsCGGoV4Wq30YMaLwliaUg1qwHkiN7w/ANgrw//kxpTAlbDgSUbo/N2pHFbiuxQBzRAEGeawBYMRkVpl84oo+mnhim6SnOXjIXMV+5spc/abFXM2GedhOv/OnBEdFqd2d2smfBlWkMm6HUohQmYaUDWnnUBAPAPekAXcqaHSqOtlJOjMF12sxicCpcl03bsAi+9NXAOdU1MYNzFGc/YrgmyT9CYJvEn4SnW+SzhdJ55ssMp8k/UYEnySbbXLxk6uAzdGH/vZ5xe+u9Sw9vKf1bnCsQ27dP6n0t97M2eFdKLndl46xZRu2eh6++NWwvHsHXZcVd88EzI53UJ2eqOqF34D07tfjCCJHNpCKQhL8/dSd7A61XEKn3rFdETylFvV8tW4kwXSU7rauPeLhN2lg7omnijoNfxS3hhOidJYTpV1fGRSAnNUueK8FGBjpABC96p3qw/BHMX0Ycb0kNryxEfMJtdHk5o4hRdhTzf+YPaXT+RjIntbitKcfvvxnTwn9yHwkVcZpngfNWh+T1aCcx1Ie7CmdpokHS+HKaSmsStyevrCdJV7wOiR4WdNOb8tnXR7Bgz2lbxLwgNKHL1wo5X0pQXtK96FGt6eunPb0g3aBn2jyawL6dOKnmK1FKafXaaIE3x3vvWJzrqZF8rAkyPjCtSSYoYV8MG/FbOVJyA1QzIbgwCNNPYIDjyxmQ3DgkcVsCA48spgNwYFHFrMhOPDIYjZ6hMaoWINWETnE6Ox5PFSsJfGmZGsDKrloPJIIUkVSyfScP0MnZmw6odMW8qCTIWw6Wbjr7u8THnwKzN21PXfzwHvUc35lIyTxMgWzNwqbYXPzFibAOwp06BLGKzUynFwI0nNzcdjSeRcRr6KLtbOOilYpFYpI6LHgxfwjn69+pVnC7T1+vL6TVS58pvr0oBcTnFgrqS26qGUqSABOfmxdX2ViPwWs1YJddCDxj1SuIb47iDBgliMvNZOmErLNEYM1t55YMPojMKBtRILUCSKrUImqvzw+RBZDcYDW+OVI2O+04HVL/HpnZULBq1QrXLlrPfHlUR+P22EgRqjguUGNHH8rc/KtUBNKJUkKjJdC2i0S3lKW8CJMvRS4hMXqCqIlE74ggF1U5RKFCHJBFXBEGpVMEqf9HSMm1t5DDNVkk3fLdBZQnrbq6OOfB798/iOXX97/kfTLQ00eczq9quluj+ZyFvav0xb2p/DmJm0FhnOTCN5c0k0ieHNJN4ngzSXdJII3l4yFYjpWiro3vpZoz7ih31YfrhFeIBY6PCb5wI0dY7zHdT/f227Y49sM5wqtPnp/jEbGy4NzHcamSRNt104nHTZYu/bD37natXf/XtLt2o8PXPg+vU2Y38wj5g2P9/s9xgTate//ztX8dt13E+g5vX79egO0aw8859r2+e/p4Uv3PVgR1WYRreOokdq1z+PUzmhT0I5B2rWXibiUp94S67VEEDdle1LmYpNo1x7PqZzupqAcgTHbtZ8NP38193QP750xj8pFDjxG7Utr7HbtfpzKa2Yc5Zlmu/b9Ntm1HD0Xe0/eu1b252ULarcqw7drd+XUnJXRNQdvKrF27W1kH6us8HAO2T575ZiOEZuo3BDGateOxRCs7dqBISTi1OFscer/Urt2elsMI7drj/jB1a69zg/DtGuv9CF0+aGZoYF7P/jH1V9VdiDv7drp5GY8tCAP+cHVgrz1j5Jq115hTE7VueMXhq3q1Lp5suuAXby3a6fbCB6wqsOJVYUf/1+1ax/BZsb+I+EvEgk/vZuQwUj4BT+5SPgPMm0nDyT8f3T09pxZq7Xf8hHOCbLV6VR68uKdNufZRsINk28/uDjLHzNtZEmQ8K98dTbrxo1GASs9nrXxWCluY3QS/qucqBw0rDXkXDvod/CHPxL+GNurv77d1zR0XO3Fu+ttc6W2rjcmCf8GTtWlG0d1Bifh7zhr0G+fq1f23ZA0/nmkzTVaVsXgJPyYlWFlUQdWxmAk/Dknr52WdBAF51Rv8O3ihXrUzJpxSPivcoJz8IcBSfjbHvt5YN8fM303fFrawzbLk7pMMx4J/wZOhMCcJuK2kWxxm9i7YaOfHa56r73tmnV56cvmVB4B7BBfglIBPDozZrNgwblFfopEnn8/wYUBEFcpE/vHghgOdrlWxujF5UDvsMj6tkzWgwJCXWv7QCB0GYZJeQDftfQw6SLAd8TP4h6sqpz/WuAqgQXyqy9W96iVnvNKtPSwXZMqvROoFNdF6t1FC6HohrGYIRSkvT3/k62LXToYu7k/9WuEjU9fqay/SoaOL+uuWSjwHl4xZOqNDY6bj8QIaSeksBsRJ6Tw6yVB+5vJ+f1n/TR2sKQdmXoESvCV5UqpPJqD2yaihdmC5IvbfLddrnhfk32hFXWskg9gjlWtpCSUMYJTGQOMowxGc2x9MhYewfFKDXBfkmi4d+rm2QEsWcHKIq6xsGmH6FilStpY2KyDepBKg/2CjlZvRl986hQWHrDo8a6g6Qebr6L6NfgBUZpkBaL/Zb6oJJTVlVNZPiYxc+Cj9IpWq+RvdMcnqvqpOWbQmEmarMC8+UG7Gt4emvGx4r7iLJWLu3TwJAw5POp5kcEL1VTcZetP/aJUwpJzRFtrWt3NPHFMIVq54vSJwOcd5xt32QsAWEgCcAMBADQtekWipCtjJ5mo2yzgqGWL9V57LHsNnjpSs5fmygx72BcCIOUCYF3ATzLQTP0fq8ehN+Y2WD1OrOAERz3OL4ITJVyPs2JzRM0vEx6HTRg1c+vqFqlrTKAeJwZCwprd7Ck4YfyigpkzZxqgHudG+qvN9o2yfCY4lWr23SZtqUnU40RyaifAFLRjkHqcdjWmnn5/VRi+c9cfp9p87nTRJOpxOnIq5xdTUI7AmPU4sbHXMtv4rwybvSVo0pkOYedNqh6nIafyhMZRnmnW4yzY5tF6RYP3fhtiDi0e/LVFXSPX4zhwas7G6Jor0XqcFbO7NT1lLwydt3PHsbZzVlwziXocLIZgrccBhpCIU0f9X6jHuS+uHzT0kUq8aFludvsPC6YauR5nHcSetR5nDjOkLZF6nK9pY05VUgWGZl7cePJ11bMi3utx6GtzHmpM1kLkWGtMllKR47Ee530V9YcAs6Vh2zovaFqu3pJk3utx6DaCB6zmcGI12bA219j1OKPZzNigA/JG8rB1op37wxX/POjxkpop6ZQIz076qyQJscwTpnqkL+r4ytUJ8PSYNpuT7I6fMhVKIGdef/gJ6JaRUW8XJUcFhO70dBmzofuI+qzvx8zkFBQyxp9lFDBh4QWPYiFGJf3ck46jUvs0euOk+mLBo0/HBQIHEfxHO/8ZU1/c8+Gn47ZRMgVQmEwaCOz6EPJxmFpxVY5hU6VDXpqvfdsLouUt7h/YdDLJl8aCgVZgRdy6I3QmsMJFlENWhDNgHL7ii8mDfki+CEweukYHpVi05AkiMs1XokXuQW8C9bFsqP8Yt2VVJQ8znx09HRdmJoSuLvT0pVXJI6/ziU366T2eTmwWcd5wacThHV0j49g0kjEzLfF50Cf/eYMc1AsnN+5F3RP1g8UzGmZExrq8xG8QqoHXx/tdJqphyIv1aotVKqSQjhGWBMZgf4eFwxpJf7VOMQj9iGS5EGX0QJlUexPq1Znbufh1XWlAAZiPIJg5PoiiPkiqnvkOQb8EIYLrOAT9EvxHp18KG3e7Y9SJZ15jz2xLtXgdfpVOvzSm2/KRNxN6BqQfzFjwKH1qR1JOHkYtMj0T/YMR9ExsmraG7AGEGpHasnrWPu3vrCZh+2JfJV0dWDGvONrinw4fcghBvVZAhTx3Qchz/p1RGk9aw/6OfdTgO8T3zzcY+b9jpibFs23kcARLFJuu7P3yZxsIiDSJKnTg2upynZbn2qcGr73qVNVG9uoBp8rMRfiTEFzHhKAklJbLqbRMwyqNNMFmISLcoMJbRmrnPaYbco6yBXu1fInW1/J4tUyFVd2Bj6AYTKSuloXL3DsNXxicGffcfMCi233pujIPTdRI+im0BBYCWrILfqon0115Fsr1VUR3xaXUWZxKHfGOwfXF2UCBGOwynJ8FCR6dJoVzoJtBS8ds04Fd5XuIp3oQdumgN6LTvVcTbIgTLn08m0vvdP9OuLnivP+y3ftLj9xRczy1VjYqVh6jEcK+slS3Dv0VW09r5/CYGLgUkSgURPtVOWycB8m7PZAA0xsOsr0CIl7SdVsKjIyNb0hiCsa2VGOxIP5NcevIbLHuu2BuquELI7+oj539i0W3nwZNm7p3kP3xLxH0Bi/Ir1hoSEhvul7MOQaX8OsgVge9EHMsFUjnvdGvagzXoBIbFUhcHNzePRvWzS54T/8V0oa/f/vB2FKO0Q2YYs4n+M1Hc35zMEpMYDsZG4F65NisIc8QF/VUK8WudK+rs0SzA2b83N4qtCd1XMK7DQV/d074/YwDP6NCrLiNuvEZAaudwTdB8/3QOu4W0VIUdzffvYApYDiYvu7YhCAczAQ2B6M3n4+bVnslz+fTzbVzo+TDu72X/zuyU5W3v4YU4PO5+u3aX1/dBolzpQ1stgdaPSrA5zMi59q8pet+C5qhqTjpRdNXgwrw+UQ3EvR58uNv76VXr8q39el5pQCfz6zsRvVnJFwKmn82oPyhe/VeF+DzQXT+JbkNEZ1/yUa9iM6/FoToztFqTe26Tg0Z9Xn9v06nHx4BIktCZJFSdvkH+fPQrNV95Vk7FRANK0J0r80hp/ZlbnqlldcERA180gKIrAnRlYHPlvzdNU+UNiio177rrueByIYQ3do8+3TjZReC1vv/Imj+19U7QGRLiLJTfs7zCpf7jGrc/MzP2QHJQFSeEAVEtJJ6nleL9kufZk2+3nENENkRopQmFoqkO9MCctt/u5+eI58JRBUIUaut0iv/vN0Qkno3fsHdY2dcgKgiIZr8+pzrE1m5kIxTZ/7O63fDFojsCdHZDtsvfs2tEpbevMXF+Jd9fwGiSiS8dUeUWnnsUtD+M/PqvN/2+CgQVSZE5V7efdgia6Boe9Ubmz9da9YdiKoIWGmgHAjRxLUPX26OnBy4qdeR3jekLn2BqCoh8pt5dcCvd2cHjndbluK8oN0pIHIkRGPT1EdX3+3oPfFSQF/VkRN7gMiJEHlM3hwTljHAd7V76Q29etS/BkTVCJF4y/Zz7xVPQibUbGsjmtQVMkQ5E6LISmbrzv99STTjTIMzN1vWewpE1QlRZdfWnhrlKZ9lTaZV2fntCRwbLoToy9JhHV/3/uaTtvOxcIdZzgogciVEbXLkkXcbDPWdIh1RZV5rh4NAVIMQ2ZRuIN5Ufqjf+CnxNw8uqAQ/S0iIPru2PTNrZl2/NdNtAr7suBDBIKqqKWAhqrJaVvdct65NvJb30Uyfty9XyQNR1UQ2E1UlZvemhcdOiRdvyBt6pvowKmm8uXhIgkIpRZy+YAuA6xF3CMnzslibOnUcCIiBESI6AOp43IJuoJCvxlxVEwJdFxJuYsGrUicEgk+ozGEECI9vlmJkDjkbaOafRsVfBPndSr31V8/v5iFa+7rzoE6Lxpfl8TAqzwlC2ODnBQQIWQ/tCFalD0oxEoRcIVmLSBkYGljdk1QGWxwp1XLs+Al4P7kCWzqR40QoUcET18o4eTS6g53jjsOTV+eFjzsafn/AYgm1Daml9nOY5eP5Ir7jBgjXTU64LpYySl1G4Ucd9Yzk3ImJJs1XlyZWohHGSQbKhCAA0bawZq8zb3M/7nXFxR9DN7w4nbvQTEhtZmcRRTwWUWlISvjWXgV3YrD7Iov/PbDBzqg21xO4muShKLLgT0YHEgnW1BUTf7V/IQqbVerhuG2+jagnJIt0BIsHsG5yggWGOuF/JrH5n/+YG4rE3ECP0A3G3CAqfYKDuaF2ab18pY7MDc7vU7/3dT8jyl19pvuUQxZuPDpLugXigbnBGyLEetC9VWm9nGVRmRsEtVO2zR1xy2vloUajs/qsuGJ05gZ3TlTAuDHRKtPCNpj4Y26o8G/390dvvA/fkD3PXfChMzXlb0zmBidO1dkZR3UGZ26o2jvbvUlCtveC2+bXmvemHe81PHMDZmVYj94DK2Mw5oYLmQdyZvZvFZ7942HwjdVCKq+OcZgb3DnBqU0Dp7DzcsViboj3+Oz3IO1w+NK2u75WGVPqg4kwNzhxIgTmNBG3TWaL204tkoR8b1PVf3Smq/nT2in7qdFoCIjRhFG+IbpvHPhom+HCbgJkJAxWiDHgVxB3JQsBtioNzlEAjC0xXmHsRYRuw3UKnOj7l+j3ZkbRpESPZWAryxN4W1xGqOQFNFDVUr9tBewFCmCA/Hb/OvRvlbanY3hG5IIt47+Z9aVlk+DdiAMK2OXCIiW6/eOh520LCFACahAKG4kFjSz1qjt2xAAix4WbVK4CwxfI0c520vvtLx98O+a1tZK8csOt/lQeHktf8mbmtMwXFQZYbv3rM/7q29M3516Zia1PHTnIA2A1OQEDI8ooQRTuM+DfNBew/TDpsCw4dGmN6ZLDqtq9eLDF5VTbgHVju7R4veNRtj1GZAKUIR6SoJJpy56xoNbbJ8rttwbFC4Bpqj21MfX0vYF/heaedndrPNDWhwfV2nKqtoyRVIuKj2f8qleoZRNSwJ4jlTnP922SxfM2/kskG+6/CdvpQ0/4IQ5V4Vd5byvtQdikHFRRSY4HNsUIxziFzTH6XK16a3CrrV7ZPXo7Tum6j7prXRkWv2rg1ic8ySyDtfUyPTrGNxEp4wDkeAku9hhp/mOwxWF+o3hYVKqTR6Sn7Qp/YYY6kH+lx6bCwjIA9Mc+iAbyfcHgn1qG9eiOjjtu3iEFQIHbDbANEow2lPFCN7L5OUAPJ0CC/8NtmhruRiuTZCzsJVVdsn980TwVT1Ze+3xv6ntq7qRcV6zogGljiOuF2RgX/1t2AzZuFK2Of/5C2nD6Uh52JtIhzGY+iJbp6Q0wmIu7JVy3gPq1u1vRyni1LDoRGx5YTRQSy6bvDl6d8mKb/+byghrdL7a8Tj2Rkf9c5vKXIiwJNhgMtp4o2G64Y7ARJmEqm0k4U77226YtlaHj37wM9rgyUkz5braRMqyGURiWqFAgbAFbwOxO3gcLYbExK48fLFHIpfggT5JrYoVKsExR6W4J6Fl6jvdkaIEq1iNK7leGLfmWAdANKfbcdwjE6vDgrqtMjRViY4ihB6EkooMo08Vv7tXxif4Lp7lQw2fsQczwGb9c2HSmVyXwEDL0hciNRYUMsBlV1zKs4bOOyDlrkVNRhhocWkj43k5ZmetSb2PArtmv+lf+Ue536jF3YoCgUzpUKe8F0W7YSOJAy6eMQQMs8kUtOicnyAriULtAzY5HMAhpZQoP+DdqD/+APjDI7S9T0Uri4E9xDbcD5iChYsEjwKI6GVc1Ust0x1ScSVJMvfb1IGbBK2/Ugcwm2CzQayPMMQzDFsYKeP0uMfSlaFrOg5aTWr9t4jOzwu0/v3+scoGWmIDfCpGYwC6XBBQhnFD4aB1VGpujMpmef3RryU/74xJo+Ve7DHHgH9nyz1kL+TSTh5xeG8cP5DFznLvJJ+/1Suv48dFjc/FHHiCfbsYF+QQzEvLpvFVl2pGQG6AqE1FESVZlIoooyapMRBElWZWJKKIkqzIRRZRkVSaiiJKsykQUUZJVmRP2hdS2m9TYb9a8P5tFfN61lFHyBgcvcvTRyy95KHmbwab/WsFH3W9ttvJbYybtd+1JBar+K+Gb/SKFUg3DRSyBwwzKy7HMtlp+ctjuOBb2B8YfgC0p4TqTKEPQLb1PLzkt9BUZ4KD+SA9qmUUwP3ADeWIErMhT9EvzO+PZNoxJQwlVA/AAv7DXBR0N6uyQMGNW2NTnDTo0GdvudHFybSW7jX0RYLWgNOF2XzHICcGyejIz4c+FVRVtSURBrJAopR9xm7Q3933o9tLzmle7PvoMj2URo7qEvT+ZOcQvSzkpYKJP8mEeUErhRElRmrn5wBWnNY4g5xU22TDMyCkHl3pk7Rl7quSnfYbT/E19Q3a7qa+dy2mrMWI+17MxMYiQCTl4eHq6nvnchtrsIYQougDfJ/RAFNuEBGfD2+kHwz6V8c8t23jBtcGjPU0gawlBGscJUoqeed26vnL8m2u3qvKHDJZYZDdQn7Lrz1Ek5AVkZj3zCvL7m1aLRz6XmUXUSkoCnUGc6PTX5nRnsjnGZ13DQsyafBbNXXnWb3l4YHfmRjzTE5qxgFuTms/VlrolKfWi3KcfsNA1N6AjbHeBYXoKYTuL2oASwCYQ+rk63dK0M2/ufPK43MqwMd9/j2o65MBO6mYnlo9lcesUYWFWnG7iimnFBcBOP4ZgRaDGGGSAuK2fryuPgSUDM40dqqeJj0KqpvsHjG36JmX8+aFUMndLMbgXDVQBkYFDAgjTVU6YTuvp7ApPodFzzUZLoUFLg40RmEITMmJHDwwawg7NYrNDovpnm7QZcyckw2/5a00bJxf6PnScJEGI79Mg9svZQvP6+H1ktgc7lyIRxsuS4CWZSh5NOEidzBL9cBfHG6J2yguIdc2SgWFjaQFwPY+KyVMB6k/M9TJU5bE0FL65C14H+S2DSk8/MeXn5sDxW2vtfBub3ZAaImEPYIZI+OXC5hz9nFtxs1sAHnMIjw1qzq0FS5bv5npVk9ji78NFkr5pYJ4wq461z4bNl46UnnjiPjX7h9/PzP4R1wvD59GJZg0iKk3y2pOS5Wvxb/Pi7ptAfN6ac+EDho8xKgwssMKNwTgQ7QX0H/26qNl2lqj6yzRcStvbvezEY3M2+a8JX5QzqMW3YKrS8PuZSiOu815cC7Ryh1Mrf5iUVl4dILWil/uywwxegkxKGF90z4Un2YLNHZb7TMs9NbVllXBXqmJCsfuZiiGu860YLw/CnMBtRsZ6NbWJWPDJXL8FmbMWA2xhoZAXhsfSFPHe1um/BE590b3WsLz5UhqlEP4ABKUQISgJRJ6YcyFy05z067PZ/HrOrOB3Pdq1DRz/7rvG4sjNt1Qd45+oezFMe+0Kg+rAhUmx8uhYEFbCs4UStRqyQWqrYgj3r9vig35OG/W+zDGJX9cjA77TnKgTZVS/eIFVXRbTr+uZAa9OhBo4eRJG8AuPMOFvgvzilhvUURPeNfDeExfXrKa8L9W1mbMFNlqBgZ0/zO5uhxh6omo0hA0xDPWyWO3DiBGFtzShHNSC9UBqfH8AtlGA/8+PKYUpYcORiNL9uVE7qsB1LQaYIwowyGOdpZ3Mc0w+cUUfTTyxTdLTHDxkriaac2WuUrWYz2XDPGyn3/lTgqOi1O5O7eRPgypSGbdDKUSoTEPKhrRzKIgHgHvSgDsVNDpVnewknZmC67WYROBUua4bN2CRfRF66KmojRuYo8i1OMHkmyT9CYJvEn4SnW+SzhdJ55ssMp8k/UYEnySbbXLxk6uAzdGH/rbzhEO5t44fFi2MfbvnaJkNVaj0t97M2eFdKLndK7XrCLPQAeFL/zX/Hn7s4Yni7pmA2XEeqtMTVb3wG5AetTiBIHJkA6koJMG3Qo7L+s0KDZhpeTqysWvrdUUgCaajlPz7vTSbiqsCDwz63LhnFVlxazghSrmcKOVYnKBTAHJWu+C9FmBgpANA9Kp3qg/DH8X0YcT1ktjwxkbMJ9RGk5s7hhRhT+f9j9lTOp2PgeypjNOehv9nT0n9TNm1Prhp8399lk+vYKb+8/5NHuwpnaaJB0sRzWkpfi9xe5oyo2fH15PcQ5b7388dsWpPXR7sKX2TgAeUwjlREpekPaX7UKPb02hOexqutafzTX5NQJ9O/BSztSjl9DpNlOC7471XbM7VtOKSRcAlQR0LriVBdS3k6bwVs5UnITdAMRuCA4809QgOPLKYDcGBRxazITjwyGI2BAceWcyG4MAji9noERqjYg1aRXQOl8aex0PF2gLelGxtQCUXjUcSQapIKpme82foxIxNJ3TaQh50spBNJwt33f19woNPgbm7tuduHniPes6vbIQkXqZg9kZhM2xu3sIEeEeBDl3CeKVGhpMLQXpuLg5bOu8i4lV0sXbWUdEqpUIRCT0WvJh/5PPVrzRL2K6J08lqE2t6zagVK3hcLZGVd9mii1qmggTg5MfW9VUm9lPAWi3YRQcS/0jlGuK7gwgDZjnyUjNpKiHbHDE2peuJBbPLAQPaRiRInSCyCpWo+svjQ2QxFAdojV+OhP1OC163xK93ViYUvEq1wuUD64ltZ5U7YYeBGKGC5wY1cvytzMm3Qk0olSQpMF4KabdIeEtZwosw9VLgEharK4iWTPiCAHZRlUsUIsgFVcARaVQySZz2d4yYWHsPMVQXmbxbprOA8rRVRx//PPjlPeW4/PLWcqRfXmzymNPpVU13e3QzZ2F/lrawfwlvbtJWYDg3ieDNJd0kgjeXdJMI3lzSTSJ4c8lYKPes55k5a8+IN/8xduh1Qae6BWKhRX9uW+D9pHXgzPLxzVcHDx/BcK7Q6iMHEp2MlwfnupRNkybarp1OOmywdu3bLbnatY9iUsnw3K79YfcKpUunDg9NT26SNndn744m0K59qyVX89ss4xBmUHtOr1y50gDt2vu4142KmXxavHDCuG6DXcTzTaJd+zJO7cw1Be0YpF37pePV1y3UTPaa9D3GLPKNxUOTaNc+hVM5o0xBOQJjtmtfaXFLsWdnrtdW2Y3DdxQV7EyqXXsSp/LiTIgoyOjt2h1udheWHXRbNPdOmdOHgkY7G7ldezSn5n43uubgTSXWrl0o+71Cw33ufgvbJ5itKX//kkm0a8diCNZ27aO0ZE/L2OLU/6V27fS2GEZu1/7Nkqtd+yNmSFsi7dqVvhd6Tl70h++UWjHB/1qu2cF7u3Y6uRkPLci/WHK1IH+lH22iHu3a/6rYvPTyPlt9t7RJL9WghWx88acwDSu6jeABq0ecWP1tWJtr7HbtGWxm7D8S/iKR8NO7CRmMhL+zFRcJ/y9WJUHC3044st5h4WrR3EP3vu8w63Sbx9PmPNtIuGESacXFWR5gZRAS/n+O3mw7IOdb+Jqy3xKPHOkdaHQS/o6cqIBxYzJrB/0O/vBHwh90+sytFK9zXgfmWjh71Pxy1mRI+Btyqk5oHNUZnIS/Wrslitx97wMnNeu1b9D1ax9omU5Dk/BjVoaVRR1YGYOR8A9RLP/z8+OD4St+RluNCo+eaAIk/B05wfnFyoAk/H836WG57ZcfQYsulsv4ciiZuvQxHgl/Q06EwJwm4rblbHGb2Ltho58drnqvve2adXnpy+ZUHgHsEF+CUgE8OjNms2DBuUV+ikSefz/BhQEQVykT+8eCGA52uVbG6MXlQO+wyPq2TNaDAkJda/tAILQP4psH8F1LD5MuAnxnM8MkPQ9WVc5/LXCVwAJdLNR77sdLzSoHrztyq3PKaQtao7Oi9O6ihVB0w1jMEArS3u6xYutilw7G7mb9QigbfPpKZf1VMnR8KR3uofr2tabPjiVHniVuzI2nnZDCbkSckMKvlwTt7xrO77/E6MGSdmTqESjBV5YrpfJoDm6bES611m28IvCbFH3QYWnn4XWoY5V8AHOsaiUloYzZnMqYZBrhj0CfjIVHcLxSA9yXJBrunbp5dgBLVrCyiGssbNohOlapkjYWNuugHqTSYL+go9XRH0cIVsTMC14+MN1vzvI+y6h+DX5AlCZZgeh/mS8qCWWN5FRWoknMHPgovaLVKvkb3fGJqn5qjhnkPG3GxGEOfwfumTdoyezK45KKs1Qu7tLBkzDk8KjnRQYvVFPx+mw9o1TCknNEW9vVEQkNXR39U5ft8fdtVuGUcZe9AIDlJAA3EABA06JXJEq6MnaSiWMv76anSc0CZv1R+17v6XeTaa7MsId9IQDjuQDoOkQbaK74H6vHoTfmNlg9TntrrnocC+uSrsf560Vn8aDu30Nmyzb0iu1VX2UC9Thtrbmym57WJlBUMHnyZAPU41hN3TPRp/1Nn2Xj6yf+XUNyziTqcepxaqe6KWjHIPU4+weI43rf7xo4qc87Uc0P6jiTqMex51SOhSkoR2DMepylsVGua2olhKRNnXy2gZ3rR5Oqx/lhxaW8d0YPdk2oHifvymrPFO9pPpsne8cPOu7UyMj1OE85NXfX6Jor0Xqcnx/3+zeo18p7tn3r5MnSq5tMoh4HiyFY63GAISTi1JX/F+pxbEo3EG8qP9Rv/JT4mwcXVDJ2Pc4Ia656nFhmSFsi9TijRx6K/fgyRbRnllfTsXb13/Bej0Nfm/NQYzLMmqvGRGVdUvU4Fbe/UZr9IvNZuPp8W7t2UaN4r8eh2wgesIrlxKq3YUMdY9fjrGIzY4MOyBvJw9aJdu4PV/zzoMdLaqakUyI8O+mvkiTEMk+Y6pG+qOMrVyfA02PabE6yO37KVCiBnHn94ScgR95n17ZnZs2s67dmuk3Alx0XIljfj5nJKShkjD/LKGDCwgsexUKMSvq5Jx1HpfZp9MZJ9cUCX0jM5SCC/2jnP+X1xZdF5idso2QKoDCZNBDY9SHk4zC14qpczaZKh7w0X/u2F0TLW9w/sOlkki+NBQOtwIq4dUfoTGCFiyiHrAhnwDh8xReTB/2QfBGYPHSNDkqxaMkTRGTTLIgWuQe9CdQz2VD/MW7LqkoeZj47ejouzEwIXV3o6Uurkkde5xOb9NN7PJ3YLOK84dLIHTO6RtawaSRjZlri86BP/vMGOagXTm7ci7on6geLZzTMiIx1eYnfIFQDr4/3u0xUw5AX69UWq1RIIR0jLAmMwf4OC4c1kv5qnWIQ+hHJciHK6IEyqfYm1Kszt3Px67rSgAIw/ctC2nQfRFEfJFWvXxZBvwQhgus4BP0S/EenXwobd7tj1IlnXmPPbEu1eB1+lU6/NKbb8pE3E3oGpB/MWPAofWpHUk4eRi0yPRP9gxH0TGyatobsAYQa0eSDX54Orf9qk3ju24PnvnTZs7M42uKfDh9yCEG9VkCFPHdByNOurFEaT1rD/o591OA7xPfPNxj5v2OmJsWzbeRwBEsUm67s/fJnGwiINIkqdOB6sqF40Yr7FUNz3vyhGNg6619OlZmL8CchuI4JQUkorSmn0uobVmmkCTYLEeEGFd4yUjvvMd2Qc5Qt2KvlS7S+lserZSqs6g58BMVgInWV9PrzizFrPoRN+aVOZs7iEQK6rsxDEzWSfgotgYWAluyCn+rJdFeehXJ9FdFdcSnVhVOplcoyuL44GygQg12G87Oga6ZpNCmcA90MWjpmmw7sKt9DPNWDsEsHvRGd7r2aYEOccOlr2Vx6p/t3ws0V5/2X7d5feuSOmtTzIFZRsfIYjRD2laW6deiv2HpaO4fHxMCliEShINqvymHjPEje7YEEmN5wkO0VEPGSrttSYGQ00hJTMLalGosF1mbFrSOzxbrvgrmphi+M/KLBnnsXZC4+EDauU26dcV3GUtmGzFi+YqEhIb3pejHnGFzCN4BYHfRCzLFUIK1hpl/VGK5BJTYqkLjkeDa628D1rM/4ShtarMv7YsfYUo7RDZhizif4zatwfnMwSkxgOxkbgXrk2KwhzxAX9dTB7b2HVJooC5jVXDj4zrb2x6jjEt5tKPhLccL/0bD9vUn4GRVixW3Ujc8IWO0MvglSI/SOu0W0FMXdzXcvYAoYDqavOzYhCAeTxeZg9ObzcdNqr+T5fERpW7t7uX0P2lk3YFS38+XUBfh83F/UFSSnrQ1becHub808h6wCfD4t67UfEbf8gNfWi86PD66tX7YAn8+p0JQpWY8qBs169nKFZEfE3wX4fFadW/HYecSM4LXbm465X+l4ywJ8PojOvyS3IaLzL9moF9H514IQNZtfOXD91h+iyS4/DnndS10FRJaEaL65X2JrH3ngNN85tU9/PD8biKwIkdW01WERfbxD54/dez9i5GQvILImRHlDwpYlflwUutMuvVf7lx8g+6INIZqxZsWBlHBb3/1TJyf0694sEIhsCVHbMtf9Kn54Hjyp7LkLmc36ngCi8uQDV9+/ODH+Zti61VVav5S2sgQiO0IU2/j3Lu6qpkELrpV+G9djwlAgqkCIGiRYVekj3O+fLf5uMeJO/EQgqkiIVE29IgTul/33lz7nP8LnbhoQ2ROiVt9GjfItJw4evSzE68volvOBqBIherJOYStN6BGaMenTObN/u74DosqEKOboE/M9A7/4jk24/e5Gr5n/AFEVASsNlAMhutKj4Xeb13O8clatiJ639uFWIKpKiF4/O3ok2Gpk8Px+Povtms6GRIqOhGjYjqmxIbad/Dcfjpd2ayu1ACInQrTNseyjurcTQ+dnX6s+4uL8Q0BUjRBZj/ir88AF14M316+3p7nfJBUQORMih4dPGpyZ+TJ8ttqqYqRXhRlAVJ0QTehuETIu+Vfx3LRBr+NHfDYDIhdCVCvK/dSep0N8lvX6sGu2Y2sociVEv4mm/T7M7c/QbUOFFSrkOi4AohqEKKCBZs69IdV85gy81Dy7UvITIBKSk2j3gaNXMoeFZre66hPX1vEMg6iqpoCFqCr2tXJvi2pnw5fKJtfdMKH2KYTZ0Jeoah2biaoSs3vTwmOnxIs35A09U31YBnXpKh6SoFBKEacv2ALgesQdQvK8LNamTh0HAmJghIgOgDoet6AbKOSrMVfVhEDXhYSbWHDHBtIGozKHESA8PmWjXwPN/NOo+Iugm9Xb3Jt045cIv8WjfvnY5NR9KhV98Q6j8pwghA1+btmw1UM7glXpFRu9YuIWkTIwNLC6J6kMtjhSquXY8RPwfnIFtnQix4lQooInrpVx8mgkir2fvNowPlQYuKjOkjcdohIeUcvHtZ/DLB/PF/EdN0C4TnHCdcDGJCI55lFHPSM5d2KiSfPVpYmVaIRxkoEyIQhAtC2s2evMra5sPzzX77woPfb1pje/eFelVRoSj0VUGpISvrVXwZ0Y7L7I4n8PbLAzqs31BK4meSiKLPiT0YFEgrU4rNqAfS8X+85dYvng5K9bqTyYRTqCxQNYpzjBAkOd8D/r2fzPf8wNRWJuoEfoBmNuaGbLxdxgb1sSzA2OFheXHT8WF7Zs8eaab5cebM6js6RbIB6YGzxtuQ6617M1CHPDUvPLa8eddBDlZte7W7mxZUujMzdU50QFjBsTrTItbIOJP+aGC8E2gS2/xgetrbQzdeW4KT1MhrnBglN1P0w1nOGZucFq+Orupy3mhmf8OPplyR0Pao84wzM3YFaG9eg9sDIGY25o6Tw79cX3r+L5cyXm/2aN+mkCzA3VOcGxtzUgc8Oi38rnjVjW0H+JY+be2pHrnpsIc4MFJ0I/tHHbBra47dQiScj3NlX9R2e6mj+tnbKfGo2GgBhNGOUbovvGgY+2GS7sJkBGwmCFGAN+BXFXshBgq9LgHAXA2BLjFcZeROg2XKfAib5/iX5vZhRNSvRYBtarTLTFZYRKXkAD5Srrt62AvUABDNBF8XO2/n1HNtJ/2yKn3PYDYl/TsknwbsQBBexyoZESzf7x0PO2TmWi+ooxCIWNxIJqlfWqO3bEACLHhZtUrgLDF8jRzvZI1O6seqd+C1mR2GNiVsqjH9Rp6UvezJyW+aLCAHt84m6dmgkzwyY/Ej7b3Wl7Qx4Aq8AJGBhRRgmicJ8B/6a5gO2HSYdlwaFLa0yXHFZ17PN3FyuM8w/dV6XLq8wVW3rYY0QmQBniIQkqmbbsGQtqvX2i3H5rULwAmKbafqrkOt9nvA/Y+myS0x2VQwgPqv1WiUu1byqZTnw841e9Qi2bkAL2HE1ZtsLCfpLXbK/t4xYP+3Pph930hB/iUBV+lfe20h6ETcpBFZXkeGBTjHCM2WyO0edq1VuDW231yu7R23FK133UQofKsPhVA7c+4UlmGaytl+nRMb6JSBkHIMdLcLHHSPMfgy0O8xvFw6JSnTwiPW1X+Asz1IH8Kz02FSaVB6A/9kE0kO8LBn9K+eLWp3iHFAAFbjfANkgw2lDGC93I5ucAPZwACf4Pt2lquButTJKxsJf0W+95uNLY3T454w7NDz9eg9qWuFxXrOiAaWOI64XZmOEhf55IO+cVMHnwxuBmgtu7ediZmABhNvNBtExPb4DBXNwt4boF1K/d3YpWxqtl0YnY8MBqopBY7v5rxR8+Iz97TfW6+OzyhjHVqCcy8p/LXP5ShCXBBoPB1hMF2w13DDbCJGxkMwlnytd+27SlMnT8m5fBHldGiinfzTZShtUwCsMSFQqELWALmN3J+2AhLDZm5fGDJQq5FB/kSXJNrFAJlikq3S0BPUvP8Z4MLVDFekTJncqzJd8yALrtij33HQKxOjy46ypTY4XYGGJIAOqOfD/xrLif35J/J1pMjO1DK8bCHsQMn/HLhU1nelUCDyFDOERuLCpkgM2oxOVZw2cdkXPWIqeiDDU4tNCNXOoPnRfmOyhw9bNqE74oF/WhHnMnBgg6pUOV8l4Q7YaNJA60mpY3ShW7RefkBFlBHGoXqNnxCAYhrUzhAf9G7eEf0AcGuf1lKlpJHPwpruF2wBwkVCx4BFhUJ+OqRmqZ7piKM0mKqde+HsQseOWNOpDZBJsFem2EOYZh2MJYAa/fJYa+FAlF/7yxrr0vXfJa16TZpohvGedpiQn4rRCJCexySUDRjhOKplpHtYnNUZlMzz+6teSn/XEJtPyzL8/V8s9KC3mOyUNOr43jB/Jv8itPrOp18l37SDk/QDj8IA+Qj7DjgnywHQn5Zt6qMu1IyA1QlYkooiSrMhFFlGRVJqKIkqzKRBRRklWZiCJKsioTUURJVmUiiijJqsx5x7Nd6is+++1opcg2z8nZxCh5g4MXnV2hlV/yUPK2hU3/tYKPut/abOW3xkza79qTClT9V8I3+0UKpRqGi1gChxmUl2OZbbX85LDdcSzsD4w/AFtSwnUmUYagW3qfXnJa6CsywEH9kR7UMpNhfuAG8sQIWJEP0C/N74xn2zAmDSVUDcAD/MJeFzRmwbWv08zTRFll/jr5qsmaCcXJtZXsNvZFgNVEW8LtvmKQE4JldTIz4c+FVRVtSURBrNCpjHt2nhMDv3mNae2cff3hhXk8lkWM6hL2/mTmEL8s5aSAiT7Jh3lAaQAnSj1smZsPXHFa4whyXmGTDcOMnHJwqUfWnrGnSoJO3fqrY4uH4XtG/rPufmaVf4yYz/VsTAwiZEIOHp4eoWc+t6E2ewghii7A9wk9EMU2IcHJrhtR5xfX3SFpE9WZqjEZShPIWkKQNJwgDdAzr1vXV45/c+1WVf6QwRKL7Aaq5fM0q382/ek3La3h0RZVd7emZhHJ5zKziFpJSaDTlxOdrrZkYLSVzTE+6xoWYtbks2juyrN+y8MDuzM34pme0IwF3JrUfK621C1JqRflPv2Aha65AR1huwsM058QtrOoDSgBgO2Ifq5OtzTt1Jbnrden/eW3/dL6h5c++felbnZi+VgWt04RFmbF6SaumFZcAOz0dQhWBGqMQQaIc/r5uvIYWDIw09ihGjHo2uibVrf919kf7pTe3bUt1RKJwb1ooAqIDBwSQJiOcMK0W09nV3gKjZ5rNloKDVoabIzAFJqQETt6YNAQdmgbmx0S1T/bpM2YOyEZfstfa9o4udD3oeMkCUJ8nwaxX84WmtfH7yOzPdi5FIkwXpYEL8lU8mjCQepkluiHuzjeELVTXkCsa5YMDJtP9gDX86iYPBWgfsNeL0NVHktD4Zu74HWQ3/L68z436hweEpjdt/WxrxfyhlNDJOwBzBAJv1zYnKOfcytudgvA8wHCY4Oac2vBkuW5vV7VJLb4+3CRpGevT9tzZEp10UbnrLM/4kOoLEfE12Vm/4jrheEzcOsX+cVLdn5pNy8k5tmaC3nAJ48THzB8jFFhYIEVbgzGgWgvoP/o10XNtrNE1V+m4VLapwnN9zX/53f/1L4Od6Mq32pGVRp+P1NpxHXei2uBVs5zauWoSWnl1QFSK3q5LzvM4CXIpITxRTPhBxyy8XvrGj5v4IYDQ7MGlaMqJhS7n6kY4jrfivHyIMwJ3GZkrFdTm4gF/9jrtyBz1mKALSwU8sLwGFz6xtnRs277bvh1waGqX9p1o1EK4Q9AUAoRgpJA5AYnIqfsSb++nc2v58wKftejXdvA8e++ayyO3HxL1TH+iboXw7TXrjCoDlyYFCuPjgVhJTxbKFGrIRuktiqGcP867sLRzmmj3pc5JvHremTAM+2JOlFG9YsXWNWlM/26nhnw6kSogZMnYQS/8AgT/ibIL15mnNPEoHk/gkeVe7bCt3S76tTBxxbYaAUGdv4wu7sKYuiJqtEQNsQw1MtitQ8jRhTe0oRyUAvWA6nx/QHYRgH+Pz+mFKaEDUciSvfnRu2oAte1GGCOKMAgj3W6djLvMPnEFX008cQ2SU9z8JC5SrLnylwptZjvZMM8bKff+VOCo6LU7k7t5E+DKlIZt0MpRKhMQ8qGtHMoiAeAe9KAOxU0OlWd7CSdmYLrtZhE4FS5rhs3YJF9AJbMTkVt3MAcRVYlBN8k6U8QfJPwk+h8k3S+SDrfZJH5JOk3Ivgk2WyTi59cBWyOPvS33h5X87YMlfqPqvFgxsdtn59Q6W+9mbPDu1Byu4iGwTcGPDrrneuf+qjmpRZNirtnAmbHPqhOT1T1wm9AurXSCQSRIxtIRSEJdu+lHLm0bf3AjP1pq6bOrzmsCCTBdJTqZPVSr7l/WjxX2vJQ3X7DrHhAKYsTpWWVGBSAnNUueK8FGBjpABC96p3qw/BHMX0Ycb0kNryxEfMJtdHk5o4hRdjTXf9j9pRO52Mge9qZ0552/M+ekvrJej8mo/L1W2H79p7o5ZSkOsmDPaXTNPFgKSI5LUVAidtTl+jDreetveO3Wv7s36DfN7bgwZ7SNwl4QKkjJ0q/lKQ9pftQo9vTSE572lFrT3eb/JqAPp34KWZrUcrpdZoowXfHe6/YnKtpkTwsCSpV4loSWGshz+WtmK08CbkBitkQHHikqUdw4JHFbAgOPLKYDcGBRxazITjwyGI2BAceWcxGj9AYFWvQKiKHGJ09j4eKtT28KdnagEouGo8kglSRVDI958/QiRmbTui0hTzoZC+bThbuuvv7hAefAnN3bc/dPPAeNRouGyGJlymYvVHYDJubtzAB3lGgQ5cwXqmR4eRCkJ6bi8OWzruIeBVdrJ11VLRKqVBEQo8FL+Yf+Xz1K80Slu9yIUja5E149tcatVdPa1WRzRJadFHLVJAAnPzYur7KxH4KWKsFu+hA4h+pXEN8dxBhwCxHXmomTSVkmyPGpnQ9sSC1IjCgbUSC1Akiq1CJqr88PkQWQ3GA1vjlSNjvtOB1S/x6Z2VCwatUKzw9oJ747ciKJ+wwECNU8NygRo6/lTn5VqgJpZIkBcZLIe0WCW8pS3gRpl4KXMJidQXRkglfEMAuqnKJQgS5oAo4Io1KJonT/o4RE2vvIYbqPpN3y3QWUJ626ujjnwe/vK4il19eUZH0y/tNHnM6varpbo9mcBb2p2sL+w/w5iZtBYZzkwjeXNJNInhzSTeJ4M0l3SSCN5eMhTbvrd/gxNp5gdsuuFqrf6gaF4iFLh+5cbju9JchaUkR1+IOKA4xnCu0+siBRCfj5cG5HmTTpIm2a6eTDhusXfuqylzt2hOYVDI8t2u3c9wx55j8eejKy3+Mbp552BTata+ozNX8Nt04XCjUntOLFy82QLv2ybMHWgalxoUs9Iy8Mv6PU0km0a59Gqd2xpqCdgzSrv2Lol6Ufd0V4m0ql/sdnCKomXRjtWsfyqmcBFNQjsCY7dpnWeckaDZJAha++qt+ysfjVFpiY7drj+FUXk8jcUCZZLv2Iw5dUnu0nRWSHjx+u/uBxEwjt2uP5NRcgNE1B28qsXbtKdXMa6XWig+d5Wd7Ntl+MrWxubHatWMxBGu79gQt2dMhtjj1f6ldO70thpHbtT+rzNWu/Q9mSFsi7doFY/5st/b0Tf+dvef/VV0xaRPv7drp5GY8tCB/UpmrBfkd/WgT9WjX/mlZSo56W+XwTSPzJlb/q48N7+3a6TaCB6z+4MTqjGFtrrHbtR9mM2P/kfAXiYSf3k3IYCT8oipcJPy1q5QECX+3yS6aF+N+8duwdsDlw+e87vN42pxnGwk3TLyrcHGWt6piEBL+7EuP485erO43N/iQ3d5R6u1GJ+F350QFjBuTWTvod/CHPxL+cuOjtzmEXw3IObdqWHR/x54mQ8LvxKk6O+OozuAk/NcedcwNfh8aNG/QxczH/dN3GJmEH7MyrCzqwMoYjIT/kTR1xZUGft4TuyVEmNWtOt0ESPjdOcGpXcWAJPw7nlp0OHiwc8DWQ7uON6/950sToLOACDlxIgTmNBG3HWGL28TeDRv97HDVe+1t16zLS19SG+NYY4f4EpQK4NGZMZsFC84t8lMk8vz7CS4MgLhKmdg/FsRwsMu1MkYvLgd6h0XWt2WyHhQQ6lrbBwKhDRDfPIDvWnqYdBHgO5oZJul5sKpy/muBqwQW6KXTSKnPhu1r/LMtOo65W2kxtadtkXp30UIoumEsZggFaW/XVWHrYpcOxm6GfiGUDT59pbL+Khk6vtxwd2rOj7Nz/dc7BTb5u30mlUuxnC92I+KEFH69JGh/53F+/6lGD5a0I1OPQAm+slwplUdzcNs0/DTTIVtWwTerYURCu3VraGOVfABzrGolJaGM0ZzKGGIa4Y9An4yFR3C8UgPclyQa7p26eXYAS1awsohrLGzaITpWqZI2FjbroB6k0mC/oKPVh+0ddnUc0807883uTR3iKlK39CzhB0RpkhWI/pf5opJQVjynsqQmMXPgo/SKVqvkb3THJ6r6qTlm0PGZHmd6dz4aMGZT5S3dLc2eFmepXNylgydhyOFRz4sMXqim4vWL9YxSCUvOEW0lPpnuvfONW0CW75llgoNfxhp32QsAmEECcAMBADQtekWipCtjJ5loU/bHhr9TN/rldvnFtXXZ7qOMetgXApDIBUDX/tpA8+j/WD0OvTG3wepxGjlw1eN8ZEaWPNfj+LUMn/jcolPw+h6yfhdXnf/DBOpxGjhwZTdrOJhAUcHo0aMNUI8zvM3In3NnrgpettvnSoY476lJ1ONU4dSOtSloxyD1OIsc5z5XXF3qs31L7+9eiScqmUQ9TilO5Xw0TrxkQvU40ac77DwaUs8r2+ehTfXs0k9Nqh7n3ypcyrtv9GDXhOpxXHNXdX9+tZt/6pmv1bf7nqtj5HqcPzk1d8HomivRepwqbQ5sX64cEzjh2eoFLUtPmmAS9ThYDMFaj/NRG6ce+79QjxPQQDPn3pBqPnMGXmqeXSn5iZHrceIcuOpxujkYph6n4t3RMvX1U94rXw1xm77XfSnv9Tj0tTkPNSYDHbhqTCQOJVWPcy5tYTdPj82hG1+2enjuxrVzvNfj0G0ED1h148Qq1LBxqLHrcY6zmbFBB+SN5GHrRDv3hyv+edCDmq+y7pQIz076qyQJscwTpnqkL+r4ytUJ8PSYNpuT7I6fMhVKIGdef/gJaKqc3QeOXskcFprd6qpPXFvHM6zvx8zkFBQyxp9lFDBh4QWPYiFGJf3ck46jUvs0euOk+mJBM0jM5SCC/2jnP2Pri3c0tT9hGyVTAIXJpIHArg8hH4epFVflCTZVOuSl+dq3vSBa3uL+gU0nk3xpLBhoBVbErTtCZwIrXEQ5ZEU4A8bhK76YPOiH5IvA5KFrdFCKRUueICIbTrbIPehNoH6SDfUf47asquRh5rOjp+PCzITQ1YWevrQqeeR1PrFJP73H04nNIs4bLo2ct6Nr5BSbRjJmpiU+D/rkP2+Qg3rh5Ma9qHuifrB4RsOMyFiXl/gNQjXw+ni/y0Q1DHmxXm2xSoUU0jHCksAY7O+wcFgj6a/WKQahH5EsF6KMHiiTam9CvTpzOxe/risNKACzZQVIm+6DKOqDpOoOFRD0SxAiuI5D0C/Bf3T6pbBxtztGnXjmNfbMtlSL1+FX6fRLY7otH3kzoWdA+sGMBY/Sp3Yk5eRh1CLTM9E/GEHPxKZpa8geQKgR3SDgF9cty0vl+c9pmzlgzYTjLYqjLf7p8CGHENRrBVTIcxeEPA0rGKXxpDXs79hHDb5DfP98g5H/O2ZqUjzbRg5HsESx6creL3+2gYBIk6hCB67mS4Q/3/1+WrQs5tahRFf7DE6VmYvwJyG4jglBSShNyKk0B8MqjTTBZiEi3KDCW0Zq5z2mG3KOsgV7tXyJ1tfyeLVMhVXdgY+gGEykrm4OGXpmtjxHvNVm44/h//Ryo+vKPDRRI+mn0BJYCGjJLvipnkx35Vko11cR3RWXUm04lVq6AoPri7OBAjHYZTg/CxI8Ok0K50A3g5aO2aYDu8r3EE/1IOzSQW9Ep3uvJtgQJ1z6aTaX3un+nXBzxXn/Zbv3lx65o+Z4aq1sVKw8RiOEfWWpbh36K7ae1s7hMTFwKSJRKIj2q3LYOA+Sd3sgAaY3HGR7BUS8pOu2FBgZ1bTEFIxtqcZiwZdit6i2xbrvgrmphi+M/KKDlrx/8mfcr+IZ/1Tu1D97C5U5xYzlKxYaEtKbrhdzjsElvCPE6qAXYo6lAml5O/2qxnANKrFRgcSlXd8qZeznx4dtiC33rKn12fOMLeUY3YAp5nyC39yM85t/MWyDaZbtZGwE6pFjs4Y8Q1zUU/vXVa6mGG/lN6HsnX+fK7pS96AwliJDwf+qPBf8j4wDP6NCrLiNuvEZAaudwTdBaoTecbeIlqK4u/nuBUwBw8H0dccmBOFgzrA5GL35fNy02it5Pp99r1RmbYZdDNiWNzl86Lw6wgJ8PvbdLLw7HdsSuLzCfIexaxT3C/D5HEnaePN0mwuBGfIbz9KjA5sW4PM5cn/AzF6LVMG7F763rDW0+e0CfD4f7q1ZtVM1yGtukG1Mlb72xwvw+SA6/5LchojOv2SjXkTnXwtCNN6yddDuES5hGaP2p9xv/8QaiCwJ0Yvdf6Yk+P4RtHVKyC53txajgciKEN2YNS9z56tIr4WrVszvOazlr0BkTYgs6tzrduRaj+Adw2ZpElN2iYDIhhC1G2XTWLr3N9/UC2dkDTY92ANEtoTocamINd8iHwdtq3tt/qAtlb2BqDyJxq+WXQaED/Za+KNn18i/tswBIjtC5H60q8PH8Vd8lt++1nXmbok/EFUgRKWGmYeWFgp8l+bVyXs049gKIKpIiEq39o85+o+n174/qtmOHdp4PBDZE6Idw2zaZJ2/673taPiKpQ+b9wWiSoRolEfYvsjfvgVmp95+17nCnllAVJkQJQVVl5facTz4wLWuj+0+/WUDRFUErDRQDoRo26Y/GwtU4IGPdzpPfhpzHYiqEqIBQ5+VTn6TFzj97rpPQ1XPdgGRIyEanej0+8KnYwM2lorWZH5O9gQiJ0I0Y8wRm07vr4YvvbSwzPT6jYYDUTVC5Lv9nMDsZbvwCZ5vnA9fPVgHiJwJkV/a8xsTv24MGuXlq259cDHUcnVC1PbavDyXR99Cd4iXJQeVKQd5pVwIUdU6G+6LSqn9dvipKu2xd4kGIldCVL/+njeLNv0jmvPyydzfJpaXA1ENQtQh9bIyya+e17bhz0bd6j4fEoQKCVGt0dt7fv7pGH7g99sfJ7kHLWQQVdUUsBBVtXm8YnDzNWu8dk9bf33Zng8ZPBBVnWUzUVVidm9aeOyUePGGvKFnqg+jfpa5eEiCQilFnL5gC4DrEXcIyfOyWJs6dRwIiIERIjoA6njcgm6gkK/GXFUTAl0XEm5iwemqkDYYlTmMAOHxtqr6NdDMP42Kvwi6/17F6LAzbToGrz357Ppc/4lTeTyMynOCEDb4OVmVrR7aEaxK91fVKyZuESkDQwOre5LKYIsjpVqOHT8B7ydXYEsncpwIJSp44loZJ49Gonj6SbxTG8v5QTMDT2yYP6L8XGr5uPZzmOXj+SK+4wYI1zZOuNZVNYlIjnnUUc9Izp2YaNJ8dWliJRphnGSgTAgCEG0La/Y6c0G98dcmdBjks+binO2XHnfpQas0JB6LqDQkJXxrr4I7Mdh9kcX/HthgZ1Sb6wlcTfJQFFnwJ6MDiQRrYVJwjZYVDgRPsthjHRTQi7pSLNIRLB7A2sYJFhjqhP85x+Z//mNuKBJzAz1CNxhzg4sjF3PDd/18pY7MDZqXLWZPenjDa+3t/hd+ez59Co/Okm6BeGBucHbkOuhe0dEgzA21Iu13ZTVYJVp056/WZg9aLzM6c4M5JyrfjeMTdagyLWyDiT/mBo9zDy5ezzgjnqdssKr0kZUbTYa54W1VLtU9MdVwhmfmhpFL4+++W9jXf/WqDr2mPrl+1sjMDZiVYT16D6yMwZgbZja+Xcba83hoVtOKF71m1qUWRRuHucGcE5zvVQ3I3PCzS+7PHt+3+c4NWDbAcuk/VApH4zE3YHOaFaEn2rjtPFvcdmqRJOR7m6r+ozNdzZ/WTtlPjUZDQIwmjPIN0X3jwEfbDBd2EyAjYbBCjAG/grgrWQiwVWlwjgJgbInxCmMvInQbrlPgRN+/RL83M4omJXosAyvWINriMkIlL6CB1676bStgL1AAA/QBhRcJs3z7eXgtcw106nAl+AotmwTvRhxQwC4XFinR7R8PPW/tahDVV4xBKGwkFpStoVfdsSMGEDku3KRyFRi+QI52tuqmc8edvPQmbMqsEcp/RzboQJ2WvuTNzGmZLyoMsEBFwJM+eS2CpytOBXUbeaYKD4B9deUCDIwoowRRuM+Af9NcwPbDpMOy4NClNaZLLp9zbMGDjI4fvHJa1n32T6JdRXuMyAQoQzwkQSXTlj1jQa23T5Tbbw2KFwDTVHvszc88396d/PbXvzXz88iWbXlQ7T+cqr1lJNWi4uMZv+oVatmEFLDnSGW2n7puTZtpvwZla55mj+gn9KIn/BCHqvCrvLeV9iBsUg6qqCTHA5tihGO8wOYYfa5WvTW41Vav7B69Had03Udtq1QZFr9q4NYnPMksg7X1Mj06xjcRKeMA5HgJLvYYaf5jsMVhfqN4WFSqm0ekpe0Kf2GGOpB/pcemgsYJgP7YB9FAvi8Y/DFOxa1P8Q4pAArcboBtkGC0oYwXupHNzwF6OAES/B9u09RwN1qZJGNhL1nTQ1m+ljAzdMua5n9IxGOoh9jLdcWKDpg2hrhemI3xWXA+YcMRK68tjlunD/xtcQ0ediZUEGYzH0TL9PQGGMzF3RKuW0D92t2taGW8WhadiA0PrCYKXaa35uGtmV/8QxaN6jr7+YPxi6gnMvKfy1z+UoQlwQaDwdYTBdsNdww2wiRcZDMJZ8rXftu0pTJ0/JuXwR5XRoop3802UobVMArDEhUKhC1gC5jdyftgISw2ZuXxgyUKuRQf5ElyTaxQCZYpKt0tAT1Lz/GeDC1QxXpEye2d2JJvGQDdesWe+w6BWB0e3HWVqbFCbAwxJAAX1p2Z+SKvrO/Wjh367Dp3cic1fMYexAyf8cuFTWd6VQIPIUNbiNxYVMgAm1F5OrGGzzoi56xFTkUZanBoIeF7s6HBxHmfx4euu73bZfA6iS31mDsxQNApHaqU94JoN2wkcaBV3ckoVewWnZMTZAVxqF2gZscjGIS0MoUH/Bu1h39AHxjk9pepaCVx8Ke4htsBc5BQseARYFGdjKsaqWW6YyrOJCmmXvt6ELPglTfqQGYTbBbotRHmGIZhC2MFvH6XGPpSJBTO8sHVrmc8982de/v+rKjNrWiJCfitEIkJ7HJJQFGPE4rqWkd1ic1RmUzPP7q15Kf9cQm0/PvuyNXy770jCfllk4ecXhvHD+RW/T9crbspPnj+9jBxjXc5r3mAXF6NC3JJNRLyK7xVZdqRkBugKhNRRElWZSKKKMmqTEQRJVmViSiiJKsyEUWUZFUmooiSrMpEFFGSVZmDfIKH9anVKWjGrsEXUrzzTjNK3uDgRY4+evklDyVvV9n0Xyv4qPutzVZ+a8yk/a49qUDVfyV8s1+kUKphuIglcJhBeTmW2VbLTw7bHcfC/sD4A7AlJVxnEmUIuqX36SWnhb4iAxzUH+lBLZMI7doN5IkRsCLv4qjX3rUznm3DmDSUUDUAD/ALe13Q5dvjUyza2/hOSHi9z325x7ji5NpKdhv7IsBK7Ui43VcMckKwrJYyE/5cWFXRlkQUxAqJ0vwydx4G74jyXvJ1xIut5l9r8VgWMapL2PuTmUP8spSTAib6JB/mAaUunCj5OTI3H7jitMYR5LzCJhuGGTnl4FKPrD1jT5XEttl8xu33H2Gj1mT8UaPX5AFGzOd6NiYGETIhBw9Py/XM5zbUZg8hRNEF+D6hB6LYJiQ4g73u3K4R+EycFRjze8iFqoEmkLWEIPXhBKmLo3553bq+cvyba7eq8ocMllhkN1DRN34mnrhfx3fcL23XNzxmMYmaRSSfy8wiaiUlgU4wJzre2lj0DzbH+KxrWIhZk8+iuSvP+i0PD+zO3IhnekIzFnBrUvO52lK3JKVelPv0Axa65gZ0hO0uMExHIWxnURtQAgDbRv1cnW5pWqccv1NXhRkh8wbfTWmyaiQ1OWWN5WNZ3DpFWJgVp5u4YlpxAbDThyFYEagxBhkgdunn68pjYMnATGOH6pXzZOmr5bUCNqY6XXreffpWqiUSg3vRQBUQGTgkgDBt5IRplZ7OrvAUGj3XbLQUGrQ02BiBKTQhI3b0wKAh7NA1Njskqn+2SZsxd0Iy/Ja/1rRxcqHvQ8dJEoT4Pg1iv5wtNK+P30dme7BzKRJhvCwJXpKp5NGEg9TJLNEPd3G8IWqnvIBY1ywZpOJ0AbieR8XkqQD1Iy56GaryWBoK39wFr4P8lqunTJ3RfNiegO3iMrvvJEf+Qg2RsAcwQyT8cmFzjn7OrbjZLQDPPQiPDWrOrQVLlusuelWT2OLvw0WSfrjUwx5tdnf2Wv7VfLP1T1EwNfuH38/M/hHXC8PHcm3nSy+tA0J2NKx9VhK01oEHfM5x4gOGjzEqDCywwo3BOBDtBfQf/bqo2XaWqPrLNFxKe/DlVd9SJ7aGTG0Z1T7r+K2WVKXh9zOVRlznvbgWaGU3p1Y2mZRWXh0gtaKX+7LDDF6CTEoYX6RiRk9pFTnk6J3QnPseT2taNaVuypQLxe5nKoa4zrdivDwIcwK3GRnr1dQmYsFlF/0WZM5aDLCFhUJeGB53S5V+vfPjbv8D3qUa141OoW7HmovwByAohQhBSSByhBORbS6kX7/O5tdzZgW/69GubeD4d981FkduvqXqGP9E3Yth2mtXGFQHLkyKlUfHgrASni2UqNWQDVJbFUO4f90WH/Rz2qj3ZY5J/LoeGfCZLkSdKKP6xQus6sYw/bqeGfDqRKiBkydhBL/wCBP+Juj+L5Wm+ndodjZ4q6TnhMb7T0qog48tsNEKDOz8YXZ3OsTQE1WjIWyIYaiXxWofRowovKUJ5aAWrAdS4/sDsI0C/H9+TClMCRuORJTuz43aUQWuazHAHFGAQR7rMdrJfMPkE1f00cQT2yQ9zcFD5qqfC1fmqrsW8z/ZMA/b6Xf+lOCoKLW7Uzv506CKVMbtUAoRKtOQsiHtHAriAeCeNOBOBY1OVSc7SWem4HotJhE4Va7rxg1YZK+DJbNTURs3MEcxxxXBN0n6EwTfJPwkOt8knS+SzjdZZD5J+o0IPkk22+TiJ1cBm6MP/a0kIMvzVD9FQG61hv6hknZpVPpbb+bs8C6U3G7Ahb/e/1bK02tmqXnz2wzq0by4eyZgdqyF6vREVS/8BqRLXU8giBzZQCoKSfDpnts2VLicK06/ntw5YfA/kUUgCaajFDVm9ZZTT2RhWYL4/9fed4A1kbz/R+UUROwiiiVYQWkWLNgSktCLgl1PjRAgGggm4RDLiR0LdhSxYsXeez17O8/ezga2s+t5nuVO/c9sCezu7JKYJcn9/l+ex+eRHXaz+bwz7/vOzGc+7+fYwHkNeEBpDidKk+swJAA52S54rQWYGBkAEJ31To1h+KOYMYy4XhwL3liP+YhaaHL1wJAi/Omt/5g/pcv5mMmfduL0p27/86ekfVqNPbK3xM8h0i17j37o/qy7nAd/Spdp4sFTdOD0FC2K3Z9e+Xlqm6MDEkN2VW/Z9tCDO1E8+FP6IgEPKLlxolS3OP0pPYZa3J924PSnbnp/+rvVzwnow4kfMptPiRpvMyRJ0p3vRfGbr2RE8jAl+Mo5JfhbPyW4zRuZrTwJuRnIbAgNPD2ZjamBR5LZEBp4JJkNoYFHktkQGngkmQ2hgUeS2egZGoOxBr0isovR1fN4YKzd4c3I9mY08vfpSCJEFUkj0/f8GTaxYbMJXbaQB5vcZbNJ9u77vSY+/Bi0d/eOvVsG51HP+f3QWZ6oUDFro7A5NlexMAneUahClzBRrVPg4kJQnptLw5auu4h4FUO8nX1UtEatUkXCiAUvFhz5fNOJ5gmXDwvLm/D6YNie7gtkqVKHoWye0LabVqGBAuDkxzaUqpMHqiBXC1bRgcI/MUod8d1BhgF3OfLTVtFMQpY5YixKN5IJlLWAA20rEaRNlJQNk2vilImhilhKALTHL0fCeqeFr9vh17uqkwpfpXrhxWGNZGvia52sgIHYWQPPDeqU+FuVId8KNaA08pSgxBgou0XCW8IOXoRbL4UuYbm6iijJhE8IYBVVpVwlgVpQhQKRTqOQJ+h/x4SJ9fcQXfWe1YdlugooT0t19P7PQ1zOrMUVlzNqkXH5vtVjTpdXtd7l0SmcxP6xemJ/Hm9h0kFgvjCJ0M0lwyRCN5cMkwjdXDJMInRzyVzo16wvo5ef/lE0IeHln/8u8x9VKBfq/PhtxSUZZf3Hbpxwok+Xh8mM4Aq9PrIj0cV4eQiu+WyWtNJy7XTRYbOVa59el6tce5+6xV2u/axuV1humWjZiuA7+4Lm/EKdT1mmXHtGXa7it2PrWkHN6Tlz5pihXPugU5lN+v1aOWDL+tWb03p+yLKKcu2pnNZRW4N1zFKu/cyr30rOq+0syvj6S7L8QA2qtomlyrUrOI3TxxqMI7BkufYmuS/nRO+RBh/qMse2RuiBa1ZVrr0Lp/ECLGM86yzX3mnvH99yAhcHLbFTNSy14PUPFi7X3oHTci0sbjl4U7GVa19c3jdIeGhFUO7jbWPKvOr4j1WUa8dyCNZy7cAREnnqA7Y89b9Urp1eFsPC5dqv1eUq136YmdIWS7l2x6itNkp3t4B1H/IWXfjWbxjv5drp4mY8lCC/UperBPkZ42QTjSjXrgs9Nn5Nyl7Jtujl3eSj1lYzfQjTsKL7CB6wOsyJ1U7z+lxLl2t/yObG/ifC/10i/PRqQmYT4fcUconwlxcWhwj/jr13pt37PEKac32/f99zrcrweNqcZx8JF0zchVya5fWEZhHhbzE5rOPBHVUjVvnMHTFiYnmpxUX4nThRAf3GauYOxh384U+Ef67mceUyO9oETB1QO1lXoxpVDNOSIvw2nKb7bJnJg9lF+Ct11NWw26+TrO4//d2Mbw9OWliEH/MyrCrqwMuYTYT/zrJFg22rLQ46cLrryvanX/awAhF+J05wygvNKMI/613z+allO4QtbBbSsO7ov0dbgZwFRMiGE6HP+unnI7a8TSZu0vRbhyvi3Lt11lxa/JrKILPHDvElqVUgojNzNlsWnH0KtkiUBfcTWhgAcY06OS4e5HCwyrU61igtB3qFRda3ZaoeFGo0lNsHEqF5EN98gG8uPU26APBNYKZJRh6sqlrwWuAqgQVabt7dt1XuyZzQdPnZRgsWLVhteu0uWgpFd4wmplBQ9jZTyFbFLgv03SnGpVDl8OEbo4jTKND55YWZ9e847H8qnjW3lniq+6HFtBNS2I2IE1L49eKQ/R3N+f1TLJ4s6XumEYkSfGWlOkYZzaFt03v952/xrSLEmZtOPzj0PrQCta+SD2D2VX1LcRgjgdMY0ZYxBqM4tjE7Fp4hiWodCF/yaLh26urdAUxZwcwiwV3YrEN0vFoT4y5s3kE7RKPDfkFnq2UOJ8S4yz9J1/dfvLOyTx51S94OfkCULlWFqH9Z0FQcxurFaawIqxg58FFGZavVCha6E5M1A7UcI+i3rEqHHNXVAlfWHTTm0r6026ZMlU2dOngTjhwe9bzA0IVqJls30cgslfDkHNnWeZHio6bLlpB9NXzC7j3Zvduy014AwHASgBsIAKBrMSoTJUMZu8hEpQcnQh2yu4fMqVN1R0X5w88WPewLARjABUD3SCGZaD7+j/Fx6IW5zcbHcXTh4uPkMzNLnvk4P7wRu/YWZgVlNvll/Z17zj9aAR+nqgvX7mZZFysgFQwbNswMfJz7i0fGfUlJEM1b1apf1WWvHlsFH0fAaZ2/LROSLcDHGX3MRRLfor7/vsqTfq3p/TzAKvg4L4Rcxsm3BuMILMnHGRuond934enQBYcazbk39PRGq+Lj3OA03nmLJ7tWxMdxmDeyjueR68FTSj1M901Y/NLCfJxjnJbba3HLFSsfZ+t2cZ1Fi7witm/rfT/zanCiVfBxsByClY+Tr89Tn/xf4ON0SLukTvFvJNo+8vnoO73nnbQwH6enCxcfx8/FPHycdm6p70okXg9Li+nW8p8OK1bxzsehz8154Jh0d+HimIS6FBcf51SfN5fHu5+SZoV6PLSvdzWBdz4O3UfwgJUfJ1ZtzDtLsDQf5w82NzbkkLKpMnytZNfBCNWTh31eU3dKuiTDs5MBGnlSPPOEqRHbFw2kSm0SPD2m381J9cBPmQrlUDMvDn4CsufVG7Oj76dvThGHet39MMkjOJv1/Zg7OYUbGf3PLgq4sIjCR7EQvZJ+7snAXql/Gr1wUmOZwBmewneUwH+0858JjWWqmrVPOkQpVMBgipgg4NeHko/DzIqb8imbKR3zM6SVfX+T5Pg8OLTpVAqVA1LCD23ASrh3R9hMUBZvohyyIoIB4/AVX0oe9EPy36HkYWh2UILFSt4gI4snS+QeFhOoP2ND/ev4rSuqeNr47ezrlL0qKWxlkacvyxY/8gaf2KSf3uPpxOZ3jhsui+ypSbfIczaLLJ2Zkfwi+GPA3CGO2uzJ7tQVq9L+kDyjY2ZkrNNL/AahFkR9vN5lshamvFittni1KgbKMUJKYCz2d1g6rJPHaQ3KQehHJEuHqqMHK2L0N6Fenbmci183VAYUgOniDGXT/RCkPiiqXsIZIb8EIYLzOIT8EvxHl18KH3+3Y9TJ56JxZ7en2b6NuEKXXxrbI2fUraS+gVmHl85/nDW1I9lOHkb9bnkm+gcj5JnYLG0P1QMIM6Kr4OTUnVEy5YZko2v8+z13oxuaYi3+5fChhhC0a0VUynMfpDzVnC1SeNIe1nfsrwXfITGuwGEU/I65muHevpEjESpRbLaq7F8w2kBCpEvWoBPXTe5l4xbcXOu3b+Sti9USKgk5TVZGgj8JoXVMNBSH0ew5jVbCvEYjXbBNqAR3qPCWUfpxj9mGHKNsyV49KVH6WpmoVWgw1h34CIrDRNqq+4OPpUuvGRsybvO2IStyBp2l26pMWLJOPlClF7AQ0Da74Kd6M8OVd9FaX98XrriM+qEml1Ff1mRofXEWUCA6uwLXZ0GCR5dJ4ezoNtDTMct0YFf57uJpnoRfOixGVLoXeWFdnAjpL9hCepcH9yLKqM4HLNlzsOSonS5UmcKyUfHKWJ0Q1pWlhnUYr9hqWjtHxMbCqYhcpSLKryph4Two3u2JBJhecJDtFRD5kqHLUqBn/KAXpmAsS7nLBI9MLlHtgFXfBWNTC18Yze88OezZssyTouzhvzlGeYZTC6LasHzFIlNCetF1E8cYnMKXglgdFiHGWBpo/cQsSs3JGsMtqMZ6Bbps/OnlLYbN/lOyfcXChsuVv8gZS8qxhgFj4niC3/x1Da5v/si8BaZZlpOxHmjEHps91Bnikp6aX99x9PmX6f5zxr6qfSqjRTi1X8K7zQX/75zwX7QM/AyGmKmFuvERAdnO4JsgLUKvuPudnsLU1XyPQq6AEWAGeGADgggwL9kCjNF6Pq566xW/nk+1C15uS367Jt5w62SDw68yTxbS82nz9/wBlcUDxQtVnyQfor2fFtLz8f318qUDtZaKp8/u9fHD8V1XC+n5aO5fWRRzZJV0b6lb5+bmTf+hkJ7P4S+21/P2Hgg8FP1HWNjN+NeF9HwQlX9JbUNE5V+yUC+i8q8t0bR2ecOb5dpHBky2T9joWdXxD9BkRzS1fT912IOnR8Rjex/7fMNmYSnQVJZomtH5icvlKc+Dt/YK//K207vjoMmeaKoT3Gj7o9lf/TPaN9F+WenwGDSVI5ruZI2rvLhNp4Cc4EHHatUSaECTAwlUdLtR7Vut8h+7eciPV39dMQQ0lSeahPkrjiydVFa2YXtnZfOd0lTQVIFomiyqV9atdV3/nVuvPSnhnuoDmioSTZ0zjxyt8c/twC1dfEf3aDGyLmiqRDQdcPiYdUQxSTR1uM2pCs77oJJSZaIpLv7RIGFgxaC0z48rBNp1jwNNVYim3Mp5fzdtPFmUVjMvb8LpAPjAqkTTuiyfRUt73Azd9VOO//aHmmGgqZqAVQbKkWj6dMJxxOnDa6TLs2Y0zPQ90go0VSea5M/bdnX3DfHPqnenyqV5YRdAkxPR9C1p7DEXT1/pBoldpf0N4kSgqQbR5F7F72RHySq/qQ62Zb78/Pg5aKpJNJ2fVHnHrarRflOWJ/3aaU7z7qDJmWgq1bR1hODWyLBt3qVaVp6vgXqOtYimzNzP55r4lgo52HbYpN5XtiwCTbXJDvDL7K+nmjuFb3mw+06t684hoKkO0ZRxKqRDxQfr/KcvCppcteWLw6CpLtHU5W25xiEuGtF0ryORzd5JaoMmIdHUatvutXZRQUGLVh0vfTSvjC1DqMpFwCJU1a7WlWqPlzmErsxyvv6o94FohNswVqjqFZuLqha7Z1P28dOyhevzh52tNWIpdeoqG5qkUscgTl+wJcCNiDuE5HlZrEydNgEkxMAJERUADTxuQXdQyFdjzqqJBkMnEpBbVB/KBqN2DjuD9PhZPeMKaBacRsVfBPndBtyZ3l738qfwdcdruMyUBOfweBiV5w1CWODnaz02PrQTmJX+Vc+onNgnUgG6BsZ7ilHAEkdqrRI7fgLeT6nCpk5kPxHKNfDEtTpBGY1W6N7gVGpITfuIvdfKLeq+f0I3Kn1c/zlM+nhBE995A4TrGSdc9+tZRSbHPOpoZCbnQQy0mAJz6eLlOmGCfLBCCBIQfQlrdp7514ODf6pVK0IyR3D5eNcOKzrSmIbEYxFMQ7KFb+tV9CA6uxRJ/vfEOjuDbW4kcC7koSiS8KegA4kES1O9+5qoe+OkM6eKe7wS+Hcw/QgWD2A94wQLdHUi/rxmiz//U274LuUGeoZuNuWGqPpcyg0t6heHcoPH9uNJzV+mB65tUrX7qJnzVvMYLOkeiAflhi71uQ66B9Q3i3LDxFGzkjdF7AqY2yat+76ut89bXLmhAycqoN9YKcu0qAUm/pQbTq/Vldj6rqPf7EEbr5bbvv+q1Sg3uHGarq5lTGd25YZnVWs8Kz/pbliu/4mnJyvOcrWwcgPmZViP3gMvYzblBo3vT60nVEz1n6RctfyXh9VpM0iLKDd04ASnRX0zKjck7559I0h9JnjM2qObzvfofd9KlBvcOBECY5rI296w5W2nF8hDv7StHjBmVZ0yz+oPP0jNRkNBjiaMkoYavnDgpy+GC6sJkJkwmCHGgl9B3pUqBNhqdLhGAXC2RH+FuReRuo00TPKKtn6Jfm9mFk22GDENDGhClMVlpEoiYIHGTYxbVsBeoBAGyG/XWhIdPOPLv9Kx56tf+fevlrRMKQrejTiggF0uKlOi+z8eat7KmhDsK0YnFDaVCdo1MYp37IQBRPYL1xilBnRf0I4Otp0vR5Y6cLW0KH3PEv8uuUpqxU87KXkzc1gWNBUF2KCaG9vUue8sXe0olDfpc13JA2DNOAEDPcoiSRQeM+DftBCw/TDlsGw5bGmP2ZLDq049duzErIvDpVvjrvU/on2ZXRkTMgHGkA1N0ij0tGcsqRX7Rbn2dDMtAaaXxezcutKAk38Epo9Ndzt/f3JPHkxbm9O0VSxkWlR+PKOTUalWudBC/hzNzn02tezAiPf+m+bVezf7Qbe69A0/xKEq/CrvZaU9CZ+0GUUq2eyJDTEiML5lC4x+V6rf+an1NtGGPv2cpnQ/QC2rVBWSX3Vw6ROeZFZAbr3CiIrxXhJ1AoAcp+Bij4kpeAw2OSwoFA9JpQZFRPq2XdEvzDAH8q+MWFRY2wCA/ocfooD8AND5FzYwlZ8iDi0EClxugGWQYLahThS6ksXPAXq4ABL8H+7TtHA1Wp2iYFEvGXjb6+ajzLXSbd297AYpdyuoPqY7Rjpg+hjielE+5kfJgAUe+Q1Fc3U5XScM6LGTh5WJXAizjR+iZHqWGwazqUvCDQuZX7+6Fa1O1Cqik7HugXGikFgmDtRdrDd4qv+qj0133Xz+1Yl6IqPguczpL6WxONRgMNj6omC74YHBRriEP9lcwtny9d81a6UOm/Dn6xDPy6NklO/mEKnAOIzC8GSVCuEL2BJmD/I+SITF+qwy8Se5ShmDd/IUpS5eqAbTFI3hnoC+S8/xngwrUJuNyJI1Ddg235YCdPuaPPYdgzAeHlx1VWgxIjaGGBKA/DsjNz6vdEuc1uf6im+jGx6lps/Yg5jpM365qOFMZyXwkDIkQeTGoVIGWIwqtgFr+mwgcs565DSUrga7FhK+RWfHDPlg8ygwd3BtRWKXWuupx9yJDoLe0qG28k6IdsV6EgdakQ0swmK37ZqapCiMQ/1CnB3PEJDSKlSe8G+0ngGB/WGSG6fQ0Chx8MdUx+2IBUhoWPAIMKlOxU2NtDI9MJkySEy06wBPYhS8EaMOZHpho8CohTCncAxbmCvg/F2i68cgoSg1usn54acOBaw9UHFa0MxRNH+BfSvExgR2uTig6MsJRaQ+UL1jC1RWU/OP7i35KX9cDCX/WjTgKvnXVA/5X1YPOZ0bxw/kwo7/hFVqPlOa4bjJvfy+yGU8QL6kIRfk8xqSkL/njZVZgYTcDKxMBImSZGUiSJQkKxNBoiRZmQgSJcnKRJAoSVYmgkRJsjIRJEqSlfnRpuq7NiNOBqzoX72EvPOTXxmUN9h50bUZafRLHihvf7PZv17IMY87W8r6r7aJGXjtaUWq/avgi/0SlVoL00VsA4eZlJdmGW31/JWw3HE8rA+MPwCbUsJ5JkFDMGx7n045LfIVGeCg/sgIaZl1cH/gBvLECJiRTzFum98Z323DlDTU0DQAD/ALOy+oSZ9Xv/9+t1LgpoVDv9Wc8Lu/KXttxbuMfQFgtaY+EXbfMMQJwbQ6m7nhz4VVNT0lojBW6CM1ru6bHn5sGDyz1+H8ms+1Oh5pEaO7hb8/tWqo/xr1pMB0v9QjPKA0hROlEfWZiw9ceZp7Z3JcYYMNw4wccnCqR3LP2LdK/PtEryjzT6Bsoa3P5DGK0akW3M/1dic6EXJDDh6eXmLkfm4T/e4hhCi6kN4njEAU34ReCfipScSpkhGy9TcTJzU+8/K0FexaQpAyOUGaYuS+bkOpEv/m+qWqgi6DbSyyOyinIUpb+waPQhdUdPonZ+CHmtRdRPK5zF1EfUtxoDOaE50U/Z7uB7bA+Lx7eKiN1ydJ5vJz/jkRQb2ZC/HMSGjDAq4LdT9XT3VLURsluU8/YGHo3oCBsN0HjukzhO0cagFKAGB7aFyoM2yb9kXZmnvTs5cE71hTLuXx62etqYud2H4sS1inNBblxekuzkQvLgB++iMEqzOqj0EFiFfGxbryGFgKMNLYodox4ty1J6kLAtdOSNj+h88HatE/Oxm4Fw1UoSYzpwQQpoecMN0yMtgVvYVG32u22BYa9DRYH4FbaEJG7uiJQUP4oY9sfkjS+JxX27H3Qpf657zVta1Rm74OnSBPEuLrNIj1crbUvDF+H7nbg51LkQsTFSnwkkKjjCYCpGEsEtrhLo43RK2UF2o2dJcMdJsabgDX86icPA2g/snVKEdVHtuGwhd3wesgv2Wz/c98VXYTAja9qzs0aOvVxtQUCXsAM0XCLxc15ujn3Ezd3QLwVIfwlEONuVwwZXFwM4pN4oC/D5dIenhq/7Zfu3QIXve055jWL25QJynE12Xu/hHXizzY3vbLCbfU2qEbN0W//Hd8tR484FOKEx/QfSzBMLDFiBs/4UC0F9B/jKui5tBVrolT6LiMdqrkodEtf+ktnn1i+LeG73+hHq0rjd/PNBpxnXdyLbDKa1cuqzyyKqu8OURaxajwVQFzeEmKGML5omsuDIkKUvgPCBodLp7fo+aCO1TDhGH3Mw1DXOfbMCJPwp3AZUbGfDXNSyawdTNuQuasxwCbWKiUReExr1+Xf6ShHcKXCZfXWvb3uAE0SSH8AQhJIaKhOBD55MqFyDNXMq5/Yovrm2eF/NWnnW/QhL++6GyP3npHtTH+iYaTYdrrZxjUAC5MiVdGx4O0Ep4tlGu1UA1Sz4ohwr9hkw/6OW3U+zL7JH7diB3wk64ET5TBfhGBWd0eZlw3cge8FpFq4OJJmMAvPMKEvwnyi/89511K/r9fgnPnP3TN+9CcSp4rw5bY6BvMHPzh7u5xiKE3iqMhbIJhaJTHah9O9Ci8pAnloBbkA2nx9QFYRgH+vyCnFA4PH4mWeaHFc4tWVIHzWgwwJxRgUMd6j34wf7b6jSt6b+JJbZK+zcHDzlWWK9fO1Qw95v+wYR6+y//8acExSVrvGu2Uz4IrURW3wyhCqExHyoa0cxjIB0B40oE7VTQ5VcP0JmnKFFyvxRQCp7YbunADJtn3YYSeilq4gXsUZ9wQepNkPEHoTcJPoutN0vUi6XqT360nSb8RoSfJ5ptq+ys1wOcYI3+7Vvbr+dGbnwbOern1H822mNlU+Vsxc3SIixS3m3E6qmLJR0sCN946IWs+doap5yYFYHTcheb0RrEXeoLWK24nEUKObCB9j0hwcvoYUf6GuuJ5h2bNGW67ptV3iATTUdr1rvryP8Y/8z+0ZveHciuPmko4gCid4UTpsBtDApCT7YLXWoCJkSEqyjTWOzWG4Y9ixjDienEseGM95iNqocnVA0OK8Kf//sf8KV3Ox0z+NJnTn/b/nz8l7TO/jyLygc160Yrb/V+d67pkBw/+lC7TxIOn0HJ6CmWx+9MD2x/77q3ZPXh2aP6GtKWDXvDgT+mLBDyg1J8TpW7F6U/pMdTi/lTL6U/76/3pF6ufE9CHEz9kNp8SNd5mSJKkO9+L4jdfyYjkYUrQ0o1rSuCuh/wrb2S28iTkZiCzITTwSFeP0MAjyWwIDTySzIbQwCPJbAgNPJLMhtDAI8ls9AyNwViDXhHZxejqeTww1r7xZmR7Mxr5+3QkEaKKpJHpe/4Mm9iw2YQuW8iDTaBBkDbJ3n2/18SHH4P27t6xd8vgPOo5vx86yxMVKmZtFDbH5ioWJsE7ClXoEiaqdQpcXAjKc3Np2NJ1FxGvYoi3s4+K1qhVqkgYseDFgiOfbzrRPOFC5/mZVfuMDMgsOaFq0CzX02ye0LabVqGBAuDkxzaUqpMHqiBXC1bRgcI/MUod8d1BhgF3OfLTVtFMQpY5YixKN5IJFjYGDrStRJA2UVI2TK6JUyaGKmIpAdAevxwJ650Wvm6HX++qTip8leqFuwc3krVY0PhkBQzEzhp4blCnxN+qDPlWqAGlkacEJcZA2S0S3hJ28CLceil0CcvVVURJJnxCAKuoKuUqCdSCKhSIdBqFPEH/OyZMrL+H6Kol2Lqq1YRlugooT0t19P7PQ1w+25grLh9tTMblklaPOV1e1XqXR3/hJPbv0RP7S7FhbnSYdBCYL0widHPJMInQzSXDJEI3lwyTCN1cMhca13LewioPZkhXp7VfHzPuz6OFcqHr67ofGPhbvfDlaSmyLldSchnBFXp9ZEeii/HyEFxt2CxppeXa6aLDZivXfrwJV7n2mUwpGZ7LtV/R7R3yXpovOTRl7pQnj13eWEG59qNNuIrf7rGMYAa15vTUqVPNUK790Z8ZlcqGT/fbFRe0ebsulbpaaKly7Zs4rbPSGqxjlnLt0ZVqf+sQ0k4y/Vqb4KNtQqkrzJYq176A0zgzrcE4AkuWa690tdTzXncHB8+LaN2u0qHuZayqXPtETuONtCKhIIuXa59WL91jjLSC/77Kl/8asFMxwsLl2rWcllNa3HLwpmIr117m0645sXfV4uWjsj8Kl316bxXl2rEcgrVc+0y92NMPbHnqf6lcO70shoXLtZdrylWu/W9mSlss5doHRd0eHD5/acBi5Y9Pl/24kyYHyUO5drq4GQ8lyMs25SpBLmhaXOXan+8Xl/zX72LY+vP9R3SZ+uoE7+Xa6T6CB6z+bsKF1Qvz+lxLl2svzebG/ifC/10i/PRqQmYT4Y9pyiXCL21aHCL8z/9K3H3gpVPQglc7vs5yr12Px9PmPPtIuGAysCmXZnlPpo8sDhH+8uM2pQXtaBm+sWa5858fBGRZXIQ/nBMV0G+sZu5g3MEf/kT4q8xx2hgUW0qyu2Ol3r1rfq5gNSL8vpym87aM6cwuwv/r9Xv/Jm5pI5o+umvktrXlKtB2Os0two95GVYVdeBlzCbCn7Hf6VPyL3PFM0RZX/Pcf69uBSL84ZzgSJuaUYT/9nrP8+PqL/dbXm77+6O5daZbgZwFRMiXEyEwpom8rQxb3iYTN2n6rcMVce7dOmsuLX7dgqojgB3iS1KrQERn5my2LDj7FGyRKAvuJ7QwAOIadXJcPMjhYJVrdaxRWg70Cousb8tUPSjUaCi3DyRCv0J88wG+ufQ06QLAdzkzTTLyYFXVgtcCVwkskF996NtL0kpVu0vnTmu/YJV/b6qeynfV7qKlUHTHaGIKBWVvzzZlq2KXBfruL8alUOXw4RujiNMo0PllUOXSfna+7cKy7ma32Hht3UPaCSnsRsQJKfx6ccj+7uL8/hssnizpe6YRiRJ8ZaU6RhnNoW0T3u5h2XO/3Peb/6WpJu/fSBW1r5IPYPZVfUtxGGM5pzHmW0f6IzBmx8IzJFGtA+FLHg3XTl29O4ApK5hZJLgLm3WIjldrYtyFzTtoh2h02C/obFXUaemVv4VHA8Y5ddnxZd1MKrfDDn5AlC5Vhah/WdBUHMaazmms8VYxcuCjjMpWqxUsdCcmawZqOUbQ2h2iXlPTy4TOvFu1WtC1MQ9NmSqbOnXwJhw5POp5gaEL1Uy27oCRWSrhyTmyrVLKL/V3Px0euE5VWryxUd0tlp32AgC2kADcQAAAXYtRmSgZythFJm7kfQptoG4v3j9p0tZmz4PHW/SwLwRgLhcA3dP1iabtf4yPQy/MbTY+Tqg7Fx/Hyb24+Tgj4gZH/+yQFzZve2b6tSpjB1gBHyfYnWt3U+RuBaQCLUjpi5+Pc6fHr9NWdxkWnLlnrMsd2xt2VsHHacVpHXdrsI5Z+DhJYzfV3JJ2zn/e773ur/o89oRV8HHqcRrHyRqMI7AkHyev5p2vd5fbh6/Mi1j7efeUw1bFxynPaTwbyxjPOvk46aWWugaW+Fkyb+kV97Rr9/0szMf53JTLcm+sYppSbHycie96XZ9zda54zYJdD17YNZNaBR8HyyFY+TjAERJ5qt3/BT5Ol7flGoe4aETTvY5ENnsnqW1hPs40dy4+zlBmSlssfJxmLzrvHpz+PHBz1Ke6TbfeDOCdj0Ofm/PAMZnqzsUxGeNeXHwch3ivxMGrP0rGZge3tamReJh3Pg7dR/CA1VBOrBLNGy0tzccpy+bGhhxSNlWGr5XsOhihevKwD7UQm32XZHh2MkAjT4pnnjA1YvuigVSpTYKnx/S7Oake+ClToRxq5sXBT0D2vFbbdq+1iwoKWrTqeOmjeWVsWd+PuZNTuJHR/+yigAuLKHwUC9Er6eeeDOyV+qfRCyc1lgnCoDCXowT+o53/HNRY9neo60mHKIUKGEwREwT8+lDycZhZcVPas5nSMT9DWtn3N0mOz4NDm06lUONsCT+0ASvh3h1hM0FZvIlyyIoIBozDV3wpedAPyX+Hkoeh2UEJFit5g4xssRtRIvewmEC9HBvqX8dvXVHF08ZvZ1+n7FVJYSuLPH1ZtviRN/jEJv30Hk8nNr9z3HBZ5HVDukUc2CyydGZG8ovgjwFzhzhqsye7/0hdE/WH5BkdMyNjnV7iNwi1IOrj9S6TtTDlxWq1xatVMVCOEVICY7G/w9JhnTxOa1AOQj8iWTpUHT1YEaO/CfXqzOVc/LqhMqAAzB6NoGy6H4LUB0XVWzdCyC9BiOA8DiG/BP/R5ZfCx9/tGHXyuWjc2e1ptm8jrtDll8b2yBl1K6lvYNbhpfMfZ03tSLaXFJgoz0T/YIQ8E5ul7aF6AGFGtOaD+679qiqa0DmPf/qcVOH8OVOsxb8cPtQQgnatiEp57oOUJ6SRRQpP2sP6jv214DskxhU4jILfMVcz3Ns3ciRCJYrNVpX9C0YbSIh0yRp04jok7uC7hZ03BWalHhFcX5uwhNNkZST4kxBax0RDcRhNzGm01uY1GumCbUIluEOFt4zSj3vMNuQYZUv26kmJ0tfKRK1Cg7HuwEdQHCZaMH1X3vWhN16Lt+5L2VKj1e2JdFuVCUvWyQeq9AIWAtpmF/xUb2a48i5S6+s7wxWXUT04jVq/EUPri7OAAtHZFbg+CxI8ukwKZ0e3gZ6OWaYDu8p3F0/zJPzSYTGi0r3IC+viREgvzxbSuzy4F1FGdT5gyZ6DJUftdJlA5cpGxStjdUJYV5Ya1mG8Yqtp7RwRGwunInKViii/qoSF86B4tycSYHrBQbZXQORLhi5LgZ7RTi9MwViWcpcJnBuayiNzwKrvgrGphS+M/KIRz++O2dw4U7I860K53GHxB+gFXpBfsciUkF503cQxBqfwbSFWh0WIMZYGWr0aGscawy2oxnoFEhf7oRElstcuitgkVnXv+KO8NGNJOdYwYEwcT/CbN+T85qCXWMFyMtYDjdhjs4c6Q1zSUz2iZS5Dp0lE0+36V7+bPX8ttV/Cu80FfyVO+MtYBn4GQ8zUQt34iIBsZ/BN0EULaBV3v9NTmLqa71HIFTACzAAPbEAQAaYCW4AxWs/HVW+94tfziXeeEH53ZuvA9P2ZNVJWtyqsbfgx8+y5txFK6fTLeyce/izYXEjPp6+sQV6JfoNEm+MPNY693dKpkJ7PuKTXs5ueqhY+69qkzwEnfmpVSM+nRMSjlVXj9kn2V730k7ChuF8hPR9E5V9S2xBR+Zcs1Iuo/GtLNJVa6jDzwqqciP3794r98vLqgSY7omlpcsrwOeuv+c1YMvxLC8XImqCpLNG0bU0FUe9BQ6SHXo4699H7K3ygPdH000+ew5c8VImy3g2pkfZlbHXQVI5o6vzzmmNO/9hJM/KHT/zFPycZNDkQTZ6vHS9NizoSMev078sex/nNAE3liab+XkfDbtU4Fbph1zqnZkH3xKCpAmmUzytmbvvlZuD+5qFrju4aBF+jItFUrp7/CM/dztKNLcps6ZbT3w00VSKaTi8RPviarfFPS9mU8ccI0Y+gqTLRZHvnr/297WsFbonw7+iW1K0TaKpCNDl2eN9r3/iGIXP8+434dbxiE2iqSjStTIt90ezAZdGhNv1bBwWerAKaqglYZaAciaZ7x7LFNeYvFR0o1aPfW120L2iqTjQ5pNrtKz+nkizbY9kjt1pnYAdwIppC3i3QpDSbFZDZbX+fi68S4WfVIK3ca3dIYM1k0YRW4asmZ8V1A001iaYL2b0PVZbOEe0uFXKzXZ1p00GTM9G0L6Bhk2plVwQszryWuTLeQw6aahFNv/168fHdGuGBOT0vjY93WLIDNNUmmrYOznQWTjkhW3Y7pJfy69l80FSHaLKx7+JdZd0I2YxLNweL35b/HTTVJZr8W273rns9Jixn5diuUcd9boAmIdGUf95D/u+rOeLRty8cfVPh5mmGUJWLgEWoKm7TI99yvf6O2H8v+VyluE8OPAhVVWRzUdVi92zKPn5atnB9/rCztUYspU5dZUOTVOoYxOkLtgS4EXGHkDwvi5Wp0yaAhBg4IaICoIHHLegOCvlqzFk10WDoRMJVJljsCWWDUTuHnUF6nO5pXAHNgtOo+Isgv1uvhMAeMasr+I8/svrQj5NV13k8jMrzBiEs8LPQk40P7QRmpbM8jcqJfSIVoGtgvKcYBSxxpNYqseMn4P2UKmzqRPYToVwDT1yrE5TRSBT7vKpYrmY9x5BZK5rfazp120wqfVz/OUz6eEET33kDhCudE66fPa0ik2MedTQyk/MgBlpMgbl08XKdMEE+WCEECYi+hDU7zzy3TucA9+xOkq1z/+k7dVmFGzSmIfFYBNOQbOHbehU9iM4uRZL/PbHOzmCbGwmcC3koiiT8KehAIsF6Y9/x3/GzfCSb1pQdkXWxXIzpR7B4ACudEyzQ1Yn4U4kt/vxPueG7lBvoGbrZlBveenIpN1w0LlYaqNyQPLmkRnLgiHjiHVf5Fd9393gMlnQPxINyw2tProPuj4wLlt+r3FB1fKl6O+e0DTq0Kv7Q+CNzqf3DEsoNv3OictEyMdEAlmlRC0z8KTec+fKk8oAJD8NWtjg808PvSDurUW44yWm6A9aazvCs3JDsUMX7eZXlYZPWvc86UankZwsrN2BehvXo/SNEllJcyg21T2RtqLpZELE7w+59pdofqQQhyyg3/M4JzkVPMyo3pJdxnrIuo3NEWtzwklJp55ZWotxwkhOhA/q8rTJb3nZ6gTz0S9vqAWNW1SnzrP7wg9RsNBTkaMIoaajhCwd++mK4sJoAmQmDGWIs+BXkXalCgK1Gh2sUAGdL9FeYexGp20iDEif6+iX6vZlZNNlixDTwkQ9RFpeRKolg/VIf45YVsBcohAHy2zWIK5WeNP1S+N6RXqEVfafRDu5GwbsRBxSwy0VlSnT/x0PN2wc+BPuK0QmFTWWCmz5G8Y6dMIDIfuEao9SA7gva0cG2dw/b1pOuNRbtvv3w4bThgonUYSklb2YOy4KmogB7cjWm6fisvyUZilqp2+qp9vMA2G+cgIEeZZEkCo8Z8G9aCNh+mHJYthy2tMdsyeFVw1a6p4W12xe0Z/LMVz1KT/GsjAmZAGPIhiZpFHraM5bUiv2iXHu6mZYA00x7pva7P9pPGybJzHF79XxOjql6b9C0+zhNu8VCpkXlxzM6GZVqlQst5M/RRxrr/rEjbvR96eJzzoOiffyu0Df8EIeq8Ku8l5X2JHzSZhSpZLMnNsSIwFiFLTD6Xal+56fW20Qb+vRzmtL9ALWsUlVIftXBpU94klkBufUKIyrGe0nUCQBynIKLPSam4DHY5LCgUDwklRoUEenbdkW/MMMcyL8yYlEh0BuA/ocfooD8AND5fb1N5aeIQwuBApcbYBkkmG2oE4WuZPFzgB4ugAT/h/s0LVyNVqcoWNRL8rUlK3ya5R2RPehozmJJK2qRvtLdMdIB08cQ14vyMYq8qzl9RSv8xye5aiZ8iRzLw8qEP4TZxg9RMj3LDYPZ1CXhhoXMr1/dilYnahXRyVj3wDhRSCznpXt+leSIpDvH5g2Onxn0O/VERsFzmdNfSmNxqMFgsPVFwXbDA4ONcAlV2VzC2fL13zVrpQ6b8OfrEM/Lo2SU7+YQqcA4jMLwZJUK4QvYEmYP8j5IhMX6rDLxJ7lKGYN38hSlLl6oBtMUjeGegL5Lz/GeDCtQm43Ikit6s22+LQXofvYydew7BmE8PLjqqtBiRGwMMSQAZ/tt25SaLwjMuf9WONb/bFtq+ow9iJk+45eLGs50VgIPKUN5iNw4VMoAi1HZeLOmzwYi56xHTkPparBrIeGTdZ6ytfJtu5Apdd8caZ4xgCq8VY7oIOgtHWor74RoV6wncaD1xssiLHbbrqlJisI41C/E2fEMASmtQuUJ/0brGRDYHya5cQoNjRIHf0x13I5YgISGBY8Ak+pU3NRIK9MDkymDxES7DvAkRsEbMepAphc2CoxaCHMKx7CFuQLO3yW6fgwSCu20iCNXl3UNGvek78V3r1U0fhf2rRAbE9jl4oAC6+KsUIAuTgSqamyBympq/tG9JT/lj4uh5N9FL66Sf6f1kDtaPeR0bhw/kB89flvecIJjyIpBF+/PO/w+lgfIOzTjgtynGQl5dd5YmRVIyM3AykSQKElWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrE0GiJFmZdud9ur6qsFmS1ah05pipe5IZlDfYeZG9j06/5IHy5sRm/3ohxzzubCnrv9omZuC1pxWp9q+CL/ZLVGotTBexDRxmUl6aZbTV81fCcsfxsD4w/gBsSgnnmQQNwbDtfTrltMhXZICD+iMjpGWCoF+7gTwxAmbkbsysnGvt2hnfbcOUNNTQNAAP8As7L6hO85rjHs2ZETTth0VhAU1qJ5qy11a8y9gXAFYBZNh9wxAnBNPqNl7IPJwNq2p6SkRhrJAo/fvPob7Vul2WzV0xaMZ+3ZhHPNIiRncLf39q1VD/NepJgel+qUd4QMmNE6WaXszFB648zb0zOa6wwYZhRg45ONUjuWfsWyUDD5/Ma3G4e/As0aMwQe5ohQX3c73diU6E3JCDh6c7eBmXxjbR7x5CiKIL6X3CCETxTeg6scLVtg8W5oknXv99xeuy8ZOtYNcSgtSCEyQ3L+P2dRtKlfg31y9VFXQZbGORw0GdGvHo7YFjYePmP/2x1LdTG6m7iORzmbuI+pbiQKcuJzrV9LloDbbA+Lx7eKiN1ydJ5vJz/jkRQb2ZC/HMSGjDAq4LdT9XT3VLURsluU8/YGHo3oCBsN0HjikLwnYOtQAlALCNMS7UGbZNG+c86G+v26VkaaLU91tePzpDXezE9mNZwjqlsSgvTndxJnpxAfDTcyFYnVF9DCpATDUu1pXHwFKAkcYO1cxRL/dN9bKTTYpu4PZs/Z72VE8kA/eigSrUZOaUAMI0hhOmoUYGu6K30Oh7zRbbQoOeBusjcAtNyMgdPTFoCD9Uk80PSRqf82o79l7oUv+ct7q2NWrT16ET5ElCfJ0GsV7Olpo3xu8jd3uwcylyYaIiBV5SaJTRRIA0yC3RD3dxvCFqpbxQs6G7ZKDb7GoJcD2PysnTAOrzWhrlqMpj21D44i54HeS3vNf74Ml659Nla1OH/9v1RBtHaoqEPYCZIuGXixpz9HNupu5uAXh2QHjKocZcLpiyrGtpFJvEAX8fLpH0Wskv5Ff695NkeeyOWCVavp66+4ffz9z9I64Xhc/h6TtrJVydF75iUM7dZtnrL/CATw4nPqD7WIJhYIsRN37CgWgvoP8YV0XNoatcE6fQcRntwJbLaVMiB0sWnRjsf3F9bDDVaPj9TKMR13kn1wKrZHBaZaxVWeXNIdIqRoWvCpjDS1LEEM4XaZjWpbO1I+KvBEzP2fD7k067qYf9Sodh9zMNQ1zn2zAiT8KdwGVGxnw1zUsmWNXSuAmZsx4DbGKhUhaFx/I+yu2DX9wKW5RRfVJi1jlvmqQQ/gCEpBDRUByIzONEJL0lGded2eL65lkhf/Vp5xs04a8vOtujt95RbYx/ouFkmPb6GQY1gAtT4pXR8SCthGcL5VotVIPUs2KI8G/Y5IN+Thv1vsw+iV83Ygdc0ZLgiTLYLyIwq+vBjOtG7oDXIlINXDwJE/iFR5jwN0F+8WcNRxz3H9TSf/nvy+aGdV9J63xsiY2+wczBH+7uRkMMvVEcDWETDEOjPFb7cKJH4SVNKAe1IB9Ii68PwDIK8P8FOaVwePhIJKL0eG7RiipwXosB5oQCDOpY99AP5lpWv3FF7008qU3Stzl42Llq1ZJr58pTj3ltNszDd/mfPy04JknrXaOd8llwJaridhhFCJXpSNmQdg4D+QAITzpwp4omp2qQn6QrU3C9FlMInNpu6MINmGT/DKmaU1ELN3CPIt4HoTdJxhOE3iT8JLreJF0vkq43+d16kvQbEXqSbL6ptr9SA3yOMfK3rZ2iPl6QSvx2n3u6TLfjqpoqfytmjg5xkeJ2wyp5TalQ7rJ0Z5Bq/VBNy4GmrpmA0TECmtMbxV7oCVo1PicRQo5sIH2PSPDmodvf3p4/wW/+lIc7z7ocuPwdIsF0lBQ9IoPvrWkXMX3jkYPeoy9s5wGleE6U+vkwJAA52S54rQWYGBkAEJ31To1h+KOYMYy4XhwL3liP+YhaaHL1wJAi/Gmd/5g/pcv5mMmfVuH0p19a/s+fEvZ5XnJdTK2RP0qzDnh+VAbYlOXBn9JlmnjwFJU4PUWZYvenpyUHN9f0nBS2OH1/TI3F4u8RXaejRF8k4AGlLy25UHrXshj9KT2GWtyfVuL0p1/0+Wldq58T0IcTP2Q2nxI13mZIkqQ734viN1/JiORhSnCJc0pwRg+5kDcyW3kScjOQ2RAaeKSrR2jgkWQ2hAYeSWZDaOCRZDaEBh5JZkNo4JFkNnqGxmCsQa+I7GJ09TweGGsuvBnZ3oxG/j4dSYSoImlk+p4/wyY2bDahyxbyYJN6bDbJ3n2/18SHH4P27t6xd8vgPOo5vx86yxMVKmZtFDbH5ioWJsE7ClXoEiaqdQpcXAjKc3Np2NJ1FxGvYoi3s4+K1qhVqkgYseDFgiOfbzrRPOFvzQI2X08cGTa78Zb7/p3ve7B5QttuWoUGCoCTH9tQqk4eqIJcLVhFBwr/xCh1xHcHGQbc5chPW0UzCVnmiLEo3UgmaNsCONC2EkHaREnZMLkmTpkYqoilBEB7/HIkrHda+Lodfr2rOqnwVaoXfhPRSObQpsXJChiInTXw3KBOib9VGfKtUANKI08JSoyBslskvCXs4EW49VLoEparq4iSTPiEAFZRVcpVEqgFVSgQ6TQKeYL+d0yYWH8P0VXrW31YpquA8rRUR+//PMRlZQuuuCxvQcblBlaPOV1e1XqXR/tzEvt76In9DXkLkw4C84VJhG4uGSYRurlkmETo5pJhEqGbS+ZCTdcPn91p7XjpOJ/VIT+M87hVKBdS3Z3V8UT5vOAdLnfcxdm5YkZwhV4frZxCE+PlIbg2YrOklZZrp4sOm61ce3QrrnLtXq2Ku1z70RrCkZu0p2VrZvm1kS+sRT3ZaZly7fJWXMVve7SygprT48ePN0O59twWM3T7lmaGb72RPPpeVAx198VS5drDOK0jsQbrmKVce832mQ4u4nd+E5/M2VfiRsedVlGuvS2ncbyswTgCS5ZrPxJ6Rjm4Zoh4z5T+/epXHENV2rV0ufaGnMZztozxrLNcu2TB6OpdKutkizP7njhRLXSPhcu1V+K0XBmLWw7eVGzl2su+7X3MoeVg0WL7zFpnSq6XWEW5diyHYC3XDhwhkac2ZstT/0vl2ullMSxcrn1tK65y7XOYKW2xlGv/kNbswaj+XwM2zUr+o++mbKpgIh/l2uniZjyUIM9txVWCfHGr4irXfsfxcqj/yr4BozscFIoUF/N4L9dO9xE8YDWHE6vJ5vW5li7X7srmxv4nwv9dIvz0akJmE+Ev2ZpLhD+f6Tt5EOEv/cvfY+pW7Bg0+0H6vh13jz7m8bQ5zz4SLpgIWnNplv/N9JHFIcLv5dP7zsvpvf0WSsK3bfDeQ62DbgkR/hetuFDJt3gGWnjHyTIi/NVrJahsI/dKF1SvPnbLyv4LrEaE/wan6c5bxnRmF+Ev895t1IPAbL8Vm2cln/Jq+8rCIvyYl2FVUQdexmwi/A8vPBvr8vFeUKabd2NZhKypFYjwY86GFZz8VmYU4R+6bNu8sU0eSWY1WrOpZIMdd6xAzgIidIMTofP66acbW94mEzdp+q3DFXHu3TprLi1+3YKqI4Ad4ktSq0BEZ+Zstiw4+xRskSgL7ie0MADiGnVyXDzI4WCVa3WsUVoO9AqLrG/LVD0o1Ggotw8kQoPh8MwH+ObS06QLAF9xa1MPVlUteC1wlcAC+dXblOsaciR5fsTuHVNn76+Zesz02l20FIruGE1MoaDsrbI1WxW7LNB3+7c2rhA2PnxjFHEaBTq/HDKvc5Xm819HbHJsphmVXItaiLm0FLsRcUIKv14csr/dOL9/SGtLJ0v6nmlEogRfWamOUUZzaNv8sefImjU1p/qN6X7wlWDsJ6oeuC35AGZf1bcUhzHEnMZobRljMIpjG7Nj4RmSqNaB8CWPhmunrt4dwJQVzCwS3IXNOkTHqzUx7sLmHbRDNDrsF3S2Wv/+SOW2T5NEC4Me+G0NGkpNh+zgB0TpUlWI+pcFTcVhLA9OY9W3ipEDH2VUtlqtYKE7MVkzUMsxgnJ8hpZLT3jutycqdFiGfd5rU6bKpk4dvAlHDo96XmDoQjWTrevT2rgslfDkHNnWhKkug1+Nqxg2v3HiSMd6WZctO+0FAESQANxAAABdi1GZKBnK2EUmWqVVX7e+3qOw3NuRlYdtDa1NC2XmPewLAWjJBUD3Rq3JRLPJf4yPQy/MbTY+zrPWXHycnczMkmc+ju2Rn0ZvDR8XOn/o6p8Ha1+NsQI+zh+tuXY371rG6VNJBYMHDzYDHyel+sxVjWtWlGyt07v5rzH3hFbBx7nCaZ0z1mAds/Bxen99WT32SWTIodUD72ZMWP/eKvg4hzmNs9MajCOwJB+n5KhJ8e3HpvjN9f6YdPjblwir4uOs5zTeMosnu1bEx/mYPDKjVVKsZGzN2VPf9V5X08J8nCxOy02zuOWKlY/j8avzorkpa8I3rDz748xfVK+tgo+D5RCsfJyd+jy16f8FPo5/y+3eda/HhOWsHNs16rjPDQvzcdzbcPFxHNuYh49TU/lt+SG/3tKNpzY1mya4VJt3Pg59bs4Dx6RJGy6OibBNcfFxXGKqOgW/Xho2+fCVZfnSSit45+PQfQQPWDlyYlWuzf9XfBx3Njc25JCyqTJ8rWTXwQjVk4d9qM7ZvksyPDsZoJEnxTNPmBqxfdFAqtQmwdNj+t2cVA/8lKlQDjXz4uAnoAsfnveQ//tqjnj07QtH31S4eZr1/Zg7OYUbGf3PLgq4sIjCR7EQvZJ+7snAXql/Gr1wUmMwnYen/Rwl8B/t/Ke6sey3py1OOkQpVMBgipgg4NeHko/DzIqb0oPNlI75GdLKvr9JcnweHNp0KoVaHb2EH9qAlXDvjrCZoCzeRDlkRQQDxuErvpQ86Ifkv0PJw9DsoASLlbxBRtaeLJF7WEyg7smG+tfxW1dU8bTx29nXKXtVUtjKIk9fli1+5A0+sUk/vcfTic3vHDdcFsloRreIF5tFls7MSH4R/DFg7hBHbfZkd6qmUWl/SJ7RMTMy1uklfoNQC6I+Xu8yWQtTXqxWW7xaFQPlGCElMBb7Oywd1snjtAblIPQjkqVD1dGDFTH6m1CvzlzOxa8bKgMKwHwPwdzshyD1QVH1q80Q8ksQIjiPQ8gvwX90+aXw8Xc7Rp18Lhp3dnua7duIK3T5pbE9ckbdSuobmHV46fzHWVM7ku0lBSbKM9E/GCHPxGZpe6geQJgRaa0Bmr82rK/vHTY78+Cx+3X3hJliLf7l8KGGELRrRVTKcx+kPE+bWaTwpD2s79hfC75DYlyBwyj4HXM1w719I0ciVKLYbFXZv2C0gYRIl6xBJ67nnZ52qhfaO3TW2i6nHz+pVJ/TZGUk+JMQWsdEQ3EY7R6n0a6a12ikC7YJleAOFd4ySj/uMduQY5Qt2asnJUpfKxO1Cg3GugMfQXGY6CPPXtF1vTaUDNk1o2S+y5IJjei2KhOWrJMPVOkFLAS0zS74qd7McOVdpNbXd4YrLqOe5TTqL80YWl+cBRSIzq7A9VnQBHGaTApnR7eBno5ZpgO7yncXT/Mk/NJhMaLSvcgL6+JESPdmC+ldHtyLKKM6H7Bkz8GSo3a6TKByZaPilbE6IawrSw3rMF6x1bR2joiNhVMRuUpFlF9VwsJ5ULzbEwkwveAg2ysg8iVDl6VAz7jpTQpTMJal3GWCPSaXp3fAqu+CsamFL4z8ot331V+fe3hB+J455QeMW7ZcSS/wgvyKRaaE9KLrJo4xOIW/DrE6LEKMsTTQ+iuzKDUnawy3oBrrFUhcpo5P/3ws5wfZtmE+Pus9XEozlpRjDQPGxPEEv/lRzm8OeokVLCdjPdCIPTZ7qDPEJT0V5Pnm+YHbVYP3rbr7e4u359Op/RLebS74N3HCv9Iy8DMYYqYW6sZHBGQ7g2+CluqgVdz9Tk9h6mq+RyFXwAgwAzywAUEEmGZsAcZoPR9XvfWKX8/nlrDqrtVaG+mBto9sSrW/GFJIz+fd47Jhh7IHhS7c2buMo2yfupCeT7gu/GZI2LKQ1X+JkgOCM3IL6fl0rxKdP8T1rN/MqCm/25ypHVZIz+du++z3Dp0Hyg62+mhf0WuxopCeD6LyL6ltiKj8SxbqRVT+tSWaGrW0b9bXMSdo0Q8vc1TbYv4GTXZE09OSeQ2Ob0uSzekZfa3jkTp+oKks0dS45os1US1TI5ZkhsxpE/hbS9BkTzT9vmFN/C2PQeIc+Y2LQy/9XgM0lSOaZtlpj89/uFO8NfGqY/ye1QmgyYFomjqmw+Ps9jdDp/kPyP5XO687aCpPNF0b5BIdWFMXvCCllvNxTeWboKkCCZT9+Np/vgjx2+a8p+YeG2E30FSRaPL93fZSFfuk4Fz/I5KRNi0OgqZKRFP5rj55XR2T/XaOGTrg+fDpfUBTZaKpRcTYf59tGSOZtKdF3uW+DRxAUxWi6cTV85F7f3jqt2GLqP7X1j1PgaaqRFOPsu/eOn8KClg12KPE8NDQ1qCpmoBVBsqRaAo4eOxGu7DxYZnbr2SOz7q+GzRVJ5oS3vZ0zllzS7q+i49zXd9x7qDJiWhS7loWOO9KCfGE9a69zjnNeAWaahBNQz1UXb7IXIK2/dGs1k+XHRaDpppE07DJJ64MlEv8ZoluvF904dBA0ORMNO15kt8ye9k/gdMnR18ZcnvgU9BUi2hqZhO/JXfzdXHGO8cnTbZOfwuaahNN43rmTv/Zvl3oElWVps1K9oP2qkM0xR46Xc398HHR6G0nuqW4T8wHTXVJ5I9fD8+YLAqY9PnOmb3S4fNBk5C8a27Hi8sWtxCvC3WrNK32zvIMoSoXAYtQ1ZzdwmV9nNJD1+yp1TFV4nyQB6Gq5mwuqlrsnk3Zx0/LFq7PH3a21oil1KmrbGiSSh2DOH3BlgA3Iu4QkudlsTJ12gSQEAMnRFQANPC4Bd1BIV+NOasmGgydSLjKBL6+UDYYtXPYGaTHDXyNK6BZcBoVfxHkdxvZZqJvntvqoKnlh2UdXNrbjsfDqDxvEMICP2182fjQTmBW6ulrVE7sE6kAXQPjPcUoYIkjtVaJHT8B76dUYVMnsp8I5Rp44lqdoIxGS9jmbc29VmqrZFzmklerYg/kUunj+s9h0scLmvjOGyBcDTjhqulrFZkc86ijkZmcBzHQYgrMpYuX64QJ8sEKIUhA9CWs2Xnmke3r1w/r/l4yrceDCZ6h0n9oTEPisQimIdnCt/UqehCdXYok/3tinZ3BNjcSOBfyUBRJ+FPQgUSCtaPrUscT47pKp12e2SXz8odBph/B4gGsBpxgga5OxJ8WbPHnf8oN36XcQM/QzabckOHLpdyQYFysNFC5wXbCVfmYVS4BS0fvdtJs2eTJY7CkeyAelBum+HIddB9tXLD8XuWGXX8OuXDx94uhq/tduBM4OY9WJtQCyg0pnKgkWCYmGsAyLWqBiT/lhkdCSXLc8FrSmS2HlLu99Bn11JEllRuiOU3Xy1rTGZ6VG/Ja3p3u6RMdPPufPgfv1+hrY2HlBszLsB69H43IUopLuSH9ZeOvO6ZvlKzzfPwi5FOpwVag3JDCCU6CrxmVG9J/Lr1/nZNImr4lzuPE7RdPrUS5IZoToV76vK0lW952eoE89Evb6gFjVtUp86z+cOoahW0oyNGEUdJQwxcO/PTFcGE1ATITBjPEWPAryLtShQBbjQ7XKADOluivMPciUreRBiVO9PVL9Hszs2iyxYhp4GgxURaXkSqJgAXkYuOWFbAXKIQB+uj74th5EY+Vor3zks8MVJXKp+0mwbsRBxSwy0VlSnT/x0PN21Fign3F6ITCpjJBstgo3rETBhDZL1xjlBrQfUE7OtiOX1BFI9CcC19xvXn2c49p96jDUkrezByWBU1FAXaln134lHzbkFXey8bfrXu3OQ+ADeYEDPQoiyRReMyAf9NCwPbDlMOy5bClPWZLDq/asuSxNyNWXQ2cmh18cMHsi80rY0ImwBiyoUkahZ72jCW1Yr8o155upiXANNOe7be9TtK6eaKxLh9uKR9Xa8eDaXtwmjbMQqZF5cczOhmVapULLeTPkcbcsGJQYKPwH8QL5sQed43fXIe+4Yc4VIVf5b2stCfhkzajSCWbPbEhRgRGH7bA6Hel+p2fWm8TbejTz2lK9wPUskpVIflVB5c+4UlmBeTWK4yoGO8lUScAyHEKLvaYmILHYJPDgkLxkFRqUESkb9sV/cIMcyD/yohFhYftAOh/+CEKyA8Anf9aO1P5KeLQQqDA5QZYBglmG+pEoStZ/Byghwsgwf/hPk0LV6PVKQoW9ZLbdYdv27SwdPCeP1/tbuKfS1WvKt0dIx0wfQxxvSgfs7dkXr2IGzLJRK17p4u3XHN4WJnIhzDb+CFKpme5YTCbuiTcsJD59atb0epErSI6GeseGCcK7QTqfFy+7KetYWM+z8z97fXP56knMgqey5z+UhqLQw0Gg60vCrYbHhhshEtoxeYSzpav/65ZK3XYhD9fh3heHiWjfDeHSAXGYRSGJ6tUCF/AljB7kPdBIizWZ5WJP8lVyhi8k6codfFCNZimaAz3BPRdeo73ZFiB2mxElry+Hdvm21KA7lyTx75jEMbDg6uuCi1GxMYQQwKg/azbvP7ulPCVt5e+3REy4go1fcYexEyf8ctFDWc6K4GHlGEtRG4cKmWAxaiWtmNNnw1EzlmPnIbS1WDXQsLX5+/do+PaOUjm3b6a82qkfR/qMXeig6C3dKitvBOiXbGexIHW1HYWYbHbdk1NUhTGoX4hzo5nCEhpFSpP+Ddaz4DA/jDJjVNoaJQ4+GOq43bEAiQ0LHgEmFSn4qZGWpkemEwZJCbadYAnMQreiFEHMr2wUWDUQphTOIYtzBVw/i7R9WOQUFSI9819kvqDeE6J3DIHptWdQNuYgN8KsTGBXS4OKOZyQjFVH6haswUqq6n5R/eW/JQ/LoaSfwntuEr+KfSQt7F6yOncOH4gfxX1bkzfkrP89vR2Obr5/Q43HiC/2Z4L8ovtScjb8sbKrEBCbgZWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrE0GiJFmZCBIlycpMGGkn3h9xPmBGv/IDug/Iv8qgvMHOi+x9dPolD5Q3Xzb71ws55nFnS1n/1TYxA689rUi1fxV8sV+iUmthuoht4DCT8tIso62evxKWO46H9YHxB2BTSjjPJGgIhm3v0ymnRb4iAxzUHxkhLfMI7g/cQJ4YATPy48Zt8zvju22YkoYaKwavhqxAdl7QkKMVFLIBEZKNrefELNtbfa0pe23Fu4x9AWD1wJcIu28Y4oRgWn2FueHPhVU1PSWiMFZIlHYfuL1j3iKfoMz0itfme8iW8UiLGN0t/P2pVUP916gnBab7pR7hAaXjnCjt9GUuPnDlae6dyXGFDTYMM3LIwakeyT1j3yrpdPn8jhPb9gUu3vKu5dqYz18tuJ/r7U50IuSGHDw8fdPI/dwm+t1DCFF0Ib1PGIEovgkJzouVP6Qn1r0XsTvtVFrPfd82WsGuJQTpN06Qjhu5r9tQqsS/uX6pqqDLYBuL7A4q5d7Awwt9KofPePAhMrnUlR7UXUTyucxdRH1LcaCzjxOdLfo93XZsgfF59/BQG69Pkszl5/xzIoJ6MxfimZHQhgVcF+p+rp7qlqI2SnKffsDC0L0BA2G7DxxTS5jCn0MtQAkAbHWYC1Cmb9O69a2b9G3rfMnKlHeq1iu2rKYudmL7sSxhndJYlBenuzgTvbgA+OnmEKzOqD4GFSBc0WtObGCVx8BSgJHGDlXsqlpjbzwuFb7T9cy82Tkz/qV6Ihm4Fw1UoSYzpwQQpjqcMFVFrLSbtoVG32u22BYa9DRYH4FbaEJG7uiJQUP4ofZsfkjS+JxX27H3Qpf657zVta1Rm74OnSBPEuLrNIj1crbUvDF+H7nbg51LkQsTFSnwkkKjjCYCpEFuiX64i+MNUSvlhZoN3SUD3SZKBHA9j8rJ0wDqLURGOary2DYUvrgLXgf5LV13jj5zs/so0fLrpTLWd75AlS39AXsAM0XCLxc15ujn3Ezd3QLwdIHwlEONuVwwZQkQGcUmccDfh0skfcG+ZQ3CVjuHrv+s7el9P7QMdfcPv5+5+0dcLwqflAdL/m1RY3bIruej3DOHz1vDAz4dOPEB3ccSDANbjLjxEw5EewH9x7gqag5d5Zo4hY7LaCvWdJq1ZuMvAZNnnm9/YkvcbarR8PuZRiOu806uBVZx47RKXauyyptDpFWMCl8VMIeXpIghnC/SMJOi/41pX7urdE+fPgfnrDnrSDVMGHY/0zDEdb4NI/Ik3AlcZmTMV9O8ZAI/kXETMmc9BtjEQqUsCo9S/qNjx+1/G7H/r2aznWeOKkmTFMIfgJAUIhqKA5EWnIg0EJFxvQNbXN88K+SvPu18gyb89UVne/TWO6qN8U80nAzTXj/DoAZwYUq8MjoepJXwbKFcq4VqkHpWDBH+DZt80M9po96X2Sfx60bsgJcQETxRBvtFBGZ17zqZugNei0g1cPEkTOAXHmHC3wT5xUOuvE2rs/pRwP5+c69+2DK4A7XzsSU2+gYzB3+4u/ut00k4gUNwNIRNMAyN8ljtw4kehZc0oRzUgnwgLb4+AMsowP8X5JTC4eEj0QsGtHhu0YoqcF6LAeaEAgzqWAPAiMHc0eo3rui9iSe1Sfo2Bw87V5c6ce1cndFj3okN8/Bd/udPC45J0nrXaKd8FlyJqrgdRhFCZTpSNqSdw0A+AMKTDtyposmpGuQn6coUXK/FFAKnthu6cAMm2TUhVXMqauEG7lHYiBF6k2Q8QehNwk+i603S9SLpepPfrSdJvxGhJ8nmm2r7KzXA5xgjf7txxF/1Ag7uCJ54r01Fnz6zK1Llb8XM0SEuUtxu/eQnKW0rpIo3Tu1/rv/p8yYvLYHR4QTN6Y1iL/QEreXFJxFCjmwgfY9I8KNSW88mhPQPnzQyTOuZ/mzSd4gE01E6Me5viVBZK3D0+cnecxtl1OcBJRtOlD6LGBKAnGwXvNYCTIwMAIjOeqfGMPxRzBhGXC+OBW+sx3xELTS5emBIEf5U9B/zp3Q5HzP5000iLn86X/Q/f0rY55JCcDhjSLvAhfJJi9deChzMgz+lyzTx4Ck2iLg8xXJRcfvTjvabWuXPOBqR9ePkTk9Gn2rPgz+lLxLwgNJ8TpSmF6c/pcdQi/tTrMew+tP5+gm+2OrnBPThxA+ZzadEjbcZkiTpzvei+M1XMiJ5mBIkirimBLF6yP14I7OVJyE3A5kNoYFHunqEBh5JZkNo4JFkNoQGHklmQ2jgkWQ2hAYeSWajZ2gMxhr0isguRlfP44GxJuHNyPZmNPL36UgiRBVJI9P3/Bk2sWGzCV22kAebSNlskr37fq+JDz8G7d29Y++WwXnUc34/dJYnKlTM2ihsjs1VLEyCdxSq0CVMVOsUuLgQlOfm0rCl6y4iXsUQb2cfFa1Rq1SRMGLBiwVHPt90onnChS3zz8tzo2TjOvYqva79xdNsntC2m1ahgQLg5Mc2lKqTB6ogVwtW0YHCPzFKHfHdQYYBdzny01bRTEKWOWKo5jaSCS51BA60rUSQNlFSNkyuiVMmhipiKQHQHr8cCeudFr5uh1/vqk4qfJXqhbO6NpKNv9jxZAUMxM4aeG5Qp8Tfqgz5VqgBpZGnBCXGQNktEt4SdvAi3HopdAnL1VVESSZ8QgCrqCrlKgnUgioUiHQahTxB/zsmTKy/h+iqMqsPy3QVUJ6W6uj9n4e4/APnUt2XjmRc9rd6zOnyqta7PPoPJ7H/nZ7YH8BbmHQQmC9MInRzyTCJ0M0lwyRCN5cMkwjdXDIXmj2+yVqnd/6yvTd1J+dNrrqpUC7k2Stl9qCn78JWDynlVUraM4gRXKHXR3YkuhgvD8E1kM2SVlqunS46bLZy7d/EXOXazzKlZHgu197FxqVGl40XpMteVFrVZrwndXfeMuXav4i5it++s4xgBrXm9MiRI81Qrv3MiPqSlkeHyCaW7zj6rwaVqafLLVWu/Smnde5Zg3XMUq79r9e/vvY53VM6J/dig73r+h2zinLtVzmNc9YajCOwZLn2tnX8PzQvGRcyfXrmyYQzMbOsqlz7L5zG22VFQkEWL9f++8C3Ja+HVA9ZsejJmQMXZGUtXK59A6flllvccvCmYivX/tpua+1yJ98EbKk78f79/KcvrKJcO5ZDsJZrP6vfQAxiy1P/S+Xa6WUxLFyu3d+Pq1y7t595yrX3GH37/rQni4M3P6vul19nvYj3cu10cTMeSpBL/bhKkPv6FVe59pG3UuZnDcv0356ntm1wYMcX3su1030ED1h5c2LVyO//q3LtwWxu7H8i/N8lwk+vJmQ2Ef7Fflwi/D8zfScPIvzRPb3eH1V6hqc10CQeLdtjCo+nzXn2kXDBZKEfl2b5LKaPLA4R/svlLgwRbG8i2z3q8bxL6RKxxUX40zlR+dm83pBz7mDcwR/+RPiPa3ckbX+7LWylzZPfJrZ7uMFqRPh1nKYbZBnTmV2EP6SmOPLn1ArBK5wf/9PJJ9+Sog1w4RXzMqwq6sDLmE2Ef6L4041nTSoEb/iwdXsbzVFqv7WMCH86Jzg/+5lRhP/P/tvKB1XcJpnV7o3P4JoVrlqBnAVESMeJEBjTRN4Wwpa3ycRNmn7rcEWce7fOmkuLX1MFaO2xQ3xJahWI6MyczZYFZ5+CLRJlwf2EFgZAXKNOjosHORyscq2ONUrLgV5hkfVtmaoHhRoN5faBRKiMBOCbD/DNpadJFwC+d9inmAYerKpa8FrgKoEFOnnq9/5z/6HHA5ZEXd3s/4eEphfyPbW76MXmaY7RxBQKyt7+IGGrYpcF+u4/xqVQ5fDhG6OI0yjQ+eU1px+zp9afH5h96ev8wJeu1LK/paXYjYgTUvj14pD9fevH9f2fWDxZ0vdMIxIl+MpKdYwymkPbppb4lEznly7NWtmg29KZk05S+yr5AGZf1bcUhzHucBrjsnWkPwJjdiw8QxLVOhC+5NFw7dTVuwOYsoKZRYK7sFmH6Hi1JsZd2LyDdohGh/2CzlZ/dTk7cMqa8ODxk3Ye6VnJawE1rsEPiNKlqhD1LwuaisNYpzmNdcgqRg58lFHZarWChe7EZM1ALccICu9sEyRt+Ew2Q7qw6RSfpn1NmSqbOnXwJhw5POp5gaEL1Uy27oORWSrhyTmyrZ4TMruNvxsesfDt7Dy3mY3qWnbaCwB47kcAcAMBAHQtRmWiZChjF5nw/dfdq+7CqUHbU2VT7tcKOGLRw74QgAtcAHQ/ok80Q/9jfBx6YW6z8XEmSLj4OJGS4ubjVLjV/GmfqknBcw91Hmv7askzK+DjjJNw7W4Ok1gBqSA6OtoMfJxJ5c+Neng3LXj73Y/T/xj6Ltkq+DhJnNaJtQbrmIWPczRp8ymn9GXS5bVfXIzstNPJKvg4fTmNE2kNxhFYko9TJ+2vT8ee9AmcU6PqL88/hE23Kj5OIKfxOlrGeNbJx7m9a/bj3/6qIDowv8mB47W/PrMwH6clp+WaWNxyxcrHmXvlxDenPTFBuQ13LC9bcUCqVfBxsByClY8DHCGRp4b9X+DjlD9+PTxjsihg0uc7Z/ZKh8+3MB/nlISLj7OVmdIWCx9H0r9Xycipr0UzJ70e2npLwkre+Tj0uTkPHJMTEi6OyX5JcfFx4ir0/7n0gJDwBbc2vrnQIrAR73wcuo/gAautnFjlmtfnWpqPE87mxoYcUjZVhq+V7DoYoXrysM9r6k5Jl2R4djJAI0+KZ54wNWL7ooFUqU2Cp8f0uzmpHvgpU6EcaubFwU9Az7vndry4bHEL8bpQt0rTau8sz/p+zJ2cwo2M/mcXBVxYROGjWIheST/3ZGCv1D+NXjipMYg78LSfowT+o53/jGksCxzb6aRDlEIFDKaICQJ+fSj5OMysuCkj2EzpmJ8hrez7myTH58GhTadSpDQVDLQBK+HeHWEzQVm8iXLIiggGjMNXfCl50A/Jf4eSh6HZQQkWK3mDjOyGiCiRe1hMoN6ZDfWv47euqOJp47ezr1P2qqQwahhBnb4sW/zIG3xik356j6cTm985brgs4taBbpEubBZZOjMj+UXwx4C5Qxy12ZPdf6SuifpD8oyOmZGxTi/xG4RaEPXxepfJWpjyYrXa4tWqGCjHCCmBsdjfYemwTh6nNSgHoR+RLB2qjh6siNHfhHp15nIuft1QGVAA5kwI5mY/BKkPiqoP6YCQX4IQwXkcQn4J/qPLL4WPv9sx6uRz0biz29Ns30Zcocsvje2RM+pWUt/ArMNL5z/OmtqRbC8pMFGeif7BCHkmNkvbQ/UAwoxIa906/fFLcs8t4avHtVso7irvYIq1+JfDhxpC0K4VUSnPfZDyjO9gkcKT9rC+Y38t+A6JcQUOo+B3zNUM9/aNHIlQiWKzVWX/gtEGEiJdsgaduC6qvjvnSMI7/z03tz179eOnFpwmKyPBn4TQOiYaisNowzmNNsS8RiNdsE2oBHeo8JZR+nGP2YYco2zJXj0pUfpamahVaDDWHfgIisNE2ur03K+RkQtGSjZVTfMPutmOMbzKhCXr5ANVegELAW2zC36qNzNceRep9fWd4YrLqHGcRv2xA0Pri7OAAtHZFbg+CxI8ukwKZ0e3gZ6OWaYDu8p3F0/zJPzSYTGi0r3IC+viREiPZAvpXR7ciyijOh+wZM/BkqN2ulCrn5aNilfG6oSwriw1rMN4xVbT2jkiNhZOReQqFVF+VQkL50Hxbk+0oAit4CDbKyDyJUOXpUDPSNYLUzCWpdxlgm7tTeWROWDVd8HY1MIXRn7R3h0yBD8nCyVTttXz76a9eYBe4AX5FYsm3tOKrps4xuAUXguxOixCjLE00KpsbxxrDLegGusVSFxiKqdHbNp2Q5Sp9fxR2T9vHmNJOdYwYEwcT/Cb9+f85qCXWMFyMtYDjdhjs4c6Q1zSU5rq0TUuz2jsv/nM4ZdfT5VzofZLeLe54A/hhF9sGfgZDDFTC3XjIwKyncE3QVqEXnH3Oz2Fqav5HoVcASPADPDABgQRYKLYAszpBfLQL22rB4xZVafMs/rDqbritlhRrChpKJNuwhZe/Kg16YiCWsIYRSz4NUY4MLVw4TZ3MGHE6fhwHkmcTBtp0ARyoW/S/Va3Uv23q2x3TX+81Qv93syFWbLF0F4PUhrRrOMCwX5UaHoDMBbNPM5/8TrnaYtvflxQO2BDj6nXynb/OInmcuHdiF087HJR8WjRbXnp3Ot3xcta/PBIFhN80MR4BItmeUOAvFE53wXgFu5TASpqguOEAUT2C9cYpQZ0X9COZmeKK3zrPrJunuRg+Wt93w99T61pbCclb2ayMwuaigJsRy1F7uKQKeKxYdfTM/cG5/EA2IyZXICBHmWRMIYfiYF/00LA9mPcmTF7zJYcNMajXzNHyU+UDMn8kvLx2dWRJyxKY4SWeTODyzJLZ1jGMsjTe4d4rm/Yd8uw/Qf9OoqyAht2+7BkX7jF6htu9iRcymbUxGmAFzZCiLjWlS2uCfde36n7baZ4dfd6jssTvanlP0tHqnWMEztck6a6+A0gqpHnxjTwnSGpUj5UqUVPnLpeaVSv39G+AdMqbT0b8vcsf9QrILSnseuGMsHdgDOZexwvbcQITxVBeJqRaVx46o5/P1izEHsR5Dd7vHv859ryf4JG94t6OOFlXhfqN8MfwfxmxPWi/G1Mvm3pUMmU0Jygjm1WvL3w3ER/KwIQpUGIpKhRHQhGtfdcZIBinUliFoKHkaDpkfhs798xt9ri8dLRRx6t/80/i1q20EYMbmMOJexqUdjQxygP2NzP5MKG1n3gg2wFHGUZCrBJhAf/XZWJxHkkLTp+/7O+Tqe3n0eG7H3bePScurP7UxMdMXwIM9HBLxeFlbZkcvXw2hWDZ235a8ugd7vas2LVTavAjzgViMYagZ+IE783c6wnYhjJciqPe6IYwuUhzTfg0IF3zvv6+o/Lz+1V/k3rVaY5AhPjxgUPYqTb+CHixg1PrDcTcaPbd+0l4z3P7PvJRo8qetc3ZVSZuKkMCSm7Zx8ntzD/Hw== + + + true + + iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOwQAADsEBuJFr7QAAAtpJREFUSEu1lF9ojXEYx59OS5IrF5IkiTVriWgXS5HWlFwQbpRYyr+xkgvFLpQMpRU3SEmjmLWEuZLcKGlpaRe7WNKulnQu1trFWms+39/ved9zzvu+59z5dr6d3/d5n3+/v1aNy2Y7fdgI6/w/xQWzbT6sj4tmW3rNlnvMmqUpdvOS2cfwsYJVcBF2BwXOmK0hZgn/O24qBskOq8DZmES6U5rutgeHCu7BBbgjKIBft4oQc85NeeBwSAlPma10kwIn4bDLBCX4FU74OIAZ3CLHQkFDEfqQ7ZigY95Zi5sStMFl2BVURAm/cWJGXedQIlkZp+uuhZLPYsh1NX7CB3EYQfKT5FhkP1e7qRYkeoqDpp6CgqcVdN5srZsSvICf4zCC+Datgv7dVAsq75EDnbS6ybTp2GYpdMVNCZ7AmgI0sk/x7PQmN+WgJZnRhrkOwDaE7ZPLBCPwQxxG4DNAkd8ui4HTY/jDZQD6RkHgOHwYh/E+0MgcM+1zUzG05jjOuwzA1kuRPy4FHWXdhRNBAXyew791NzgBiXoyybRE/XDSpdAJdUw3SDC7cIfgEemGIPkI/OIygMBvcNClcB9OxWE43tN8f+m6PvaaNeFYc2IIboZL6tJNwhh8pgG+LcToDdst3RB03iVnbvNmN4VNJ8kvhsmz0AT14IX1J3E4mgX3JA+SvYbqLsBPxjw2fik2Qq1/hwQfWlWAzU0fv0L4hVIymoqg8z5ss5mT0Q5VIFym42YrPI6JNwBOB9VJ9VSpNE3ggMsE+6EKpH74vIHpzAtBt3cpkB5FdLsKFjy/2kwVSPcpeWJo6ICb8iDhK7p461L6KkEzLquhzlVAM0lB7CicqnvRvIDelwAVg+9cZqHC1+Iwgu7XwzJNvde+uLkCkt1WBy6lx+Ajl1noUn2Pwwrw76DAHIUm+N/l5ghmoAvT71KbPozjUZdZaHnKcVgL4rbCQWLTd+o/wuwf9N7EUShQvi8AAAAASUVORK5CYII= + + 1d3929f4-53e5-4579-ad62-84b2dcfe9025 + true + DIFERENCE CURWATURE SHAPED GRAPH + DIFERENCE CURWATURE SHAPED GRAPH + false + + + + + 37 + 0f8c31d7-f100-4fc9-b99e-8708b1064c87 + 11426add-2dad-4504-a229-f384e437c631 + 12645ff0-d3ae-4dc0-b2a5-8da9d45fab94 + 13fa3828-fd39-410e-8b31-5743271817f9 + 1b9b32b3-e98d-400a-b04a-b8a3506fe77a + 2c104d71-3268-4080-991f-2140f3080675 + 3a85fc51-6d5e-4555-965e-c47db2a072c7 + 54161844-030f-441b-ae36-6c8e6fd9361b + 5524a6eb-ec21-4259-9620-fa93f7ba2dd1 + 5cea064f-6531-45db-86c9-02cf6ea8c994 + 61c94a5f-b514-47c9-92a0-139978a51dd4 + 7546bc4b-23bd-446d-b103-122a40b7decd + 79063066-5dc0-4aad-b30f-37377464d8ad + 7a04a069-f807-4718-8d13-7f0f8da45782 + 7fbcf0ef-f454-4ef9-86b0-8101eea0d23c + 83120356-2358-4a65-bce7-37c29ead52a8 + 8659f01b-c78f-46b8-9eaf-29709ed0a33b + 881d4b81-c60b-4b8b-8dce-2c40a6a7de3c + 88326248-5e84-49e9-991f-f69c5ce76ffa + 8d481224-cbdc-4fa9-90a5-b7c7d290f9ca + 9e655fb0-3ebd-45f4-821b-a4410c510d1a + 9eb3a9f5-048d-48f2-ad5a-3c4fe73de0e4 + a24fbf38-b1b9-4511-9bc8-bfe921f44089 + a6730e96-7e8d-4fc3-b6c7-7e677cc49cb1 + a90416e9-5e32-4045-9607-50c791a8677a + b79fc36c-baff-4074-ba1c-7c3e26c598a5 + bd991454-448e-439e-be40-a2e9bda8dc8e + c974d321-6663-4f14-b910-114ab3f151d2 + c9aec53c-3f22-480e-b045-ec9e1c2f1461 + d15cd278-895a-4f56-ab56-168db09bd1eb + d3b685ff-4a01-4f1c-8451-d6c384158081 + d4a86874-2cf0-4b31-b7bb-8c7a64ae5e7b + d822a4a3-62e1-41b6-bd94-a583fc00c4c0 + e693c8d5-0cfb-4d7b-8c03-ffef28614bbf + f1bca0d8-e2a3-4ef1-b20f-8d05e83df880 + f80e638e-6497-41ea-ac05-21b35434865c + fa22da94-54ab-4228-8fec-9daf748619da + daca2ebb-26cb-48f4-8885-277e43200f92 + b2a58353-e9c9-4e65-a900-6efa66489724 + bae8f0e9-2af4-409d-945a-a91a08fdc45a + cb30ccba-a894-45cb-b1d5-847ad7005125 + aa2a8593-f318-4546-bad9-74c7978a14af + bbece122-0a0d-43f9-bd1e-b6e66ae744df + 233b0ef6-f843-44d6-99fc-9ecf077d1b78 + 1af94696-7c3b-4341-b4bb-415b935cb441 + ddb00df8-65f0-4650-a3c7-89c56da7f06b + a317f3b7-85e8-46ea-bfa9-b8f70ca5c382 + 43f684c6-6920-481c-81ce-8a3096268d23 + 326b8016-5135-4828-b69a-a21c171e1a06 + 2927bcb1-a8c7-4996-b4cf-1e0b73fe722c + 8de15979-110c-49a4-bf71-f92c5c15659e + a67255eb-66a4-422d-aed0-4b64cd94d270 + f12cf189-9dd5-4b8b-822d-2da85bac7a45 + 17750273-1d4e-4a10-92b1-f4b16af3b73c + e860b9e2-e037-4c18-988a-393d0094d8e4 + 937bac2b-aa3f-4485-8435-a74b05842dda + 88db9398-ca86-4220-85b3-d1387046010f + 81fd98cd-c9a3-405d-866d-edf2fca2467f + a7e4f8f7-1ccd-48f0-863e-6ed19022d27b + 3d99a0d8-87f4-42b3-ae8c-13046d610738 + 9a110ceb-3e62-489e-8e19-61581f5671d4 + 4a525765-a9df-4f3b-8fae-c2be3081d0b4 + 7e2338e0-fce5-4964-bac7-ea6c242afeb1 + eabf9208-959a-42b3-8af1-f5ce33e4d91a + 9c973484-e313-4490-a780-3cac6484f2c3 + 130433e2-dd09-4dbb-8e9f-946a284f4836 + df2cb580-23c8-45cb-aac6-97ce3b2e2214 + a43519fb-325e-4058-bda1-f7e34cc92c6f + 16c32cca-03cb-4d8e-bf89-f521eb08129b + 36be5f7d-3d93-4e60-9b58-2ea01268c3ff + 59e3ea83-51fb-46fa-8bda-938de18b7cf2 + 20d03587-b988-43e2-924d-d6655441a5e8 + 735da924-e3a7-45ca-9564-36c125627c0a + 53133e66-86e1-4322-bb85-7afca5c21f4f + + + + + + 1444 + 1406 + 103 + 404 + + + 1505 + 1608 + + + + + + 20 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 + 17 + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + + + + + Second item for multiplication + 61c94a5f-b514-47c9-92a0-139978a51dd4 + true + B + B + true + f6f14880-afdd-423b-afa5-2122f025986b + 1 + + + + + + 1446 + 1408 + 47 + 20 + + + 1469.5 + 1418 + + + + + + + + Second item for multiplication + a90416e9-5e32-4045-9607-50c791a8677a + true + B + B + true + f6f14880-afdd-423b-afa5-2122f025986b + 1 + + + + + + 1446 + 1428 + 47 + 20 + + + 1469.5 + 1438 + + + + + + + + Second item for multiplication + 5cea064f-6531-45db-86c9-02cf6ea8c994 + true + B + B + true + f6f14880-afdd-423b-afa5-2122f025986b + 1 + + + + + + 1446 + 1448 + 47 + 20 + + + 1469.5 + 1458 + + + + + + + + Second item for multiplication + 11426add-2dad-4504-a229-f384e437c631 + true + B + B + true + f6f14880-afdd-423b-afa5-2122f025986b + 1 + + + + + + 1446 + 1468 + 47 + 20 + + + 1469.5 + 1478 + + + + + + + + Second item for multiplication + f80e638e-6497-41ea-ac05-21b35434865c + true + B + B + true + f6f14880-afdd-423b-afa5-2122f025986b + 1 + + + + + + 1446 + 1488 + 47 + 20 + + + 1469.5 + 1498 + + + + + + + + Second item for multiplication + 7a04a069-f807-4718-8d13-7f0f8da45782 + true + B + B + true + f6f14880-afdd-423b-afa5-2122f025986b + 1 + + + + + + 1446 + 1508 + 47 + 20 + + + 1469.5 + 1518 + + + + + + + + Second item for multiplication + b79fc36c-baff-4074-ba1c-7c3e26c598a5 + true + B + B + true + f6f14880-afdd-423b-afa5-2122f025986b + 1 + + + + + + 1446 + 1528 + 47 + 20 + + + 1469.5 + 1538 + + + + + + + + Second item for multiplication + e693c8d5-0cfb-4d7b-8c03-ffef28614bbf + true + B + B + true + f6f14880-afdd-423b-afa5-2122f025986b + 1 + + + + + + 1446 + 1548 + 47 + 20 + + + 1469.5 + 1558 + + + + + + + + Second item for multiplication + d822a4a3-62e1-41b6-bd94-a583fc00c4c0 + true + B + B + true + f6f14880-afdd-423b-afa5-2122f025986b + 1 + + + + + + 1446 + 1568 + 47 + 20 + + + 1469.5 + 1578 + + + + + + + + Second item for multiplication + 2c104d71-3268-4080-991f-2140f3080675 + true + B + B + true + f6f14880-afdd-423b-afa5-2122f025986b + 1 + + + + + + 1446 + 1588 + 47 + 20 + + + 1469.5 + 1598 + + + + + + + + Second item for multiplication + 83120356-2358-4a65-bce7-37c29ead52a8 + true + B + B + true + f6f14880-afdd-423b-afa5-2122f025986b + 1 + + + + + + 1446 + 1608 + 47 + 20 + + + 1469.5 + 1618 + + + + + + + + Second item for multiplication + 5524a6eb-ec21-4259-9620-fa93f7ba2dd1 + true + B + B + true + f6f14880-afdd-423b-afa5-2122f025986b + 1 + + + + + + 1446 + 1628 + 47 + 20 + + + 1469.5 + 1638 + + + + + + + + Second item for multiplication + 3a85fc51-6d5e-4555-965e-c47db2a072c7 + true + B + B + true + f6f14880-afdd-423b-afa5-2122f025986b + 1 + + + + + + 1446 + 1648 + 47 + 20 + + + 1469.5 + 1658 + + + + + + + + Second item for multiplication + 7fbcf0ef-f454-4ef9-86b0-8101eea0d23c + true + B + B + true + f6f14880-afdd-423b-afa5-2122f025986b + 1 + + + + + + 1446 + 1668 + 47 + 20 + + + 1469.5 + 1678 + + + + + + + + Second item for multiplication + 12645ff0-d3ae-4dc0-b2a5-8da9d45fab94 + true + B + B + true + f6f14880-afdd-423b-afa5-2122f025986b + 1 + + + + + + 1446 + 1688 + 47 + 20 + + + 1469.5 + 1698 + + + + + + + + Second item for multiplication + f1bca0d8-e2a3-4ef1-b20f-8d05e83df880 + true + B + B + true + f6f14880-afdd-423b-afa5-2122f025986b + 1 + + + + + + 1446 + 1708 + 47 + 20 + + + 1469.5 + 1718 + + + + + + + + Second item for multiplication + d4a86874-2cf0-4b31-b7bb-8c7a64ae5e7b + true + B + B + true + f6f14880-afdd-423b-afa5-2122f025986b + 1 + + + + + + 1446 + 1728 + 47 + 20 + + + 1469.5 + 1738 + + + + + + + + Rotation angle (in degrees) + 8659f01b-c78f-46b8-9eaf-29709ed0a33b + true + Angle + Angle + true + 0 + + + + + + 1446 + 1748 + 47 + 20 + + + 1469.5 + 1758 + + + + + + 1 + + + + + 1 + {0} + + + + + 0 + + + + + + + + + + + Contains a collection of generic curves + d3b685ff-4a01-4f1c-8451-d6c384158081 + true + Curve + Curve + true + e2df2e1d-44d3-46a6-865e-cf271d98e1ba + 1 + + + + + + 1446 + 1768 + 47 + 20 + + + 1469.5 + 1778 + + + + + + 1 + + + + + 1 + {0} + + + + + Grasshopper.Kernel.Types.GH_String + false + 256 + + + + + + + + + + + Contains a collection of generic curves + true + c9aec53c-3f22-480e-b045-ec9e1c2f1461 + true + Curve + Curve + true + 5d1cff17-fdb4-4fdc-8366-b759fcf7a3ba + 1 + + + + + + 1446 + 1788 + 47 + 20 + + + 1469.5 + 1798 + + + + + + + + 2 + A wire relay object + 1b9b32b3-e98d-400a-b04a-b8a3506fe77a + true + Relay + Relay + false + 0 + + + + + + 1517 + 1408 + 28 + 23 + + + 1531 + 1419.765 + + + + + + + + 2 + A wire relay object + 88326248-5e84-49e9-991f-f69c5ce76ffa + true + Relay + Relay + false + 0 + + + + + + 1517 + 1431 + 28 + 24 + + + 1531 + 1443.294 + + + + + + + + 2 + A wire relay object + c974d321-6663-4f14-b910-114ab3f151d2 + true + Relay + Relay + false + 0 + + + + + + 1517 + 1455 + 28 + 23 + + + 1531 + 1466.823 + + + + + + + + 2 + A wire relay object + 9e655fb0-3ebd-45f4-821b-a4410c510d1a + true + Relay + Relay + false + 0 + + + + + + 1517 + 1478 + 28 + 24 + + + 1531 + 1490.353 + + + + + + + + 2 + A wire relay object + 79063066-5dc0-4aad-b30f-37377464d8ad + true + Relay + Relay + false + 0 + + + + + + 1517 + 1502 + 28 + 23 + + + 1531 + 1513.882 + + + + + + + + 2 + A wire relay object + 13fa3828-fd39-410e-8b31-5743271817f9 + true + Relay + Relay + false + 0 + + + + + + 1517 + 1525 + 28 + 24 + + + 1531 + 1537.412 + + + + + + + + 2 + A wire relay object + fa22da94-54ab-4228-8fec-9daf748619da + true + Relay + Relay + false + 0 + + + + + + 1517 + 1549 + 28 + 23 + + + 1531 + 1560.941 + + + + + + + + 2 + A wire relay object + 881d4b81-c60b-4b8b-8dce-2c40a6a7de3c + true + Relay + Relay + false + 0 + + + + + + 1517 + 1572 + 28 + 24 + + + 1531 + 1584.471 + + + + + + + + 2 + A wire relay object + 8d481224-cbdc-4fa9-90a5-b7c7d290f9ca + true + Relay + Relay + false + 0 + + + + + + 1517 + 1596 + 28 + 23 + + + 1531 + 1608 + + + + + + + + 2 + A wire relay object + 0f8c31d7-f100-4fc9-b99e-8708b1064c87 + true + Relay + Relay + false + 0 + + + + + + 1517 + 1619 + 28 + 24 + + + 1531 + 1631.529 + + + + + + + + 2 + A wire relay object + 54161844-030f-441b-ae36-6c8e6fd9361b + true + Relay + Relay + false + 0 + + + + + + 1517 + 1643 + 28 + 23 + + + 1531 + 1655.059 + + + + + + + + 2 + A wire relay object + 7546bc4b-23bd-446d-b103-122a40b7decd + true + Relay + Relay + false + 0 + + + + + + 1517 + 1666 + 28 + 24 + + + 1531 + 1678.588 + + + + + + + + 2 + A wire relay object + bd991454-448e-439e-be40-a2e9bda8dc8e + true + Relay + Relay + false + 0 + + + + + + 1517 + 1690 + 28 + 23 + + + 1531 + 1702.118 + + + + + + + + 2 + A wire relay object + a24fbf38-b1b9-4511-9bc8-bfe921f44089 + true + Relay + Relay + false + 0 + + + + + + 1517 + 1713 + 28 + 24 + + + 1531 + 1725.647 + + + + + + + + 2 + A wire relay object + a6730e96-7e8d-4fc3-b6c7-7e677cc49cb1 + true + Relay + Relay + false + 0 + + + + + + 1517 + 1737 + 28 + 23 + + + 1531 + 1749.177 + + + + + + + + 2 + A wire relay object + d15cd278-895a-4f56-ab56-168db09bd1eb + true + Relay + Relay + false + 0 + + + + + + 1517 + 1760 + 28 + 24 + + + 1531 + 1772.706 + + + + + + + + 2 + A wire relay object + 9eb3a9f5-048d-48f2-ad5a-3c4fe73de0e4 + true + Relay + Relay + false + 0 + + + + + + 1517 + 1784 + 28 + 24 + + + 1531 + 1796.235 + + + + + + + + + + + + + + 33bcf975-a0b2-4b54-99fd-585c893b9e88 + Digit Scroller + + + + + Numeric scroller for single numbers + f6f14880-afdd-423b-afa5-2122f025986b + Digit Scroller + Digit Scroller + false + 0 + + + + + 12 + Digit Scroller + 2 + + 0.0625000000 + + + + + + 1035 + 1399 + 250 + 20 + + + 1035.916 + 1399.719 + + + + + + + + + + f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a + DIFERENCE CURWATURE LINEAR GRAPH + + + + + + 7J0JIFTr+8dHZW1DSKWaEpGS9r1mBmMbS6i0NxiMGBpLtKpkV1QiVFRaqCwhO3Uj3TYtSrt2ad91b8vvnHFGZ87MOXGdMaf7u/7/26/mnTnOfJ/3fd73fd7n8xw5Iy8nP08Wx/cH8CNFIpGkgf96eHv4ubI5i/1ZXB+2FwdssgFeBpvBH1nwLfzPmbKYziwu+BZpqFmB32RmBL4sD7w0/tGLhNVhhy0SvnCaXI2Wf5a14bL82azlYLsC0C5j5wZcxbkn9LIly8fNPtCbBTZ3hn5xd6jNyovryfQAW4YAr6ampv7gf8qO5cFy8mU589vYbPYPFSOWC5vD9gW+hQ3Xy5vF9WWzfPiXBf/rYsT05f0eOeAfx+57RsSG3pLrasTyceKyvX2hLw/eIqmLFdOTxf/Xy84Opib6+g/ydjTuCgf+fBCfCfx5Pz77fnwu7y+8f+amgX/GbuL9GXM/Nq7lnTUJVuDftwaDV9gOfuRB8r6Wv9/ftvX+triWt92PP9Rytea3NV+kMf4Y+PqOdQK/mv9Z6Jag1kOCt7fz5++NSOS9OQrr74npLReE/oRewfwU7+/QN+L9RtgNHGq5N+g++bf98z281ubvCP1S3neHVOVdAdKH/1lhJZsVhtRu/kV8Q0B2ga4mYD5IXp5l9fVNTB3kbYEeBg4FH/4wAX+681819PJrHkCd+UMA6GzuQGeE+k8n6GUZeybXlcV75wDgnzu1SaRp6kDPmufl5ckfQUrzzs+Qng10Z4FfJQ++IvRr5G2dvBnMQC8/X/h7FUy4Xn7eQm/uZmJKZbAduUwuNASkoJElLfBW8BXZ5vcF8u4Z+rgi1ceH5enoEUj38/CADwWqjZ+LC4vrwvZxG06e3ewxpo3RNwD/bzjZ0M/D14/LmsZh+flymR7DyTZ+jh5sJwtWoL3XUhZnGge4Wk/+pWf/9DfglWWhq8hQ/XzdvLj8l7tbsp3cmCwPsg030IvbycyZ72VSG3ZqLB41m5Eps5n9vUFhhcCIVfh5m7Iov0fpp7OwdgTN1yKTNPBH1+bXBMQCX5dpfh3UqBOkXxeTWT9936h9tpXzMw/RD+7refbkmo/bBe5KmmcreUMvji+TzWn2ozrQVWRoXlzItfINI2Po5eHlx+V7OPB/RfmqAVSyK3hdspcL2YTL9PFx8/IGfB/Zq/lbdTIz4vUe4L/vi4+kHJ3eaBl6ICNBxc7PGGiSgpq4uUqOIf0qLfbrXHHWrP/4CmjqBDX1O7Y4uX4myzQrKnvt4Z5TLYCmzlCTbC/1fBdFRauSs38rcLyDaUBTF6hp+rUGqz4ZKYy069dDi292bgSapKGmCJpRhHyciem2XQ1bV/uHbwOaZPh36NrrVRnzuvX6u/H+pyimTUCTLNSU/3j5yUqZKqtQxwdVod+jugBNclBThifjwBelWMuCer1nCnnpVKBJHmp6OfjD2WmrZxpvMr52lq3gugxoUoCatFmD4lXmhNMLIpfIkvSylgJNXaEm/x5yZwpi9Rnrbs8+bKrfWAI0dYOadm16eNO7+2XjOPtJ7BDNyVFAU3eoSSMyrMtovVvWB+pfr74xLe4G0NQDanoR5Pp5SXqa6XGZeiM3mVgpoKkn1MQ2P0l2sXpO2bJv/PfnqpTXQJMi1NRFWlVXaZg/I+vTY7MjoV8nA01KUNNxl5GnAujTTffO6uG6RlrhA9CkDDXFfZ//0iyAaZFzcnuj8uR71kBTL6hpmWb83ZO0k4yNWwavyYhd1hloUuFfcEf/69eTp1LDqPOUbHa6TgGaVKGmzQrdz5ByjlgdZyeuiS9rLAOa1KCm4fsGRfRebme8P+A+9f71pL+Apt5Q063M2Cvap2XMs4Z225htOUgaaFKHmhYNVrGsJy03CbOq1Bk91vko0NQHajL1cddc2vMRLfaHlGNyv1J9oKkv1ETK2OTkM8+PXvbJ6tSc0Ze0gKZ+UNPlxJxlL2avMI5ihuraGMqUA00a/Jvf2yOHmapJ2XBp3qgCr+GxQFN/qOn2INveEZdDTY+9s8jRv1QOGmUA1HT6RMJnWo8e9Pyzo2znZpWvB5oGQk1/viyP+fa3rFm6vd6zoSE5/YAmMtREfR52arF3luWm6r6Wi8obwuXMjBYLeJBBoGc24/j4MjlOLBM/doszUzJQ/bTX6Lt56pgtL2Ne3aoX4TbkrNhOS+EvkxSovr5ctqOfb7OHh1w330VJ4eaiBnagiyrtveRI6vwwq6Kzn8JsdQPtYC6Kvl+vXPbVS+u8F511GlhfqmAu6ii7Rt58Vj+T9U/u9FxNsfgAc1EZh30mnLQwo4f0lmbQqyepwFyU8ZqKFEpYk/mmhckc2vN8PZiLurRAVqN42W7DvClqH0fPldaEuajyOZ5X53/0MwsZ1SeAHqx1CuaiAkIrV24aNp6SOqIsTU5zVgjMRbH3rylhjb1slhZDmjRDvyIZ5qLUf4wiXXCVNolU6nM0YSKlBOaibJwtDrwI9KBkHNcOjRzT9QjMRdkP1dO48qTUMlHOkxO65ZItzEVNyXk/aNK1WquU0lWaNaMHH4G5KM1A92Fh96LN42t2VNmnDl4Ac1EnI/6IuxrJtYpcfeLm/jU3FsBcFGOnrHpAX5b1oZOsG5Wf1KfCXNTDtPFvBz8ZQE3l7nR4KVu+AuairDa8G2QWV2xWGGs5R+GM2ieYi0oq+vbg0I40Wr6nzKbE9Hf6MBc15jKLMW2mvElwflqY1qq+u2Auinsj/mCR8iTrtA8n/p474sgjmIuat46TPzwyySqB5piY8+OdLMxFGXlr2eYr2JnHXahr2Gg1SQfmoqhN3zjqc3SNd12LemLAVRssNF7V0cbr8JIHs/MXbTDKrLTf821KbQ0O47UTbuNVuwPHq4h1A3+8ilg38MeriHUDf7yKWDfwx+vKGx69nu80MyoILrffd0b76n9Liv+WFK1YUiBnZdiSItiwc0GGphc144qxxqUTqYqwJcXieV/qF1KHGB91mMwICtwnBVtSDNceq37aUp2ewjq5wPMqtQS2pLgyezybnLHP+FBiVNrBL4fHw5YUi48xpE03PjVcp6tXPllp2mUhZzMQzdkgl+04OJvOuDkbtQ50NiI8Ct/ZiPAofGcjwqPwnY0Ij8J3NiI8Ct/ZyAWqa70qzLWKOOuZsav28QOYs8loOhy7sPALI4ZG/Thp9ZpQmLMR4Yf4zkaEH+I7GxF+iO9sRPghvrMR4Yf4zkaEH+I7m+Q7hya73/9Mj9zuNOi5+4qvMGeDHF5CnbcnWudFThA4dN4uaJ1X/6njoK/cJottc6/WjTyYriLwu7oZsf3ZziyyoR/XnyXYh0HDgmYS1Tt1oY8xyU7gB8lsjq8XmbXMj+lB9mBxXH3dyD4sVzD+6SNjynZ2ZnFagi0i5UB2YfRbFFJFoBWhUEvMiQYYxZn3kib475jjlaS6tEoS6QGNRAqiSduw/b18+Wt6kkE+0Lqvsqs3k8v0XMzmePvxAhuykLai5OjJ++1kQANn3t2I/JI31u8pXpjYn55eOKG+dk7YdUGbi/520MvWvN/WHPLlhbhk7AAX4sTiuwBPm1CXUd03WGyrsbk55evGmK7NzUJBrVbqEwToUw3q84ZKIqVQEfrIAa0BaQL6SEH6dELRR9nKz9MRdF4uLf1CpER7utG/hswYZrYzwcZjzq3aMQiJwK8jQiLey7+SCDmB4iCRDqZEQBfqYQMG2Xx8ge9rxPRltowBkqiAowyNC8jhRoINY+E3dbFh+rrxv3nnlQaru5j5sjxJpJ8HEzIcntT8D4Hvg1sKvLQMhqV623l7sH1brERm+pKXsjlLRZur9Ovr8uH9zzMyC5d/KlHabyBoLgvwc8Lman5ZyFyi7CHC6WHZI2wflj0mSsYeso5eXh4sZosDJHVrtoaXny/CschQnZxYPj7wy4v0NaDDA0O3ZG8vNtpA+hj8rddrqyVWiVti2aY+9L8FLCNjw/ugkGn4r+Ntm5o8yJ0soImwzYdcnjsRkEWq7bIMtmdyXAHDkv2BudCLy+u5zq1QqsFM4VKXz1tMQkZZZK3jHPxDQCk56KLCWv1sEYdaOphqAZ5FQK1ObVdL0wb8PMsX8Mn+TA8/VqvlWvrkflPDjcmm2XMz113Vvj0Gcb7Av6qwYPA2cUjGG/yokgGDH1omSZNQlklnkpiMb5N6m6zfP0C2UXNlmWBHYACrIrKdEUN4iSSNIjHNkMti+oJLJA/ws5BHJTuD5yssZ7JjIBlQl+vbLPZwsi/UfZkcZ2gJpb+6VWsn5Bpf9H0Ld2B+Sys1dgBWRQZ7AY1LRK2ZwgCNDfYIrZmwZhpF3g3ANBD57dK/+t/rbxVuknL+5PHa8pRcwSnGDvy08BTT/DLevcwUUIAMKmAgqpclAH2wZo9EphgFQy9gl8nmQKf4Y0joP8hFG5aB1HkG4vdLHWc2t/k0V1ekobwfVSX0YPUxTZd7qZX4TPkvAUPJG/E/LGQsWJM4DBa0B8tgBpIxmEzzHCVorDczsIz1q3VbV56xmh2HSPts7qH1/HPOO1pxfY7mqCnLjARXBAzeB4VXBNDr4rBMfSqWZWJSJb165h/6g5YRWrPJkNDn1m4MmL8XaQvkdk3AFl3AjwtZovlVvO2gkwu5tCxg1eyNdOo1x3gjBJo4+b3vXzNxIiNgYpw4CzKwJs6CdJHBhvZNnE/qPFgrB84w2Vxh8eWmoSylPRMnYiuN3Fy0cysNOoODGVjOwCHj/3devUTLef92vInFsduuvk6H5+0lyLwqh2kwoEcTZl7l//ycX5HzKtZg++W8OobmmyS3NNNqDyUoK+XV89D2zauIkaZ2p++9H0Fb6XH5FP/E21um4jDS3NKxDKcuIcN1yLQ7Rer29Mf2TrSsK5FSatKlFhKddnkeD3XaBQYQNO3yO6fQtGt1nH7hDOmUYdC8PlPYjeZKAt+mh6Wfhy/b24PtxARvXXjyRevv/SwBW7E8gU85MT3IngJXadWsijwhwrotIbkR7a2UU/E4INgBQM4oGti1EXLyvNWByu4t8Qd+rwZl4IVIzUBHIGBLnlfgvWzmzB+Lc52rN0mVyxsVvept2V2vVw2/XQqlvas1r9sKjQa55tfRL9x8P7zbJZGwzx3609lcH18yGxhOZBcvLsJeIu1TM0Bea3y3AZZx3TbFfVk431XAPlJUIZMALyG7vxTCSyGP3NrppUiAOQ+C5jQQFcq9CpjT4UAlTCSpX4g0wI7l5AUsDtui0kD9jxT7i92NNuy9F219oUhOUCWasEq0X6oUk3MgIUhtMyP2GiXo8bCbm3FQSQ5TpYL9lVAfbOlLWP5T3ZblAwgDntG0QiDkzCQ47TVfSnjag17H25825EE9pgnQgox0AB55PKUgfyqH5k+3N3zcOWJWFKPwT+sTJj9SBgtGNo0DvLksHx8hX4q10FMzBmOrvK0Mh8xquQDsWvx3KtGtbS2p9jqDVxpMtl09eLi1bqt8LfLwHO2WhYOxP9taG2ItqCQFxQISjzckkeqR3a0ekFgxVoSP5R9Ki/CxUiJ8bMK3oKLUWAez/AOHrCiP9W51hA/t9VMLsj+Ty2Y6eog+v1X/UCJ1bgTVNOVNr7L7p9ZWCqo9G/oo2VrYOVh3tAutAKzlHQs5hwqktbYV8KzVFueg8tM5/OzIIlWak5F4gX77g0nayT5b6MP9ElvlGKTIuPuEJccgCSooIiQwPcaTAPIJ8mg+IbGgfm7ooyazooK8ouyl9xmCm2gbJoflIegO+FcSpaEOlewNfoI3Bzn5+fh6eZI5Xr7g2QswO/myAnyhsxiRuiKzYUTcinDGiChVnbheHh62oGfn+6/mnzczEH0SaUm0Pik3y4fFtQdun/9rtYy8/MCR4ATMIEvBpAiWM9sX+u7ATAzuLB4E7UfYkU/OCe1ZCitJOomAHWcbkoJCDRUsmVxXNofBchHoFF2bX7Zlu7oJ0kHNr9t7ecNfFewMKcaFlV3IiZU9eSIKInKy/LsSlbTFZS434ziznWAokTz4Irjdgb3EW9OCoayfztzOm+XEZnoYejn//Cyw9/PlspieLf/uMofL9P7pMJq7qgJaVyW7auaHRYfTtv5xmLHjS+FKwf5hy/JgBgp2VTmSyBNDtN7bi0pezuayyFzwSlAWmsiOiszNEnEjrRr/iN6I7P/t9JAJwAJpSVIluFwgkYKQ7qEJmM/ISXz30JXwmiOnD5w0R+a+4qC5XAyW5tWb+Zp3Q9O8zamYXfmadwRKJpzNyN8eishm5Kdiishm5KdiIg0rlGEILrBEdglksiMOGYbd0WyyrJytx7ZKNzxeZu3x9NH81wK/q+tMP3AaAITzdhOeLNuQszDEiO3jDQ4EJtmHxVuKBI7gJy8A/w/YCPgNIrVAZnei3p+QIgKNQsNF3s6L62sN71UiBtE/XNq1XA05H4JLuxRgEKkZgv8JDqJao4LKZE5KZXc+Bw7MT6wAgcs1m7IHmilLWfvTOd/OMqKHVx4z4CovFAw3g9mITJBlFQ4oyaBYbUrLJsjXjcXLFuVdADQfP3mU6QuaFJwSXdgsZ7I3fxOh36pNEJITQLlj4QB5S1Nrd5nAjjvLE1D+L1EHOeAeNGtpm7JGlVqyRlmQRiK/4IjsNRN2nr1kfshypsmKuWPP4Jg3iqQl2ung6wCFYkCFTGlgIh5CITBMl+IhMm8UTSGtn2lKwO6subc4e3kCHe+XqpHsv/lM+VuRsWm4WvLVl7Wqgt2i5brC3eJn06/U69ojPq4sT9c8Wlv1xga3N7o4qAf0IAz1Ktwr2xQSV+Ul9P2UDhhoK31Xi5QrXm5i1bGcsYbrFumv6Bx54yxiewFeR7iTNb+M984tLA/qRVNFnVKcy60kvfEQThfE0qF3y1CHsgOxlBgW0dmYrqdOT1h7e/qeo97ZbfcnYlHExgNLEaDfCKUEtlIRJzbXyQOzb3h7mh+vNnpLLS/Xpc0zNptPEEUUl2Ip4u3OX0qCEMbvCkYgSbcOACOC3LDAiCAX/MGIjytKNkjZ3mBs2BX7ddcCSg1xJzgwy3yJG1aWeYWrWMCIojSLJd2fK5mGPbY8sfLwoi04ghFIAg8HiciuWBIBXejfDkYEhe3wcJT6bpX8doQtpcufFyQMRtSzsOxBYf0fgRFrrz238h1Hp6Yl7FbUnLD+q8TBCJ47Qc1bB9yJpMAI27ph7l80Aq0KJnGepD+3v0IIMILnWVDVAjyLxMAI5GaAMGAEb/CjSgYMfmiZpEhCWSbtXrm99lXDUsODR3S/Xbg4ulbE9Cw6riNK36HQO8GAjZOXh0dziho4/wGdhsVlOzWvm1q3OkLO7rKWTG9vNseVrxT4dXBcTCAx9nbOlGRwMWFTCabMCJ9QnS/Iq/ROsOYbRwnNOI46IZqJXcooeQ5D1NPP3lAT+Lo9jcDMBx9frp+TL5nKdWp9Du4UWxbwFVj+zVEbR6YPi+ztweSwhpO5TGe2X/ORFTDQPVr242A8h0Nmcp1aF7VBFmPAvG8hgyHf0IblbQUXUPycqOVtELC8rfBu0/JWA/jdZGA7adi8hwKXuT9vTOT3zkqZ/tXXlk1Pnr1huOUf2wTja51FfVfei7/qmsgtGg6LuBRQqBRRCWoGx3lCtSkU0Y/W0od4XaVZt+a9p0ihKAvUjD8VbzRLHcziTj/XtEbQn/KuZgNeTdifwtrw9qfkfEgXB1H+1BTwtiRuG0MTts3jqVWa7NnQ9FFWu7PR3qu+B/IinpxAnK3zriQi6ab5dXFosWQZlhbIPvKroASZCncoOsB/oLNhcnx0IXlEimL/ZP3G2EuVRuVzyI929qtWFnT4vEsKO/zml8UhCdkbS5IgL75HV0bz6CO3rA7sP/k7PXbWuEhS0tx4wY5vDYwfa39gdeIg7Mw7o+jay9DLE5AfGHjg4AM/HNA6J40si4N2K8Jj8GdbaykJcNu4CUyJpYnILyIBwmZFt8k1d+VlADUv4kR+uZMm97dz1miaZeSMv6j6pkYwUVV6Nvg54X7T/PKvvDGyjk9707YBbRRBbRpEZfNcbdambbnSzak/GOoY/i1zM6nU3+hIQtOzfswnyyWa35eSBwnQJEqAIXk8AaBx1QttXBHmsB55qo7TYT3SYngc1m/GPKzfxNdcBU3z3zCnElnUS8w5lQYBWDmVNsv/5TmVVTLD+h3P7WKe73l4/TPfrUV45lTi7IXBnErFAKycSsBa4smpNLC/uHM+c7JF+PIpOnJRr9Va5YzFlFPJkwA1pxKQAPIJqmg+gUA5lcgqfeLPqURaUjI5lXVAZ5XbCNhxkrhyKsOvFlSad95I7JxKfjKMGlpXJc6SAVEzEqclA7L/47BkcAjBWjKoh/DdQ2/Ca46cPnDSHLmHx0HzGl8szW18+Zqro2letj9q+sFvmeZ5FVPtq4t9BLfQMs1HlIKiY51pjkQN8bp4eAE+kuPaHEcnNx/IiXbNyHJtom5JeP8Bvf4rG4yu3a4y0liLscN8o1yW/bHS9q4MABvEMKHEHeS0KPc5r1L9/BJJH3n+nJNiKFB36IPWHdoc8OcPQbEH/JGlbnEM7iPhYBz6hOkRlD5x62NeJf3xYf647ItmiDbnOrf4wg7IdUbaQig1GfytIq2ILJvamtRkaVFpLPwuDenYD03Hi/2fP/u0xdIy+Oj2wSOWfBTMhe5i6SUqwQftZGSYPTA0fTzAHaiOJ/BJXXAj2qwOmenhBTg3JnTS2roYG/LRDsL3Jgylg6+2sh++AWP1RUA//CqKjQbjaopFbYqrdeeF111ZXsCelBso8isV9ln616beRYalWe8X7DC7O1Hw5NgE+qjwyXFLy692dsiu186xWg8mXoIaUUSFbXnHdEVty+rh9xHe/pfXGUQfgl0dMii9Vs4qoWbv0GON/QTPjGUsvUQy8vzXf+XQ9M8HcOi2BhZBKvbSXRmk3TiIpIgpUkUh8Yp+8H+GUNoUH+3VMsidsbu6zjuD/lqs69YJGg6lQ2ZkX2l3V8cjVMrry6aizFSXy+vLbTqhatbCBXzkHK8/OwOGFe3JzJNUFmk9ZkQH3n9rvqbXd8E00ZarCKeJ/mwSS+AYUw2g00KzhwYJZfbI0C+cPejSZ8NtVzzq3txprEPEqJoTih3mzms9E6HdUuEKSkd24Xp5klcGBK5YDayRPL29OGACTevmD+Tzf9DuTjhe+bOtlWo2AYMcjFmSehqKOD4ngQUQjwvNJXzeXmQEDLqFlQGw7y3yW5pRlv2wo+cxIp1LclVVv8Qom3F8WVygpwjHfTuNcBDkexx+XluY74E3/sqjnjpTE7c15JhF4qtlWXU+B/q106OCPAkYVCTtEdU5nYGp2buAONuGN+VtmQFbLBv4K8seuUPKDnxVRMnzJ5v1mjI9SdB2c7FsN7cNtnO4ExhoGRBFy6AOTJQ6O6W9CRKg7ciYtgOGAmFs17ZM1xbbrfiV7T4M6KPGLl/F2J36REqFMzhC0HbzsGw3D8t27S0HAiYZH8cyjgGhjNOmpYkiZB3sNCPk4k9wZdl8CeGVJfQ67rNwLuTo5ESBTepAq2lB29Yk3SERMOqyZeikZH2X0zY+eOXb3cLDfd9ItN4pqEDNcSwFHI7z1yH9SSjrkOzFjCcLgrPNw5UWj9moViRYuUnGjgU+07T1+9h+LWsQH94nwQ0/FJBr3cID+XRBUbcjLHDz6609bwIkA6ET0mVR+Xrg5tUgr001p/s218tq/p5kkCJ0Y0HfX+R3VHjXm6s+65PxzuIdecsj8j5KsPq0DTjj5KPl8deBM04ecZzamxltqYg5xM6X5U32Ya9g8c7xWEwnN7KPHy+cz/ZnQeYSaaBXI/zWfjd1MdlWu15FLaDwi2D0BLyscPSE96o4zBOUh2UeA8Kah58mj2aeAT8hJSgn/tcjZ4OZmwVbe7XxsZH2e0gOFxGP7mwXsIR8QGk7l3Kg5epzsSwXkytpy/GBJaGVAsrhF9q8qWSH9PUijYfc6Pwyr/4X7l4s+3qeMwTxT6H8ZDAhDBht0Hw6gIQyn+p+661+lNzZOI/25m/WAFfB5zF1ZQDWJjcvB1qfadnfksX0AaFacHRAvCev0IEHcLXWTavIJ/Oi3pXwmhrW2EodA8BHOWUBOp4UlXXpDaaAZYnc0behz8nzAsagAKL72pf05DkLelrk640KHLnOVzAbrgv4lUQVZfX5tZvAGf10A6RyA6VKEJX+o3GcJxUqwiZyn/XTrYKlKXlelSFSI9WGv5/MtjNnxMa/9dxH8e6LHI9SQuOxg9e3ivmQOKJOu3iwNiAONB4Hoo1HAiUGIacY3BODhHqrXFj2iIN3V1plOOYdoEWrdJNMYlABYMeAYy3xUjEkBoXm51cuWnYMj8QgknBiEAnfYmtktK46qNPG+UPzrllEOT6jup3nCGYndLdk+viQqc6AHYRSW0Hhu6B1WWCNAUbByZ7g55nQ53/OHy2OolXzCPJZ7Ri3KNSVBZvbcEDklgP0nU+iThrBPJWC7PbOJQNhSf0+zbV84Vrpi44E7NiZfnDaZJNM2ibL+FPViFN03hWFl6LNL/9qjkE65nbOMWCIwAGUsI5KEq5j63ycJ2GbokW9YUV94UqJFArpgySa8z8xH9IiTFQQTwecUnLazUb3ZkDjCriOL+AjyFzelxE9KezcVDDkzcAMo9IRXeaN/fbqviCyaANdoVkO4aWw0BvEIRjQPTAEc8vmz8GD0BxbmzNOlPmCd0DGCTJVAlZdD3kKBquuh4xTwarrIdfasAcdI1cAsAcdIz0r7EHH+i+3hUdsD7fY/kP5S88hFxbDHnS88tnMt6OitI0Oksa8ki4KDYE96FhxwIEzhRYfqBvrj6ZPXXF7LOxBx+NjZlFClV5b75TPXMacUtgf9qDjS5m14VtLzzOS4jU673a8/EMo/wYsfCiyI//5sjzm29+yZun2es+GhuT0w6E04GC0DkX00oDIx6B3aGnAf0gotFxNVGnASJTSgH3oBZWn2ZG/Lg2oiWbK3/U5T6W9lxxJnR9mVXT2U5itbqCdGJ/z5P0K6zlP3i/F8Jyn4xc3hux3zLDYM6xIQ+Fk1d72hKjF/5ynJa+wnj6j+Or/9zlPl6fdjPkycafpNsXTDLpq97cEec5TxUssgwE9mnApX2J6ztN20tTJhgoO9FRl/8ba00tP4vqcJ8ULbl2vGKqYHx4xasehEbJbcRhpZEzD1byQdEhbjM95OmA2NSa770zrPaxuKUvcr+6S6HOeeB4P9TlPwACCpt0hJJRp9zdkaOn79cplX720znvRWaeB9aVKzAyt6U0shrbuxr+cob2WVD0vTu2JZaly3PZLNx59xpOhNV5TkUIJazLftDCZQ3uer4cDQzvxJhZDC1hLPAxtjs2L1M59DpomrXH+likbsV+SDC1PAlSGFpAA8glaaD6BQKHyo+waefNZ/UzWP7nTczXF4gO+ofLTFzo1IBlapCUl91yS+gfifC7JRqPCyk51D4jN0PJD5dpoXZUwPGfGYZ8JJy3M6CG9pRn06kkqIm7kn/CcyP6PA8+p8wiL52x4yHcPQwmvOXL6wEnzgNDKlZuGjaekjihLk9OcFYIHQ1uHpXlMHV9zHTTNiR7ourRAVqN42W7DvClqH0fPldbs0EDXP1xGoAW6bICFgs4zlEBXkUVBZbL2s18HunQJP3xORvwRdzWSaxW5+sTN/WtuLCBupSD1GqzhU3eRP3yGoWlOu9r7jv+EY5Qj8xepR84uFVzRqIBf1RdMBTRiu7iwuCxAJxGprmhZOSP59c+4/Ms4/7wMb9Xz84AVpJtatccpn+N5df5HP7OQUX0C6MFap359w0KmEvmuVopefRzY99SCNcFEZe7YACapu9re01YqAyYKuF4CVyBMXh05sg6UPwZWLGyuigv+raXEsIeH13KWs+hIV42nxp8jGxYbBiVpx6/T65KGyE3neTMRuenNr/+qbydTpE9evTDZ9ED0pc9Vpu9etrNvFwAyTwRl7iIqsWXscZ7M7S1crQUzP9mR5bucxeLw8vtZTn687sE79Rep5fOwG5+HpT+xTjshZ3nnZp5gYZCuP6/rLOzV4Y14b3Le5EGyLRAlm0oeTzbIJegR3g0jlxutccMitjiInoo0HR7FV65hFl+5xpd8OOElZ+9fU8Iae9ksLYY0aYZ+RTI+kiPnUxwkf3MJS/KsS3zJR6BJTujn2SF7PuzEHWkh2Ik7cmqEnbjbOFsceBHoQck4rh0aOabrkdY/z079xyjSBVdpk0ilPkcTJlJKcDi01kezydkemu9HjfeyDHn32kL/ylpjwdwpWxawAndika38PDzaANyM4H+OA34OnC3ZHGDpznZunl6Xs8FcYV83wA6tXoMg1cS4T+EcL4HmVvb4g2Cu/BWwEKeoHC8wx8TgSntXHWpmvGRYYLkB3Iwvb3kGKiZSAC2Lc0vXKhuYrJuSYtntmksjIrULvJCI1C7ey7/yFcj+3V5fAbLToHLBoo5kYsAn61xBrTHRSuX6tSjHFehqYNcSKd+EgeW1qj1u0I5cL++6sKCiWvDpQlAH8RT5mAfBVrzXD6BaBphq1V/u0AMs/o3K2Qd6s+A6aMIcqL4Fi8theeiD7/HRNzFdDELqriwuAuQAf9q7ZFTjLc1BwwKXIDM5gc2mFmll5JK4PYOknXatzoVGgUjWxiaXNwraRIKqI5Pooa7vLFKKMwWb09IP5FulO29/oDa/SPAsrY1UEg5SGGBKAXRxaKIaSUKZqKyO0y+cIZ0yDJrXZwq70VxJ4Pv04AV4vT3YTkzRichoq7R+lsAwYIHlPpyYHmRPgau0al6yH6qnceVJqWWinCcndMslW6zbEtIb0d5aAgF8YkEjIGeUqJkJPBB/80zEOSA/bCDiHJCXMYA4B0Qe5/HbpVDaO+KcsH8z0wr2/uaMaAH5RNon7WVvn4EzxpnlLpIfPacuXUPAPlJU4ZgStaMPCkngk0QboYNCodEBljynNFbCRJL6hUgD7MDncji3SaX6kvUuOtEDLWMdey64MemyYN6YFE1YJdovVcq+sWWbZvBG2r4hf8TdXhvZ3ifIgCq9eYalUsqzNh2nqsPSxX8tEDJrRaL54uDzd3k9BqwRL5Q775HHUwrypwZo/pTIheKm5LwfNOlarVVK6SrNmtGDjwjfW7sLxcl9wCoU5/Ae70Jxf8TH7Vo5Wt8i8dNV66+5Nhm4F4pDZgLhUAOt6T1WDbSD78VSKG6ewtpte+uzDNMmrVk4osJNB9dCcee6W0XP+B5tFlnsafzuj7izOIjkgCmS3HviZQ3yf8RVKI78l9P792P0zErdn5TFPhlyot1dHQ+EmteXUUujAX1ZPIXiYt88oB1S5lDiXs9dt6j38sMEKRTngKkG0Gmh2WMUCWX2IHahOM1A92Fh96LN42t2VNmnDl6Adnc4FYpTfIdVKE7xrZgKxZX137ap6f4Mo8h9Lht2WKlmSqRQHLXpG0d9jq7xrmtRTwy4aoNxKDZGeodVzyrrLYHSecVUKG6XpdNyw+Is4+B+u2qXXU0NFVOhuPPHx15y/FvP/JDU98o91zc8w8F2S95i2U6RSLYTqguDT6G4Po1J24dMu2pcFlSySOWUhiqBCsVVvMGswPiGOMYRS6E45OJP4oXieI4OtUxa2FvcC8X9WKH2XPt+vdXu76OsvC4985B4oTjFt1gKJLzhr0NGk1DWIb8rqLfr3vAZ3W4FGucHjCkfGXGrqxhBvW6qVRigXpRKFf6gntxFX7re6R3mUUnx04uLTQXLIxMO1OsCCoSKD91Wqfq/BfUK139bOWLeHfM0+5SXPx6oCT4gTnKgXq4KlsGiJGMwSYB6WxpU7xu43DLfNPjyvkfGkTNxBfWU6AVayRuLKUc7Obqf7DXzIw4jzRnTcFMlZLgOAfXSRve/8XlEd1oyzcHtHHOYYAW2jgb1eB4PFdQDBhA07Y4hoUy7vyGop74k68ALU5ZV4dvpfT3ciqXRbhknUM9DvgoD1BsrX/XvBvWqI/o+oKVxLcuSC2be3DxCHk9Qr2aqbOSTgp7Wx/O6PjtcY7ISB1DPGbQWKqgHWEs8oN75tLhnV0mTGEkquScSBpkYShLU40mACuoBEkA+YSyaTyAQqJeer0HdwNxtnGI24ttKkwwX8T/sEmlJyYF6Wd2rxAjquZgUVuYc6V71W4B649C6KmFyf+8NnWW7WvqL6foGnQ1l/fVscKJekP0fh+Rfmx5VGMm/Bj347mE84TVHTh84aT577a0NNprLaRHDdaVO3hzMwUHzLDkszWPk+JpPQNOc6KDe0UNyvk+YjSZ7H1gXKuTv+NahoN4/XEaggXpgRao6xSrRoF4ivaDy+1XFql+CehPRTPnbQWO7zx4fcmMIxzpCr3yRNGfJaglAYy9kqjCgsVwZocgXMaCxIl2dsUp9Q+g7j/h1G3b05kREnLp90Fi/LfWOR/fWMLYMp/5pyJiUhAM09giUGRUaA2SWIDSWfkjuz9kLR1pmK1TF0Pt/Fnz+pmShMZ5sqNAYIBvkEiahuQTCzKjIqQ8fgglpOhwmVF9ZrAnVXpYv+WTCS/486Vw010jfIkQ2OtZ89reZ+Ej+jjKgq1niBfOcm08DbqfMy8JBcoo0luRkab7kU9Ak/10ApbeXR38ifx5FPXrfIKssyHMrxn3iByhNBH0IKqBUL93eGa4tgJKG1GfN2/2VaMUrdrwuyghAUGvtApSQvR0HQMkAVA4VuZETXBvAMzvEBSg9WfPy71RbjmXa5vdRIyKquYQClOqlsdQqkO7QwP3vDCghl18SBpR4owCVypFDLN1+lYHQNkBp5OlwhTHuVmaHJy06cOz16xQJA0q8Lo4qRUHLRDWVhDJRERRQCtg22rFrbj5j/8MpW+4vCqV3EKA0sVcVBqBUryzi/OP/E1AKemY9hxt1xPJIPzXuLeYRIxwAJZwPSED0xqBXFQZ6I9erSsyAUtPQbkVZIbOsDy64yyisqwnGAVDqfG/bg/QiZYvCkc/W0n6MfYGDSkC3xlCpQLlNx0htA5SQp/USB5R4PQYVUAKUgvzpNDR/SmRAKXnD0BXDtm+nBvXR9byx9dlNMQBKCb2rMAAlSm+RaVuouYG/BpSmPj65wVjhJiN71PWYp/NkNuEOKCEzIHBgb2JAjVDZG7feqIv49gBKB6caa1/xozPyyxJTXvUyd8YVUCJP/KQzv9sHs2M+w+QuDfrDAweRKJgiqfcmXrYU/0dcgNJHeyd1zpt0ernlscPvhn5sIASgxOvLqEgO0JfFAyjtz/KoGsMqopReGt4vueiAF0EAJQqmGkCnhWaP6SSU2YPYgNJQucxxn17cY2w86f7m7OibTmIGlLapVWEASipqIsNE7QeUhqpe9luduMAy+NV9nbE1BUkSAZTmK4TadZd7a7rfzlrp/d9/bsQBcokC5UTlKJzVCJTGKCZA6VOXP8aF9XehbrHvZNL3z1U+YgKUKmpLghzsFakl49Jrax9LmeJgu6mYtlMhkO1IFPEASqumjPRX1fxkfTx+Id0jZu1IAgFKL1SxjHNKlUDGEQeghFz8SRxQ4jk6VDzHRq1ta5JWAEo34ueFaKg9pOyWoZJHx/knSBxQUsFUoE6Vvw6ZQUJZh7S55uHAlt4r/pqHSAoJVvMQmS4Nq3mIzC6D1TxE5rPBnjKIDErBnjKITAOCPWUQmUUCe8og8tQZ9pRB5HkR7CmDyGM62FMGkZFSoKkr1ITc7wNN3aAm5FIOaOpOEn2cCjT1gJoM/6rxZwbSzXfNq9z2o8gXfBxjT6ip88DwMfu221tFKfpWX8rxfAc0KUJNzx6dK+stlW0UpG9kmhrYeSjQpAQ17V00gaxx+gbj+OWBjDHPBy8HmpShpvJXnauNPp4zi+g+/o6UlfkcoKkX1PRmiwerSYpLiT8wcGNq3c44oEkFalK0G6Y3bedT481l0lmHTscOB5pUoaaeX33OvqLFW6cOm71IcXqjBdCkBjUtbXiZKztvu+m6coeDN7sVzweaepNEL8SE6mGqk1DqYa7oGW+aOCGeEqZbVjB1/tF9ONTDpKCNV8Kc8CM7D05pijgXr+I967gL1hF/Qhe+j6Siaf67QpzfbtQvu7FghuXG+Wbd12g2LRB937hAnFEGWBBnNwMxQJxhDvIZYVwuIzKsT//VoxUuExviDDbAQssWGPz/QpzRD6vTXRMaLA8klPW4MIAtiBpLDuIci2mwbpIxmCQgzvmD52bueHvUIn9Kt7JtSnWZuEKcQb2/b1ReWEnZneOvrBr2zAmHkfZoJJbhSkYSZ5OGO8TJftnfp/LUPGpY2dG4Ype3QRKFOHkeDxXiBAYQNO3SSCjT7m8IccrN1I69u9HVcm/AzdzYPzxKxQxxkrSxIM5qrX85xNmrxxbW+Wtz6Aeu6dVc61uMeLZl+yDOeX0uHLzmXEHZuqzu6N3YqaE4QJxNWlgQJ2At8UCcp1c7nt3obWOya6zCARfHg88lCXHyJECFOAEJIJ9giOYTCARxMoN7rNrA2MDYv+Od3vq3z76IH+JEWlJyEKfvMHFCnPuMCitNfYb9HhCnEVpXJcxOPaFQJ2zl3RSzJOXgkHXDch/gtFNH9n8cduoqelg79Q/D+O7BmPCaI6cPnDRfdrJivLK8qXlE4oxp8uf921tEF9Q8RgtLc+8Wl0xH05zoEOc4n/X+oUU7zbP0XeJ3Sp3tWIjzHy4j0CBO8GmLKSNQIM4bFgWVA3eP+DXEaYJmyt8O4qQw594/kGFmdYTTxeIT6e3WX98w7hCnxxAsiHPsEIJCnPssNb8kHlUxPPTiakn8ll47cIU4tw7fMdQuZx8tvOF6jt7yDB8cIE7nIVgQJyCzBCHOw3etE5Z0mU3faOlv5jp0kWCOkmQhTp5sqBAnIBvkEkzRXAJhZlTk1IcPUYg0HQ4T6tchWBPq7RbJzQgveUSPXs/tLo+x2H9DcbHr6Lc38JH8TURSTrr7QcaeuhLOwdRF5XgUohiMWYhiMF9yczTJfxeIc1Boqp+W81CT4pMp+55mz5zUIRBnriYWxLlAsyMhTvPJedqaE92sUhdutRkVlY44dWwXxIns7ThAnIc1sbDEYM0OhziLIg7bWT1YTCt5rFo778ltQSxb0hDnAky1xmr+B3G2EuJELr8kDHHyRgEquQiMAjFCnMNkQ6dtuUQ1PDyhIS45beETCUOcCzClALo4NFFZkFAmKoJCnAN29f46YF+kZeYSl05OOnMGY90WjhBniT4WxOms/x/ECdmnU0L12FmNn41yT4ZfP/J2aw8cIE6cD0hAPDFXHwtPjNIXN8TpcZKxTs/WxnTriwmGhRN0BMtJ/zOI01JL9Qjz/Rl6zLW8W/2WPLyMg0rOmCpN1RcjxIk8rZc4xMnrMagQJ6AU5E8ZaP6UyBDnX/ZaFhUsF+uSx8xJzxJfGgvfW7shTo0xWBDnqdF4Q5wBl0Kqmc6LGEGDy/Zrsz6p4Q5xIjMgcOATVcZg8YkvRosF4uxxaf9+W927RolRQ7/26voUUXm3nRDnrm/H79xf/8q4aJn9Tr2Lk+/gIBLQVTBESh5NvGwp/o+4IM6ZK+vfW/uup+xdMmq8fwT1PiEgTl5fRsUWgb4sHogzy5/pQHfdZLql760gDRUjwd4sOYiT12lR1QA6LTR7WJJQZg9iQ5yvV1RszWpIMNy33sK7ej9jjJghTvXRWBBnwigxQZxe5Tf7LX3iaJ1uXb9yS3CPPIlAnB9mfTkRGh5kuU752dmAp4X9cAABFUdjsWYNowiUxigmiNNuhekqjtIs82CtxvEG104L5i3gB3F2Ynj3Zn40ppW46meuulQv0rG00XYVo7Bsl0Ag28mJCeJUc8vYvCTUz/xIVeW1J/v2C3pGyUKc3pjGMSWQccQCcSIXfxKHOHmODhVhvDoKd4izr2nwQDtVL7NNI1nLgH2V4JNWJAFxJozCUmDBKP46xIqEsg5pM8Q5oKX3ih/iRFJIMIgTmS4NgziR2WUwiBOZzwaDOJFBKRjEiUwDgkGcyCwSGMSJPHWGQZzI8yIYxIk8poNBnMhIKQziRO73YRAncikHgziRx6kwiLNPjqJ22Isqw7AzU8Mq7pb6wCDOWb3P5Q75Fmicbb54/p68u3NhEOcI3eLYmDsDKaVLpPJmjFI+DIM4d7zpknTlrw9Wxwa+22QX564CgzgdDNRyC90eWe/Uckyxj7KvhUGcMQ7Z1pVjulmXch+s3Orp2BcGcc47LcU5OzOLkTPi8KJliwcEwCDOIY7VismZDZQD1RoG1+t6xMAgTuRqS4jUBJFOkUN/ovfy9LPdz5jH1266tTTkw04cSE1rtEFJmGN8ZA/BKRcR5yp+4Dk+GfMcn9Ryjm+DpvnvSmo+7G5w3YHlZ7LpVh7z0dg/NcVIagYzsEjNLgwxkJpzsr+uCj/+0qj8/ZcuFUrJL4lNaq5iYPFj9oz/X1KzYZnnuyGDF9KP6G6s2HClTyVBSM3hmAbrIhmDSYLUZKikJNT2LzQKn38xYJzu5sO4kppjZj9cuHXeDcN4yxFR6ybpZeMw0m5bYBku14I4OzHcSU3pcrnPb8PYxuWNSonqzLBBEiU1eR4PldQEBhA07c4koUy7vyGpucMz4bOUqrVF/All0tll+/eKmdTUoWGRmm+o/3JS0/LmscKKi2uMdtz5sUHj6UTEw03bR2rmHxu6RJrxh2luty9Z6tXfKnAgNck0LFITsJZ4SM1Dubpf6qfPtS4YMfgpxdu6WpKkJk8CVFITkADyCbZoPoFApOYMc997Dfs9qLm2wZvqj24ZJn5SE2lJyZCaNoWVpIN0cZKaCRaFlX/so/8epKYdWlclzE6d3DmS8X1SNiXM+9r252qNDTjt1JH9H4eduqkJ1k5dx4TvHuwJrzly+sBJ85dOUVPlC10tS3dusa71+vQMB829qVia27S45FlomhOd1JSbEkr5nK5ATRwlPe3U6k7jOpTU/IfLCCxSs8YMhdQ8b15QqXLO7Nek5mw0U/52pObWrj4P7zcoGR6WdfG/NvCWhQRIzQ8zsEjNkhkEJTX77tJaqqCTSY+eyLHqe88/EVdS0/Ez5yh1iT0j9dt8kweuZe3N4gVJzRczsEhNQGYJkppaKsmuR68EUYKnyFUM3TWSTSBSkycbKqkJyAa5hDloLoEwMypy6sMHG0SaDocJdRUFa0JdQOFL7kB4ya85T1/WQ0fNqrjfuHHHhxYp4yP594KQsMVDJhmmds2KN8zyHYfHunE65rpxOl/yuWiS/y6kZo8c6T92J3ygpyocNJD58+HmDiE1KTOwSM2G6R1JapoY7PuUWb/H/Ni5oDJGTa7gc93aR2oiezsOpObEGVjsoeKMDic1deqVJjZdC7aIMkzs73H7gjuhSM2G6VhqVUz/j9RsJamJXH5JmNTkjQJUPFFxhjhJzZAtJgtCmibRomp3DVNdsE2QxOl4UpPXxVGlqGiZqOaRUCYqgpKai7lymxklW803zSKnXUsbiXlbOJKaH8yxSM1k8/9ITcg+gWtlSYu9K82P7K4Y+uSM9m4cSE2cD0hABvGFORaDeMpc3KRm0NZbBiPWllmlHqzZZ5bEFnwY9T8jNd9779iZPy+PkvXu8pwfrwePwEGlZEyVfM3FSGoiT+slTmryegwqqQkoBfnT+Wj+lMikpnyZbWH/BV5Gm5uysx+5+n0SA6lpb41Fan61wpvUPLUq0GP73nCrOKleroMiDh3FndREZkDgACEyrLEgxCHWYiE1XQc79+j18qN5UN0qtU/3QhRxJTX7adldXBVx2TTzzbBbrxhWI3EQCegqGCJdtSJethT/R1yk5ntSgeGV66+MQ/vRV5SdfTqs3V0dDzaR15dR2USgL4uH1JyYvOQbLTXSvOQdqfJAl+9WBCE1eZ0WVQ2g00KzxwISyuxBbFKz8HN0stliBdMdL+1o9Nsne4qZ1LSxwiI1ayzFRGq+Yz8ztOq7knJ0y/pOe68FDpIIqamR5ZgWbn6CuumOvM3quIr+ONB+plZYQBlZQh61I0nN77IpFvoRo00zTPUTjbdNPCsmUlPNtjHs1eBCw3Lzcp+R+1w342C7Jkss2wFDgTC2UxQTqXnFrrMVxeuNcXBSd7kx2p/6EojUPIhpnCACGUcspCZy8SdxUpPn6FA5xW5WuJOaJj6zVZ7cPEcpC+2X4Dp+5EKJk5o1llgKbLPkr0MWklDWIYQmNZEUEozURKZLw0hNZHYZjNRE5rPBSE1kUApGaiLTgGCkJjKLBEZqIk+dYaQm8rwIRmoij+lgpCYyUgojNZH7fRipiVzKwUhN5HEqjNRcHFKdNLVTf+PIj1ImD84FXoGRmtp3UxuYhRMty/UvRt99NWEPjNT0O5sUPSvoreXhoV2d09Jkg2GkZkbVe+3ykPGM/Y2pS1JrTQpgpOYdqSdF7iNuUcMDNq3Y9nr8KBipmZmZMsOuxMN8faaCyc3ij3QYqWlbNII6XPGsZWhFsEaMf/8HMFIz5sf9Xs/OMQwj7l2NO/Ok0BhGaiJXW60nNbNGjdfy+LLCNO/lC+6jOxpnRQyUtpKai9AGJWGO8ZE9BKdcRJxL9YHn+BXTsM7xU6bxHeFiNM1/V1IT+WBcMZGaBcB0oqOMRmo25ACLIyWhbRrWgrB1pKbHU+vUoLyFFklU3VurXg4/1R5Ss53T7UFAAbIyGiDWBD5MSokoKGZE5nFVUhOpIvryIIWlP36IpPv4yyF8UMzht+Qd+g11M932OX1i4beQuQRAMUGD1ShhGeygZAwmMriYNUPwf4VRTCxj/RLF/PDJqadnUBGtpNPyKX8sM30q0ZUraJkgTMs4SMgyHcJaDlr5fCyrxME4Xe2Ee5pM3RmJsZZhOZBLE8laGjQ7dWjiXEL6l02cg39M2v5hd65p6V8X5Ted/fpYjCUOStywShxMdRNDiYOvI5Nkuo4PMNy5dcxVS9UpX4ld4iDXDQu8jnIjyryK9iO+edU/Tu10VuEjkwSqZvzcQw+2EGBe5ZUyxzTYVMkYTBIlDrISSJeGLDM1ijtkpqE495AeriUOdv51U6N/kZzZvgJHzuQRg9qb7wwaTgXTcC9c/8XT7oQ9TVM2O8ykZxdWZyT1fzxGYtMuWOKA5/FQSxwAAwiadpkklGn3NyxxcN9kW5bd2Qn0BINHz9KmnnQWc4mDIYuwShy8WPgvL3FQvSX202S5WqOQ+hia5bMJQ/EscbCz+62Lfnufm6U/LF1+ZLO2Dg4lDjQWYZU4AKwlnhIHS84M19Le706LeaZnH3nL2kWSJQ54EqCWOAAkgHyCI5pPIFCJg+p4oyEfFTpRco6dNt7wfJ2++EscIC0puRIH+xzFWeKgzKyw8nyq4+9R4sAJrasSJsSdOWnczcOh26xji9ykNumsGY5TiBvZ/3EIcS9xwgpxU5z47sGZ8Jojpw+cNC96W35t6SEuNXOojd/IUM/VOGieuxBL820tLpmFpjnRSxxIv1EdZHAqkhZGujoiRDmkL+r9iaPEwT9cRrRcTUSJg3MslBIHH0wLKgeeYf26xIELmil/uxIHxbTRdUrTuLT0PvFep6vltCVQ4uDNfKwSBwXzCVriYH3I7A89B1SbpjxsyLrwqJ8SItOlfSUOvH4k7NO8omO+JaCKMj61tr1gB1jioGE+VokDQGYJljjQfNh3zOE19qYpcw2aws5umk6gEgc82VBLHACyQS7BFc0lEGZGRU59+PD2SNPhMKEGLMCaUB0W8CV3I7zkZsW6KUOiJxju2dr9xKtgZj4+kv9ZWTvbesVdRhpVR8+7fs5WHCQ3mocl+ZB5fMnZaJL/LiUO/HaMs5xyk2qWtIgWfyhk7awOKXEwdT5WiYNH8zqyxEE9dbm8gkq88ZFURQf/ktFGOJY4QPZ2HEocjJ2PBe13m9/hJQ56J92tLB6dbJj5YUr8rsJZtYQqcfBoHpZaJfP+K3HQyhIHyOWXhEsc8EYBKtffbb44SxyULFqgymX2YWyuXxMzYcZ0RGGkDi9xwOviqFKUtExU7iSUiYqgJQ5GrzlnbHOj3jSXm02LaeqzsYNKHNS5YJU4CHL5r8QBZJ+Dd8zWv6h9aRospf4qrqRbVxxKHOB8QALC+zUuWPD+QRdxlziI0pzcmxyVbba3uF9tT/uGmTiUODBau+FZ+Hd/49SiOucbvVnOOKgUhKmSg4sYSxwgT+slXuKA12NQSxwASkH+dCmaPyVyiYPUvIsWwdV6ZkWTt8YoXHy4SgwlDkyXYpU4eOOOd4kD27CQFXWr/GjHiyf11wnWXYR7iQNkBgQO9D5lKRa9r75ULCUOKGaZZcNNjKy3msROTi3298S1xMGfxv10xmRNohcM9c3xYkRE4SAS0FUwRKp2J162FP9HXCUOJq+fO92U5ETP7Nq4wSVaK50QJQ54fRkV6gf6snhKHAwcPqhqwKwM+nb7wwvOPZfRIEiJA16nRVUD6LTQ7OFBQpk9iF3iIHrX4ZVLH1uZxOa9Jx86sclHzCUOGO5YJQ7OscVU4mCcafoIvdJEi0LbuojEcSrZEilxEGimc8EmeLP1xgs9XCkf5LNwwOSN3LFIbA0JedSOLHEQoPam8QbN0Thv7J2+evcz0sRU4iA1VXHqR/n+1KMyvS7367nqOg62+8DGsh0wFAhjOxUxlTiIU322wndOFn173d+qA0wVGglU4mAfpnFWEcg4YilxgFz8SbzEAc/RoQL+cu64lzhYOMnH8tPJM5RyrUeBvV9wDCRe4uAcG0uBGDZ/HeJJQlmHtLnEgUZL7xV/iQMkhQQrcYBMl4aVOEBml8FKHCDz2WAlDpBBKViJA2QaEKzEATKLBFbiAHnqDCtxgDwvgpU4QB7TwUocICOlsBIHyP0+rMQBcikHK3GAPE6FlTgweWGhG7xrMnWrn+7yzYuOnYeVOBhx1q6/555so+JpTgO+bR+iDitxsJB91MpaaZJ1qsMf6WmDqiJgJQ7+uK+W4fgl1KS0NNhittOihbASB5rydnJ6AyJNc65fVWUpk8xgJQ5sSIseWe+eZ5lupXRx/G5HRViJA+S6SahYAVjwQOQg5vYhB8S8HmkRvGtOeuczKgNxKFbAQRtehDmQR9oap6xCnKvVgifyJXOxTuST5/Jdmhea5r8rc5l76qTa9NcfTbJTDjWdsnvRT4zMJW09FnPZab0YmMuLdt66+ZpsqyhLWm+18AeOxGYup6/HIsGGrf//ZS6L3zkkz14ibbLuwP7L0Qn7pAjCXKphGqyTZAwmCebyzV7W+YsVb81yqJ2XXPlb2g9X5lLWaLPsjSZf46SYlVUq35do4zDSXq3DMtzNdcTZU+HOXJ5+6Tr8rft82lG1r5ozG3tnSJS55Hk8VOYSGEDQtOtNQpl2f0Pmci95WNOFwhzrrX/fUv/2YFaQmJnLqBVYzKX9in85c7ltzcl1p5njqXlVlERyifF3PJnLSSm1JRrLOhklpCQN3bVT0R0H5jJ4BRZzCVhLPMylzO3Xjdbvs2kHnsnMfLBw7wJJMpc8CVCZS0ACyCcsQ/MJBGIuafeusKNy7hivnyCfp/tGmSviVnBmLpGWlBxzWbJGnMxlpVlh5YLiNb8Hc8lF66qE2al3y381e2pnG8M4ZbvhMzYOjsNpp47s/3g8kXEt5hMZ1/Ldgw/hNUdOHzhpnid1+Uoq5xZ13eiuJrLyMhwcNK8JxNI8K5CvuS+a5kRnLjeMW9wl3CrROtR/fdylcA3DDmUu/+EyAou5fBeEwlz+ZVpQafs26NfMpR+aKX875nIVe8bEtZ5F9M0v7rEfdX5m+Osbxp257BaAxVxeXU5Q5tL18OFRFmdZFqUpRf5JDzJzcGUuv4/zdtid/J2xeWJ8Q8SnhzdxYC67BGAxl4DMEmQu8xyse1/dqE/Ze2taH9oFxwICMZc82VCZS0A2yCX4o7kEwsyoyKkPHwAQaTocJtRtAVgTqm8AX/LlhJdcc+LIHI3qcOMy9+kUu74Z2/GR/IbyOrtBM/eYlH09XUJJnhaAR60Of8xaHf58yQPQJP9dmMvtOY0nznX3oSUcOhRRMPOBMsZ94sdcOizHYi5J7Z7h2sJcVk9+2LQ6INMksUB2yMfsQYij1nYxl8jejgNzabMciyLUWd7hzKX954jtX0u/maenfc4qYGcKFviWNHNJwlSrzv8/5rKVzCVy+SVh5pI3ClBBQ53l4mQuObfmT89Tfm25feSgT+v6N16RMHNJwpSirmWiCiShTFQEZS6DmrxLr3VpMix9Mzvl4aHLyli3hSNzyV2HxVzS1/3HXEL2mVx43bh/fKr5uvVBDONiKX8cmEucD0hAmpCzDosmnLdO3MzllVmh1z9O0jWPkftiYDr+nWDQ7p8xlzKNJ3NpI08ZJZk7WFBWrMVDJTqmSqPXiZG5RJ7WS5y55PUYVOYSUArypyvQ/CmhmUuLHXEjF8sbJsvFTDMYs+6Z8L21m7nM34DFXEZswJu59Lj6eFCP0FeU8L8vZJkUzD6IO3OJzIDAASfM2YCFE+7aIBbmUttrJzfWea/RsS2HlP6mPh6NK3O5xb/rFOvBG4yS9BnGqz2NHuMgUgSmSP4biJctxf8RF3OpnvO2MNIxhF647vknn+/7ura7q+NBGfL6MiplCPRl8TCXsvPqbvTsfsLqYPLhfR4yxX8RhLmMwFQD6LTQ7LGShDJ7EJu5bJqr1dVZ1808pNSCNW3WNEe0u8OJuRy7AYu5/CCcAowPc2kQSH0bvVSdtmEt3bSL78U6iTCXZtpcqx7y/ahZ8d1d3YOfHMSB2zPYgMlcSsijdiRzqfXn3+7RJ/+kRpEabBo3e70VE3Pp9nzVuJlPelkVnHLfEPlAJREH28lh2u6DhHKHRdlOXUzMZaouqXrN0y+UHQesKbMOxlkQiLmsX48JxBLIOGJhLpGLP4kzlzxHh0ocKrdxTdIK5nJ6oWHj4Cfl9P3jw/oFni+skThz+WE9lgLXWjKlV5FQ1iGEfqw0kkKCMZfIdGkYc4nMLoMxl8h8NhhziQxKwZhLZBoQjLlEZpHAmEvkqTOMuUSeF8GYS+QxHYy5REZK4cwlYr8PYy6RSzkYc4k8ToUxl/Rhq2o31toabzvqEOy+6PR8GHOp5BNW5359skX5O9VR+ztdPwxjLt9bbYk8O2wofV3XjEenEl5cgzGXpff3r/4Qs968bJJW5gJrhfcw5vLw4AnHemp9M8oOj8zTC9VWgjGX5r0UT1rHz7Lav9b02PJnu6/DmEt/9QHyrOMvraJMQq69XdVVHfZY6Ut/XD54fkIQ5Wj/nbIr3qn/BXusNHK11frHSh+SXrLmo2uAWYl6lyPL4/bE40BqrkYblIQ5xkf2EJxyEXEuugee49f5YZ3jF/jxHeEaNM1/V1LT30kqNWvvHsv0R2506roHNaLvGxdS0y0Gi9TUiREDqWk+qmnatcZNptuiE16V9XxdRWxS0zkGix+zifn/JTUNKkcvce6ebbFz3VLqIbc+kwhCak7FNJiOZAwmCVKzPGPxix1XtWi5x8dX7vfQ3di+hS1ipN3dOrR2fJU1I/tO6OSgJYWD8Hg6JqbhSBIyXIeQmleMVUe6pOy1WJeYNlB9yN1qiZKaPI+HSmoCAwiadteSUKbd35DU1Mp8YDJpRqNREWv8ViU1qaliJjV1IrFIzW6R/3JSM3DizkyX852NSu8GFoYdUT6OJ6mpuJv83Ds0kFoy7KbZzOKq4TiQmkMisUhNwFriITXVHUY8c/IztCi9r+L4TuuevCRJTZ4EqKQmIAHkE4LQfAKBSM3pMyb2khuWaXF4TI+snndzj4u4FZxJTaQlJUdqukWLk9SMNC2sPO8a/XuQmuvQuiphduoD7GuTXI8GU/NfKS1PHz57IU47dWT/x4MajMbaqVdE893DesJrjpw+cNK84pTK96Tx8Wb5+Ss1w9cu3YOD5n9GYGleFMHXfAOa5kQnNTu91ja8cv+9SXBY6dej0efpHUpq/sNlBBqpaQosFL5uQiE1T5gUVPr/venXpGYwmil/O1Lz0jkfXbNjzvR9B47kN3xX9f/1DeNOaqpHYJGaX8MJSmpyfBeP/DH5u2GYfpacfwF3LK6kZqDsTdmkT5om265Q+jIuHbfEgdRUicAiNQGZJUhqqt9/qfH3qC8m2VWFPWbFlZgSiNTkyYZKagKyQS5hI5pLIMyMipz68MEGkabDYUJdgDmhMlom1BDCS17senOQ49FH1B3h8r221mTtwEfyD9f3bYl5cMA0/8C3kBr31wk4SE4Lx5J8dEsvD0WT/HchNaMG5N6T/XbfPH+Z26vtl74ndQipWRaORWpuafcM1xZSU8lo3FPWsG0WKXUnXs+5fUowmNE+UhPZ23EgNYvCsdjD/eEdTmo62SQp3Dgx3GTPLfLpH97bBOszSJrU3IKp1prw/0jNVpKayOWXhElN3ihAxRP3h4uT1JQbcy5sS0qdcf4EZWvW89tuEiY1t2BKsaZlogojoUxUBCU1DS82aXudmWe9Y9w5RyWtD506iNRcvxmL1Jy9+T9SE7JPVZZ6Utz9DSbJg+6tMclTEXwq3T8jNXE+IAEZxDWbsRhE983iJjV17TWdbWk+RvF3vMsWLqMIlrT7Z6Tmzd2jjXWMPSkHNe0fzqv64YuDSrMxVaJtFiOpiTytlzipyesxqKQmoBTkT8PR/CmRSc3vuZPTX606Qc9etqnnumtlVDGQmtWxWKRmcizepKbFcvseI7RXWOYkl4yYmXBeMEEBD1ITmQGBA4R4KhYLQsyKFQupuSd1jt3r81csdlqvodeE1ggmErSX1BwcF8f6WBtkltKb5PT4xrBLOIiUjClSWCzxsqX4P+IiNTeOKLbpY+9ukpHjo11W8wen3V0dDzaR15dR2USgL4uH1DyvqppS6HeDuvnrdvexiz8JelnJkZrJmGoAnRaaPSJIKLMHsUnNvJRtlv7BB+ip13f1mBm276uYSU16LBapKSM8l+BDana9F1l5Z/oxi9iYim3q0+8MkwipucJj8BF/dx3jMoUTV+cu/qKBA+1Hi8UCyvQl5FE7ktS8ZbSZ8vykvsX2dyMd9V9H9xUTqRlXuz3mGem1UXnkvVVFFnsacbBdX0zbyRDIdhpiIjWDOhffyjy0mxIf/+MZaXyNYAhKsqTmuxgs49wlUH6wWEhN5OJP4qQmz9GhcopD2rgmaQWpOTqMuavTrt1m4e8D558/2ilB4qSmDKYCDS2Z0pEklHUIoUlNJIUEIzWR6dIwUhOZXQYjNZH5bDBSExmUgpGayDQgGKmJzCKBkZrIU2cYqYk8L4KRmshjOhipiYyUwkhN5H4fRmoil3IwUhN5nAojNW/c4fq8jp9odND9b2pZWed4GKk5xvHsg4L8Y7TtjcMvjpk55hCM1DxundLN8QzdKGvR/v1Pv+RrwEhNt7TBqTX+7tYx8wLnv9/j9BBGamaMuVusqENhxFO1Ag4odkuHkZqjV17hXDmXSikfEd+YsrReE0Zq1hzobp4esIGxNeNLN/3YczYwUnNyj7pJ4W/dzOIPG51+QLUcCSM1kaut1pOa0UUxabuPjTJMNn54sdZpfZyIgdJWUjMKbVAS5hgf2UNwykXEuVQfeI7/PQzrHP9VGN8RRqNpLm8X77/fz90o82UTawL50DuBr9oT2ltZAn9w2UwP4V2ZLIrUffm7Mg7Z2pvFMWGQPaFrtG4nlr/3uNvN3gxKiltud5mFel6YtyVkC+Qb2pA1lVBWCSgE7MlqhA5IAEGbSiqRezKs1V//5pkB9Pi+bs3pe34+LLKTG5PDYYk+rk8xrulupXHOLFjZasjq8if9Bb64rFHzFYS+cEsD3pMtmM0QBkoSJGr5dxDogRPLKiWx/JN2AqRtmXM/f/78oy28JVnQMD7eLCc/DyaX7MZ2dfMAE/BF2maY93ybCutE6qHvi3pusj8mmN0jZwddRDhA1dIiDus0lGJZJ6GUANYBZoAfbdk0DTT2ZPv4gBmETgJm4rsQ0UdRl5a++v5ir2XaPbW9NYfPzxE0TvMVRUSAf7aIwzimmMYBvInkjQPaB26czr8wzgSqJ/greTYBY43AR1kcp0CyjoG+AXka2cubucyPNZw8ivevn+8QPaI2z7l6l3POk57/8NJRvb9t8gWza+xh1xfOrhFoFYfxDpZgGc9BMsYTue2tnwG3YJdfWHDaTwv6uLE5gRxg6QSYDzAXx4sDmg74m4fXcl4j+E8DsMmTGdD8gugSd/qf9/W9Z2id0Dc1zGpjcDGisoCbKI4WelkclpPDtFxBsaQtB34IzGtoU7BCuflUmM1xxXaEtupGTIOVm0y3fQku6uY3f4mgI0RdM/1swT2ElAutIcB1arXQsiqX5wihdeomEso6tU+XlXYniz9Yl8tlPtYev1IQD+ph2Iwi2nBZ/mzWcmG8GQ2xGEoFM/59YDgjewXsmIrs3XxBn55mHCcPP2eWGceWxYG2/+iL18Mjsitd53pTkocebSxRPrcf616Fc3sE23vMBv7w9uL60tkevs2/WNQWCxUrB0ZDUzmgfYKoI+uJwJLWtFxoScvfVoncQ/FP28AcSkieVq3oJ6/Vc1p3rAc9d2j05PqB9k/bf7qH2F3pvDPor8W6bp2g4VA6ZEb2lXburtTBtRWonMgzWrCCS4Kgcr8K46vaw5YwZC9/FpfLdhbtTp+cpX6u+UQyi5GPHjrG3YfU/iGM0ArpI3DQyhRTq6aO3SXwSVxZaMsFvglc7NxJufNDjgWt+Pgv0gxoP6R5cxtyVpXjbwz4bwX/txt82SP4iZYQx2Y0N9bmuGML9NcBcUfkphsWd0S6NKEAEvhtRfZl/ZfbwiO2h1ts/6H8peeQC4txCCDFoKlL0GAGY6esekBflvWhk6wblZ/Up3ZYMKPpM1Yww+GTuIMZ07tNk6UFGNHzxxe6zJAfPJwAwYyGz5jb5c8E2JG9efOmA4IZf6h9zLul52N1IPrvxkdpVCYhghmmmNZp+kQA63RIMKPTeJeq3XvPmhVbv313UnNRCCGCGQc/Ye6HiWAckiSDGRcjH5dOtsw03Fi/0ebLwV10QgUz5DCNV/BR0ltiAgUzFspYzFOYk0lLu/fqafiWkfESDma4fcSynLrELSfWYIZfVVJ+1ZqRhnspfntnqiy4R4hgBm8NgRrMABwhtE6NJf0LghkP08a/HfxkADWVu9PhpWz5CgkHMxq+YAUzJn7pmGDGBkO9vGmvMq0iUgaQPFb17IZ7MIP8l9P792P0zErdn5TFPhlyAocNet0XrA162BdxBTO+DGuc5aNea7jLK4g5fEHhQNyDGUgfgYNWEzG1amj6vwpmbEFzY4QOZiA33bBgBtKltT6YYbXh3SCzuGKzwljLOQpn1D7hEMzYiqYuQYMZnQeGj9m33d4qStG3+lKOJ/Zt4RnMCOpThRHMyFIXypbHOZjxWDV5m3L9BOP1p+7Iv/9xaQIBghkBoCSoS0ObPhJJzBXckTU0NHRAMCNmrT39U0NPSqTX4MpYrV4hhAhm6GBah0QE63RIMKNmvt/ZyuGdGQc9VuQxLh+1J0Qwo04dyziAN5G8cUiSDGZsPTalP5VEsTxk3/WErYfBE0IFM8IwjbdEMsYjZjBjdUoUZ+ecw8bRk1Yvv372j28SDmZMxLScosQtJ9ZgxpbKWyPqDNNN04/89bXguz6dEMEM3hoCNZgBOEJonbqN9C8IZjx7dK6st1S2UZC+kWlqYOehEg5mrOpbhRHMGNIXtU4YrsGMm9c8X7zaoUk7wO3b9P7zoI+4BzM+2jupc96k08stjx1+N/RjAw4bdN++aPQ8uEFn9G1TiYE2BDNsFDLfy6bMoBWqhZ621Lezwz2YgfQROGg1BFOrrx27DpV0MCMOzY0ROpiB3HTDghlIl9b6YMbeRRPIGqdvMI5fHsgY83zwchyCGdvR1CVoMKNPjqJ22Isqw7AzU8Mq7pb6dFgwo9s4rGDG1LHiDmZMs6je3n3hRMbOIQkRw++t+EiAYEaXcVhLw9tjCbAjq6+v74BgxvzPmh9LzxfQY/+4p7dbblQ0IYIZuWOxrBNFBOt0SDBj6KAjMtPG5ZqF7/MdObJTbwYhghnOmMaZSgTjkCQZzDg5eDS7snYgpWC/j+KA4uRuhApmqGAa78UYSW+JCRTMqKue9PLRlQaTsJc3rbtFflOXcDDj1BgsyyVL3HJiDWb8dYxzcctwjmXasohsSmrkcUIEM3hrCNRgBuAIoXVqPOlfEMyY1ftc7pBvgcbZ5ovn78m7O1fCwYxu47GCGbnjOiaYYZztuNH3q7PhsUmb5F+91Wx/vUTkBn3myvr31r7rKXuXjBrvH0G9j8MGvct4rA367XHiCmZcrWBuPTTsnWV86aDXL54yzuMezED6CBy0yh2HpVXUuP+rYEYCmhsjdDADuemGBTOQLq31wYwRusWxMXcGUkqXSOXNGKV8GIdgxg40dQkazFgcUp00tVN/48iPUiYPzgVe6bBgxsSZWMEMNxtxBzNO9aB1S2drGO092lmugLPNnADBDIOZWEtDuZkE2JHduHGjA4IZ6rl7Fp77qGRRMjno+cqtzomECGbU22BZp8CGANbpkGBGcYX7i+KVD40KVvrPne8QmUGIYEYMpnHciGAckiSDGY9pFZXbPb4abpv6Ykm/zrpKhApmUDCNpy4Z4xEzmGEelGeqkyJnuiNcsWds7dD3Eg5mvLHGsly1taQtJ9ZghuGMgSe0jXdRihUuq0aXDyAGZsJbQ6AGMwBHCK1TE0n/gmCG9t3UBmbhRMty/YvRd19N2CPhYIaBLVYwo25mxwQzHl+6tfqlnCtje8IF1pju74fiHsx4TyowvHL9lXFoP/qKsrNPh+GwQdexxdqgk2zFFczov+Be7r5De0yCp/prqVxfjX/NDKSPwAPJmYmlVVbH7hIkHcxIQnNjhA5mIDfdsGAG0qW1PpjhdzYpelbQW8vDQ7s6p6XJBuMQzEhGU5egwYz8ZO3bo9JsDTfcun52qXNftw4LZkz1xApmeHiIO5hh7/igs93mztScqT2cxgTbLCFAMGOsJ9bSsJsnAXZkly5d6oBgRnr8pLWKsb2NonYc8LMrkc4lRDDjkQeWdUo8CGCdDglmTHSZw114hEaJevLnTrnRSVxCBDO2YRrHgwjGIUkymCE3rHGa3AySReSUkZGGvXTvECqYYYRpPA3JGI+YwYzRA2KWuo8eS9khtar6quqLaAkHMz4sxbLcuaWStpxYgxkjT7y+skSql3HYjgpT+2z9U4QIZvDWEKjBDMARQuvUnaR/QTAjnPb1KXtQJ/Njrg5baSNjT0g4mDGWgxXMuO3ZMcGMdbG3XmygP7UuS16qW7LO+zTuwYzJ6+dONyU50TO7Nm5widZKx2GDPpyDtUHvwhFXMGNqyV8TH88PsN6jdGFGpkMdC/dgBtJH4KDVbU8srXI7dpcg6WDGLjQ3RuhgBnLTDQtmIF1a64MZJi8sdIN3TaZu9dNdvnnRsfM4BDN2o6lL0GAGfdiq2o21tsbbjjoEuy86Pb/DghlHg7GCGfRgcQcz+ps8X9Dlpi1jw6Wzh4vj994kQDAjPRhrabg9mAA7sjNnznRAMIO5zGnMnR4+Zse09R8wNxXTCRHMWI9pHQ4RrNMhwYysWwxZZ7NnZjkL7IpvLcjvRIhgxjxM49CJYBySJIMZ647+r70zgYeqe+P4oIRK2qRNk8qrSOsr7WZsg5khW7TaJpSdpF2FKBURKjshhGxZCilSWrVQadOmnVYp9b93zMjcmXvj7c7c+/q/fd7386l7zHXv73nOc57znO85Q9E6dS9ILTtomOjmYUPzcFXMmI5oPFlsjIfPYobjjrEi2yT3ae1ymJNhNXa3I8bFDAlEy33egbXl+FrMMPaLH9+cN0T3kGJx4OKx9+bhopjBzCFgixlAIGTlqbGEHlDMGOjuX7e6do5e6fuh05KEa9MxLmYo+SIVMwi+gilmDCZsuL3mjal++rWD4/923aSJejFDJru5cLeVn1bhtlef3X8k9kWDzPBFmqAP8eVXMcOPPLNx/uxSmvfrx9PsXuZsR72YAY0RKGhFQNTqtWBHS6yLGXFwYQzXxQzopLtTMQMa0rpezPhA37+7etJfWtv6pj05G/H6FgrFjHg4dXFazIB+R7LAihmiIUjFjOj9/C5mnDt9mDFeX5gSuq3KKmHA8204KGYIhyClhm/342BGVl5eLoBihtGgC9efzounBPlffiw63EIMF8WMO/uRrFOJB+sIpJgxfd6YlrkP32v6n3ojpLT90hRcFDOyEY0TjQfjELAsZmwSX+j5XnOfTtHYwZKn958/hKtixi5E43liYzx8FjP6/J1xc5JKMz00itLsR5b8G+NihhWi5eiYW46vxYxJ+ZsWXjUgaCSKq/y8rREUhItiBjOHgC1mAIGQlacmEHpAMWOGVXVDQX4OOeyl0pUZi2YcxbiYsT0EqZhhGiKYYsYp72D50YNk9HPNRku0WC2IRL2Y4Tu52GC48WrttGx3+ZKrZ5xQmKBvCUGaoK8O4VcxQ2344fs6Lnd1/I+qMHa3Pv+KejEDGiNQ0MoUUStyyP9VMSMRLozhupgBnXR3KmZAQ1rXixkn9GP7WZ3X0shakZT0/Gv+KBSKGUfg1D1/2JLaNnuY9vYk2T4vx20s4ew3VEBTopEGlbuK0Rumy5LZVQyiA/hZd4atI+C9RBvGKuCfNkSr9UTgfd08iC7O9k4eSkTg3W3BdksnG6IDw8nWw055c5di404dc4vFfiVaux5dsElP2def93Nz93d2Sxe7KdgRY6OBbnqSDKZHkG7qDwzEFtFcgwFSSJNiPkAnDXi+nXXzdvFJ0cc0849q/kx/FzgXkhyCn+aRHDIv//bQZ5+2we/oFvRD+4PtKe5a3/4wjlHAE9VAgabyimMRwGjpH41J7iih7gx0f3snwBnBn5tBgP/TnTKIDNN+bLdVsLF3A3oX0D6R95er19+qUDat04+9/r5CqtEqk8OO4hrsD3PZslMT2qklaDAPRINZYGMwUU/gjdsn2dzGalrIy1jCv+lsfZnGao8rPO0Tn2O61GHESY30KfIjco0zOM9sEKUyP8hlHPb13/U084EZ5K0HxtPDV+SHzV7jIoFCT6MiGk4VI8Pxml83LezWTK0ftdNowdNUC78r9Q21HqaX6/TU4IrFMU5csReV13S5/SraHUghlxXxskgEggt0SLiaw+xArGE3iQAz7IY1foqabBJILbygf1r7Z6wcx9tIaHoB0wRmwsU9L4PzdWlNT0uHtawFBEbHDTrdi/2TA7X0DWkkYwW5jVPnGG6WU9Kf2KURV1T4x0q64S6tjIVNw2MNz0XDPTKXGTq1dVHiqwUVhA0HAYlV1IGcEurqDwFXX3Gwsr8B6F8MIH1ne3ovljwSOmBw4PLkPszLOjbs/hnR5l0UF2ymk598lK72VPFuX32mq3J9Tqz9+q8PmttU7RUqFdcoejuM1l9x8NX238d8HAIrIsHOBX9pQfS0BCYeVg685zNW3/a1eFjHap34mGDw6sc6zi9nkjBlfZSoz6W2kD6XxwtBAtPczUNS0iI09ZNrV43bcKJK5Q8DUxlgLU/QWlOBDlEGtVZoAdNaLHE7REIKBkPayzZg9v3LkXmq1P/LFcaG4H7q21qeF5Qtcl7BGb/bb8OtEBH1mGCRw5KgTI2HBJQcpgSsmJAMFxMOFTw03/mkRaeoIK/o+JpHnEdY9zawdGI4cE904MKBAonoAn6iU52G6OQMvAYz1fZgeHkQwXjBcOd97gpF7uhM8Srt7NGDzuyudDnD41G4ZyC8VLV2c3ZwMLQErkOHB4hPQi0J55NiJu4MN2Pg8dm/doKG81qwJ1g7AM8DVlgYNvYerHe3BtQCxpMG7ySIHdmTXa4xtrCCUHQYsKOpOsF7p7oEzdLN1t6JyljF4RR92y8bgqtena+Lt183dnbpfJXTGaZpF1Z4Fx6uHMAU0cDNGZhXeti3P1Uf9lPxmqW6Wa7TcbKxt27/UWa3FgcvgsNzp0s0sN7pwJqYtwdzcC3N3tJB3dnm12eBXMUDmKg5dvy712I3S5dfAaPdVVPgXJVoOy7ff08AOeRMOvXg18KNnP5hyHCwXM/pquz6mCjJGngDd7Y+cN47mERcB2TARDfwTqxpN09Hdbiz5XaRrBE1pGFgHrFWTYrHg3Sp/0PPFIH4/x9GyAggdSNGssq53tDw0AKMZ1KR7PBwFPeaQ4cPlDSPrtWWkswNpQSMyOxzIeXyMBQ0H3EQSXOJjpCcCqe5a6m9oj09Vf1Eib7D8ydL33G8at9Fa8GQow10HDuYChSn8nDj3XgNe3cXUHRLIANmDnvrJ7cHZ6Il8B/RFvwNPE0RcTPn6bdFZynxNnskpD7ZbYV9Pi6DcDRymUbcyNnNQ79z9YyHwf5hGtFxN2jsBRIFehRgMGl18H9Og9loFVRMpEVV9jdiOAAGY9gAsZDhxXG7dlOmwZmSfGPYPc9ZOWrHlq6Q2W16inN0HQJ6rQe4fA5SIQywTslw5y56wa2JTFF3dgSSm/a+w7yNza/bMEdgsBzmzjStDZCsdinfNlAXGT8q8QgtasCDcvctMfK/f2AuI/P8qS72n6oTFQS7CMAcjWQeObgBOBmNgF0G6aLjk6idRAHHbnA0BKcwQHas0D6rdCcC6jELZcy/tdcIgE4BLkIxbHhXXca9P9h22dZWe19T9IfqKb69ObNCU2bP4p7Vs67/LkzZnbH+oia1kJKvu/LL31PNmv4wTIEAlQ0ocy8yj8xx5gmmzFxT6T7d03lCJ/MTrRge6xgMJzA5cmdYr2W6hz0wpeedCW7KjAk7VZRM239tjuXeCetUOSPMr/vacEeYzo1oJ9xNeSzZlvGSbUgeUzZWSEiHCwm4GVGhQ19XRlQe6TbEU6GmQ2FATY9AGlAjOyQ/hnvJrc6OYhCMI9V8osguc5rNtqIj+fbYq59kZILUoi1vU0KDT79FQfL94UiSbw9nS54BJ3m15LgP01ScaX7v3+kpX9/KicT3N2QAmYc1g0hf6+DAY8SDW+aZzP6cE/g5MDLbOwEpi71NeyhfZ+9hR3T2sGO4dX28WzEnpvLlRDN6JmnxnciyW6IIz8llGc7mbmAvkqBDt/Ba6FcA1G0I/9MRThoslrqDQxvwMB7MVABUjKcA4sKLlEzFMunehlJrb9Fzizhdknkj7kWf9su/80uot/+pX4K7n0DlfHiVooPA3U/hsAv9XVRuZIdybhyuBroWT/kkt8TTnXfLUVI/m1zTkX+ZxAnGsRwELC9zq8jZivZYBarVEI6k1uVwgRbu2Q8qZrzehdFZh3GdFruV9RhuTgwHZfBn3JW1KSt1nDwYtgw3CJMF/vnT9ESamQaChgVuQbR0Wt9uap5WhqZff9JJ/tCuVbmsXtBE4mFXg1xmL+DQhr24CCeEDJ2pLZgRMzMytuvb8JTizeNZGZblY6hR+heTU1YYenJKwXwrbinaL/NDCqaLw0pxuWOgyiTADFT0E1qXzxPOqnsvGT7X/qUu52KcJLOw5eJgbw0WE524Ryq4jGAkDegGDEfgU9aWDkRHjrt0aVxqrTH7EjyVSI2pJ7jWHpbfgvRY3GgaZ3sX5ZQCIsZVcCocyGtkAhcCE6N4rH+wp6g81j+YK6WQ9Q/oMga7XQimXRDrI6O17N2AWAB6P3Ow5LQXT/uMTRyj/01SSXdbDWGI6XO7uxz2ESJxl6JIgl4gIQDmvBjFWiDh6h03wK+2iKrsJJLQb0SSNWIAkzebbqmUsVM8LDTnu/6RO2JL3vXLn8+pEplbJfJvVVo+tfArUdZWLXR1Ls3fQl0MBZUSEVUKiurWMpLMr2WkLggEXa3v0lIS+zrq/G8ey2NaSGDyD9HCIY+pFCueZsHF0yujX734vJ9G88kIk5ts8WkN54o5zdmT0fV8fxJz64ADWJtRcAQ+ORFcZW6fXhEtHZydbImWrNpM1zarRb9a5aY+ylQ9WW75wZXzXtpyPxv3aj54tavlAcCXZGIB/b7zCqAEcKtoDE9sC86X+pMt3RkdkDPvrcd2Cw9c6mdNOrV20V43ycO+f0zrQvsblID4w/72EPyO01g4ApUIbraN7RatO4jtI8zFbaYz8BTKlbrHtfSdCjnWU7x0xjOdFM6eRnPmOZCyr/9uplOxeMMI05px5IT6wMXnRWZpoCAS4CoIItXF4I+WYv8Zr9YtCGdwRye3QXb1O1uDxuY2pGrmtdba3A6cuOaPXf1P42VsHsuXKbzMVJfL9OVupeLtWgCDq2O7P4NlDN47F3yL9mmKm9D9A/VHGSeshSB+HXfhRvx+NfFDDabTwqoBOC1r9DhOgBk90pQLTcde+6Ieet2hruneyzoIgML0PqKZ+RLuMUQURlL5DjS43XeJq9ycHYkbvdZv2Ey0dnZ0cXYCp99dGz+CpRg/68UXUKP33Gg+q/+yFu7puGGkX21dVLMF6ORhoJoD1HkgwARwPwj3WCJGgI+TQ1iPsNGr03vzfMvvmffM3S730SserOB84eYYjUHgHNwN8BRuqEt4shlnad7s1725S/OdG38XUW+3rL0ulqdO9x032FRpSO2ffhdJIyDnflDOeF7OaQMMzVswiqg8McbS7oyAHZZd/zvLTh96bM+uCEu1JGEj84lulzjP3uhrjmQ7827YzkBKYSZFNV0jgJowMKZVNAYF261GtJ0pjmxHVOvODuoO2234ne3GnC06uWa6l3aEnIWu3j2vt5y2W4JkuyVItvvTOQNgHDKicZRxZJxu7uSUYlkHXLT0cFsLs6gDTf4gC7/MW/BY+G2/jvoonMsKdGJksC4GsYcM0OoR072cpD9LBASgfeyyLBHZD3Npcasfiimt+Gb6Z0A7CgqYIiqg2pGHZBNg8pBub/+S7fBe/m//gu5C6rT9C4pLA03CBN50GdAkwmqC8mxAUy8C76IU0NSb1QTFgIAmUVYTlCIBmvoQeANXQJMYgfd6EdAkzmqCLtMBTRKsJmilFGjqy/5dkPk+0NSP1QRN5YCm/gTey6lAkySr6S8p8pd1ChM1juYUNL6d+/4a0DSA1VQV1XArRzFLPUL9kmmkNKMFaJJiNT34cG3o1UF62hHSBgnht7/UA00DWU2rogyHBBwdTtm3IPLjki0FsUDTIFaTas6W6ieE9eo74mqqxmY3HgGaBrOa7t6fNz333n2N9DG1zXr6ay4CTUNYTZbX9azNGUPV90g8lD0oM04GaBrKatp36cL0pzL3aYdO0sPzd5R8B5qkCbyzLa5dg8MIMLsGde/UnVjyZaS+35z52dcffYrn0VG6u2swB65T4mYZH+ohKLGIUjHEVy4715NOTrqjs6i4UgmFdXw64jr+go7lkVw4zXF67BS0Iwrs2CnTOKRjp97G8vvYqYkDFzi3+ClrRJj5RK5JHcfJK2Bz7JRhHNIhHgvicHB2TlFRkQCOnZp8mrH33SAiJabIaHzYYVHOpUSsjp2ahGgdaTxYRyDHThXeDl5gdXyDnv+Iqc/fut3nrP9ideyUMKJxgGiCvXEIWB47pTq1SuVc42j9cJ2FOvSLepwHLGJ97NSdWMQD3bAxHj6PnRp2USLpcf0Y9Zxs8XmR44UgWaLAj53KRrRcNOaWAz/Et2Onrt4tXqo2uVD7ZBbBM3OTLmdGh9WxU8wcAvbYKSAQsvLUPAJMnvpvOnYKOlXE+NipmjikY6eS4gRz7NRkPYK3EGkYPfSlrKvnTPmrqB87BV0+ROEopctxSEcpFcXx69ipb9MaehvuVNMNmPtg48ravNuoHzsFjREoaJWEqNV+weahWB87lQ8XxnB97BSP6he77ggNaV0/dgpaHEOhgHQCTl3TMcJrQo9LkQvjHN7N3SxG4awadBxl0V6Y7noxo1Do1ykYwDDhBkxMLD3AvzLcwBsQV1kyC+jtxJK9hzv7zCnWL2K1uxOtLZ2IVsBsc62Li4M9eGyVM9AIfL79lmudwI+C++idQD7AgTkSMS8qE9XtwKOBmJOgpfTlRBc2o8ncAuBsa+vA6NiABf6MxzpnoiO4MbtrxZaNLxY1TwuU10ghzHjbu2inH6Js3MUWyA90YyegzJmK9mIL1wJ4CjAyyZRXdAemGqjOlBHcq896IN77IXJ/zHsztlrdD/AcuRUqnEd89WbegwffzLz8u6iq8H7q6AmMWv2IUWanxi88fh2FTXxioEJmvKLqQxDw5FTod1UPOQ5/ZCU9oGYsweAgxlFng1wCE+K0M4SnpW8/9lQV0+UfUBW7ciRVAL/BzcysaWF3Ch8zdVYRjd3A6TPYizmtZe/eOS4wZ9tbwFk2782qoWKq+TMOD6NnzLUlKMqROSdkEvSOG3GTLJ3a+GG6qtNIpvM6jYnp+lg5OzswLDuFye5MzEYbgBuJwSGBXUu0XwWGd4QF1ZtDp/TWi8rUDAj8fLdu9+gCyEko4P24g1D7ZdRPbstjRRmeWJd3LjPKdGtBWd6YdY4dC8jqjjDxORGMMN9k+pFXY4ZEu9E4T/bvw7oxd/mb3cAPcZjBBlYcGYg4wr8R56/2UerXCN4ddQamnI8Nnn5KM+7l+Qixv304aXLxjp0b3FTgryZ+KMTs07AKAX2albcVEGDyNk3SJMWf82+QUu7LHq2JfjeDk31h4mkuziBByp2zicHo/PevBSj7X5+3YQ14HnZA3mlrR+w4GqP9LICupUtSssnnC/U+knwfZqTO21A/E/ZpuUmdTo1d5QQBfb0qAX0bAH1ToGmSFKCvQgVXmtTN7aRDfj0WCKW2a8Hz1TPPuyyIaTtCOSD6d67Q2BbOrzoXMwUPHeJ1YsSvlt+lUNDA+KdoGdh/QfXm8fJOJTDJrOxWCtWvvfvaMGzdGLzzS33/hJbiPFNS1INpY9ZQgxI4kyUN5ge5kyXWdX7s+KiqQHp/rwqsk6UOz+xGogQ+sr2zjb11e3/m/UVkkQyfLWvy9Q4PN7z7yaNKm9NX2Tfg9tWOFn4YQwHRGHVncZH+ELqzHqSs5+TsAQxfltZgZVph6nxgygry50rEafOt7ZzdbJSI0+e7u7p5MP/BO1vVObTIsCSjkOT95sYduRu+nJshxcFfYOSx3oG723Rq4oex/M8iGUsVG2NBeg6z7tKdbHXor2UEp7VuVu4IPejiI+Ngc5U2jSM+gx9d3zqn+k+myn9ojqwcViCXAcxxlQv6y6kwaavoXpbKiuQI2ZZE44tvN88N196h8/jLzVDDeEynvaAAERUsAep4CACGlm5louyhzNkRSKh4fy31dVJw+GtxzUTD7RYKnu6FkKGM+UEeQ1n7dX4IUHYWQYBUw7PsRLOQ8O+inVSCTNR2DnynHyWe6Wo5t3C0wGinqRcqEGinoCquzBJl2sl+iGrVZvt+Osl33obSZv0ciAPaiQhKArt2fPU8JkGfE9m4f/++AGgn+6Kv2o1L02iJEpS5xd+cTHBBO3mfR7LOVDxYRyC00yPZfb0+HzpIjr/tGtKyZMZbXNBOD6uQjANEE+yNQ8CSdvKubTudoVpL9dcNvqNav3U2rmgnNUTjNZ3DOtnFEe30bq5oc1z0Wv3IW2luC103vsSYdoo9h2Q5A8wtx1fa6XxK3VvTjHpq8bDSMWpOcxpxQTsxcwhY2gkIhKw8tYjQA2gnjVHjM8dK9tIsOmsVkvN24yuMaSfixQoE2smlGrZYiirtlGS+efT+2cqUbc8mCJ0c+MwAddoJOjdHgeCRApWDJXjKqrkKpSjRTrKPVHYaCqVopJvIqb2f8SoSddoJGiNQ0ArwIwStiNUCjblY007FcGEM17QTdNLdiXaChrSu007XMm8GhJy6RD0cPkokxqrmJwq000k4df+jnf4R7XS4qK3h6MEj5HxH0b2HUt8rC4x28v6ORDt5f+MH7eQp1nft63NjNHPzRnouHrg1BkXaidhq/eHDDEWdU6uflQQ/G38aBdrJ5TsSHEL8LhDaqZeMcNoTVyotaVCZcx+RO5WY005XvyGpAvgNbmZmWNFOyx69WtBW0KKXkZYsmmptjx/aaSqi6R624mK5j++0k2GrBs1H25W+u+kN5dTrow8wpp2YUQYWVwGijMBopxtiG0ZMUV9DPzRmYiGl/E4wDmgnZrCBFQcINoKjnZ5sFHntVZikEWx6++GP4c2iOKGdpiIqBPRpVt52itAjaKcZNQzq/EXi2j75R/wnbBoRzXfaqewnEu3k8kNwtJPHq14uq5rHqqWWa2RR7LfGok47QQMjCrRT1k8kZsHiJ8q0U+2AI4skd6vSExpmKJoUx2dgTjtJIb5/2Q+skyV+0U59Uz1aj40jkIPvB2/5YCh3EBe0E9BZEYxBxMYYmNNOZefqNU/mVqoVqVq9v3CjLg4ntNPVNiRjebfhoefwk3Ya98JRbVXFFlJo8SHpvwjjoV98IGjaiRnIYWknzZ9o004W+1/G1a8YpZfUb9yyvnpzjmNOOz38gUQ7AaEFZdrJX1NfIWDcNXpI+NxBls90J2JOO4khCZB6qI2daJYQ/l20k9vt8JSiQbP1j3w8/c188rEnAqOdLgohne30ncDvs52aWyfu825bpuNdbKvgWjL8DQ5op7NCSCdlRArh4ICaW7duCYB2sml6NjBb/zA51ML0zo35BeK4oJ08EK1DxYN1BEI7rZ+8fsdQk0TStgoTr3lVG6m4oJ3GIxoHiCbYG4eAJe20bzG5VY9QrR2/THLY9IlxV3BFO90gIBkvHRvj4ZN2cqhRF538Ikr/cGS06xNPEaxpJx9Eyy3D3HJ8pZ3sln4aOkUvSLskeEWTnWLWW1zQTswcApZ2AgIhK08tJfQA2mnJNqd8pd2H6RFkq0PZP9/3wZh2OiuMdLaTg7BgznZyJ3usb01UphydL/2tIffSSdRpJ+jcHAWC56Qw0nlFocL8OtvJ/p6R7sxhPqSiIJFrkfWSIqjTTtAYgYJWDohaaQj/X53tVAYXxnBNO0En3Z1oJ2hI6zrtpOEywTBfwkj3wOW6Rl/6bAUUaKfTcOr+Rzv9I9qp9K1Ilcanizq7+qvcE6LrLhYY7XRxZCUC7UQd2a0vyusi7aRdQZ5iHfyeVDi5sHQU6eA5FGmnT8bWMk5NqVqltJz09399+lOGFCxHnQUVgoVDIkdyjUD8oJ3Mvp25/OyxJzk8/EVuzpFhbZjTTh6IqgB+g5uZGVa0k+sDtYGnZbT0smdY3feKOZOAG9ppPKLpvo/AxHQCp53yvaVHt9SP1Nm+6eAV0o7paRjTTswoA4urAFFGYLSTxT6xj2Gb5DWjxywJKHikMAsHtJMHojhUiDh8pZ3uHS4/NavqEdXfK6uu1JashBPaaTyiQkCfZuVt5YQeQTs17XdgtAi5qYUnj/GNq4s6wHfayWF0JQLtdHYU7AQeddqp6YZyfM1EKa3gz+7Zl4bRpqFOO0EDIwq0kw2oHiyzMG90t1Ko39NOa1Z/nVVUbal24I3ceaWILUcwp52GIL7/61FYJ0v8op3Wyq8v83x/neT30chDROJvJ1zQTkBnRTBGJDbGwJx2MjWZSVW8G6lxVD5bcROtZTVOaCcPRGNRcdFz+Ek79TOr29Frhbza4fOJW3+U9B+KMe3EDORwtFOa8ujuZam/p53OzRgoJeqeqJZtvNLDd+aXCMxpp++jKhFoJyC0oEw7VQS0rHFoMyRnJ79RFJ1yZh3mtFMQkgCm5qPYieYZwr+LdpIymqQ4P+q55r6S3llHzwUrCYx2MhuDRDv5y/Kbdhp2nHqqSuEdLfmc3N4NAdc/44B2MhiDtHasMAYHyMaVK1cEQDutPV0dlrjYnJaecfXLCK+V+KCdCIjWqZPFgXUEQjtd/Hqj7W3haL0UkS9n3J6Z1eCCdsqSRTKOPx6MQ8CSdjqeR35yQ8NDI3iNyIKNFospuKKdLBCNp4qN8fBJO5n5tfZN2K5JP15MFm9xeNyCMe0khWi5xtFYW46vtFM/u0F/ranfoRE1tvySjuLCQ7ignZg5BCztBARCVp56ltADaKcB392r35LD9eMmma6QWvBSD2PayYCIRDu1jBEM7TR2hfApN+nx6id+9PPXurGuHHXaCTo3R4HgoRCRCB4ikV+0E7W4/+KRFiK6aZ8Dt4XmRDxCnXaCxggUtGoZg6TVVcHOErCmnSrgwhiuaSfopLsT7QQNaV2nndY0vsntsySMsq3ULOVOv+KlKNBOlXDq/kc7/SPa6WBTr8PXWz/Sc8a832t0YPUQgdFOZrOQaKc6FX7QTkefejpEf6app/seeZGr8WwFirTToo0PP+h7bFdLsJim4rmL9AgF2slgFhIcojBLILTTtIozE/vKSqsH+k+1eLhe5gfmtBMBURXAb3AzM8OKdprS/8q2v18nkPyr9sSHfLGXww3tlKWCZDp/bEwncNpJIj0zQ2Vmm77fgx0vcox6LcOYdmJGGVhcBYgyAqOdsmq2aU1gvNA8ltPa/86dzHAc0E4ERHGAYCM42qm5j6pdoN47zeI5elcdI8wu4YR2YvZpWIWAPs3K284RegTtZDZVOrfQ7ol+1ASrWONA45t8p51aVJFoJwNVwdFOM8RqTF1e+tLSDgklP+lb3Yg67QQNjCjQTk2qSMxClSrKtJPJ3cUyRyrG60YZRB3NWrr1Jua0Uyzi+3upYp0s8Yt2MmrVq1SYW0OJXcOY2dc+uAIXtJMBojEUsDEG5rTTK/MJdx9fCaXvcvLw7TXx8Qyc0E4ERGPVzcJDz+En7aS3SOze+IyxlKwrEyWfOb5Txph2YgZyWNqpSBVt2inYKzV7kEGCXnHz1AFFfs2OmNNO/mwBeNJOBqpo005FZRuv7aBL6ASsjGjTULohjTntNApJANOns9iJZhXh30U7BZkd16+Y0U//lFvDxhBHqxECo52ezEGinYbM4TftRDygqlUcvJmUGxmtn3V28w8c0E71c5DWjnPn4ADZOHfunABop8o9j1sGLZuin0V59kl1/3MKLminQETr2ODBOgKhnZKvmSiaaG3VjOodWLlMqX89LmineYjGGYIH4xCwpJ22HtKsdB8crh8i8SCn8Wv2FlzRTq9nIxnv7Gysk10c0U52F1/89cInRHv7osWer8Y6GWFMO0UiWs4Dc8vxlXaKr338MX3hKcpRvYxJokOm3MUF7cTMIWBpJyAQsvLU84QeQDstOSfkVL0oi5o9OX2F60pZL4xpp/q5SLSTz1zB0E6nqCn9xHs91N8j+Ub65CPz6ajTTtC5OQoEz425SARP+lx+0U6bRe2rtvWZopsZS5qifG6JBeq0EzRGoKCVD6JWy+b+X9FOF+DCGK5pJ+iku/PZTpCQ1nXaabxVlVRkZqNactWoqbV1kkEo0E7VcOr+Rzv9I9oprfKDfKmfCjXpZZxF3E3tAoHRTi5GSLRTkyE/aCfTxAFpV5IT6ZnirsP793EioUg7fSAUqF+vfau5c6TWhpLq55NQoJ3sjJDgEDUjgdBOJd/2iGf59tEqTuqzJPqR+wvMaScZRFUAv8HNzAwr2sll04aNha6B2ocdkg///Tk3ADe0U5UhkulisTGdwGmnKV7hl90jDSmn3p3WCEuijceYdmJGGVhcBYgyAqOd3r0YHL1imRP5UEyj7KRBg3VxQDvJIIoDBBvB0U6iJ3vnRmdM1DvhHZ5f3qB7DCe0E7NPwyoE9GlW3naR0CNop3tCz4pWT75LCvDauyH0nco0vtNOUiZItJOdseBop4A+iiN8dsVrhCkr+O1cK2eKOu0EDYwo0E5iJkjMwkNjlGmntTbvT821rqbsLc9el9ki54Y57VRgjPT+QcZYJ0v8op0sXr9Y4TwlUzvjr5mBK44/8sQF7WSHaAw1bIyBOe2kOGVQ0bIEG1JUZOMG5d5OyTihnWQQjdVkhIeew0/a6VbKeLGS2mpKplzIacsfL+kY007MQA5LO9UYo007xfTu11f1YpLakTEtgQfHXDyJOe0Ua4xEO9kZo007LWrdSEis2UwJU763WPbqp2TMaaeZSAKYthmxE81LhH8X7ZSZGbvQ6KSD7vZMCe07xZ+0BEY7fTdFop2UTPlNOznZHJy3YOp5cvKkhk3ZcZPW4IB2+miKtHZ80RQHyEZpaakAaCepMUtTNv9VTwuLXimndtxvOy5op0RE62zCg3UEQjv9EHpWoV65Q2/f7vV9pn03jMIF7WSMaBwlPBiHgCXtZE2IGa0zIpqSslTt+qpD5pK4op16IRqv3gTrZBdHtNOG6ALLqOof2vmVF2K/xE/5jjHtlGuCZLlAzC3HV9qJcNtpUk2mHdn/VYbiID9Fe1zQTswcApZ2AgIhK0+9TOgBtJNh0WSSklQ1bWeZz6ggz9ENGNNOHxcj0U6RiwVDO0mHiC68N2qyfoh8VR9CUKYJ6rQTdG6OAsHzejESwXN2Mb9oJwVDs/1jc5NpOW6XqpYIj3ZBnXaCxggUtIpE1Mpj8f8V7XQFLozhmnaCTro70U7QkNZ12ino56PBLy5S1Xc9uHHg/LNCTRRop6uoqdtPgOpusl+outWxSGvf6wf2T0ReqHdSN0+o5nqc013Stul9tfuIizoBTcKspnGqU7JHVQVolqxeoGY0Ii0MaBJhNYVlvzx9sb87OeLo0V0FixoGAU29WE23B20zGrsoXrvk+7mTapHzueG03nDm2j7prFK81CPN7ZvOSKmsSn2GgrmuwZnrPzjtH8Fpk6uNRjvGH9conm8t2xY2XkZgcJqPMxKc1suZH3Ca69P+FvOPuOqG51I/rt5s+QpFOG3OdvMFFIK1VmbflztW7ZmQigKctskZieUxdhYInLZS2kh248sIcr5YdHp6A7UYczhNCVEVwG9wM5HGCk4r1s7KKX4ZSouepbpw9d62ZtzAafVOSKbLdcLF6izf4bR7Ec3rr21coB2dRtts+f79fozhNGaUgaWLgCgjMDjtcpD4XTERa/IBQ5IeWb2AM7nDBk5TQhSnl7MA4bTZLuJ7c/aVq+3zXnWjfo6yOU7gNGafhlUI6NOsvK2G0CPgtOX2GXT9gbP148zOpB4ZW7mL73CakisSnObjIjg47XqWe/mQgGD1FG/zk4ekcjmTeTTgNGhgRAFOG++KhJh8d0EZTqvW6DdKbkmQXm7unkwvz1fDMIfTbrggvX+6C9bJEr/gtEPTzNc/Pa6tF2idlJdQtoLzu5exgtN8EI2xDBtjYA6n5elfTU7bFqedGTt93rnYvqo4gdNmIhqrHy56Dj/htPqkH8uTD7Wpxc5ImZS5NDf5T6bKKKBJzEAOC6e9dUEbTnudV3JVJOsNJTJ3SnXCtoIkzOG0ky5IcJqPC9pw2rTNUhcnbS0h+UkuTCBXqULm/RjAaQZIApgOd2EnmtcJ/y447cwj6TSrrzu1T53y0TO1XrFcYHCajDsSnEZx4zectkV+eWbg9zukXY6X8z8XLNyEAzhNyh1pqb/RDQeETUFBgQDgtO233likvDpPC+nzOf2VZCzn12thBaeVuSFZJwIP1hEInKajbBSyQURZw1+lbLwqXf0MLuA0F0TjUPBgHAKWcNqXG6tKvW40qgfMPPip94ovH3AFpxERjdfiinWyiyM47Z7oGtKty9H6cY/pqUSJQs6zYwQPp111RbJcCuaW4yuc9nzZRLEUS1FyxMOxySqie5P+nGxBAU5j5hCwcBoQCFl56g1CD4DTxokbiSnK7qZk194YyhhE0MEYTpPyQILTCtwFA6eRH7s+Wqyarldc9DHKbplVNupwGnRujgJwJeaBBFw9dOcXnNZ3Uj+S9uE6zTyRrHI7tZj7qMNp0BiBglYF7khaBbn/X8FpN+HCGK7hNOikuxM+BQ1pXYfTDAgrnujHLKGl0gdeUYmxkkKBdroFp+5/tNM/op1OPUra/DFou27J7AmZy/QlPgiMdrrhi0Q7hfryg3aqGPF8i7iICS1u3Z0F68TlJ6FIO8lkNxfutvLTKtz26rP7j8S+KNBOV32R4JCTvgKhncqlJV2OlvSi+n+c/mO4pO9QzGmnFERVAL/BzcwMK9ppkvDlH8tbC8n5j+eVKJxYX4Mb2skb0XQO2JhO4LRTlqubZ9RNMWr2h/C+9z/o0jCmnZhRBhZXAaKMwGinH6XhTxctv6ufX+z7ctOpPtE4oJ1SEMUJ9RUg7fSGsdpri0ke2d/rKymlz9eNOKGdvBEVAvo0K2+rJfQI2ildblbOgAltGscDducp7pQfyHfaKcUPiXYy9hMc7RSvNdUq4I0PJYYccqS6VksRddoJGhhRoJ0S/RCPovJDmXba+lpv6+1TqpSUV0sLjzrNwP4ork2I72/nh3WyxC/aSefj61miJ5brnlii5qSRKn4PF7STMaIx1LAxBua00xbHwRbVl5q009LMVEYuH/AFJ7STEqKxZHDRc/hJO92f0bh9VmGcbr4OvbowapgPxrQTM5DD0U4mAX5o006M64q1GcLrqAm9ex8Rcc8Wxpx2cmELwJN2MvZDm3a6Yb5sYdnqC9onDIYYWok9UcScdpqDJECqrB870awj/LtoJ93BUuX64Sb0pK2UnHUvYmoFRjtF70SinVR28pt2WmIoeUY9ajg5KHunPON9ThwOaKdDO5HWjv124gDZyMrKEgDtNMpHtk7W25Qa42kW3VYeUYEL2skN0Tor8GAdgdBOMY43+3ywdtRLkJ1oc9xRuxQXtJMuonFU8GAcApa0054FzbsSZ1tp+e+urDnXNjISV7STHKLxJLExHj5pp3FNCc0elYbkA3OVqsvET77HmHZq9UOy3DNcTFP4Rjs5LHXSf2BqrJn8cOqk+g0TXuKCdmLmELC0ExAIWXnqbUIPoJ08ZWTFGSfe0AO1/W41b+orgzHtNMIfiXZ6y53S8oV2si89/2Pnq7W0kr2Dtr1KHfUEddoJOjdHgeCR9kcieIT9+UU7XSQqlR4791p9f8ibOMobhfGo007QGIGCVm93Iml1R7CjJda00x24MIZr2gk66e5EO0FDWtdpp2tnalIuzfJWyxgd1WfDe5lWFGinu3Dq/kc7/SPaye6IXNxVz9X6QUvWL/0Qb/1YYLSTfCgS7fQshB+0U/8zdw+8DiygR+vHpwUd2RSEIu3kO7nYYLjxau20bHf5kqtnnFCgneRCkeAQyVCB0E4xF3rv8Hy9iB4V2av5uJOcJ+a0U2sIkiqA3+BmZoYV7TRiuN7CqP3G2oeXv71iGHDaATe0Uw2i6UqwMZ3AaaclwqFVAw4J0w+989sSot1MxZh2YkYZWFwFiDICo532BAzsR9kgr+sfEalLj7/wBQe0EzPYwIoDBBvB0U4XBrz+LFFRSMovSvWZ8dfWTJzQTjWICgF9mpW31RN6BO2UNuN+sZSCGjWcNMErWapfKt9pp9ZQJNopKVRwtBPp4O4HhRH7SQf6tjKmTZ5YjjrtBA2MKNBOn0ORmIWG7qVQv6edHlNvuvRNuUgLjfu8VWzZuzmY006XEd+/KBTrZIlftNOp0ySCzO5H6ruWNAyPOZ19ARe0UxKiMfZjYwzMaSd7VWrcgb/faAdUzPnydnb8apzQTlsQjbUaFz2Hn7STlThtyzKFe9Sg6WV3SzUXbsOYdmIGclja6W43s9Tf006ni48ITUuW0Du+bSzph1ipNua0UzlbAJ60U1Io2rSTyauF5wLu2+iUHli7WG1saRHmtFMgkgCpLqHsRPMe4d9FO03feN3p+sU4tdLJ4S9j1zwcJzDaqekAEu3kf4DftJPSY+ux8bG9dOKOb2/9uVpbAwe00+sDSGvHdQdwgGykpKQIgHY6uFepSWuWodo++b2epAUhp3BBO51FtE4WHqwjENqpz2HaWKXomTo+znJfrfcu3YAL2ikS0Tj+eDAOAUvaqb58acrPnbb0+I1Bz7ecG/8KV7STB6LxLLAxHj5pp4bomGMWqm/UYk/cDJMM13bDmHaiIlpOFXPL8ZV2+t5aZj9OI0gzWrL/ZOPBRedwQTsxcwhY2gkIhKw89T6hB9BOV5P766Z67aCGpH3tpxx80QBj2skhDIl2UgsTDO3kNkHuhEmSt258UMls8YnbnqJOO0Hn5igQPHZhSASPcRi/aKe5cy9u3trrpVbIsb9c24Tuu6JOO0FjBApaqSFqpRT2f0U7PYALY7imnaCT7k60EzSkdZ12miNZNzug2U4nPF3jXAOJNgUF2ukhnLr/0U7/iHZaFWU4JODocMq+BZEfl2wpiBUY7bQhHol2mhPPD9pJNezhZ33SFNqugOMFy8SOG6FIO93ZGjQ2tyFVM6+11uZ24MQ1KNBOnvFIcIhVvEBopya/1WI+B76o5ziUbrpSZj8Bc9qJjqgK4De4mZlhRTtpTLxal7l5JiXXOXGP2/Z1a3BDO8kjmm4QNqYTOO00f84KoqXsQp2QtSsXJcxgHMCYdmJGGVhcBYgyAqOdJk24OXLZICHtErJMfvkY8lcc0E50RHHmxAuQdrI8nH65aOwC6jEf3QlfGmuIOKGd5BEVAvo0K297ROgRtJNqzpbqJ4T16jviaqrGZjce4TvtRE9Aop1audMkvtFONXvTfJeucaIdCG0tWLZfRwp12gkaGFGgnXQTkJgFlQSUaSd/832kgcpraIezQ0c/CvkqhDntJIf4/pIJWCdL/KKdPk8pJ24epUFNaDRufvrgqQ8uaKfWeCRjPMNH+iNw2kn/x4onlD0DNNP0KdtOmB/ZiBPaqQbRWCWYTzP4TTud3ZttJDdMjRYvKm3k/nqYPca0EzOQw9JOUxLQpp0WKxhHiwQUax5vLG/wclvqizntJM0WgCft1NrNTPT3tFPU8/o+puaplLAPuU6TSbf+wpx2ehiPRDud7Ug0Gwj/Ltrp7v1503Pv3ddIH1PbrKe/5qLAaCeNRCTaqT6B37RT7prLsifLDquHfy+cuiSseQMOaCe1RKS1Y6VEHCAbcXFxAqCdqPJidZ80lukFyQ3u9eZQeDEuaCcZROv0woN1BEI7lddIvtO8oqEduWrFg4Sixx64oJ2aEpCMU4/NTANHtJNXIz3qXsNNjT2quSuXhw6k4op2qkI0Xi7m00Qc0U6+t3Iq6bL1Osnz/XQMtpnGY0w7xSJaLhBzy/GVdiIXry87p/xUe691iGdTxLxMXNBOzBwClnYCAiErT31M6AG0k+V1PWtzxlD1PRIPZQ/KjMP6bKeyRCTaKTRRMLTTqh+ZRcsX3iDtaBjzJP3k9mmo007QuTkKBM/JRCSCJyWRX7ST+sVP2hpNcbQdZk31J0b+1Rt12gkaI1DQKhRRK2/B5qFY005P4MIYrmkn6KS7E+0EDWldp532Xbow/anMfdqhk/Tw/B0l31GgnZ7CqUu0HZfvvyeAHHImnXrwayFn1bS3IcPBcj2nujDLQnBdeDCJuM7ejUF0A+/EEpD3HviWNieZxRM1o28FPpvqJi3H40G4X/r3Ee781QMhfjl6h966ZtW5J4/8w14bAfRLu3cV7eOyN7TXgstsCu8qWJI/w73kSyV2GvUXa6YkGekP/PDtgi9uJacOrUSQXGkoOxV6jnvJP5p8Pb0zwJu2bdCLaq/nhSNxK/nFqUiSp09lS96Ie8lHZVkdCdA9Tdp7T9xg84Gy0biVXIyGJHkjlS35C9xLvl5H4bKBzz5938uStmofxbNwK/l3OyTJ6+3Ykr/EveQ68m50SfGRpKzw/rarfZ6l4FbywO1Ikm/azpb8Fe4l3+Agd8xztYJmicTpG+Yrv47CreSJQUiShwaxJX+Ne8lvt6y9LpanTvcdN9hUaUjtJNxK3hSNJPnDaLbkb+Akn5FLJ89RNKeUZHrTdjVl1kIKIoDYbs4ORCbN6c69xtgbRmgVTS9gKmbdTguyVu5Zt2oHtphbB9Y4OQN/A+Y+rI0KXVt/dFFblLdnf5lGcsn4S8fLmpqRnphHCYejvYtKewOT6CwzIB0/S+aB/xPBreumFXzA/63m5y6ZJfdKM+yZUZz1SkYSivj/a2/bLxapRygnRB9q2IkGC/2hL7oACgWBCjWRgH9AFWppV4irpsqWqIvo31h1Th9irT3RQf+aDGI8yjxVXKMdke8sJa15qkqSdPtyqSYnGQDjKOzraFdcy/JYQhF51WOIQGvT4gouNqSbQo1YzABXSpkKcfY73gote7+y2WipiVbiI7f16TF+JZwr26ybca9ssxv4oZHBYiSNoM4k/A80YqJgLOob0Ol3XtR6vaFI73orOWLjsykl1ZU/OfsieDNuhViX+aGPlCmSPi4m7OrAW7jAP7FtmEwGUUQzj9z0jSFryxn4+1Lt3T1gt57BlexH0xiW7mvd2rd+tbNK7dHdAbhb14K78sDh7xJKx1HzlEhzSmyWXYB9Km5cuVNjF3X0AgmKpYCO5YCOD6E6uoDnJizhCuvdxJXFyZbuDKYAPN/3hN7EjwfPntHezVgw6t5wUc6v5OsFvhLXi7Zf/V18hwa9P4zvdoBURFCqCCC+l0GlGnWCKRVsfOfJcdOZa26gg9h7MBzdwb2FVJ4auZavezqtQp4cEtOboSJm7jOISYAD767p5eLG6KgXMyvNZpM5Vy8ETb5J5bN0AncYcOnkn8fUidU137G6ElfX7DXtI0ny3FVKgorKHaHMcWdEqPZW7La4xqhRK6eZUjNF99n/aJTghJBYlFw7n931fkvUZrRnau2kOBFMSRjdzst81EUK0sY5k9Kua466djpOCv7JuIGBzq3dyDhijQClT/LqvKAdygy7lZMRO3IyW95y8D4p4IYrqY3srnkwytngFnXuHx2yx98UzQIQzNuIlaJxuWZju2DdWvYergHxF1A0eEJ3+uVVj8poATrhMsYpRvnKTphuNsjKY6khxaujgmMooAarozYRYMbQsMZPUZNNAqmFF/RPa/+M5VxLkPgVnrhXveFmqNK/Nm87ERkdN5DgDnW9SZPJitO61DOV5GfKnKPJaMUyypc53iCdhHtM7v2Vv9q6gXgQVwKy1vFa1KaATra8on/HDi/2aiM7OknogD2Va/WqD/Oyjg27Z0S0eRfFBZvp5Ccfpas9VbzLbheCae+rz/Rnrp4j1n79143Nbar2CpWKaxS9HUbrrzj4avvzMB/3d+Fj8C+tgA7hZm9p5cC7G7Q239+ta1ihE1WlkjH7gTtnBJcwZX2USOKyhhCJqxcIQUIGdKj80woDYE0CaM2pJB6JpgM46q+o6KSREFoaDVN96/tXvzi9vSK7eol8TsiC0YjMrRH5txpBwxAKGgE+jaARcXkFywE7HAkpqg5ph4nAePorAPAOqDfDhkzRnEA9qOsrlmWcw3nEn2j7bbgDKus62gHVII/lKy0kcGIC0eFGLlMlVkBthguo0g17NAbNuaIe9/fj0syqdZwHSgqRea+/D2zHcnhISZBob+Io07EoHq7yHc8FeiMGMH+2YWaoTBLJEcS8XBzsreEPIAjKTo7wlt5HDb6l5v100p19kHfoist21RYd/BrEFsSiCoJMcgVYiQEHN5bq7/+R6u3JisCV/4v1C93BJNTZwQF4fjBqAJ3ClgE8BXszHe+dn9dNVeyJaYmaRw8FHkn5mq4igL1AcKYoAwkbGtQUH/6RKfqaA1I4ujg7MZw8BG6QIabtpZKN6zf/egqe6pvdW7+e5hVITiONOSRUPXcp7Dtwz+E7N6JtCbHiCsLUAsASJZ0t8bEnh6Ljt/eHjvPxJSeOP3OgfutuFYxCEeEl1P8/9WT/v3Ri5jWrb4q6R4V+VMTX7niBI/93aYb6/+ee7P8iD0IbUosG6RVOebGV/HPma4z8v3FQJcT/v/Rk/y+7edLbzFiKdPLv1Js3nwpRcOT/GtKVEP9v6cn+T5sw9Jjlh/NaQbfy7o60eFyDkf87KEP9/2tP9n9hqsswy0+a5JO2ypmbrj0k4Mj/q6ZB/b+1J/v/B5eDUflL8tSy3tcs/vlObjJG/p+oC/X/bz3Z/6UNX/q/lStUL9UtdZ+SaLsPR/5PoEP9/3tP9n+NrTteBPzw1IwrqrO5PYxhg5H/+6+C+n9bT/b/uDipeZ/ER5MyRAfXjBywqRZH/v/dHur/P3qy/4u+LM8lTzmrcVjXTE9tw9bVGPm/7jao///syf5v92rT34ueDaYXnF29Y3fDkEM48v9+O6D+D8rWY/3/Tsx0TQVNR7WUccaPl1T+9MDI/5fsg/q/0D9S/V/i/wduhgW9ILzTKN39YFORXvxLHPm/bDDU/4V7sv8vn1r4lShrqxa6Opfmb6EuhpH/p0RB/V+kJ/u/gZTCTIpqukYANWFgTKtoDI783ykG6v+9/pEl2jc8C9wGg34xc+4MW0cG3MmnK3OovSm+z9W3TVQsnTNwfg2PZ+ex/sW8jLbqIFcUa91R//8f + + + true + + iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOwQAADsEBuJFr7QAAAJhJREFUSEvdk4EKgCAMRPfF9gn9WX9Wq5MtEmdKbQQ9GClud4cY/Q6WbwgQ13LnKh5mAsKEle8MeCLm1C9pb2I2QHxNtKC2RLNVeiYjTWyDIxkEZPuKykDTj6QboTZwTA8KA+/0oDRwTg9OgwhxUBh4Xo2SDaLSg5waBrJ3J//uL66mG4zxNGX9BMzezmuDR4UQKg5CxQ2IduVGkrvn0vkHAAAAAElFTkSuQmCC + + 3640aa4f-62eb-4d63-8052-a0e09732f02d + true + DIFERENCE CURWATURE LINEAR GRAPH + DIFERENCE CURWATURE LINEAR GRAPH + false + + + + + 20 + 106c5295-4ab4-4aa6-aa77-17b1cabe660e + 17ab48d2-bcb8-4439-9ae7-4711deb61155 + 1d618bec-21b8-4413-b9d0-b0ca022e064d + 26784ca3-df66-4613-b760-ac9c1e2d63e1 + 3a66ce4a-5df0-4133-b5cb-55a024af3eb7 + 40b9031e-c91b-4327-8c44-ba17ee3528fc + 63c4f63f-3b9c-4c9e-839e-410d31706448 + 6536ba36-0f3e-4855-9e12-fd57d967ea8a + 6ecb5ad5-e259-4659-a211-088cf8e4b477 + 74ca0538-baa6-4806-a992-faf5fad6d48e + 78cc69e8-a743-4023-b94a-9a8aa828d39c + 82d3c096-76ee-44d4-8798-24f756494b5e + 8548dc1b-91e3-4cc0-b43b-091e2316c9d3 + 8cd4f22b-f743-4148-bcb0-88afd63f304c + 8e61e44e-6641-409a-9e86-3d6a5f8855d8 + 94ec5cf6-ef20-4c96-b553-c34d022171bb + 9c9f7ec6-458c-4c08-989a-a545ac4b25c5 + abbd5fd2-67ff-46d9-a817-2364a4a2ccb6 + c5391385-d15b-49a5-ac81-81d3ed1c0180 + ee3af77c-4fd8-4c52-a97e-5a973605dc48 + e294df03-baaa-4b12-b92f-e97f42ff34ec + 45329fda-4528-406d-a823-54e35ac6ff74 + f9b9305d-1e20-4067-946a-b44d88604308 + 357ceb68-e651-4e13-b8c4-6a838be2149a + 34281050-3848-44ac-894c-a3119ffa069f + 9096d595-00e9-44ef-bf8b-df7cba4ba2ea + 9d9970f3-5ab6-40b5-b0f2-d257ffef222d + b4c2ea06-2f42-44c4-9b4a-584b407a7f6a + 7979dd58-784d-428c-ab41-1f9a01cb3b5b + ad15254d-f361-46c9-90d6-b5db1b60e3d2 + e9837f44-fe89-4576-a1ba-d864d9176564 + 88ea5216-22ee-43b9-bf4a-bf732fa4678f + 3c10a1a1-09f5-411d-ae06-13d21b0f7cd7 + 9492d9b1-8423-4285-a424-c395dc7f8b36 + d134b7cd-fb62-4a2b-a901-fec5a2d783e9 + 98a7b290-1680-4c8f-91d6-4080e52ada8f + 693656d3-ab20-45a4-a99a-8ca5a8f9ac36 + 80bcd5c0-5458-4110-bc35-aad5d5e50148 + 054cb35f-8548-43e7-8129-2bbf3a113dd2 + 17704c02-f561-4245-bc67-2eaf7cd1e000 + + + + + + 1581 + 1459 + 110 + 404 + + + 1677 + 1661 + + + + + + 20 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 2e3ab970-8545-46bb-836c-1c11e5610bce + d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 + 0 + + + + + Vector {y} component + 3a66ce4a-5df0-4133-b5cb-55a024af3eb7 + true + Y component + Y component + true + 0 + + + + + + 1583 + 1461 + 82 + 20 + + + 1624 + 1471 + + + + + + 1 + + + + + 1 + {0} + + + + + 8 + + + + + + + + + + + Second item for multiplication + 1d618bec-21b8-4413-b9d0-b0ca022e064d + true + B + B + true + 0 + + + + + + 1583 + 1481 + 82 + 20 + + + 1624 + 1491 + + + + + + + + Vector {y} component + 40b9031e-c91b-4327-8c44-ba17ee3528fc + true + Y component + Y component + true + 0 + + + + + + 1583 + 1501 + 82 + 20 + + + 1624 + 1511 + + + + + + 1 + + + + + 1 + {0} + + + + + 7 + + + + + + + + + + + Second item for multiplication + 17ab48d2-bcb8-4439-9ae7-4711deb61155 + true + B + B + true + 0 + + + + + + 1583 + 1521 + 82 + 20 + + + 1624 + 1531 + + + + + + + + Vector {y} component + 26784ca3-df66-4613-b760-ac9c1e2d63e1 + true + Y component + Y component + true + 0 + + + + + + 1583 + 1541 + 82 + 20 + + + 1624 + 1551 + + + + + + 1 + + + + + 1 + {0} + + + + + 6 + + + + + + + + + + + Second item for multiplication + 6536ba36-0f3e-4855-9e12-fd57d967ea8a + true + B + B + true + 0 + + + + + + 1583 + 1561 + 82 + 20 + + + 1624 + 1571 + + + + + + + + Vector {y} component + 8548dc1b-91e3-4cc0-b43b-091e2316c9d3 + true + Y component + Y component + true + 0 + + + + + + 1583 + 1581 + 82 + 20 + + + 1624 + 1591 + + + + + + 1 + + + + + 1 + {0} + + + + + 5 + + + + + + + + + + + Second item for multiplication + 78cc69e8-a743-4023-b94a-9a8aa828d39c + true + B + B + true + 0 + + + + + + 1583 + 1601 + 82 + 20 + + + 1624 + 1611 + + + + + + + + Vector {y} component + 82d3c096-76ee-44d4-8798-24f756494b5e + true + Y component + Y component + true + 0 + + + + + + 1583 + 1621 + 82 + 20 + + + 1624 + 1631 + + + + + + 1 + + + + + 1 + {0} + + + + + 4 + + + + + + + + + + + Second item for multiplication + 63c4f63f-3b9c-4c9e-839e-410d31706448 + true + B + B + true + 0 + + + + + + 1583 + 1641 + 82 + 20 + + + 1624 + 1651 + + + + + + + + Vector {y} component + ee3af77c-4fd8-4c52-a97e-5a973605dc48 + true + Y component + Y component + true + 0 + + + + + + 1583 + 1661 + 82 + 20 + + + 1624 + 1671 + + + + + + 1 + + + + + 1 + {0} + + + + + 3 + + + + + + + + + + + Second item for multiplication + 74ca0538-baa6-4806-a992-faf5fad6d48e + true + B + B + true + 0 + + + + + + 1583 + 1681 + 82 + 20 + + + 1624 + 1691 + + + + + + + + Vector {y} component + abbd5fd2-67ff-46d9-a817-2364a4a2ccb6 + true + Y component + Y component + true + 0 + + + + + + 1583 + 1701 + 82 + 20 + + + 1624 + 1711 + + + + + + 1 + + + + + 1 + {0} + + + + + 2 + + + + + + + + + + + Second item for multiplication + 106c5295-4ab4-4aa6-aa77-17b1cabe660e + true + B + B + true + 0 + + + + + + 1583 + 1721 + 82 + 20 + + + 1624 + 1731 + + + + + + + + Vector {y} component + 8e61e44e-6641-409a-9e86-3d6a5f8855d8 + true + Y component + Y component + true + 0 + + + + + + 1583 + 1741 + 82 + 20 + + + 1624 + 1751 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Second item for multiplication + 8cd4f22b-f743-4148-bcb0-88afd63f304c + true + B + B + true + 0 + + + + + + 1583 + 1761 + 82 + 20 + + + 1624 + 1771 + + + + + + + + Vector {y} component + 6ecb5ad5-e259-4659-a211-088cf8e4b477 + true + Y component + Y component + true + 0 + + + + + + 1583 + 1781 + 82 + 20 + + + 1624 + 1791 + + + + + + 1 + + + + + 1 + {0} + + + + + 0 + + + + + + + + + + + Second item for multiplication + 94ec5cf6-ef20-4c96-b553-c34d022171bb + true + B + B + true + 0 + + + + + + 1583 + 1801 + 82 + 20 + + + 1624 + 1811 + + + + + + + + Number of segments + c5391385-d15b-49a5-ac81-81d3ed1c0180 + true + Count + Count + true + e2df2e1d-44d3-46a6-865e-cf271d98e1ba + 1 + + + + + + 1583 + 1821 + 82 + 20 + + + 1624 + 1831 + + + + + + 1 + + + + + 1 + {0} + + + + + 10 + + + + + + + + + + + Contains a collection of generic curves + true + 9c9f7ec6-458c-4c08-989a-a545ac4b25c5 + true + Curve + Curve + true + 5d1cff17-fdb4-4fdc-8366-b759fcf7a3ba + 1 + + + + + + 1583 + 1841 + 82 + 20 + + + 1624 + 1851 + + + + + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 5d1cff17-fdb4-4fdc-8366-b759fcf7a3ba + Relay + + false + ffc7114c-425e-4e46-9780-4f5439b2a045 + 1 + + + + + + 1354 + 1843 + 40 + 16 + + + 1374 + 1851 + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + e2df2e1d-44d3-46a6-865e-cf271d98e1ba + Relay + + false + ce7a6538-1307-4799-aa09-c6d0b388aa6b + 1 + + + + + + 1343 + 1787 + 40 + 16 + + + 1363 + 1795 + + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + 256fa74d-8451-4366-b97f-fb31ceb7790f + Panel + + false + 0 + 0 + 0.0003959052400654102 + + + + + + -312 + 1638 + 160 + 84 + + 0 + 0 + 0 + + -311.7244 + 1638.12 + + + + + + 2 + + 255;255;255;255 + + true + true + true + false + false + true + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + b8db01a5-a165-45a8-b68c-2fc89acd8cfd + Relay + + false + 9f667c48-eb1e-47a4-8db2-61666d1ea383 + 1 + + + + + + -351 + 1399 + 40 + 16 + + + -331 + 1407 + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 2d69de74-3ac4-4786-bdb1-2f69d7dda67c + Relay + + false + 3e1b6d63-9b79-46a8-8d27-80596e7d8b16 + 1 + + + + + + -353 + 1501 + 40 + 16 + + + -333 + 1509 + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 46d30a93-1bfb-4b58-b472-667a267525d3 + Relay + + false + 79b1faa2-503e-498d-9a62-75f1113025b9 + 1 + + + + + + -355 + 1551 + 40 + 16 + + + -335 + 1559 + + + + + + + + + + 758d91a0-4aec-47f8-9671-16739a8a2c5d + Format + + + + + Format some data using placeholders and formatting tags + true + cb493613-0e2e-4e2b-81d7-7ea202151906 + Format + Format + + + + + + -297 + 1363 + 130 + 64 + + + -205 + 1395 + + + + + + 3 + 3ede854e-c753-40eb-84cb-b48008f14fd4 + 7fa15783-70da-485c-98c0-a099e6988c3e + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 3ede854e-c753-40eb-84cb-b48008f14fd4 + + + + + Text format + 2eb68e74-837d-4e46-8c99-02a982f20cf7 + Format + Format + false + 0 + + + + + + -295 + 1365 + 78 + 20 + + + -256 + 1375 + + + + + + 1 + + + + + 1 + {0} + + + + + false + {0:R} + + + + + + + + + + + Formatting culture + 5252966c-5c4f-4a9b-b762-3c659429c056 + Culture + Culture + false + 0 + + + + + + -295 + 1385 + 78 + 20 + + + -256 + 1395 + + + + + + 1 + + + + + 1 + {0} + + + + + 127 + + + + + + + + + + + Data to insert at {0} placeholders + 52f1eacc-39cf-4144-9ece-79646d8595e5 + false + Data 0 + 0 + true + b8db01a5-a165-45a8-b68c-2fc89acd8cfd + 1 + + + + + + -295 + 1405 + 78 + 20 + + + -256 + 1415 + + + + + + + + Formatted text + b0ca4533-8708-49c9-abb0-994600403593 + Text + Text + false + 0 + + + + + + -193 + 1365 + 24 + 60 + + + -181 + 1395 + + + + + + + + + + + + + + 758d91a0-4aec-47f8-9671-16739a8a2c5d + Format + + + + + Format some data using placeholders and formatting tags + true + d43e0888-6c1f-49e3-be0f-bb7d829fb494 + Format + Format + + + + + + -297 + 1447 + 130 + 64 + + + -205 + 1479 + + + + + + 3 + 3ede854e-c753-40eb-84cb-b48008f14fd4 + 7fa15783-70da-485c-98c0-a099e6988c3e + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 3ede854e-c753-40eb-84cb-b48008f14fd4 + + + + + Text format + a864facc-351f-4484-977c-3999f7848a52 + Format + Format + false + 0 + + + + + + -295 + 1449 + 78 + 20 + + + -256 + 1459 + + + + + + 1 + + + + + 1 + {0} + + + + + false + {0:R} + + + + + + + + + + + Formatting culture + c8912e3a-4df0-4d47-a0f1-a88a53ededd0 + Culture + Culture + false + 0 + + + + + + -295 + 1469 + 78 + 20 + + + -256 + 1479 + + + + + + 1 + + + + + 1 + {0} + + + + + 127 + + + + + + + + + + + Data to insert at {0} placeholders + 497bd5e0-b27c-4940-9b99-25379961ed41 + false + Data 0 + 0 + true + 2d69de74-3ac4-4786-bdb1-2f69d7dda67c + 1 + + + + + + -295 + 1489 + 78 + 20 + + + -256 + 1499 + + + + + + + + Formatted text + 413475f9-4f88-4628-8645-62eae4dd9722 + Text + Text + false + 0 + + + + + + -193 + 1449 + 24 + 60 + + + -181 + 1479 + + + + + + + + + + + + + + 758d91a0-4aec-47f8-9671-16739a8a2c5d + Format + + + + + Format some data using placeholders and formatting tags + true + fffead86-943d-46b8-8937-a2232dae7463 + Format + Format + + + + + + -296 + 1530 + 130 + 64 + + + -204 + 1562 + + + + + + 3 + 3ede854e-c753-40eb-84cb-b48008f14fd4 + 7fa15783-70da-485c-98c0-a099e6988c3e + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 3ede854e-c753-40eb-84cb-b48008f14fd4 + + + + + Text format + ffb10974-89f5-42f1-8068-026964edf4b7 + Format + Format + false + 0 + + + + + + -294 + 1532 + 78 + 20 + + + -255 + 1542 + + + + + + 1 + + + + + 1 + {0} + + + + + false + {0:R} + + + + + + + + + + + Formatting culture + 47e6c6fb-dd94-42a0-aadb-40c2cb7a1ef5 + Culture + Culture + false + 0 + + + + + + -294 + 1552 + 78 + 20 + + + -255 + 1562 + + + + + + 1 + + + + + 1 + {0} + + + + + 127 + + + + + + + + + + + Data to insert at {0} placeholders + d4ed8801-7d28-4eb4-88d3-57878affb737 + false + Data 0 + 0 + true + 46d30a93-1bfb-4b58-b472-667a267525d3 + 1 + + + + + + -294 + 1572 + 78 + 20 + + + -255 + 1582 + + + + + + + + Formatted text + a6d6d315-6584-4d1c-9c7a-258d37fd4a9a + Text + Text + false + 0 + + + + + + -192 + 1532 + 24 + 60 + + + -180 + 1562 + + + + + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 375085a7-85bd-47e7-800b-36aa5972104d + Relay + + false + db90c791-fd03-47f7-9d9f-fce64245413a + 1 + + + + + + 91 + 1571 + 40 + 16 + + + 111 + 1579 + + + + + + + + + + 290f418a-65ee-406a-a9d0-35699815b512 + Scale NU + + + + + Scale an object with non-uniform factors. + true + 8fda1e13-53c9-4af2-94b7-c8a6b46ddc04 + Scale NU + Scale NU + + + + + + 291 + 1328 + 226 + 121 + + + 453 + 1389 + + + + + + Base geometry + 67f67125-e32e-46ec-968c-e49e99f471e9 + Geometry + Geometry + true + 4be4d01e-f1cd-4466-afb7-4c701c8415b6 + 1 + + + + + + 293 + 1330 + 148 + 20 + + + 375 + 1340 + + + + + + + + Base plane + c052d3d4-ce54-4870-82d8-00e7ad59458d + Plane + Plane + false + 0 + + + + + + 293 + 1350 + 148 + 37 + + + 375 + 1368.5 + + + + + + 1 + + + + + 1 + {0} + + + + + + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 1 + 0 + + + + + + + + + + + + Scaling factor in {x} direction + da1a007e-69ac-4e7f-aac5-a78ca7c560ae + 1/X + Scale X + Scale X + false + 9f667c48-eb1e-47a4-8db2-61666d1ea383 + 1 + + + + + + 293 + 1387 + 148 + 20 + + + 375 + 1397 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Scaling factor in {y} direction + a5a32c25-5253-47ff-b408-cb47a62cd982 + 1/X + Scale Y + Scale Y + false + 79b1faa2-503e-498d-9a62-75f1113025b9 + 1 + + + + + + 293 + 1407 + 148 + 20 + + + 375 + 1417 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Scaling factor in {z} direction + f4001ed1-1bec-47f1-b6cf-ad32e8932b74 + Scale Z + Scale Z + false + 0 + + + + + + 293 + 1427 + 148 + 20 + + + 375 + 1437 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Scaled geometry + a35486f2-4dac-4ca8-ba16-9b13976474ec + Geometry + Geometry + false + 0 + + + + + + 465 + 1330 + 50 + 58 + + + 490 + 1359.25 + + + + + + + + Transformation data + 32b7bf48-2611-46ca-9a94-15871f5f8af5 + Transform + Transform + false + 0 + + + + + + 465 + 1388 + 50 + 59 + + + 490 + 1417.75 + + + + + + + + + + + + 310f9597-267e-4471-a7d7-048725557528 + 08bdcae0-d034-48dd-a145-24a9fcf3d3ff + GraphMapper+ + + + + + External Graph mapper +You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode. + true + be4e0dac-54d0-43df-a9f9-d245692a9442 + GraphMapper+ + GraphMapper+ + + + + + true + + + + + + 781 + 1162 + 114 + 104 + + + 842 + 1214 + + + + + + External curve as a graph + 32131412-40a4-4796-8cb5-0049955e4cd6 + Curve + Curve + false + 7f6b440a-d60d-4007-bfa5-8cdf447f299c + 1 + + + + + + 783 + 1164 + 47 + 20 + + + 806.5 + 1174 + + + + + + + + Optional Rectangle boundary. If omitted the curve's would be landed + 10504c35-4cb1-4ccf-ab0d-97db809c54d2 + Boundary + Boundary + true + 5c358a28-dd5e-43a3-b441-5bc768492329 + 1 + + + + + + 783 + 1184 + 47 + 20 + + + 806.5 + 1194 + + + + + + + + 1 + List of input numbers + 71789790-5c60-4473-a7f4-dc3bc01f717d + Numbers + Numbers + false + 3120c589-9577-4cd1-8824-fe288c8306d2 + 1 + + + + + + 783 + 1204 + 47 + 20 + + + 806.5 + 1214 + + + + + + 1 + + + + + 9 + {0} + + + + + 0.1 + + + + + 0.2 + + + + + 0.3 + + + + + 0.4 + + + + + 0.5 + + + + + 0.6 + + + + + 0.7 + + + + + 0.8 + + + + + 0.9 + + + + + + + + + + + (Optional) Input Domain +if omitted, it would be 0-1 in "Normalize" mode by default + or be the interval of the input list in case of selecting "AutoDomain" mode + b335bfa0-fb3b-468a-b09b-708cf5b1776f + Input + Input + true + 3fbe06f6-6671-4795-ad59-b3606b8a1575 + 1 + + + + + + 783 + 1224 + 47 + 20 + + + 806.5 + 1234 + + + + + + + + (Optional) Output Domain + if omitted, it would be 0-1 in "Normalize" mode by default + or be the interval of the input list in case of selecting "AutoDomain" mode + d8d4e7df-a90c-4325-9726-4dfc7089cb9f + Output + Output + true + 3fbe06f6-6671-4795-ad59-b3606b8a1575 + 1 + + + + + + 783 + 1244 + 47 + 20 + + + 806.5 + 1254 + + + + + + + + 1 + Output Numbers + d0fd8b08-647a-44b7-8722-3f9265acdd47 + Number + Number + false + 0 + + + + + + 854 + 1164 + 39 + 100 + + + 873.5 + 1214 + + + + + + + + + + + + 11bbd48b-bb0a-4f1b-8167-fa297590390d + End Points + + + + + Extract the end points of a curve. + true + cb1ce8fd-0f41-450f-9d53-79f7515bfb72 + End Points + End Points + + + + + + 180 + 953 + 84 + 44 + + + 224 + 975 + + + + + + Curve to evaluate + 94e0bad3-b417-489a-8c29-b38c0b7f7de1 + Curve + Curve + false + 7f6b440a-d60d-4007-bfa5-8cdf447f299c + 1 + + + + + + 182 + 955 + 30 + 40 + + + 197 + 975 + + + + + + + + Curve start point + b22df60e-f09e-49d7-a1e0-8f2b44f65ead + Start + Start + false + 0 + + + + + + 236 + 955 + 26 + 20 + + + 249 + 965 + + + + + + + + Curve end point + aea14296-171a-4771-9a84-390715b4afe5 + End + End + false + 0 + + + + + + 236 + 975 + 26 + 20 + + + 249 + 985 + + + + + + + + + + + + 575660b1-8c79-4b8d-9222-7ab4a6ddb359 + Rectangle 2Pt + + + + + Create a rectangle from a base plane and two points + true + 7609d6ff-b013-41c3-b0e6-1f1ea2ecfa4d + Rectangle 2Pt + Rectangle 2Pt + + + + + + 374 + 1011 + 198 + 101 + + + 510 + 1062 + + + + + + Rectangle base plane + 04b12ec4-09ce-4bce-9c5e-563bb5c6f518 + Plane + Plane + false + 0 + + + + + + 376 + 1013 + 122 + 37 + + + 437 + 1031.5 + + + + + + 1 + + + + + 1 + {0} + + + + + + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 1 + 0 + + + + + + + + + + + + First corner point. + e4032d1f-5563-407f-8d59-63c24b553fdf + Point A + Point A + false + b22df60e-f09e-49d7-a1e0-8f2b44f65ead + 1 + + + + + + 376 + 1050 + 122 + 20 + + + 437 + 1060 + + + + + + 1 + + + + + 1 + {0} + + + + + + + 0 + 0 + 0 + + + + + + + + + + + + Second corner point. + 1598ee77-7a85-4dc4-b49d-da6593b2f937 + Point B + Point B + false + aea14296-171a-4771-9a84-390715b4afe5 + 1 + + + + + + 376 + 1070 + 122 + 20 + + + 437 + 1080 + + + + + + 1 + + + + + 1 + {0} + + + + + + + 10 + 5 + 0 + + + + + + + + + + + + Rectangle corner fillet radius + c86be701-5245-4b5e-b8c7-736354a2aa02 + Radius + Radius + false + 0 + + + + + + 376 + 1090 + 122 + 20 + + + 437 + 1100 + + + + + + 1 + + + + + 1 + {0} + + + + + 0 + + + + + + + + + + + Rectangle defined by P, A and B + 5c358a28-dd5e-43a3-b441-5bc768492329 + Rectangle + Rectangle + false + 0 + + + + + + 522 + 1013 + 48 + 48 + + + 546 + 1037.25 + + + + + + + + Length of rectangle curve + fa4073c9-fd23-420d-853c-3a12ebaa1776 + Length + Length + false + 0 + + + + + + 522 + 1061 + 48 + 49 + + + 546 + 1085.75 + + + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 45977af4-69a0-4e08-8746-e247c5098c77 + Relay + + false + e6883f83-7321-4869-ba03-b28db7c15488 + 1 + + + + + + 781 + 1644 + 40 + 16 + + + 801 + 1652 + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 3e0631e2-acee-4952-b380-ca85b2802769 + Relay + + false + 2e337179-3366-41e1-91ce-b34ea88fe906 + 1 + + + + + + 883 + 1636 + 40 + 16 + + + 903 + 1644 + + + + + + + + + + f44b92b0-3b5b-493a-86f4-fd7408c3daf3 + Bounds + + + + + Create a numeric domain which encompasses a list of numbers. + true + 334df1fa-36cc-47a9-837d-60ac1be4a50d + Bounds + Bounds + + + + + + 620 + 1261 + 110 + 28 + + + 678 + 1275 + + + + + + 1 + Numbers to include in Bounds + 37c1ef27-099c-4ee3-95bb-58ae35c8919d + Numbers + Numbers + false + 3120c589-9577-4cd1-8824-fe288c8306d2 + 1 + + + + + + 622 + 1263 + 44 + 24 + + + 644 + 1275 + + + + + + + + Numeric Domain between the lowest and highest numbers in {N} + 3fbe06f6-6671-4795-ad59-b3606b8a1575 + Domain + Domain + false + 0 + + + + + + 690 + 1263 + 38 + 24 + + + 709 + 1275 + + + + + + + + + + + + ce46b74e-00c9-43c4-805a-193b69ea4a11 + Multiplication + + + + + Mathematical multiplication + true + b8dc634e-a51c-4f2c-81bc-3d5445f2b76d + Multiplication + Multiplication + + + + + + 452 + 1146 + 65 + 44 + + + 472 + 1168 + + + + + + 2 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + First item for multiplication + e5ee8871-037b-4ec7-bea4-30847970cc8b + A + + true + 45977af4-69a0-4e08-8746-e247c5098c77 + 1 + + + + + + 454 + 1148 + 6 + 20 + + + 457 + 1158 + + + + + + + + Second item for multiplication + 2d435093-1ce4-49b9-ba6e-e3467082b029 + B + + true + ac864993-ecc7-4645-ae0f-6a08f6579f35 + 1 + + + + + + 454 + 1168 + 6 + 20 + + + 457 + 1178 + + + + + + 1 + + + + + 1 + {0} + + + + + Grasshopper.Kernel.Types.GH_Integer + 65536 + + + + + + + + + + + Result of multiplication + b716b10c-3aa5-40ed-997d-6e57c2ed9dd8 + Result + Result + false + 0 + + + + + + 484 + 1148 + 31 + 40 + + + 499.5 + 1168 + + + + + + + + + + + + + + 9c85271f-89fa-4e9f-9f4a-d75802120ccc + Division + + + + + Mathematical division + true + 749a1d6b-ce44-4374-b73f-e79001f96855 + Division + Division + + + + + + 959 + 1226 + 40 + 44 + + + 979 + 1248 + + + + + + Item to divide (dividend) + dd92453a-f264-451b-82c3-8fcf92690c14 + A + + false + d0fd8b08-647a-44b7-8722-3f9265acdd47 + 1 + + + + + + 961 + 1228 + 6 + 20 + + + 964 + 1238 + + + + + + + + Item to divide with (divisor) + 034550cc-e2fc-4b88-bf69-428042f4b309 + B + + false + ac864993-ecc7-4645-ae0f-6a08f6579f35 + 1 + + + + + + 961 + 1248 + 6 + 20 + + + 964 + 1258 + + + + + + 1 + + + + + 1 + {0} + + + + + Grasshopper.Kernel.Types.GH_Integer + 65536 + + + + + + + + + + + The result of the Division + 2e337179-3366-41e1-91ce-b34ea88fe906 + Result + + false + 0 + + + + + + 991 + 1228 + 6 + 40 + + + 994 + 1248 + + + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 3120c589-9577-4cd1-8824-fe288c8306d2 + Relay + + false + b716b10c-3aa5-40ed-997d-6e57c2ed9dd8 + 1 + + + + + + 540 + 1176 + 40 + 16 + + + 560 + 1184 + + + + + + + + + + cae9fe53-6d63-44ed-9d6d-13180fbf6f89 + 1c9de8a1-315f-4c56-af06-8f69fee80a7a + Curve Graph Mapper + + + + + Remap values with a custom graph using input curves. + true + b1b3cfd0-fdbe-4d56-bd37-08900a0112c6 + true + Curve Graph Mapper + Curve Graph Mapper + + + + + + 745 + 819 + 181 + 224 + + + 840 + 931 + + + + + + 1 + One or multiple graph curves to graph map values with + ac290670-5842-4a15-aa53-834d345d7f27 + true + Curves + Curves + false + 7f6b440a-d60d-4007-bfa5-8cdf447f299c + 1 + + + + + + 747 + 821 + 81 + 27 + + + 787.5 + 834.75 + + + + + + + + Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary + 83b94a39-1f18-4e8d-99e0-2385db6d3c47 + true + Rectangle + Rectangle + false + 5c358a28-dd5e-43a3-b441-5bc768492329 + 1 + + + + + + 747 + 848 + 81 + 28 + + + 787.5 + 862.25 + + + + + + + + 1 + Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis + 909ffa9a-b5d6-46dd-a885-b7464e5e7d73 + true + Values + Values + false + 3120c589-9577-4cd1-8824-fe288c8306d2 + 1 + + + + + + 747 + 876 + 81 + 27 + + + 787.5 + 889.75 + + + + + + + + Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used) + 776f816b-cff2-40a1-aa86-2920a323ac4e + true + X Axis + X Axis + true + 3fbe06f6-6671-4795-ad59-b3606b8a1575 + 1 + + + + + + 747 + 903 + 81 + 28 + + + 787.5 + 917.25 + + + + + + + + Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used) + 385402d6-4b0c-476f-bd64-6dd764131ae5 + true + Y Axis + Y Axis + true + 3fbe06f6-6671-4795-ad59-b3606b8a1575 + 1 + + + + + + 747 + 931 + 81 + 27 + + + 787.5 + 944.75 + + + + + + + + Flip the graphs X Axis from the bottom of the graph to the top of the graph + 86ecd77a-d369-44ad-971d-fabd4c06ee62 + true + Flip + Flip + false + 0 + + + + + + 747 + 958 + 81 + 28 + + + 787.5 + 972.25 + + + + + + 1 + + + + + 1 + {0} + + + + + false + + + + + + + + + + + Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle + 98212030-c666-417d-a30f-04baeb41e9f2 + true + Snap + Snap + false + 0 + + + + + + 747 + 986 + 81 + 27 + + + 787.5 + 999.75 + + + + + + 1 + + + + + 1 + {0} + + + + + false + + + + + + + + + + + Size of the graph labels + 48463b98-be10-4297-b07d-3846425e8839 + true + Text Size + Text Size + false + 0 + + + + + + 747 + 1013 + 81 + 28 + + + 787.5 + 1027.25 + + + + + + 1 + + + + + 1 + {0} + + + + + 0.0625 + + + + + + + + + + + 1 + Resulting graph mapped values, mapped on the Y Axis + e6565b4b-cef3-477d-8812-bc8b999f9b4d + true + Mapped + Mapped + false + 0 + + + + + + 852 + 821 + 72 + 20 + + + 888 + 831 + + + + + + + + 1 + The graph curves inside the boundary of the graph + 43464001-9d23-4753-82d1-602f8071c817 + true + Graph Curves + Graph Curves + false + 0 + + + + + + 852 + 841 + 72 + 20 + + + 888 + 851 + + + + + + + + 1 + The points on the graph curves where the X Axis input values intersected + true + d9ac758b-cc34-4638-94d5-5cf5361b3e1f + true + Graph Points + Graph Points + false + 0 + + + + + + 852 + 861 + 72 + 20 + + + 888 + 871 + + + + + + + + 1 + The lines from the X Axis input values to the graph curves + true + 445f9076-c008-41b1-97ef-60af947fc621 + true + Value Lines + Value Lines + false + 0 + + + + + + 852 + 881 + 72 + 20 + + + 888 + 891 + + + + + + + + 1 + The points plotted on the X Axis which represent the input values + true + aa497984-6e75-4d21-b4bb-b5ae576c4479 + true + Value Points + Value Points + false + 0 + + + + + + 852 + 901 + 72 + 20 + + + 888 + 911 + + + + + + + + 1 + The lines from the graph curves to the Y Axis graph mapped values + true + 1b6aa626-e209-48f0-a15f-ab7dc9645ef4 + true + Mapped Lines + Mapped Lines + false + 0 + + + + + + 852 + 921 + 72 + 20 + + + 888 + 931 + + + + + + + + 1 + The points mapped on the Y Axis which represent the graph mapped values + true + 5067a63b-73bd-4f7f-963b-3a7b4c4dfd4a + true + Mapped Points + Mapped Points + false + 0 + + + + + + 852 + 941 + 72 + 20 + + + 888 + 951 + + + + + + + + The graph boundary background as a surface + 5b3dfa57-e204-4444-9e92-0611bf00405a + true + Boundary + Boundary + false + 0 + + + + + + 852 + 961 + 72 + 20 + + + 888 + 971 + + + + + + + + 1 + The graph labels as curve outlines + 59e9cbda-c078-408f-b017-57e4f5e3ce1f + true + Labels + Labels + false + 0 + + + + + + 852 + 981 + 72 + 20 + + + 888 + 991 + + + + + + + + 1 + True for input values outside of the X Axis domain bounds +False for input values inside of the X Axis domain bounds + 82eee386-327f-4901-8478-a464457293ac + true + Out Of Bounds + Out Of Bounds + false + 0 + + + + + + 852 + 1001 + 72 + 20 + + + 888 + 1011 + + + + + + + + 1 + True for input values on the X Axis which intersect a graph curve +False for input values on the X Axis which do not intersect a graph curve + 72a6c943-24f0-4165-aee6-1e12264947eb + true + Intersected + Intersected + false + 0 + + + + + + 852 + 1021 + 72 + 20 + + + 888 + 1031 + + + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 7f6b440a-d60d-4007-bfa5-8cdf447f299c + Relay + + false + 2a58a381-2731-4ecb-9622-86d5b7e6f397 + 1 + + + + + + 278 + 884 + 40 + 16 + + + 298 + 892 + + + + + + + + + + 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 + Scale + + + + + Scale an object uniformly in all directions. + true + 3bc19fd1-a14f-4afe-8c79-98d06f72efe6 + Scale + Scale + + + + + + 24 + 837 + 201 + 64 + + + 161 + 869 + + + + + + Base geometry + 91fac79f-9c37-49f8-9da4-3c31c7380fd6 + Geometry + Geometry + true + 6ed1c523-bb4c-4547-8b1e-fef80e576ef5 + 1 + + + + + + 26 + 839 + 123 + 20 + + + 87.5 + 849 + + + + + + + + Center of scaling + bb906599-6948-4240-be61-b8f2db1129f8 + Center + Center + false + 0 + + + + + + 26 + 859 + 123 + 20 + + + 87.5 + 869 + + + + + + 1 + + + + + 1 + {0} + + + + + + + 0 + 0 + 0 + + + + + + + + + + + + Scaling factor + 69b2eb88-56be-4742-85ab-abc16a75d511 + Factor + Factor + false + ac864993-ecc7-4645-ae0f-6a08f6579f35 + 1 + + + + + + 26 + 879 + 123 + 20 + + + 87.5 + 889 + + + + + + 1 + + + + + 1 + {0} + + + + + 65536 + + + + + + + + + + + Scaled geometry + 2a58a381-2731-4ecb-9622-86d5b7e6f397 + Geometry + Geometry + false + 0 + + + + + + 173 + 839 + 50 + 30 + + + 198 + 854 + + + + + + + + Transformation data + 2d174878-52b5-45af-9e48-245182783d6b + Transform + Transform + false + 0 + + + + + + 173 + 869 + 50 + 30 + + + 198 + 884 + + + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 6ed1c523-bb4c-4547-8b1e-fef80e576ef5 + Relay + + false + fe2c7fd3-a20d-49fe-8b1d-09361e90e45d + 1 + + + + + + -65 + 851 + 40 + 16 + + + -45 + 859 + + + + + + + + + + fb6aba99-fead-4e42-b5d8-c6de5ff90ea6 + DotNET VB Script (LEGACY) + + + + + A VB.NET scriptable component + true + eea9ee61-f5d5-4cd8-9392-512823c0542f + DotNET VB Script (LEGACY) + Turtle + 0 + Dim i As Integer + Dim dir As New On3dVector(1, 0, 0) + Dim pos As New On3dVector(0, 0, 0) + Dim axis As New On3dVector(0, 0, 1) + Dim pnts As New List(Of On3dVector) + + pnts.Add(pos) + + For i = 0 To Forward.Count() - 1 + Dim P As New On3dVector + dir.Rotate(Left(i), axis) + P = dir * Forward(i) + pnts(i) + pnts.Add(P) + + Next + + Points = pnts + + + + + + 1072 + 3339 + 104 + 44 + + + 1127 + 3361 + + + + + + 1 + 1 + 2 + Script Variable Forward + Script Variable Left + 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 + 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 + true + true + Forward + Left + true + true + + + + + 2 + Print, Reflect and Error streams + Output parameter Points + 3ede854e-c753-40eb-84cb-b48008f14fd4 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + true + true + Output + Points + false + false + + + + + 1 + false + Script Variable Forward + 67372680-60ae-44bc-846c-4865450df977 + Forward + Forward + true + 1 + true + c3ae31b2-8e2f-4176-a84e-b43814396e6c + 1 + 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 + + + + + + 1074 + 3341 + 41 + 20 + + + 1094.5 + 3351 + + + + + + + + 1 + false + Script Variable Left + 78e99550-605c-4e97-9f4b-9c8279389f48 + Left + Left + true + 1 + true + 9d55f829-b54c-4866-9ced-6f44b43868eb + 1 + 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 + + + + + + 1074 + 3361 + 41 + 20 + + + 1094.5 + 3371 + + + + + + + + Print, Reflect and Error streams + 6db48831-5b42-4e0d-961a-891b10ec40c3 + Output + Output + false + 0 + + + + + + 1139 + 3341 + 35 + 20 + + + 1156.5 + 3351 + + + + + + + + Output parameter Points + 9b42fff0-cfd4-4077-bd34-da7089713006 + Points + Points + false + 0 + + + + + + 1139 + 3361 + 35 + 20 + + + 1156.5 + 3371 + + + + + + + + + + + + e64c5fb1-845c-4ab1-8911-5f338516ba67 + Series + + + + + Create a series of numbers. + true + 2c82a4ea-3f85-4c1a-b5b5-2017900737e6 + Series + Series + + + + + + 505 + 3500 + 89 + 64 + + + 549 + 3532 + + + + + + First number in the series + 7d70527c-3b5e-4035-9c97-3a4e66a71ebb + Start + Start + false + 8e6ac10d-2238-4545-8ff2-442c876cd85c + 1 + + + + + + 507 + 3502 + 30 + 20 + + + 522 + 3512 + + + + + + 1 + + + + + 1 + {0} + + + + + 0 + + + + + + + + + + + Step size for each successive number + ea1865d1-db8f-4aab-9811-0b5402206762 + Step + Step + false + 8e6ac10d-2238-4545-8ff2-442c876cd85c + 1 + + + + + + 507 + 3522 + 30 + 20 + + + 522 + 3532 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Number of values in the series + d8a497e7-23e5-4d55-a9ef-4b474147df58 + Count + Count + false + dc0b9699-7043-422e-b460-d535b9da419e + 1 + + + + + + 507 + 3542 + 30 + 20 + + + 522 + 3552 + + + + + + 1 + + + + + 1 + {0} + + + + + 500 + + + + + + + + + + + 1 + Series of numbers + e552844e-beed-45c9-8a78-a5fe409f581c + Series + Series + false + 0 + + + + + + 561 + 3502 + 31 + 60 + + + 576.5 + 3532 + + + + + + + + + + + + dd8134c0-109b-4012-92be-51d843edfff7 + Duplicate Data + + + + + Duplicate data a predefined number of times. + true + 5f38726a-35c0-4b76-901e-23bf35d464c4 + Duplicate Data + Duplicate Data + + + + + + 496 + 3343 + 102 + 64 + + + 559 + 3375 + + + + + + 1 + Data to duplicate + 47caabbf-b255-4c5a-a4a5-150c750eda62 + Data + Data + false + 9ea38a50-4760-46d2-8f7b-283ff9e5b2d3 + 1 + + + + + + 498 + 3345 + 49 + 20 + + + 522.5 + 3355 + + + + + + + + Number of duplicates + 531ac858-39f2-4fd7-9685-bece6d955799 + Number + Number + false + dc0b9699-7043-422e-b460-d535b9da419e + 1 + + + + + + 498 + 3365 + 49 + 20 + + + 522.5 + 3375 + + + + + + 1 + + + + + 1 + {0} + + + + + 500 + + + + + + + + + + + Retain list order + d7a02fc3-4ca1-4ecc-a967-35c15da0554c + Order + Order + false + 0 + + + + + + 498 + 3385 + 49 + 20 + + + 522.5 + 3395 + + + + + + 1 + + + + + 1 + {0} + + + + + true + + + + + + + + + + + 1 + Duplicated data + 64514e59-9473-4a0c-b0b8-55f5423b430c + Data + Data + false + 0 + + + + + + 571 + 3345 + 25 + 60 + + + 583.5 + 3375 + + + + + + + + + + + + 33bcf975-a0b2-4b54-99fd-585c893b9e88 + Digit Scroller + + + + + Numeric scroller for single numbers + 7e1bc525-0327-427c-afd4-d8b6c2743acb + Digit Scroller + . + false + 0 + + + + + 12 + . + 11 + + 1024.0 + + + + + + -29 + 3493 + 250 + 20 + + + -28.90819 + 3493.851 + + + + + + + + + + 33bcf975-a0b2-4b54-99fd-585c893b9e88 + Digit Scroller + + + + + Numeric scroller for single numbers + c923a52e-eef5-4213-b91c-a99d00b79828 + Digit Scroller + Π―R + false + 0 + + + + + 12 + Π―R + 1 + + 0.12220574352 + + + + + + -25 + 3395 + 250 + 20 + + + -24.20879 + 3395.534 + + + + + + + + + + 33bcf975-a0b2-4b54-99fd-585c893b9e88 + Digit Scroller + + + + + Numeric scroller for single numbers + 1db31240-f2f8-4f56-bfd1-c8e86a7d0108 + Digit Scroller + Β° + false + 0 + + + + + 12 + Β° + 2 + + 0.0003860762 + + + + + + -27 + 3438 + 250 + 20 + + + -26.29068 + 3438.793 + + + + + + + + + + a4cd2751-414d-42ec-8916-476ebf62d7fe + Radians + + + + + Convert an angle specified in degrees to radians + true + cbe7bd82-cc9b-4870-9ac3-7aa5aa5a6971 + Radians + Radians + + + + + + 350 + 3401 + 108 + 28 + + + 405 + 3415 + + + + + + Angle in degrees + ee7f3a8f-51dd-4ce6-864b-7f1c762117af + Degrees + Degrees + false + 9698bc3a-1ed1-4414-86f0-6444e8ead760 + 1 + + + + + + 352 + 3403 + 41 + 24 + + + 372.5 + 3415 + + + + + + + + Angle in radians + 8e6ac10d-2238-4545-8ff2-442c876cd85c + Radians + Radians + false + 0 + + + + + + 417 + 3403 + 39 + 24 + + + 436.5 + 3415 + + + + + + + + + + + + fbac3e32-f100-4292-8692-77240a42fd1a + Point + + + + + Contains a collection of three-dimensional points + true + 9f5a4e05-ce5c-4e86-a807-564e2bdd48c7 + Point + Point + false + 9b42fff0-cfd4-4077-bd34-da7089713006 + 1 + + + + + + 1001 + 3489 + 50 + 24 + + + 1026.471 + 3501.968 + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + dc0b9699-7043-422e-b460-d535b9da419e + Relay + + false + 6c7782b5-3c6b-4ea4-b368-9f8596fbb31c + 1 + + + + + + 361 + 3463 + 40 + 16 + + + 381 + 3471 + + + + + + + + + + be52336f-a2e1-43b1-b5f5-178ba489508a + Circle Fit + + + + + Fit a circle to a collection of points. + true + c73e22cb-aead-46dc-b16c-0dcc22b7dd4e + Circle Fit + Circle Fit + + + + + + 478 + 3761 + 104 + 64 + + + 523 + 3793 + + + + + + 1 + Points to fit + 81f3a1ec-91eb-4bf4-8fbc-1c370465acd8 + Points + Points + false + 9f5a4e05-ce5c-4e86-a807-564e2bdd48c7 + 1 + + + + + + 480 + 3763 + 31 + 60 + + + 495.5 + 3793 + + + + + + + + Resulting circle + d68e2f69-3f6f-44fd-a42e-8171647fc776 + Circle + Circle + false + 0 + + + + + + 535 + 3763 + 45 + 20 + + + 557.5 + 3773 + + + + + + + + Circle radius + b567df3e-11d3-4b09-9333-ce91f4c3ae0e + Radius + Radius + false + 0 + + + + + + 535 + 3783 + 45 + 20 + + + 557.5 + 3793 + + + + + + + + Maximum distance between circle and points + fcc5255c-a398-4ece-83e3-96e14b9c2ac5 + Deviation + Deviation + false + 0 + + + + + + 535 + 3803 + 45 + 20 + + + 557.5 + 3813 + + + + + + + + + + + + 9df5e896-552d-4c8c-b9ca-4fc147ffa022 + Expression + + + + + Evaluate an expression + cos((4*atan(1))/N) + true + 2ddf6b0f-02b5-436b-b276-241adb75be4c + Expression + Expression + + + + + + 629 + 3723 + 215 + 28 + + + 727 + 3737 + + + + + + 1 + ba80fd98-91a1-4958-b6a7-a94e40e52bdb + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + Expression variable + e51b1d7a-a1af-48c3-b8da-e133a59540cd + Variable N + N + true + dc0b9699-7043-422e-b460-d535b9da419e + 1 + + + + + + 631 + 3725 + 11 + 24 + + + 636.5 + 3737 + + + + + + + + Result of expression + 77e75b08-4e4d-4be7-8856-42f71b66f28c + Result + Result + false + 0 + + + + + + 811 + 3725 + 31 + 24 + + + 826.5 + 3737 + + + + + + + + + + + + + + 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 + Scale + + + + + Scale an object uniformly in all directions. + true + 054f5a8d-f78d-4a7e-bf5d-2645ef426ad8 + Scale + Scale + + + + + + 652 + 3868 + 126 + 64 + + + 714 + 3900 + + + + + + Base geometry + 510ed7b4-b3c9-4474-a386-993821af754c + Geometry + Geometry + true + d68e2f69-3f6f-44fd-a42e-8171647fc776 + 1 + + + + + + 654 + 3870 + 48 + 20 + + + 678 + 3880 + + + + + + + + Center of scaling + a003e2da-4e0b-4f3c-a084-b732e78b89c7 + Center + Center + false + 51a42e21-ee34-499b-9dd4-f81a4b690590 + 1 + + + + + + 654 + 3890 + 48 + 20 + + + 678 + 3900 + + + + + + 1 + + + + + 1 + {0} + + + + + + + 0 + 0 + 0 + + + + + + + + + + + + Scaling factor + c760a2a1-3ff7-4898-bb85-58cdae47edae + Factor + Factor + false + 77e75b08-4e4d-4be7-8856-42f71b66f28c + 1 + + + + + + 654 + 3910 + 48 + 20 + + + 678 + 3920 + + + + + + 1 + + + + + 1 + {0} + + + + + 0.5 + + + + + + + + + + + Scaled geometry + b6b1bef2-1523-4956-aa25-2dac5bdbc61f + Geometry + Geometry + false + 0 + + + + + + 726 + 3870 + 50 + 30 + + + 751 + 3885 + + + + + + + + Transformation data + 0a98dc6e-bb85-421b-b00c-7339b7acc660 + Transform + Transform + false + 0 + + + + + + 726 + 3900 + 50 + 30 + + + 751 + 3915 + + + + + + + + + + + + 2e205f24-9279-47b2-b414-d06dcd0b21a7 + Area + + + + + Solve area properties for breps, meshes and planar closed curves. + true + 973ba117-2844-42fc-a837-d3bfa8e69ed9 + Area + Area + + + + + + 466 + 3878 + 118 + 44 + + + 528 + 3900 + + + + + + Brep, mesh or planar closed curve for area computation + 7e8b3833-ef63-446a-81e2-35e1cf71bbc8 + Geometry + Geometry + false + d68e2f69-3f6f-44fd-a42e-8171647fc776 + 1 + + + + + + 468 + 3880 + 48 + 40 + + + 492 + 3900 + + + + + + + + Area of geometry + 264a3238-71d4-4fb9-8de9-6d5e8107f02a + Area + Area + false + 0 + + + + + + 540 + 3880 + 42 + 20 + + + 561 + 3890 + + + + + + + + Area centroid of geometry + 51a42e21-ee34-499b-9dd4-f81a4b690590 + Centroid + Centroid + false + 0 + + + + + + 540 + 3900 + 42 + 20 + + + 561 + 3910 + + + + + + + + + + + + ce46b74e-00c9-43c4-805a-193b69ea4a11 + Multiplication + + + + + Mathematical multiplication + true + 526de354-79e7-4025-9017-d96eec6fcc44 + Multiplication + Multiplication + + + + + + 777 + 3780 + 70 + 44 + + + 802 + 3802 + + + + + + 2 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + First item for multiplication + ef3e20b7-31e9-4b59-8b5b-7d48b7a00581 + A + A + true + 77e75b08-4e4d-4be7-8856-42f71b66f28c + 1 + + + + + + 779 + 3782 + 11 + 20 + + + 784.5 + 3792 + + + + + + + + Second item for multiplication + 5603b472-3d82-4ad9-acb6-fece068c3098 + B + B + true + b567df3e-11d3-4b09-9333-ce91f4c3ae0e + 1 + + + + + + 779 + 3802 + 11 + 20 + + + 784.5 + 3812 + + + + + + + + Result of multiplication + 7d8353fa-9341-4524-9a9a-18e418cd2bfe + Result + Result + false + 0 + + + + + + 814 + 3782 + 31 + 40 + + + 829.5 + 3802 + + + + + + + + + + + + + + 9df5e896-552d-4c8c-b9ca-4fc147ffa022 + Expression + + + + + Evaluate an expression + .5*L*(1/SIN(Ο€/N)) + true + b941c138-f5e5-41ec-98ba-14636530b46f + Expression + Expression + + + + + + 717 + 3622 + 207 + 44 + + + 811 + 3644 + + + + + + 2 + ba80fd98-91a1-4958-b6a7-a94e40e52bdb + ba80fd98-91a1-4958-b6a7-a94e40e52bdb + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + Expression variable + 23a00873-cd15-4b34-a2b3-f668298f3f20 + Variable L + L + true + c923a52e-eef5-4213-b91c-a99d00b79828 + 1 + + + + + + 719 + 3624 + 11 + 20 + + + 724.5 + 3634 + + + + + + + + Expression variable + 16aedcd7-2496-4d7f-b685-3ba86767c62a + Variable N + N + true + dc0b9699-7043-422e-b460-d535b9da419e + 1 + + + + + + 719 + 3644 + 11 + 20 + + + 724.5 + 3654 + + + + + + + + Result of expression + d4f062e1-e870-4204-80e2-9d78907879ab + Result + Result + false + 0 + + + + + + 891 + 3624 + 31 + 40 + + + 906.5 + 3644 + + + + + + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + 5b56d761-0e39-48f1-8db0-ceb1b6b1aeda + Panel + + false + 0 + d4f062e1-e870-4204-80e2-9d78907879ab + 1 + Double click to edit panel content… + + + + + + 1004 + 3625 + 160 + 100 + + 0 + 0 + 0 + + 1004.444 + 3625.77 + + + + + + + 255;255;255;255 + + true + true + true + false + false + true + + + + + + + + + 9df5e896-552d-4c8c-b9ca-4fc147ffa022 + Expression + + + + + Evaluate an expression + R/(.5*(1/SIN(Ο€/N))) + true + a4424e3c-d856-4aa7-8832-ff6f7d317feb + Expression + Expression + + + + + + 396 + 3263 + 224 + 44 + + + 498 + 3285 + + + + + + 2 + ba80fd98-91a1-4958-b6a7-a94e40e52bdb + ba80fd98-91a1-4958-b6a7-a94e40e52bdb + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + Expression variable + 553f3aa9-172c-4f13-bac7-0b9e210f60e2 + Variable R + R + true + 63179a12-0556-4bc1-9bf4-ef312b611dad + 1 + + + + + + 398 + 3265 + 11 + 20 + + + 403.5 + 3275 + + + + + + + + Expression variable + 7e057535-e619-4c03-b33d-f4bf1bce78b1 + Variable N + N + true + dc0b9699-7043-422e-b460-d535b9da419e + 1 + + + + + + 398 + 3285 + 11 + 20 + + + 403.5 + 3295 + + + + + + + + Result of expression + 9ea38a50-4760-46d2-8f7b-283ff9e5b2d3 + Result + Result + false + 0 + + + + + + 587 + 3265 + 31 + 40 + + + 602.5 + 3285 + + + + + + + + + + + + + + 9c85271f-89fa-4e9f-9f4a-d75802120ccc + Division + + + + + Mathematical division + true + 0359459d-9d9a-47a0-a6e5-8671853cc66b + Division + Division + + + + + + 167 + 3560 + 90 + 44 + + + 212 + 3582 + + + + + + Item to divide (dividend) + d54c5aed-abbf-4257-a6d5-64ab24a130c9 + A + A + false + 0 + + + + + + 169 + 3562 + 31 + 20 + + + 184.5 + 3572 + + + + + + 1 + + + + + 1 + {0} + + + + + Grasshopper.Kernel.Types.GH_String + false + 360 + + + + + + + + + + + Item to divide with (divisor) + 15406d66-d0dd-43ec-ac83-8190d55c283f + B + B + false + 7e1bc525-0327-427c-afd4-d8b6c2743acb + 1 + + + + + + 169 + 3582 + 31 + 20 + + + 184.5 + 3592 + + + + + + + + The result of the Division + 6f7bf996-752f-4e29-aa85-34d7d23fb47b + Result + Result + false + 0 + + + + + + 224 + 3562 + 31 + 40 + + + 239.5 + 3582 + + + + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + d8700d74-83cb-4bb5-a874-5836156b8585 + Panel + + false + 0 + b567df3e-11d3-4b09-9333-ce91f4c3ae0e + 1 + Double click to edit panel content… + + + + + + 662 + 3218 + 160 + 20 + + 0 + 0 + 0 + + 662.4798 + 3218.279 + + + + + + + 255;255;255;255 + + false + false + true + false + false + true + + + + + + + + + 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4 + Reverse List + + + + + Reverse the order of a list. + true + 448f2eea-d58f-4b03-a15c-131db29d4d6f + Reverse List + Reverse List + + + + + + 580 + 3438 + 66 + 28 + + + 613 + 3452 + + + + + + 1 + Base list + d2a92c6b-d29e-4752-8ae9-4c89e9f387c2 + List + List + false + e552844e-beed-45c9-8a78-a5fe409f581c + 1 + + + + + + 582 + 3440 + 19 + 24 + + + 591.5 + 3452 + + + + + + + + 1 + Reversed list + f8f66c7a-48a1-42fb-8fb5-b9e101750e10 + List + List + false + 0 + + + + + + 625 + 3440 + 19 + 24 + + + 634.5 + 3452 + + + + + + + + + + + + a3371040-e552-4bc8-b0ff-10a840258e88 + Negative + + + + + Compute the negative of a value. + true + 3374828d-ef30-480b-8c7e-4d3363908193 + Negative + Negative + + + + + + 779 + 3534 + 88 + 28 + + + 822 + 3548 + + + + + + Input value + 8842f592-ebd1-425b-9235-1eed26cbab14 + Value + Value + false + e552844e-beed-45c9-8a78-a5fe409f581c + 1 + + + + + + 781 + 3536 + 29 + 24 + + + 795.5 + 3548 + + + + + + + + Output value + a06377cb-f650-4240-8f06-3e0aa8cea794 + Result + Result + false + 0 + + + + + + 834 + 3536 + 31 + 24 + + + 849.5 + 3548 + + + + + + + + + + + + 3cadddef-1e2b-4c09-9390-0e8f78f7609f + Merge + + + + + Merge a bunch of data streams + true + 11841893-58e5-4d69-81f8-6ef5876ad579 + Merge + Merge + + + + + + 724 + 3403 + 122 + 84 + + + 785 + 3445 + + + + + + 4 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + 2 + Data stream 1 + ff8d9a28-a359-43d7-9813-26784092c0d5 + 1 + false + Data 1 + D1 + true + f8f66c7a-48a1-42fb-8fb5-b9e101750e10 + 1 + + + + + + 726 + 3405 + 47 + 20 + + + 757.5 + 3415 + + + + + + + + 2 + Data stream 2 + f5037f9c-4fd3-4870-b046-58bf9cbf663b + 1 + false + Data 2 + D2 + true + 0 + + + + + + 726 + 3425 + 47 + 20 + + + 757.5 + 3435 + + + + + + 1 + + + + + 1 + {0} + + + + + Grasshopper.Kernel.Types.GH_String + false + 0 + + + + + + + + + + + 2 + Data stream 3 + 34ffa90f-4d0d-41d7-9e2a-9e6914e1d97e + 1 + false + Data 3 + D3 + true + a06377cb-f650-4240-8f06-3e0aa8cea794 + 1 + + + + + + 726 + 3445 + 47 + 20 + + + 757.5 + 3455 + + + + + + + + 2 + Data stream 4 + 7be9445a-1cc8-42fd-9a91-44e035932117 + false + Data 4 + D4 + true + 0 + + + + + + 726 + 3465 + 47 + 20 + + + 757.5 + 3475 + + + + + + + + 2 + Result of merge + 7abea44d-07c7-4298-8d09-060192324a84 + 1 + Result + Result + false + 0 + + + + + + 797 + 3405 + 47 + 80 + + + 812.5 + 3445 + + + + + + + + + + + + + + 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4 + Reverse List + + + + + Reverse the order of a list. + true + fefb94c4-e829-4cb6-954e-9fa966bb6e09 + Reverse List + Reverse List + + + + + + 657 + 3265 + 66 + 28 + + + 690 + 3279 + + + + + + 1 + Base list + 3083f7cb-d6f6-4012-9c1d-6b21de28228f + List + List + false + 64514e59-9473-4a0c-b0b8-55f5423b430c + 1 + + + + + + 659 + 3267 + 19 + 24 + + + 668.5 + 3279 + + + + + + + + 1 + Reversed list + 293dcebf-c8ef-4af0-bea0-78ac8cc2435f + List + List + false + 0 + + + + + + 702 + 3267 + 19 + 24 + + + 711.5 + 3279 + + + + + + + + + + + + 3cadddef-1e2b-4c09-9390-0e8f78f7609f + Merge + + + + + Merge a bunch of data streams + true + ec279539-9319-45ff-a5ca-90e3b3f745f6 + Merge + Merge + + + + + + 823 + 3259 + 122 + 84 + + + 884 + 3301 + + + + + + 4 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + 2 + Data stream 1 + 50bb2f13-a19d-42f5-a248-813f6021a844 + 1 + false + Data 1 + D1 + true + 293dcebf-c8ef-4af0-bea0-78ac8cc2435f + 1 + + + + + + 825 + 3261 + 47 + 20 + + + 856.5 + 3271 + + + + + + + + 2 + Data stream 2 + f6e7d53a-62d8-430d-aa79-f90e2662521e + 1 + false + Data 2 + D2 + true + 0 + + + + + + 825 + 3281 + 47 + 20 + + + 856.5 + 3291 + + + + + + + + 2 + Data stream 3 + c45addba-d44c-468f-916c-7c0e75d7548d + 1 + false + Data 3 + D3 + true + 64514e59-9473-4a0c-b0b8-55f5423b430c + 1 + + + + + + 825 + 3301 + 47 + 20 + + + 856.5 + 3311 + + + + + + + + 2 + Data stream 4 + 121717d7-f0b5-4ab5-8c2a-e6daf79e2ce3 + false + Data 4 + D4 + true + 0 + + + + + + 825 + 3321 + 47 + 20 + + + 856.5 + 3331 + + + + + + + + 2 + Result of merge + c3ae31b2-8e2f-4176-a84e-b43814396e6c + 1 + Result + Result + false + 0 + + + + + + 896 + 3261 + 47 + 80 + + + 911.5 + 3301 + + + + + + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + 032109e0-083d-4876-a194-d48d70db4a82 + Panel + + false + 0 + 7abea44d-07c7-4298-8d09-060192324a84 + 1 + Double click to edit panel content… + + + + + + 1272 + 3232 + 160 + 479 + + 0 + 0 + 0 + + 1272.424 + 3232.003 + + + + + + + 255;255;255;255 + + true + true + true + false + false + true + + + + + + + + + 59daf374-bc21-4a5e-8282-5504fb7ae9ae + List Item + + + + + 0 + Retrieve a specific item from a list. + true + fcba47ce-cf17-4a9f-b444-fdfd3b58f104 + List Item + List Item + + + + + + 898 + 3779 + 77 + 64 + + + 955 + 3811 + + + + + + 3 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 2e3ab970-8545-46bb-836c-1c11e5610bce + cb95db89-6165-43b6-9c41-5702bc5bf137 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + 1 + Base list + 904b0e7d-06c2-4fb7-ace6-0d5e3e73309a + List + List + false + 9f5a4e05-ce5c-4e86-a807-564e2bdd48c7 + 1 + + + + + + 900 + 3781 + 43 + 20 + + + 921.5 + 3791 + + + + + + + + Item index + 4b4c9ab4-7ff7-493c-804f-f2ee6521d579 + Index + Index + false + 0 + + + + + + 900 + 3801 + 43 + 20 + + + 921.5 + 3811 + + + + + + 1 + + + + + 1 + {0} + + + + + -1 + + + + + + + + + + + Wrap index to list bounds + 401ceedd-2460-47a7-adfe-3fe8bfdcab75 + Wrap + Wrap + false + 0 + + + + + + 900 + 3821 + 43 + 20 + + + 921.5 + 3831 + + + + + + 1 + + + + + 1 + {0} + + + + + true + + + + + + + + + + + Item at {i'} + 76288414-d3b9-4565-bf15-03a6b907c596 + false + Item + i + false + 0 + + + + + + 967 + 3781 + 6 + 60 + + + 970 + 3811 + + + + + + + + + + + + + + 9abae6b7-fa1d-448c-9209-4a8155345841 + Deconstruct + + + + + Deconstruct a point into its component parts. + true + f6189714-2503-4c33-b10d-828b9753dd63 + Deconstruct + Deconstruct + + + + + + 1011 + 3785 + 120 + 64 + + + 1052 + 3817 + + + + + + Input point + 1734f987-ef44-4c85-93f8-de26f37b00dd + Point + Point + false + 76288414-d3b9-4565-bf15-03a6b907c596 + 1 + + + + + + 1013 + 3787 + 27 + 60 + + + 1026.5 + 3817 + + + + + + + + Point {x} component + 7876afcf-7775-45c8-8a25-88d8b7e1f9c2 + X component + X component + false + 0 + + + + + + 1064 + 3787 + 65 + 20 + + + 1096.5 + 3797 + + + + + + + + Point {y} component + 5abe47df-fbe4-4b97-bd03-0ec1b1f6b2d8 + Y component + Y component + false + 0 + + + + + + 1064 + 3807 + 65 + 20 + + + 1096.5 + 3817 + + + + + + + + Point {z} component + fce43a6b-020c-45af-be79-091fc7373c5b + Z component + Z component + false + 0 + + + + + + 1064 + 3827 + 65 + 20 + + + 1096.5 + 3837 + + + + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + 04e8baad-2bd4-4512-8434-d1b3544659d7 + Panel + + false + 0 + ba156c5f-31a5-4478-a04c-85f4b5333b7c + 1 + Double click to edit panel content… + + + + + + 38 + 3207 + 116 + 20 + + 0 + 0 + 0 + + 38.51038 + 3207.453 + + + + + + + 255;255;255;255 + + false + false + true + false + false + true + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + f650f2dc-1a4e-481b-af1a-49af3711d7cf + Panel + + false + 0 + dd0736c2-159a-42d1-af5f-93e121faa9f7 + 1 + Double click to edit panel content… + + + + + + 39 + 3289 + 118 + 20 + + 0 + 0 + 0 + + 39.33979 + 3289.087 + + + + + + + 255;255;255;255 + + false + false + true + false + false + true + + + + + + + + + 9c85271f-89fa-4e9f-9f4a-d75802120ccc + Division + + + + + Mathematical division + true + 32a6c3f8-891b-465c-a59b-971de8e4b598 + Division + Division + + + + + + 1263 + 3785 + 70 + 44 + + + 1288 + 3807 + + + + + + Item to divide (dividend) + 5b959b6e-3da7-428d-97ea-89b9c83a5673 + A + A + false + 7876afcf-7775-45c8-8a25-88d8b7e1f9c2 + 1 + + + + + + 1265 + 3787 + 11 + 20 + + + 1270.5 + 3797 + + + + + + + + Item to divide with (divisor) + 3b155943-e856-4f6a-861e-2a442c5af7de + B + B + false + 5abe47df-fbe4-4b97-bd03-0ec1b1f6b2d8 + 1 + + + + + + 1265 + 3807 + 11 + 20 + + + 1270.5 + 3817 + + + + + + + + The result of the Division + b887e715-85b8-4d63-bcef-54f50d862634 + Result + Result + false + 0 + + + + + + 1300 + 3787 + 31 + 40 + + + 1315.5 + 3807 + + + + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + 4cbbc23a-5f94-4439-9417-57501beec295 + Panel + + false + 0 + 35a11262-770e-4498-9d6e-28b546897ca0 + 1 + Double click to edit panel content… + + + + + + 38 + 3249 + 116 + 20 + + 0 + 0 + 0 + + 38.30339 + 3249.228 + + + + + + + 255;255;255;255 + + false + false + true + false + false + true + + + + + + + + + c552a431-af5b-46a9-a8a4-0fcbc27ef596 + Group + + + + + 1 + + 255;255;255;255 + + A group of Grasshopper objects + 04e8baad-2bd4-4512-8434-d1b3544659d7 + f650f2dc-1a4e-481b-af1a-49af3711d7cf + 4cbbc23a-5f94-4439-9417-57501beec295 + 3 + eccb3198-eb6b-4c8a-a3d9-fbc052dd7486 + Group + + + + + + + + + + + 9c85271f-89fa-4e9f-9f4a-d75802120ccc + Division + + + + + Mathematical division + true + dd203f61-0028-42eb-bd28-7f6f48340bc8 + Division + Division + + + + + + 280 + 3506 + 49 + 44 + + + 309 + 3528 + + + + + + Item to divide (dividend) + 64037327-91f1-4a5c-a020-c21cdc1c56aa + A + + false + 7e1bc525-0327-427c-afd4-d8b6c2743acb + 1 + + + + + + 282 + 3508 + 15 + 20 + + + 289.5 + 3518 + + + + + + + + Item to divide with (divisor) + 1b254420-5fe8-4023-9282-f9415e798a17 + B + + false + 0 + + + + + + 282 + 3528 + 15 + 20 + + + 289.5 + 3538 + + + + + + 1 + + + + + 1 + {0} + + + + + Grasshopper.Kernel.Types.GH_Integer + 2 + + + + + + + + + + + The result of the Division + 6c7782b5-3c6b-4ea4-b368-9f8596fbb31c + Result + + false + 0 + + + + + + 321 + 3508 + 6 + 40 + + + 324 + 3528 + + + + + + + + + + + + 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 + Interpolate + + + + + Create an interpolated curve through a set of points. + 4c63dec2-1390-4291-b6d5-8371589a05f4 + Interpolate + Interpolate + + + + + + 895 + 3102 + 225 + 84 + + + 1068 + 3144 + + + + + + 1 + Interpolation points + 204c7f61-dafe-4ead-8116-4d615c72795d + Vertices + Vertices + false + 9868f335-6dc4-451f-8094-d3711f42121a + 1 + + + + + + 897 + 3104 + 159 + 20 + + + 976.5 + 3114 + + + + + + + + Curve degree + a70ef5d1-c3cb-46d6-9d33-77e1a52d1292 + Degree + Degree + false + 0 + + + + + + 897 + 3124 + 159 + 20 + + + 976.5 + 3134 + + + + + + 1 + + + + + 1 + {0} + + + + + 3 + + + + + + + + + + + Periodic curve + 4d30c792-d92a-4102-8b00-2557c4b3ae9a + Periodic + Periodic + false + 0 + + + + + + 897 + 3144 + 159 + 20 + + + 976.5 + 3154 + + + + + + 1 + + + + + 1 + {0} + + + + + false + + + + + + + + + + + Knot spacing (0=uniform, 1=chord, 2=sqrtchord) + 31ad9203-8d68-486d-b831-33a8a2d37811 + KnotStyle + KnotStyle + false + 0 + + + + + + 897 + 3164 + 159 + 20 + + + 976.5 + 3174 + + + + + + 1 + + + + + 1 + {0} + + + + + 2 + + + + + + + + + + + Resulting nurbs curve + 650d961c-ef6f-4573-ade0-97f698f6a536 + Curve + Curve + false + 0 + + + + + + 1080 + 3104 + 38 + 26 + + + 1099 + 3117.333 + + + + + + + + Curve length + ccb103da-accf-4a47-99e7-b07e82093feb + Length + Length + false + 0 + + + + + + 1080 + 3130 + 38 + 27 + + + 1099 + 3144 + + + + + + + + Curve domain + a1b7ba6e-684d-4c4f-b4dd-917607d871fa + Domain + Domain + false + 0 + + + + + + 1080 + 3157 + 38 + 27 + + + 1099 + 3170.667 + + + + + + + + + + + + f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a + DIFERENCE CURWATURE SHAPED GRAPH + + + + + + 7H0HXBNZ13dQpEpRUVAUgwVRuh2VlRaKhKKgYieQANGQxCQo2BYVe0NFRWzYsYIde8O2lsXe67qKbcVeVuW7dzITMhXyECDP9z7uTxfmZCZ3/ufcU+499xwjf0lccpJArCgFf/RYLFYd8NdcKkpOEIqHjRLI5EKJGJIiwGVIhn8M4Uew+4IEPL5ABj9SByWbYKRgf3jZGFzqH3j/WeSQVeHT7irCt8iS1xhGyASjhILRkG4C6AaRieApfAv0cqhAnhiVKhVAcm30i81QWphElsQTQUorcHX16tWl2F2RApEgTiHgYzShUFhq5S+IF4qFCvAWETKJVCBTCAVy7LHwr74/T4F8jxH4ZdfjpJnzp901MvUXyONkQqkCfXk4RJZ+GC9JgP32pnZ0UKCr65M9S1+unAH+fbIkD/z7eMmOx0t2Iz8gv+5eD/+dPxf5N+Px/EWqTxZlhcGfF6bDJyyGtzxZvk718+PMhY8zF6k+9njJJtXTlB9TPuTlkl3w+tKJuK/G7kWHhFI34Ye3oux7Z2YjH57N9HP2ZtUD0X/RK4x3IT+jb4R8o9oANqnGho4TG3bZZxCq8h3RL0XeHUUVeQKKD3YvGUklwijayi/CGIHyBX0ajn0ovAhnXV0Dg6KN+wAJg1NBjk0T+McMu+onSVZOoNrYFADCNhwIIyo/tdDLBlE8WYIA+aQdnGpfS0sH1QOSNVAiScJm0KSmMT3r9APijPsqY3iF9DXGfeKkXF6qJFmh/lmTQJkkWUr6cN3AIB+uMFbGk6FTQA+dWXVwH4VXDJWfS0XGjN5u6SOXC5JiRakBySKR+lTwiUiOjxfI4oXyRGd2P6XG8Org6g7/c2b7JYsUyTKBl1iQrJDxRM7siORYkTAuRJAaJRkhEHuJwdMssEf3K9M38MmG6FMMfJIViRIZdtksVBiXyBOI2BGyVImsVjAf0zKri1c0HebRj5tnME/4q9hkDG7GmpQN05Dme+qVKYvwWMg+FUz9AAdNlddwYMHrBsrrEKNaKH76gX3LdJ/Huj6nBuVtCshdZ3H+xIRPi3GjqoPwythPIlbwhGKlHnVEn2LgK5GhqhVjjIGfRCRJlmEaDv6fSlfZ+bAT4HPZknh2oIwnlydKpED3sSXKt6oV7I9ID/i7sM/LcQM+JoTNdHvl+v1F8mJA0kNJpTF3rj+83yoks/eOYVkX/jABpFooSTb2l3Oxu6l/3h95r23zQxoCUm2U9MS+G++Y6yzuljVbPN4ILBwBSR8l7TjjM+q7rU3Q0WeP5nW1tH8ASHVQ0ofrTwrWNCjm5jx7PiQ9essLQDJASasOdbC6/rNu4GG9WgUT7LK+A5IhSpLmcVdusejGSWs01ye49YTRgGSEkiZ9PsQyP6Ifnn+oq97lfYHrAMkYJU0/earv0b/MuFvTn8zv+uKrEyCZoCTxXpeXp19s52x+tCXG03H/N0AyRUm1D464Xsfzl3fOmwWPdroNuA5IdVHSzAmtf7y5ERuwyCzizccI24GAZIaSUj41sneSZoWsnTDLcNnXGf0ByRwl/XjSqtvFN5167fOMdBm5OuYjIFmgpJ8HfFYMXLTWP9u49PLa2+lGgGSJkpo3X3F+TsfHQfNXni3cGfh9ISDVQ0lLQ15xj23pyl2w16npyoG9nQGpPkp6s7Zu0/wHluE7Y3rz79u2KASkBijJ3vi4k3vIO5+CqB/H5tdp1BWQrFBSk8HSFfW7vA1epL/fdKR58BJAaoiSHrz8uHFOeqOg7cdHPLXcumwTIDVCScVtOKf/zejpd3CZj1vc+M+PAckaJf0+J8vo7NufAdOdr+b9sX5iIiDZoKT4hpHf9KaOC5imt08mtg+ZDkiNUVJ4VsGklNphPmuGJdR/ZZT+LyA1QUlnkjt0fD8hLfTQg/W3rxulTgQkW5R0qfPC0QtOFPXKr7/xIPv0xHaA1BQlZU25tu/7iiSfbe/szfnibChRzbDpUCicWt86i5PxntP+BNfrFSDZoaQeV5pfW7jyqM/6cVsnJY0YuxmQmmPv9SB3wMYpncInxj+/x2JlxgISGyWtFCZl7l7ryllfJ/vWoV/99hoF+w/DaRB7qJmDxXIFTxwnCEwWqpTZZNmfdW4frRV0dG/onEfHePoUasMoTBg3Qv0yy8RHoZAJY5MVSg2Pqm5MRelpTUX9Vo0qqkNUwZIfwTf9cnu+6OKz74pCTUVJdzfLMzBM4uTddO40Y9LLwWoqakvepe2T3jwM2RlrGfPGrKelmoqa2Dfs09kNKQGbJDOCpvumnlBTUU9f71/1LjDYd4ZT23msIPZTNRW1K+/4r6A9A7hz7GaVnF9yzEJNRfWNanrGrn+pz9KTHXOMo35+VFNRUT0aJ01t9Sp8Vpjex8lmId/VVNT4QIVk+HqPwIO1rqY/rHv0g5qKWuYUZhfw79CwHfJlyza2m7hDTUV9z0rx3xzMCtzZaJbX88l936upqIXTOR2LbMcGrOm2lvOscFdLNRVV8nu9en9ODQ1aFtR8d5RL289qKsoktPPnyytaBOX1utVzaKtrF9VUVFHE+3yX56GcTS3X2Jl5yF3VVNRMp7WpthHcwIzUbNudV/ocUFNR+5YWGtoayrgb+t+wM7xeOEBNRbXdfefsu0+vQmavfucW2d86U01F1fLauWDM/gnhi79092o/vfSamoo68TrifROLdiFLnVesMNkYsE1NRX3K6xdgkucdsr+lW72EPj23qamou8PYwgPX+wQtt7/a58awg6vUVNTM4T5fZ19YFbwj9UODnKehKWoqivVXQpeIPSW+Ga3evR0yu8dNNRXFihzw/Ni1tb12Xm28v86sO/XVVFSfzl5ZDSKdfHYPntHLcd6bdDUVNa3xaNvsXRdCZo3lWRe+Hs5WU1H9kof5dShMDdll6JVv9VHWUk1FcS/ZnF5RUC9g5bHf4xvual+qpqI+eizkeL4rCdrll3Pg2pBWSWoqqs4/M5J9BswMmt7bZ9BFSZC3mora+iF8Q5evrfz3mOx4f3ziQpmaimr5+Y/X3vbHA5cbbGVPidZvAEj2KMmz3SGum1+XgB1ngjv7jNg5D5BaoKQRAR59DXat8p1oNmX2hPvnoAvQEht8VPrgLcv1A5bGft5gfXBMT0BqhZIO279dHDPNxmfqmcxbXtsPHwWk1igpzTFjc0u7+b4H2x6IWjLwsQ0gOaCkCdw9A88k5QbsS+qybG7/5taA1AYludxlL+V/9eLM6rLCult/OfwuR2yE/a+YLxvVtlf2RkuHF4U9ZwJSW5S0qF5pWGf+uNAVr1p8uCsP7Q1I7VDSWpf8hbdcZ3jPYUdNjSicdweQnFCS3VqvP84nJQbsXrv99gpWJz9AckZJm/R6tzrLjfSbeiV7mGEP03OA5IKSTi+wNPjt3cPQDetWPAq7ePgwILliU2/qmtN1zd722tDb1TK6VwtbQHJDSf827rRuaPto78Orv/zFPecsASR3lPTl69ONF5uWBE39TXw5o8WVsYDkgZL+cD7Z6HztuaFHZ3yyf2VUfxkgtUdJ66d0cV456LbvTjuF5R9216CB7YCSno3ZN+n+RXmvrVzr4LP8Mb6A1BElLe8mfdT5TmrAbpHRvnnPdroBUidMs11zaDH05ODAufV2ng/5vCAAkDqjJHmtZOuwZpa9Fuz4uGP4h309SEavC4vG6E3Z+Dzax+Fc0MQXZ2abWIw314LRgwaB0ugd2TD7t9yfeb32HOsRdfagvD7uuwzCkpNiBTK81TNEH0Vlz9zQT8rZPHacRCRSBn/QusWLJDyFUJzAlkqEYgVbjDxYTvn6RFNHNSTS+2PXw5HxKJdGkFDQIBLY4TgBC+XKxsdLG4+/3TVs/58TEkOdiqaYKsmk4I8Apyp29QUf5COX4ERnpbXjsCI6nGKxgnxZrGM+dSKEoyTIc6DKYVk6c8bObH/KPAJGWnKFQKzw5yl4zFGnga8MAJLIUmMY+UP6ETxFIvbqtce6j9cPVgiSWKyy1SkDJcLwM1jsymJleKPiUJtOHA4LNmwW/zzPneN8ape7rP4QHPbGfsmyUTwYyOIlAjoHBjQS0Z0ziidK5ikEbEWigB2HPQCKBA/5VcDmKcCPcqkgThgvFPDZUp4MfKdCIHM1CBLy+QKxCi9KaSF6PzQjJglMGamCrGY7cgCAgNXfAavTfAmsZjsD6m+nTJHRDxOKpclILGyIgkwFTT0/5PUVErYAxYjyBce9fdHudeaa4NmDTNv3XfNxIl4bIM8gvRx6ubzJQPQBKzkZvAFCUm90MpQQJ0NRWw4rrScOIb1yEGodgckCG2gRpbTwJUlA8MpFbUFKyzyvkB4h267fOGCd1UyGFwvVc8liUUYqD71f/eeLiutmB0yrnebao9+03VpAD0gQA3o5XqfqKtGTJCtQATNggK9hBKJrVdCBiTZWMZ4SLttBC+8t9ojw3mPxuEnA9QGReCFDnkMWMuVlEkxUOLAqjsMjZ1SKegAccog4RLtyWEU98TjolYODtWqqs0cB5SeRMSHBf2JkwPWbxV0d/FvXde+KXmmuT6oEEfeeTIgAucEhUqviiMQJZXEiRtk43/9madCG46GbeaJ/Cq2eeOsIIiVeTIhEeJ1CbR2MailtnevzWPsfsq8hmQOu3XLL3WyFe6+6/sJRQr6AjShSsrkzpAG2LXobZtvABAGKamQyT8QWCcQJikS2XJAAd4XkFTJuxPidfogk9HHUCsJaBFSQe3cA6xMqE5fhBKieGpk4C5WJ4yOjoXzJniuSp91+VjcofdqRzXODC3/proErAfhYQnxKfCjE7hFQ0dJulAaOzl+ur/RaoTeEyQUlREUp9WIcGivCVpg8u9htzLSNBIjg61BAhFwuDyJijKUFiIo8mSACIlTDDjG8iQ05osYpTGPScco6UioSKlRcgvpyhFA8giaC+aOD/sqxzYMPzvn+vNHImQPw7AqB95HZpbysbU0J+ZHRlYkfJV1qhB+GsRKJSMBTKUAWybXBFIuBT1ycQC5XfzylroEKD25oKUNMas6suMczyL35wGdNhzp/c/i9juBjS8ShIbMGu65t3kQ4o+pkMJUVM3JF1AnJ09EQlhZRPHECYCzq+iCSy68AUnuaCnJXhszymRx6c/qiA70e45AyQh9KxqqMUhVoIZqFFi2gWUhekIZotSyLOGB0IagwXMRggLDrij2VDJg6rSogQyY/LWRg8qNuUh0WjZu0auzi6/8Uj/DL3db256U/21+nMM94/8iYAd82tAtEQGgEMmGc0m+qmHdEtO6GoTypVChOwJCCr6NFZ+JJB/0GxvcPhs5dlTncMTyocyUtJYzo2MaAOTMplo4GZjtzOg00wphjQMecWMepLbP1j3jviW5ls/n87Ua417XwF8RJAG6y5DgF20cWR3Zj69CwqXsfAXgFwSjlqk0sTy5gS0U8scCZLePxhcmAe2I++JsgUsXjcD1HzObJ4iq2akPcYmIcN4lhxA9UNGoAtvAYByB+gcq9ZQH39pifRu5tU/DdbBBO+iljKOjmlg2M8r0f7E17aftuYMD+4e0zOOGF93DvXZvqXZGL5YkmMUSrpGiy4GIDBCoHOA1SIlA5bRGgNFqKsPVVyRAiKkrclLEnJVBr/9TLveueEnCgec+GbeTLmuH1KfK0CPg0sj5Vo2lbnx5zQnGJptKnUhcOi8XRcGmij3I+VQgT/z2HThyZdd9/ZuaN9hNGm37BOy/KJ5GdF/R6VWAR48+EBVFGyluUYPuoKxRH8BcqG55Y3haFhxIUo4LTDfQ/5vltf7tC8bLk8yO8wkceSVb4ystVAQnbjwmSNF9Mo2NRIUmjuy0Yn9qs26+A+X07zWItG7AEL/jhYP6EjwLeSTRZmdemwbWBnyQJwA8mHpx88OaUiilp4mY/3VDIc7CMVlFPBeiUjOEAunwA3SMidCzgx+QLNVLNpsHwU0onjvLllj2v9+vU9r7hm63PtL8ZySOsePaD95HlRnm5PG1M3IGupDaWwnUFiE2xD8UeU3Q7BBuNtHHdcORjDOi84o9oXHdgw/A93qPudLj6KJugagTyZBF5xQG7rvV55YwC8JUKgAIXBAB0XhnRzauRR4VOwrDNfvuOhIuePx30FvdGpr2TwbvAFBxpIrUzW8H4oZW/UA6sXCrc0RIooN5KdcECCejzJsBvoEScmD5DOz4S7DgiCXvjSIlMEa6en0QhscT0lwpKrOppBIbFtAGqbhRgWCM/+Jfg2g5vw0kaP+qUGZapHizmC1Kwx8H/o6w0pmPlq35hXH23b36L1l4IWB0ePBAHlT4XsI6sHPVpGGbvJxPA3UkeWwQ+zo4VKEYLBGK2YrQEjfYqpiqJGU7kIZHYhlzVwHPNiEc9V3eS5wpmgLtAI/VoCb+cDd5DplC+J+VbtW28/Iney9WcOYMnbflltssGL5ORyN3Ue0M4Ynn6krj5pAXvVQrBiqAywzlAXxYJNNqGNEfAEoCQhx6qp3t+67jb5anvpsv9eH3yPWfjN0k44F5qoNRI5cFEdIm1ABOQGgaYMvgamhWlUCmXSClRSkxKDepzf4/ftqPOtaaMnNayotNE+ybFBZWRfGBS2MQJJXVFoEH1kAmdHjq3jMf96WkdOGmDneHLlmPxi4lGCBiR/tyKR92+eF2EAgliynjwK58dm6o+YZ3ZCnRhD8biys0l1/EVUlbEnEvqcZOX9jBKBTHOAUrLaA3A+B5VuO0NOGC0ugqUVlSji9uieg7jTEkwHed20yQA79gheons2CkvV7OiOgYA+rr6FAyxKWYgG0QTuas12k6yQQDC5MKRL5Qp19faUgL1e6I1L5f7njNraVCD3W0jTPEqyx+7mayyykjlARZz9PAH24ODA9Kf5A4wL+myQQuARTMCBiSqRjaXlIvr8DMdWHR/SnoSN5wwZ5UygEF4qZzX1KnxV3hnjqUWcA4YBn2bbr/Hsn6wWCGQAWZwUqQy4KqqPauWSzTegecijyU78Oj18thKzPTVAlsLcpjYmphT03uGZUl0JT21bBSjD0x8/r5Vcdjs+1+7NF7cb3GNGUWWK6qP8qmW/fJdkemFGkVTFo1R7Ne81ojMHZa++1eL3nYfbxSEX9lVZQMqJa3iiRX79VS34vIG4wQy+AB2PE+Z2COSiBPYQoUcs4joF6F0OTuOJwZOPlueLJWKYLZhrAQQhViGVLIY3goNqhg5YCscAz6CXHRl+yVCvYosiA8KG1KWpgiXfRWSBLh0pYoewGdgBJEk4QsqGEAQDzswwkZeECd8oKIrCzBhbzNguL4fhYXOh2H3pqpIabQ99CE52c2CO+nFji2pB6+v0OImDXEyVVI1ZQCEYjbTLel5AyfZcjPJRDPlEbTAySM7Hq74IpihgIGPUkJmbhAxt/++3Zz5+gF/HJ05KaZy+rySigKicmwTEypAbnRIYWuS6NExOJ4dJUsWOCOzGM8toVxdLzi6u7qzJ7A9XN2p/SvDLYKcTcscgtO3HbZa7djxK375NEz1IPLyqRqtKljHZmRdUa5O5IPoaWRlmylTXYFJgFwrSyZn8J8W3J9YO8P2SK+tmZeO9OG9wm+dVm/KK9waQLRMEBVTWG6IltFoX8kBn/WhETDuntc6WbWx9Ft5y7jw1qoi/LK/IfpgEjQqQlWAgygbWnCAstFoo6mN0kqVWXBN0OGnLMms3ekANzf/xP3AtmlztZFYrgWE2IwIgTmN+m11WTR+G8ennVOp1zWf3Ad2m66sfNsBv9aHxBZSiQhYdLLPZkSDcydsPUMM82Cx+/mowVMkyiTJCYllK+WarLcSD4DSjpa8MqlGrKhfDByhnG1oWmwu0U0qAvhGbCW5SUaYeqzYxoFV2bDKyTSKeXe5cdTmlIC5+skng/fenIVfvekHi7uALySv3qgo5blQRMVYSRcKORmzjS5XOwvIrvc2jVyousrpyxckyATU/uXFHHMHo9ELObPOrMz8+9eHdnhnyR+5kewsode1PTvh+5dsZXr/nK017SypJFMDRwkOWSjhYylblIzYumCH6+FuBZy9w/9KOxDz4m+8rGIPIMuqilIVzIhgZAarZphBSodVZ0XtcljhGiKWKID54sXBE5aO7l4gZAWRRZIz28MrLlEi4zuz23vJR8oUyC/U3up0O5Pp41YO9J963uNxYkbpabxdg18QqUilyKVQI1UFs/K3MDErZosuzBz4KM0OZik3yiGzxMmyWDnDDMr4YpXe47eSXpOf2IpfTLa7U5lQubKhgzuqyG0AO4qI7DjmwenbeptmXiqqyRm8ra55nd2PDLsUOq/PuVBr9919ajbsBQAc24oCcIsCAKhaNPJEMVOGpDxRAjB6h2ly5zAHzvql9QZ8NX1YQjBlyI0Upkx5vSoAKN7CAMDmMVswR9OMReNo/mcnzukQ1MqJc2LNEK2eOCceZ9fGifN8mhPnA5s4c1Jf52E8MKfjgcY53UYMLNBqTjexRosWlwaJqlQLjHi0nYkR47ZjjLCgYwQ7oeXe6XNm+C48uZW79Nv+sfjX7SMQ8VKpGUEIK+g8gwY+7NFCmYAtg09CywpR4k7MAKIYCAl3PXa5mBPzyCqbMw8wPzbiFNyyBwygKLfA8h6BYW5Jh7lx5JJRG5KH++e9+Srowt6Ejx0t0Jg1FPwjE/JEFd+haFIW7YZLBeJALjsJfUbFQlpinSHGYZF3AAgf0GA5sGQ9ugNQRMqDAC5WxDpSaMvkijZTFr6Csx8uqfCF8fHJcgE7LpEnFgtElC9+26XTk5P3srwP5Q69NMYh4Bx+vclf+QTyehNG0LaRyweQPIKQpFF5nfkwL2Z9jXiddYBylahKin358qVUk6iZjWcMXOtKFvFk7ERhQqII/KVWC+eH/fxz+omJoRt//FxkO+3XSXwAF4k+hBzAqShVwR1vRu6UrNMB7pSWsko1Caabc5KEcrkQ+IJxODZhKoSSOZJ1W1fe2Lo6ZHfdia/s0p8dwjNH+USK/I0ySlUwJ2cdE3MidIE5kD+ahNddfJLgVyI8AcMBcbZMII5LVW4AebElUt5IuF/kgfxW9gnqGdU7+66smaMtd96M339Kd3RPxB/pj1J7PvlIP45aFcxjMTIvf21NR9tlm3qPcJt6+uVw0KuMg/JEoThVDFwnwD7ALrEEnmrzAD+JJKMRIvzVHZKSeCnKC9RLW6E3l998/sV3zjb7L0tlpQmENLNEqrQN9HJVcC5mLRPnLGucc/AmPkvDdZL6ZeskjIpwJZfTO8DewL9g9953V0euq4NXhLQ+UxlF2xxxd0V9COinniW5VW6IIkT91HosGj+1sf7YyBMHP4YfNcr726HzWGfcW5n7JcsVkiQ2WvUd76ZCTOlOA7XxEQFJl6OZB/AZyGZ2gkCSJFDIUtlS5QPlFsHiOFEyXxAs7iMQo6cH6J1XYiVMprGS+ECgm8Mq31KJTBEgFCkEqoLXFZ4NbTmsoo0A+yyqXPkMuFe2kXa3hjKGCsSwUUgweCrk0RvV+j3vzAuHwKl5oi31G3RYgBdL7KlksVRRqjnZBZ5IPgaR86bSIxFOHJZ0o0b5qA2j1FwY5OiZjK4ITDPP7K6PGr0L3r/ed0j7loTo5z+awgSsiDpCG6e3GbEq2lCtOhfrO2GIhlzwQ9DZuZ9zv9RIgHp82EVfd9/SOohtI1pVIywwwD4K/19X3e3B38HCKkzWp1NjOhpuEwv0Vlu47d6SKdwuaV7V4fbajU3kj2bVD1o6Z/XfJi8PL9WBcNuyJZPzIm2hAzFDfn5+NYTbxcs5R+/FNA9Y9PfjAoHC6aVOhNtF9kzccbfXAe5US7h948saS97TN36TjFat+H38/QidCLcz2IxrIc11gDmsmgy3i2c+t1jLfua34/vZl6OGt5+pU+F2RHPGcNuupoM2HQq3s4I9T99s0cl3R1+LcPdjQ0fUcLhtacdosZrVNOeqNNyefbH16043jP3Wvmtf18jCPF8nwm3Eh6ANt4EiRP3UBqz/D8JtYguJGg63c9oyhdvejtUTbg/gm7r1GOIVPLnZ3QGtG+/YpfVwW8vVRJGC2G2ZQshHjlUVbu8r8pwsuvw0cJOog4Tb7p+hWg+3iTpCC1gBOWLAKqfN/6lw24pOjelouE3sbFNt4XbiHqZw++yuqg63TaZvvJYxoL9fZvjCXy3G6a3WgXA7eg+T82K0RwdihgcPHlRDuN0+y3F9195twucltK99rtPrAzoRbhfsZuJO4m4d4E61hNs3s7i2O/JWBWe+upv6JMreVCfCbRtG5gBtUvPMYdVkuG0SvLPFtf4mPplpLR7k3/zVS6fC7ZRdTMxzrBnm6Wa4fbfrWstfBx38JrrP2dnKotmWGg63b+1k4tz0nTXNuSoNty2cWtp7tooOmTXz4PweqfJNOhFuIz4EbbgNFCHqpzZk/X8QbhN7L9ZwuB2zjynczt9bPeG2r5PfkuF9UnvNXRZz9ejDxm+0Hm4TU8G1EEJG7GMKIVn7qircfr7gfgOFIqrXrpvT/7XY+9t9rYfbRB2hBayAHDFgFbP3/1S43YhOjfn8GiV/rZgQvCuh+a8IWcwsQlyrarNEUVoUfg1dWcpm/jIeUGN9wEtI2ISnVPCINLErrAFXEjdCwFfdxDhSiggc/wENDkm4ewBBmuRLVWEGFq50I6krpgYC9soTU1C/l40IqaoKonGk9GqFwPnl1nj+yHyhX85Ax7BUVoeOjODoVA8iWJjREiJqRTU1z8IkHXeN1FizSF6SVAS9EICaXKhIxaKzQNpatQW/vf2ruFNd/4X1Zb8av8z8gxE9Q3/lYynWOFCCtv0TpMSnGxNEQOh0wGNEZFyDknDmkXE8EVI/n76McGurqfEtzs8L2dRrRlD/wtaWzIKNPJDCkUculyfYxN7SWhDsDFcmrpW46ALXhCyVVbBm0ViF5G+HOuzMiQpZ+jN68IzuK6fjHUZ/YYJQwY6Mk8HDchp0120ZlpyEnKeTo7cialAuRMrmM51vJHKKUSgIw6vQqS+6CWuEPQVexGy4AfIFqqNrsCKJAXCO44UpZV9RB3YtUBWFNkWELzle7SNoLXYMsnjsG1lKzlW052YrDuuYE5C5MX5kmRvYqxWn0wEnLJKxoWO2X5sLbp6TH3JzAla/U3g2xreqMOsjSOJJ2cqzovKK981to7wP5aqyjyCPLRaMhpcQIVAeGq6QtSO2emcYIYndeHJFcYXpC/MArpeozH4EjFLmalRYzhzhNgxRZHA41M0S98uSAgdeCNw04dHaGVknH2ixoj+x630lVV0MgCcHwlOXStWlAFUXMU8jG26mHA/TQXKTFp3EZwOlgTs/h9zl+7gZ4c84K+8nn3FGr5eHT8TBqy8tL1zkrhu1KqL3tyMNtIAPixEfID41YQqMkCo9o5RA9GAR/2hWac4siidLECiYmPZ5SO/t+/tYhezvzxkyd94HfDFNA+X9ZKah17XtVkGuxMxl4oqljnJFo2U5C0ThSQV8VPlSMiakd0mv85/ucDNFIX23t1uMP/1jEIrcT2YMel3bjLF0RdUJXI8jdY6OcOOwHOdpVpjDVoUBrIUaJxKWh8f38XqmYedOcef8/JTA6XblHT4C8FM+gBwBYISqQCR/LhMiXedidr0xi8au5y8I+Tioe7fgqR9/KoxO3sGXSUe/seJdeHqoirvjDTh7dKIwLpEtEMdJkqQ8uRx2CmGLwAyCfj5q/isW8LP+SugSsafEN6PVu7dDZve4STVeskwqr2tQ0p09By3pTmrT4w3r9cyubCW0pqirAY29ULlKCwv0KkdC+eKil3tN7PtGha9SjM4PbzfqMF746BwbFaGajT+sdm0JMXT3pehmw26HYKiRxuqBxQXKsi+4MsQiyWiBXNkjAO6Fw5/LfEr22DDqlt9Ee16jVWdgexMEMBsqwOBmBAAMncxN6CazzhTaIEqTlgpt/IcdfGgXgIEY5s5iKrSROAvD3FbnMSfWq9cS5mb631fsDQv0WfJ51e/Wo1P/qmzrbJg5vJIOc3eAuftKDPOmdJiH7Qu4dI5V6Jc2sHF34cte9fChfSjcb5SKhHFIlUmy8aJD2jYU+GDAJVCAO0XsJNxTKmSbpjUebZu960LIrLE868LXw9lMwyLvoOHpFVUbcD1pBYBzNuVOGUyvXH7KTFWVFfNWMRtugjSQw/ESfpMhcjmYj8nAAP7ZuXpHjf0P/GMdaubUoAij69HQTZWt10gyYqS8Tv9g5XiQ4cKPMAXLzQKEMqDnhcBNRlaI8Pyi5I+rYbpgwt5FAdkLGv7ddtQQfIN5PR/y7PAhzQ49wuxo9vb4vSUOC4KXj0gcsX3kpjWVLSMK2JkG2enuQxV9wH2GFafUQNIrByS7SNiqla8RSknLHMctePgifOOc1zPfHhXji1Pp+ZJR8i0XpT+cTzY6X3tu6NEZn+xfGdVfpgWUgFgzoJSx/BQqgypZYvItbJRJCtAZrQBARI1Yo20DYfdrRGJg20BSj6cgFwQpVJ82o9On2QWPBkx7+jX4QMGeAztGPOYSqoTzxAIRuWEgnRp19GFL4R1q6QlssUQhULacUAhS0JaM1G4u95LN6RUF9QJWHvs9vuGu9qUUQyFhy6JCFVmT7QO5CC+qF8onCKfPjkQHE5um3MnDkjZEX+fTrvAb9ZULZFFg+NjXtvaXJMeKBDByjBuBtIPgCxXou4NZB1cHnqRtIPBRtT5MXEx04LBKYgAfPf1YadP8TEJ5sgShmCuIxwmFqfJyH5jsqX7dWHk9SiJVv0pc6XXgJL2JOWWBgBghk0hhrWTlqAyxUSkzTOElbOPYFG7SBov5sKqyan4bw4twyULtEmK/ROh+tNJIwhRSIU/kBzuEqFhjEKkAQWKS6nf9/jKetExzKEXVjk5Udcbd+uixkOP5riRol1/OgWtDWiVpyd0iyr8WXNyiWCYXNyIWUw/NdR5zYs9ZLWFObDmtBcwzApkwtwzEMGfTYe6xrs+pQXmbAnLXWZw/MeETvl9SnUCZJFmKx7wuhrmvRL0Pqh7drKZwFnzYCfC50AwGynhyeaJECnQEyhB5rWB/DLB+ycP8OhSmhuwy9Mq3+ihrCUiYK0iUX0CqhZKIMwaQarOomwkDkj5KKu3e5u6769Y+W+o/n1rr6UUro2D/YTjOQI1KXbzoQ/iGLl9b+e8x2fH++MSFMgoIyaaEwGMWxmMlu+zp2KVDFtSz3SGum1+XgB1ngjv7jNg5T+sWlDR/CrvfG7KEt8E3XzriUd9//nSpGQta1JrDKpgOS5VWmQW905ozeef0/w4L2oJOVHVGm48I8OhrsGuV70SzKbMn3D/XUEvanCj/WtDm3jOZtDlrJqbNW+o85tyo9MFblusHLI39vMH64JieurswF5HChHnRaAzzVnSYf48ddKaDycbQ9Ydr/2Ql/lxIVVW94jsbdqECnhym4SHrzcqGWcBOom36KrZ3cdj+7eKYaTY+U89k3vLafvioJnXeK5q1DttC2wLkCqj2LkqcgGfSRLN2tKpmd0lKACjf7OTURZzo0XvDZ3b4O3BEHp/gDOtSZmEETJCGAJX4UKyzw5QOAJBmvS/Lre/fSa/xuzl+Uv+9n7wT86/Nqdn6/rDhIQKAEdVGA2wZDQBA51ZrurmlowuwaY4Zm1vazfc92PZA1JKBj22qYQEWSkzXbLoF2CIw4aYv/d8CLMqf7SNa5S4YNZGTO8j/4Mt9yX20sAC7qF5pWGf+uNAVr1p8uCsP7a2FpBzHbLqlxQJAvbW0qhdgZ9k+DPf8bSdny4ZJDZMGy220sABLzOTQAkpArBlQ6rq0ChdgiYvuNboAm+GMSgzlAux0FwQpVJ860OlTnfEPJ3D3DDyTlBuwL6nLsrn9m1tXxD+kCB6r3j2cvoPJPQzagUHeRuchH9H/ivmyUW17ZW+0dHhR2HOmdiBPTEoN6nN/j9+2o861poyc1lIba1oJjGtaCRjkjjoPOdFoaAdyoptXScil8DDAEjrIoRuXvwSDvC0d5A3j9+dlnzrHWb71yZjzTcfl4LOGOClSkYRP0eyyDg3CDugdWNyjTNmWJ/GQRH20/3sFM7kW9nk5bsDHhLCZbq9cv79IXkw5NHJCE0qo6NEs2OfiMNTOVO4Z3DxzP/wfxkMC5UAo3+0vqwDr8N2XA/ZOG/D5exfOMi3GQ1o+MAqT3YogQJTt52zgfvRhjRpXduojAKKB1MHgC2C6n0QuhHQ2GJ9QxAaSopITNk8GG9xLkoRxlCj+afCulsWakIDsGVNONeicgJcQY9X3kLv1lZG0furKEZEYBrgeHdKJ1orkztKYVFcwQ9EFnWj8MnYpEnkKdhJvhICdLEXWQWJ5sC4QbVu/3NrDWq/cIg9ZarkxYdasrZaEyjPoYykqz2AUrWfMuqDC7k/FvSxXRNhJOcQaAmeP9aDFjhgKiEBSgrXM+VBc+pw+IdnPZdF222fjdyv+o463WgDLnREsIOqo/WnHorE//ZrXGpG5w9J3/2rR2+7jjfC5/RYcuI0B84XpVuPoCnXt11PdilkiIJrgRwAGTA5FW9nzRBJxAoi95OjqjCu+1b2cHceDiaRsebIURByAQ7ESQAT3Kx+ZLIa3wj0XsapXvfKiK9svEXYCR/g7KGyIWpttYBkUkgR4WE09Q1UxWsJOgov4FbONpTF3rj+83yoks/eOYVkX/jBhhI18jJnwgYo6HLB6zDG0kBj5GDOwlSlHNbKV9cpsJTogypcd3p5jEXBjedA2ru3om9sL62nRWBI1UCWNJVJqDSIUTTUl4FKQzTGNjGULnDyi+30QMxQwugjYS/Hj84jxV0J3XA8/EN3DK6pmO4YCVM4eZUIFyI2OVh0q7/hSx+B4dpQMloaCsxjPLaFcXS8glaQmwApS1K2H+y2YPWZaQV/u/tyuP9Z+LrqKY5lJmOpBJLap06qCdY6MrLt1REfdGablpGYRSDdUYBKwOnnCeKjeGdbok89d9jBY+SF44j3x/thj0wkbY8jzyEpIeVnbTIElGxEtE0TFFJYbomU0OunkEAWNFUBklEBpFzUApnFp7SLXdn9wNmVOYGXOekWIINEHk8M0jFAV4CDKhhYcoGw0ak/cRmmlyiy4Juj0mrcr76RFUvCcWg9mp3SwXIQPUVTL/uQQpYxUFQg5MiIE5jTqtzmxaPy2c8t43J+e1oGTNtgZvmw59gjeG+UCH40d6c+t+MKBr+pgGMxvwDxhECHGg1+B35XKBtjKFMo2xkDZovIKfS/UdRtfIcdJNvaXc7G7qX/eH3mvbfNDGlKPm+xFYxRNwsDP6BExkqvkDT3nT5otKyADUMOAutrNzh6e3Rr4B21e+E9f3uGplwh1LuDdFHUukMvleUpE/aeF819sCJCUSgjZsHPQJ40Of9sgAGFy4cgXypQdmKmN7c3Ny5/ONpsYkNaAN7Cg5Mlu/LT0x24mT8syUnmAebh/bBf+97JeK5frbdP7dT5eC4ClfWICDEhUjThRSpsBP9OBRfeHfCacqcSLKcJLBq0qSz+gcIh9FzijobjRmMknTeojZ58BMzgpUplAVQYLcWp9fCMdo9tWzgEmsDYpf8bRlFO2AenmI5aZtFRM1AJrH31kYm3GR93xjzM0O0hel6umzymZaWVs6Nwm28F/UeNp2/u2OYRvaqHPpSqyqbyq9SOWrqhOyveBvCDGt67IFEMNozOLxjD6XrO+P6rLLu9tg4bazOp3GJ/oaQW3DhRw6RNWthbAWmsCDU5Pu/lJkgDkyg0M5DH8sscgwWHZoWk+EJIKWcQn9t14x1xncbes2eLxRmDhWP6ASeyg/JQGiwru5wHoxVQJSTFA+I/9UdnD1D5cNVDgcgNMzITehkTMdsQOAgP0EMOK/KTUaXK4Gi0ZLeBTG5FryTOsbrjzQvct6d5mf7ZHO7yOQWqqUBw1R6+Xp2MyA9q1C4n8LWjR83CP84M9O2hhZYINYdanyurJaovAXNkl4dZq7FetbsVJxHJBXDIiHjDLgXp1c/R9R9bPXk6+Kw9HBg9OW9IDh6Vp2XPJ4S+OqG2VwHZGYRtMBdstFwQ2VCW40KmE8+YtP3h0loROff82xPXq7xxi4SGpiBcnYIcli0QUuoDOYXbB7hPD+6DMCsWjeCIhXynko4Uw/xCEKbKKa4IdZ3xGfbe1CTr67NG8rpb2DxjGSVUgSY2sgZcsPUe3+ZYD0T1b2bnfCBo1pIyCAh77h0oSIkadWHPp5J9br/QKWDT7xLoBH58H491n5EFk91l5ubzpPOnzIZb5Ef3w/ENd9S7vC1ynBZchBiKXTuUywM14y3O07nMFkbNVISfDiRoULersutOPp6WyuAG7zhi2vdZz1nd82XNUQKi3dPBUbc9iiBaQJAa0pGer1cHCBmoUlSoVqOPQUu1cjWsIcGkFIlf4GblrYNAw6OQmCGSESnzwT2UVdyPEQELGgkeAoDpVyWpKLhMNU2UmSWVrMbmis6CEKs0MFrgBs0CjhTAbZTkU6CsgtgoTfT51gZDQEIerWzN6bU+euPpG/FdCRQXkrSg2JpDLVQEFIuK0UAARRw2VK0vX82+I2lI7+TfE3DUtpDylnGFKeep6BoPcTechn37yVN+jf5lxt6Y/md/1xVcn7UA+9odDmMe9caGH+usdithsXawFyG9dYYI86woGuTsd5BqfnLTAIK+Gk5PEaEzt5CTRPVM7Ofnh+pOCNQ2KuTnPng9Jj97yQu3k5KpDHayu/6wbeFivVsEEu6zvaicnpXnclVssunHSGs31CW49YTQg1WFRuyuAZICSiIICSIYoKauZ2P3B5MSgaTZbXfSeXntAOooJhZdS+sR7XV6efrGds/nRlhhPx/3ftHAU04OO/y1CCl3u7zAJ2KjPj73xwhLP/wbKxX4/kUQO3UVkA6fi9UpbBAjhAcxEeGJR+QAkpIRxpkYHgWofHHG9jucv75w3Cx7tdBtwvdwhksCh+pAGrUa6ngST7BbV2jXMOux6QqO1a1vlbhvSWUGCHGqWwKxA+rygdtP/PP1YKA7PX2pW17hJg98rs9dWtcvYRXB/9CRqdkkl9o7BBgInKP1wOqwaqlIi1LGirr7I72ZR0r5N8MIl/Yd6xte5p7tnqiBKQGYYUDp2XLMzVc4R2LxCJhuCGTblYKiH5Z7Rb5UkjTYqaczeH753WEb/+H5NrWtwPxcWtUKEiHJDDp64unVCMze2nWr3EEKkhActtAgsEE43UVewGR7d6F/5v8FrrBQ3L14JTtKBXUsI0vQTTCB1PaHZvm5rf6HyzVVLVWUio6z4SaugNp9k3/i+zDb0gMWihp7jF7fC7yJizyXvIqooVYFO8XEmdLKOY45RexaNYXzVL4yr7/bNb9HaCwGrw4MHkhfiyZaQrnWHPX4/V5XqNlqCrrJWzBDOnND6x5sbsQGLzCLefIywpRgS9d5ABWF7BBRT/ikA2wWqBShYcpF1qgq2aTcZiq40SZrjm7t5eavzD4ZPwi92IvuxNGYdRyx3m4qg4iqpxVmwxzEEK4JKxmDjgohTGtk6cwQsAZhp9FBl1w7ZsNuzb8DiBZ/qfYg6LsZrIg64lxooNVI1uwQQJhYjTPmFGh4gLncLjbjXXGNbaFDTIDICt9BIh92krgg0qB7qQKeHdL+VQMqnRvZO0qyQtRNmGS77OqN/lbcSkAKxOfaarpVAGlwpf6X1VgJvPz02bfHbJe+dX3PrW/jXa6rFVgI/D/isGLhorX+2cenltbfTjSq7uwVn1Wu6ouy5sFPXa223Emgm6cyW1eH1mtjgdt9usXe2arWVwI2WbT5zfTr6bG/WsXD/C9k9LeBjyYgPEB+dLFqv5VYCDi4zxpbO2uA/74Cevn2DKa1rtJUA5Ir0FRNX2DrFlZKjGFe030og6uDx+76Gj31mG3kKkro6Pq7RVgLerqg6oSycnwYL57+u4lYCnb38Tuf2nsiZt37qfPm2xoTDj9XeSgAicuwVEyJBrzC73pFFY9f/21oJ/HjSqtvFN5167fOMdBm5OuZjFbUScH/J1Erg2IvqbyVwYbD3ZUloP87BDps38Y+f+6LlVgJaNv5IKulLplYCAMMabiVAtOc13koAAYy2lQAADJ3Mnegms85sXBGlSUsVy4jbHFrYuSooZtq5SinGMO9Mh7mOVlVq3nzF+TkdHwfNX3m2cGfg94VMw9JSVaVHIMj++p6uqhLcowh6/7+qSih/ilILu945UBQ4xau9uYHI/bkWqirdWHZ27iP7VuHLf9S6lxdjUek1EzA7it/T1QuKBtSs91VdVWmhaPWVtRc3hG0ftdW1Xcd4fy1UVZrWqYg9ff8TvwWhNwRRPusru/sNUQpiROnruyqsqkTMeq/RqkrIgvd7uqpKji4IUqg+7fJfpk+XhrziHtvSlbtgr1PTlQN7O1eTPs15y6RPS/75nz5F+fO4tP3nP+/NDNi4xCNtx+MDm7SgT9+srds0/4Fl+M6Y3vz7ti0KtaApMt4yaQrvt1WtT/uNnBc8yjfZf2Ynu1prurmM1YI+JS4SaAElINYMKOX8U4X6lGhDa1yfIhJDq08BUqg+7UqnT3UmJiBOJ52s3wVDgqw3TCFB9BsMck86yDVOZjPHIK+GZDbiNolaMhtxbUUtmY0Y0KklsxEjDbVkNqLRVEtmI0qDWjIb0UMjZaxBrUgpYvbGx53cQ975FET9ODa/TqOuWshY66Y1JptWI5OJZdrUmEysUqPGZGKGmxqTiXv+JJ7o0/GkyWDpivpd3gYv0t9vOtI8eIkWeNKdjic61NChuA3n9L8ZPf0OLvNxixv/+THFULTcEmmNfdJU/p2ZPou8n6Z1XZ26veZaIkU8PlXFLZEOcR//dzR06EEnqjpjln+fk2V09u3PgOnOV/P+WD8xUUtLdUT510ZzgSeMpUyfYHbZS+cxj28Y+U1v6riAaXr7ZGL7kOm6uzxafJUJ89yrGOa/0WGusZk0Y1WfmXzw8uPGOemNgrYfH/HUcuuyTWpmkii/amaSOGPUzCSRsWq+UNoe54dnW57nbD695FJ31xZWar7Qrk2+M/PCHnC3J35pu2xDx1kk4wq1PqUghWcVTEqpHeazZlhC/VdG6f9qwbj2pOOkceSSURuSh/vnvfkq6MLe9B5f3g7d+AsF/8iAqqx4VcAm2JahmB0uFYgDuewk9BkV2xA8k9yh4/sJaaGHHqy/fd0odSLjsMhV9wgf0OTk9ne06l4RaWkGRGZpX0lbhExpEs2Uoo1Vn4QlBJJhmc5EnhgYOcoXlwuHRQ7swvedPdJ/aJKi1RP8hqC/8gnkDUGMoPUWFbB5OIQkjSpxIh/u+H2rkcSJOnEAWpXSKCkpKdWk2B8bzxhYXypZxJMh+4wi6L5Q8ibr5Pas0Su7hx7Navhvp/dbdhGKqKIPoSiiilGqgjvSb0zcYesCd4A2KtUku6g5J0koR8oWx+HYhKkQSubs7ivdVzJoVvjEk+7+tie3jMMzR/lEikXcMkpVMKfoKxNzgDapeeZA/qgzB7NMdMzp4pMEvxLhCRiOHNwqEMelKosuerElUt5IWKPRA/mt7BPUM+rd+XUDdqX88F3f5Z82j3Z1wtdBqBul9nzyOXYctSqY587IvEdfdKdQEL6Qpn45HPQq46A8UShOFQMnGLAPsEssEUPWgZ9EktEIEf7qDklJvBTlBUo+Chc179Z7/V9hs07eWyXpF1BEqIaWSJUWjV6uCs5lfGHinHeNcw7eBHdUNEqVqa9cjxaKE5gVoevduCPLha7B0xPHtnpxzukTXhHS+kxlFK0veLuiPgSMOM6S3Co3RBGifqo3i8ZPbaw/NvLEwY/hR43y/nboPJawU+enXMiJkAlGCQWj8W4qxJQus62ND6w6JFdbDEIKyCYIJEkChSyVLVU+UG4RrMzmChb3EYjR+IXeeb3UeeHoBSeKeuXX33iQfXpiO6axkncV8XTzfuAfqUSmCBCKFMovpnL3aWdDWw4r+gfAPotqtzEDuLS5/9JmvVFGw4EYNsjBSWSMFfLonTfXW7EvrWl4+vXLM39/OQN/7tgIeypZLFWU8uJkYnGzysbJALkgiJw3lR6JcOKwvv6rUaJ7wyg1F4YtGSWQyYQ0PSusTUOG1rW/yVlft87ZySe3N6j8FCZgRdQRWsAKyBEDVtH/VqvOxdYxDdGQC34IOjv3c+6XGglQjw+76OvuW1oHsW1Eq2qEBQbYR+H/66q7Pfg7VOG2D50a+18R/v+oCH/WlGv7vq9I8tn2zt6cL87+zgibNovw25QyFeG3+VUVRfgP+GUNn3T/RK8DtcPbrmI1e6rF0+Za1pFwwcSolKlmecGvainC36zezr0H7y7zmzzcesfM/UkhNV6EP/EXY2uCXzXtgarvONVMEf6JiT0brJ1TL2iL+wqfF722DtGZIvxnfzL2T/j5f6MIf51nkzedPWLlv7TkfNM/j7/pQdjprO4i/IiWoa2iDrRMtRXhnzr07I97TdMCt/ke8Fw+ZwY+G6FmivAjyoa+Q8GvaizCf/i6+4kjm0/75tZZHrrl0/XbOlDOAmlT8JOxTcFPLPz0ZdH4bRyfdk6lXtd8ch/Ybbqy8i2+FJ8pcohPKhEBi0722YxocO5UtkUiLLsfrYUBEJdJkhMSgQ8nFyBLNZrUclhYKJxa3zqLk/Ge0/4E1+sV7WjJVQ/UiBXN7YOd+/ROs1hPAHq5pLbLAN/prNOVPFhlVTYscBXFgvLVDdu12/h4QmTwInnw5PWn3Yor37uL4EIRFWMlXShY9tYRokfZxS4L1sXQO62JC4X2QOcLEmQCav/SbKrpwuzoj73SL92oa3rgWnPCCSnkRooTUsrrVVH29xaL6f3zWad1YLkOkUwNHCU4ZKGEL4xjqG0TNS7W1OXH3pCJNhMzH3f2rIOXVewBZFlVUaqCGdMZmRFTM8wguj8sTXYsXEPEEgUwX7w4uHbq6O4FQlYQWSQ5sz284hIlMr4zu72XfKRMgfxC7a1e7vLcPH/2Y9+556SX03yCJuPtGvyCSEWqiKL/ZRmpKpjVlZFZljoxc+CjNPJWG5YtdIuTZbFyhhnkdK5zAbufu9/8wsX7R6bf/FKZULmyoYM7qsjhUc8iUl0oD86W96zTGnmpqCZn8LZCo+tzDVrMDd8x+OGeP6TXdtZs2AsAOMZCAbhFAQBULRp5opgpoy8ykfpDPzDmsyt305/d/7Vt1HN2jR72hQBEsRgkoF8z1mnU0fRj/Xfl4/S40vzawpVHfdaP2zopacTYzdWWj+Nc+zRDPs7gWiTPUsv5OKOf1Wv4Z+x2792f389fPjojRAfycVpBSGh3N3/UqhGlj08quHHjRjXk4/y+7o2P2a1toauehPI7lI7ophP5ONdqMXFnqy5wp1rycW4V6rU5ayLnZk4obd2/zdODOpGPk87InMG6wBxWTebj7DDsorfgrxifXbY2Pn/Z9mypU/k4HRmZV7dmmKeb+TiSjJ39PsR3Dy+YExE/9NYg2xrOx3mqx8S5Q3o1zbkqzcdZkhSa7ffCI3iecMIVX/dzxTqRj4P4ELT5OEARon6qP+v/g3yc3x/kDtg4pVP4xPjn91iszNgazsfpqH+aIR/nXm3axVKt5uPENwtdqLAe5J3+Luum7/zYDK3n4xBjcy3kmDhD5GhzTPT1SQulWsrH4f6exR1lkey9f2loaOsWdWtrPR+HqCO0gNW92kxY7a5drTq3pvNxOHRqbORRoZMwbLPfviPhoudPB73F75T0ToZnJwNlPGki+YSpBtsXrfyFcik8PabazUl1UZ4yZfNgzbwE+A2UkrdSmJS5e60rZ32d7FuHfvXbSzs+8k6OOpEkf8aRQIWFqx/FopBK4rmnCkql6mnExkltOKz856dYrEZ+8C/h/OfwNpxDW5+fMosUiADDBPxgoNdTsMchbFWyMoCOlRqfSXNUyXbVn0mzmJ3aLb1TPd8jhRb7uobVmqV2Jm32hw9N027fDkxPfDaoWUvDcLUzafM83vF8NweGbXH9t42lvv0StTNp56MPhNxxXuy7pyh+juNFt1lqZ9LmWYa2XRKYEbCm1e1h2e0Pl6qdSbs0JOYep9Xn8M3fJsyo73/HTe18frewK2cWOxQGZfTvLVvSbFqeWrOZeY95p6PuSDl5okbdDkRu8gAkI5S0tNlj2/hpPXw3p0rur8hxhGftjFFS+z/X/toYH8LZaDVr0GrjO1MByQQlHZVffZBsci10xsqiCR5nGuwEJFOUtMAz+e+FYx8Gz+ct6NrAQR4ASHVRUv36LVp31GP3ypvy/Gpw/NAZgGSGkqaaRI3oGcIP3PygsInc3/MyIJmjpGHD2Bv/juwQMH9uzoSXo/5cAEgWKMnzQsihaSERYdOdpNZDxh4fCUiWKKnttvj42x0u9sqrZdBrVfSvUECqh5JcTz063MrjpPfsMVGxV5cvuwhI9VFSUbN20/eOuBcw+bevTa7MNhkHSA1QUtCBoJSlJQlBeY+Tm2XVurMfkKxQkrR5e7Owy7t9so6WXBk8oFECIDVESX9HHi29e9XY56Cd0ONbryNDAakRSoq7eMO47ZpszuHmb9pO+cdzMiBZY4O/+jQ+eOpP7szfurD8h5zqB0g2mLBFW808stTQZ9+OS89O947/G5Aao6SOfcNNRxz2Dtv1+681KyZm8wCpCUoyi1trdWFCbOCRSdvPL9BvOwWQbFHSyw4l32JePQpbPfHBvjMRc7sCUlOU5Cvp+HXlq0T/iRktd7/9tjMWkJphXL4j+HZ53jHflYYTXk04dnYmINmhJI8r5o1S3h4IX3vaZXyTus//AaTmKGlre+tXJ6/X8c1o0VFs/ek8fC82Sir2K7QqPrXYd2u34c9qNTwsIx22tGfRHLZcWr9Ts2Kb537TvK2avB14cagWDlsG0qmohvH787JPneMs3/pkzPmm43Lwi4mcFKlIwqfIIKBrTOqA3qHK+URKrcuTeCIRUEJoFfsKpgwQFRTl0MjrnCihgn5JGogFg4xP03QhjXDmsEqMSN4vYxOIsoxK5UAo3619nbp7nW2LubM+XIgz6T3ylxYTKrXs5MIitd7GdHt6NjB10FijbIBOfYDDJEPW7vgCWKZXIhciKRRgfEIRbLqskhM28KDYPBhyxVGi+Hdc00u/DVjiN9nerO0tz99b4LdAVd9D3gItI2k7koVwAYlhgOuskU7sV5PT9TRsG+qCTjR+GbsUiTwFiF9GCNjAAVG1YaLfK/311E5ScGN9SOanL4/te55KIayWo4+lWC3HKNrmnqULKuz+lBvYroiwk3ZMNQTOHkvswRatBUQgKcHq03DP3k/ZV3xnNzs2ZvXYr4mVTyPSAliIqNOCBUQdtT9BrP+dPtDm6QOih15tpw8yTU4znD6wMtHIVlbw9MHD9JQNKdenB+2t42DXvLXNBC0aS6IG0sLpg9kQIdpkbb6JRsbyPz19sHqesN2qtcKwPVM9op80bL+qxk8f9GBEBciNju6UVN/pgyl38pz3PU3tNW9tpvmqi5ErdOb0wWtjJtYVGuuoO6Pl0wfPG50WL9ni4Dcz+ESdRWtPXK7h0weIlqFNHwdaptpOH5yZnL0l9IeR/8I7H1u5P4920IHTBz0YwbEy0Sznq1KnD4b329C2f+p335UpBg/qdn+NrwFSc6cPkDlNixCY06jfFsyi8dvOLeNxf3paB07aYGf4suXYI3hvFOlZF+nPrfjCgS++ZSTqCYMIMR78CvyuVPW+ikDZovIKfS/UdRtfIceJuH5JPW6yF41RNAgDFa1PK1u7kFwlb8CBj600W1aoUG9JyZRpDrZeEt/1BX81X8fe2IawyQ7vpthkRy6X5ykR9Z8W+raIIEBSKiFkO3FY/q012juzQQDC5MKRL5QB8QV0amN7fuCWiSbjXDkZgwpj77U+jq8RbOyP3UyelmWk8gD7p9/cU/sHZARMvNpcdKNNSGUPtEPAmjICBiSqRpwopc2An+nAovtDPtJpxMBLU4SXDFrVd9aO1xmdUjgH7ROOb9od/6U+chgHMIOTIpUJVFt3iFPr4xvpGN22cg4wgbUyi3lznjWeETq3w7MhV3rnH9QCay+0YmLtuhpiLZV/nKFZA7jy+5cGupvdrPPM2Xe6RZ2gr+37p9VY/1KWK6qTYP9SKSm+dUWmGGoYe7FoDKPvNev7o7rs8t42aKjNrH6H8aWBrWDJTQVc+oTZuAK4PyzQoOuZm58kCUCuLPyJPIZf9hgkOCxrdsYHQlIhi0jctit/wCR2UH5Kg0WFEgsAerEvRRO0GCD8BRaVPavnw1UDBS43wFK+0NuQiNmOWAMvgJ7yEB/8SanT5HA1WjJaQHMC52qAo22H6EUBc5vnzRTtCbXA6xikFypFizj0ern5F+b9rDsZ9fDb0c355zpZx/ZaWJkohjDr+1K0/cpqi8Bc2SXh1mrsV61uxUnEckFcMiIesIUE9epm7c1JKX2GngzMu+7Xdz7vYhw+q6DsueTwF0esihNNCGyDqWC75YLAhqqEEDqVcN685QePzpLQqe/fhrhe/Z1DbBgsFfHiBOywZJGIQhfQOcwu2H1ieB+UWaF4FE8k5CuFfLRQkciWgDBFVnFNQNylZxgnVWNjNbIGXrKlBd3mWw5E17yyc78RNGpI+0MFbNcHlSREjBKAnSfWjUoovhq24M2YwLNPDI7h3WfkQWT3WXm5vOlMzErQgstgBJFLp3IZYEHlR+a07nMFkbNVISfDiRoULUr4FgWsTn508VLwIStX7ujjb17iU7VRAaHe0sFTtd6Y3BGRJAa0Msyr1cHCBmoUlSoVqOPQUi1nxzUEuLQCkSv8jNw1MGgYdHITBDJCljD8U1nF3QgxkJCx4BEgqE5Vspo6eZhgmCozSSrJ1xhXdBaU+FAlFbohs0CjhTAbZRtT6CsgtgoTfT4lFJP825vcMwnwKzi0W5awZLw+YWMCvhXFxgRyuSqgQEScFgog4qih4rJoDJXO1K0nakvttPCpgrL1VuZo0jpl2fqPZhjkoToPOTE3TjuQ2xx0aXOtND5k1a0ZVu2/XXiqBcgLGzBBvq4BBnkYHeQaZ2VaYJBXQ1YmRRIllpVJkUSJZWVSJFFiWZkUSZSqrExyEiWWlUmRRIllZVIkUWJZmUODWrxsePCZ9wY+l9ffau40UsobFF5K6SOmX2oh5S2cjv8tQgpd7u8wCdioz4+98cISz/8GysV+P5FEDt1FZAOH7JQb0My2FgFC2LInEfa4UT4ACSlhnImmIVRse5+YclruEEngUH1Ig+NRH03BJLtFtXYN20EqTDVau7ZV7rYhp0EkkDUAD/ALfV7QQ9/fr9hnzvCetpgXc+bEhQ2V2Wur2mXsIrg/aoqa3RLSAXsQVuebUvrhdFg1VKVEqGNFidJt47wpD++14Ezhjv076d0OlhbTIib2Dft0dkNKwCbJjKDpvqkntICSghGlrqbkxQcmP805AptXyGRDMMOmHAz1sNwz+q2SqT8OdOcJHnKW2SedsVypuF2D+7mw/SIiRJQbcsdAGFxoqpkb2061ewghilOrWQEtEE43USdW+rw89efyrUFTeMevWIwvma8Du5YQpOWMIClMNdvXbe0vVL65aqmqTGSQjUV6BWX668zh66P+DF66JPCvq+y1+Ip7RthzybuIKkpVoMNlRKeVKeYYRbBoDOOrfmFcfbdvfovWXghYHR48kLwQT7aE+jTg2uP3c1WpbqMlGpWNIx6wqOjeQEU7H8OeCmYAtgtUC1AsANutulWwTZvavn8Dg9Rdvgdn6+++2m7eCfxiJ7IfS2PWccTytDhRxVW2Yy7Q044QrAgqGcsBrjnLTCNbZ46AJQAzjR6qn43PX8u0zvde/KxB6LKeInxjdmMOuJcaKDVSNbsEECYgNQww5dfVzNiVv4VG3GuusS00qGkQGYFbaKROwlJXBBpUD/Wm00N+bS64eU5+yM0JWP1O4dm4GXEdOoknZSvXaSjWy+lc8zbK+7DdHuRcCo8tFoyGlwQyYRxqICukloiHuxhGSLVSrkau6C4ZLErABrheovLJ02DOE1sjRWWObEMpF3fBcCjfcoxT3pkrp7cF56xvc37Jxi7ueBcJeQDZRVJeLm/OEc+5VXZ3C8CzG8JTl2rO5YKQZTZbo2wSM+V4mAp9jV82dcfl84t8DqZxTl+Krj0Av/unvJ+8+4deLw+fa7nnJgiWzAg43OxF5+lPxSIt4MNnxAeIT01kGBghiRujlED0YBH/aFYJ3CyKJ0sQKJiY1mlF4+yevdeG7rOut2Y05yAhLUR5P5lp6HWtJ9fCBURGrrxurktcKTmKcUUj82WBKDypgI8qX0rGtLvkdXfPt+VBc2wiVtqm91qOZ0wocj+ZMeh1bTPG2xVVJ3CZkRSvpsH6zGzNAjJbFQZIYCESlofH2ZPNB4a/G+s/ycZYKn1WexQ+q9ZP+QByVi1GqApEejAiwmJjdr0Pi8au5y8I+Tioe7fgqR9/KoxO3vmA57HyGyueDNNDFWHgDTh7dKIwLhG4lfBsIU8uhxUNVFkxqPmvWPBBPKdNNV6yTCqva5In2hzNEyVlv3iDqK5H88rugDdFXQ1o7IXKIjXwCJNyJNTdXlcEmE75p9Q/Z4DbhcObZ+INvyGdY6MiVLPxR1JJIYbuVDka7HYIhhpprB5hqEQpy3LiDmrBfCC5cn0AlgKEP5f5lOyxYeMpESXa8xqtCgrjWgQwGyrAYC0mABg6mSPpJrPObFwRpUlLPa6J2xxa2LkqsGPaucqywzCPosM8bF/ApXOsQr+0gY27C1/2qoevGoX0k5eKhHHIsTCyIqVD2jYU+APAPCnAnSJ2Eu4pFdKTxMoUTMMiF7PC0yu6cAOD7JYAztlUCzdwjyKt5Wkz1Wok5jlh9sQkGOpSHC/hNxkil4P5mAwM4J+dq3fU2P/AP9ahZk4NijC6Hg3dNBxRLyQZMVJep3+wcjzIcOFHmAK3ZgFCGdA5MDsBSWbC84uSP0+zhlyN/HQseMrK4NgRz37HN//T8yHPDh/S7NAjzI6udaN7nHTvFryp2/AFCc8cFJVdMwGzowiy050qeyEaUHNbnlYDqbyVJbtIQZwEaGhNUBrgOPPI98/J/puDvn/I2bL0Ch4lXzJKvuWi9KKk+MDHdiu8MwduamL0s3CgFlBKY0QpuuVpVAZVssSY7aKsFwgdowoARMx6x9sw5aPINgy9XhUL3ojEfKVaaHJ0QZBC9Wnf/zJ9SiznU0361LkFkz69Zv8/fYryp77Rif0zm80IW/O5d48VNxKKtaBPiWWatKApWrVg0hQ/7Ktan67mbpjc+Norn1V/Zy0uODpguRb0KXGRQAsoAbFmQGmrfRXqU6INrXF9ikgMrT4FSKH6tB+dPtWZmIA4nbSTzNZJr/G7OX5S/72fvBPzr83po4WQwNGeKSQwUkHenw5yjZPZzDHIqyGZjaIGHqbqKWrgYclsFDXwsGQ2ihp4WDIbRQ08LJmNogYelsxG9NBIGWtQK1KKGLF6nhYy1qK1xmTTamTyf1ZHkqKoIsZk4p4/iSf6dDwhli3UAk8G0PEku+DRgGlPvwYfKNhzYMeIx/hzfnUieGKBiFyglU6xOfqwpfAOtSrTbLFEIVAWF1IIUhRsZXFWytcm1l2kGEpFtJ1pZJxMIhL1gRYLXlRvyErQhHvvTrrBGzDc9+gfpzz7/qj1nU4TGvWVC2RRYPjY17b2lyTHimCuFqwECwv/8IUK9N2BhwF3OZ6kbSCwBCvVS1qUduCwSpoABerpx0qb5mcSypMlCMVcQTzOAJoqL/eBPTvUrxsrr0dJpOpXCSVgezlw0v9pctoCATFCBs8NKoTKURlio6KaUDLe6GAxH5bdwuDVM4YX4daL2iXEVxehZYWVAQHsBCLkifxgLSg1Q6SQCXhJqt/1+8t4UtU9qKgOpBNVnTHLxCqgWlqqI8q/Fuxyui2TXebbYnZ5kM5jTiyvqrvLozFWTJh7W2GYD6bDXGMzacaqPjNJUTcXM5MUdXMxM0lRNxczkxR1czFf6FXdetmxv60MmtuYF92838hrar4Qd3FmVouoFkFrvwzq67fE0ZNkXKHWpxQkYjFeLRjXIXSc1NGWY8Siw9XWckzUhqnl2HKHqm45Ful0avqJp06h2aMattmzLx1faLVmWo7x2zA1cOnRRgf6JhUXF1dDy7EXb3bFzs9rErik6/xhR0p27tCJlmNWjNx57aAD3KmWlmPSK1G/Nf/h7JNtkM1zs/t5QSdajhU6MDFnuS4wh1WTLcf2f5j7Il3+yq9g+Eibz5kX8DnHNd1yTMHIPG7NME83W44d79vB4cH5pX7bG28/lBA8C7+jV/0tx1oxcu5H65rmHLypylqO9dzb+HmTM2P8Dm08ZtWq0zZ8ZbqaajmG+BC0LceAIkT91KEsGj/1v6nlGLEtRg23HJvuyNRyzN2xmlqOfVrUw+32t+C1nDST00bTP2u95RixuJkW2milOTK10Yp2rKqWY+Pe7fNd0HhkaPqK5Lsxi5s/13rLMaKO0AJW7oxYGTn+n2o5NoxOjf2vCP9/VISf2E2o2orwF7dlKsKf2LYqivDvrSdv2m3ztJCZCa1bXJtS31eLp821rCPhgsmjtkw1ywvaVksRfuOFs/1X5T7otZk16dqdUQmuNV6EP4MRFSA3OhM7aHbwR3tF+P/50exwY7u/Qmdd9XJZZHrujM4U4fdmZJ1NzbCu2ovwW98T1pcf3h04N/aXXbOrPW/WcBF+RMvQVlEHWqbaivAH2ppn3z3eO3CraML+a+bf8Nq5ZorwZzCCk9i2Govw65nfL7WSBIfMbpGXcsFu0B4dKGcBEfJmRAjMadRvi2HR+G0cn3ZOpV7XfHIf2G26svJtB3wdAeQQn1QiAhad7LMZ0eDcqWyLRFh2P1oLAyAukyQnJLJVTWM1qeVA7LBIO1py1QM1YkVz+4AjNNsJ4PsE4JtLdJOKAL5P21X2YJVV2bDAVRQLyleve/liyHD/wwH5Q1bzLi5fZF353l0EF4qoGCvpQsGyt+lOdF3ssoDsDnbSyIWqq5y+fEGCTEDtX976988ln76LQvPmbd81fXl3MeGEFHIjxQkp5fWqKPvbkfH96zrVtLOkkkwNHCU4ZKGEL4xjqG0zdufSyY7PzUKXpH+4PvxAsQAvq9gDyLKqolQFM8BkZWDGoXY64f6wNNmxcA0RSxTAfPHi4Nqpo7sXCFlBZJHkzPbwikuUyPjO7PZe8pEyBfILtbeanbe5aKXbi/CNHQr3t05w2oK3a/ALIhWpIor+l2WkqmBWJiOzRDXDLMLMgY/SyFttWLbQLU6WxcoZZtAd1lID82d6YUfeHHXe+9VxZmVC5cqGDu6oIodHPYtIdaE8OFvCnDTzUlFNzuBtneUeFDXqviZww4Y6Y2+LI8fWbNgLAGiKAXCLAgCoWjTyRDFTRl9kYvvd7tZX7rgFZv4cEpo9TtGGYMqq97AvBCC/HQMA/VLbYY4mj/XflY9DbMxdbfk4012Y8nEKnKs6H+fLs9ih/xb3DNtnMUqPe2Rubx3Ix0lzYdrdjHbRgaSCP//8sxrycTJu7l46KCAueEPEgE5WFy6E60Q+jjsjd4x0gTvVko/T6sui/uLlet4Lc9zOBJjF79CJfJxHzkzMAdqk5pnDqsl8nHqSPb0TjM2DNp0LStS/8NsQncrHyWBkXmLNME8383EeLurjZHf0UMC8bTt/WzTmWpcazsfxZuScTY1zrkrzcWZ04R9M6fGEm2vqljB16oxNOpGPg/gQtPk4QBGifmos6/+DfJyt7a1fnbxexzejRUex9afz/Wo4HyfDlSkfp6tr9eTjNNhidD36QWjIMq/X1rkPW83Xej4OMTbXQo7JdFemHJMY16rKx3FfOuVm9Lws/1U7s1cM2mnzXuv5OEQdoQWsujJiZen6fyofJ45OjY08KnQShm3223ckXPT86aC3+J2S3snw7GSgjCdNJJ8w1WD7opW/UC6Fp8dUuzmpLspTpmwerJmXAL+BUvKK/Qqtik8t9t3abfizWg0Py2jHR97JUSeS5M84EqiwcPWjWBRSSTz3VEGpVD2N2DipDYelDwtzNfKDfwnnP4e34UypZXfaLFIgAgwT8IOBXk/BHoewVclKPh0rNT6T5qiS7ao/k9Yow+5y609/cyfdcYhw/jrpvdqZtObzwoa1dTPrtalBR4s3ua1/qZ1Ju1H68513+52cjTK9uGWRGUfUzqTJ+/Eu1TMsDDnYOzx2ZfHoMWpn0nbdCJIMPNAxdOXw2wl+XcN4amfSHm6YE/jV+U345IeB7NRVj1+rnc8fxZLs+2w+kLt7Vi2bOn+s3qXWbKbbonOt/86d6r3tb4NNDVMyQwDJCCVlhv92O/Hqi4BF+4sK4sJPzAEkY5R0rcESzqrB/pzl+4ea9R55+SUgmaCk0EML3w9/EB624bPs/rrzEfaAZIqSgkxKZTx3HmfOWpmT54j3qwGpLkoyqT8k89/8mJDdJ/wnFSbd3ghIZigpffzdCSN6Z/pu2tmocGz6E3gMzxwbYdwcg+h6+/zXiurVffs9zQyQLFBSu+kDBie03BmyLuXU3KBV7ccCkiWmkAco7ofIF4TP+tuuj/lZV4hhPZR0d1m3kfGbB4astx7sMm2ZSRYg1UdJJ84OP+hQMCB4gzyF7Sm6DbncACX1H92p5Q9u06C0hoH6cwMtWwKSFXbX3seRq3/2C1h9P2pQ7hUFRL4hSrrvGmN4YynLf+Ha7jP/bb0oHZAaoaR585Y88PjSOGS7ufsMUfGI0YBkjZL2fZ0x88nZHoGrD0SFThq0ZRog2aCky04zmsuanPA78OQlN+z82QxAaoySxnqlWZ8SdPU9FN723Dr5/Z6A1AQlTX0Z4dh5+Af/mTlu3bdZ/3MPkGxR0kV/SZ87vw4ELLa03ZCzP6A1IDVFSXn91iy/MvO19/IJ9lHFiy9CYWuGSZSBaN6Te3Lv9Ea9f3T91S4FkOxQ0priFV6d0lsGb6v/xXfshHQpIDVHSc9W305M4XwL29cuzmv+mkmwugQbJZl5bhrnfO8650Bqo4QjQ1+8JR22tGfRHLbcPHPZm3v2KWGThiyd9/Bx5kMtHLYU0KmohvH787JPneMs3/pkzPmm43Lwi4mcFKlIwqfIIKBrTOqA3qHK+URKrcuTeCIRUEJoFfsKpgwQFRTl0MjrnCihgn5JGjxV40HXhTTCmcNq6qFZE4iyjErlQCjfzcDrxQHXlc5+ay9ta29vd1CbCZVadnJhkVqRB92eng0Ilv09NMoG6NQHOEwyZO2OL4BleiVyIZJCAcYnFMGmyyo5YQMPis2DIVccJYqO/fMHPjj50LdgcWKzsQ61P+K3QFXfQ94CLSNpO5KFcDVlhOuju07sV5PT9TRsG+qCTjR+GbsUiTwFiF9GCNjAAVG1YaLfKx3X6GLxlA89QvOntmrwbJC/FWG1HH0sxWo5RtE29yxdUGH3p9zAdkWEnbRjqiFw9lhiD7ZoLSACSQnWpl9fB26P/oM7a+cFzrmClvmVTyPSAlhNGcECoo7an3gWjf353+mD/+j0AdFDr7bTB8faM50+8G5fFacPXFIbPvVVzA8uuN6mvuPHgGAtGkuiBtLC6YOC9kzJ2hntq+X0gc2CgG6HmqZ7758U/U9w5s+IGj99kMiICpAbHd0pqb7TBxMft/s3z2mf715ZM4cFzfr31JnTBzaMrCvx0FF3RsunD/ghW91N0q4GT5M9y2/7kj+xhk8fIFqGNn38/7F3HVBNZF8/uqgogg0QxBI7KsXeCwFCDUXAXiMJEA0EQxRQVERUFFTsiKjYEXtDRAXXgl1xbdgVu66Kbdfu995kJmQqZBmS7PdfzvEcmctMJr/73n33vfu79wIro7XsgytDJnmkfm3skZ6//9mJzs2P6EH2QQgjOA4dtZh9YDe4RifRpXmuW+YN3fPNthjf21h32QcWjAiBOY36bcEcGr/tzEqh4EeP+q5xmxpXe9l8ci7eG0V61vk7C8p+cOCIbxmJesJghxgEfgV+V7R6X0VgbNHxCn0v1HWbUibHiXh+Sf3eZC8ak2iwDXzug7Z2IblKDnCM+lRAb8nN62ae/J783Ds+tvvN+TkX3xKC7PBuiiA7crk0T4lo/1jo2/IAAhRONQi57YCF89EodmaBAISNC2uRRA6GL5BTL7YBI/sVH+jU2WNBw7+b/x3dMBU/LZ2xm8nTskRUGmC7L36eFLO4uUvCvZcJH/MaWbIAWDIjYGBE6cSJUq4Z8G86ceh+yCmdhgy6NEJ0yWBVBQUxY9+1ve2z4k3B2Wnpj17URZJxgDL4UeFysSp0hzi1PEd/68FtyucAE1S7/nbenFXHDnvF/bnNfMqvgN0sqNaBUbUWOlItlX+crFkDuNL7l75Iruy63eyDy8GtQ3q9eiE30Vn/Uo4dapNg/9Jw0v7WDpli6MIYwqFZGB2v1r87sdteh+3DRlokDjyCLw1sCktuKuDRJ2TjimF8WKxB1zN7J1kogFxZ+BN5jKjkMcjmsKTZmQgMkjKtiMSwXekvTFIH5V9pcKjQsDsA/bkjRRO00WDwP+5W3lw9nkANFHjcAEv5Qm9DFsa1xhp4AfSUSXzwf0qbFgFPo2WRYpoMnIdTZ64f1zWbnxNbc+zZy0mFeBuD9EKlaBGHXi/NxrSo9andqO/dHDfcnNf48IH1FiycTJhCmA0cKdp+pbRBYC7vkXBLNfWrTrcCZWER4sAJyPCALSSoTzcz+y+pc/RRLdc5BunzB7zg4CuqG5U8l7z9xQkrIqMJgW04FWyFtghsqEmQ0JmEcybNP3ToKvOa9f6tp92VaXxiw+BwqTBQzPWeIJVS2AI6h9kWuy8M3gfHrCRsolAqESkHeaREEcKVgW2KvOyWgBilZ3hPqsbGamINvOTe3eiCb+kQ3a7lnfvmcFFD2h8qYLs+aCQhYjQ9Hy/4drlTnTezifeYbqu9X+PdZ+RBZPdZebm06UxkJbDgMnSGyMVTuQywoHLNbrTucxmRs1IhJ8cNNTi0KOGLu2FbI8HvD+/Mu5aDIut3WoynaqMDhDqkg5ey3pjcGhlJDGgd7qpVBwt7UcOA6HCxOg7N1Tg7dp7ApRVL7eDfRNi5uo2CTm6wWE5gCcOf8hpuc2SBhIoFjwCb6milqqmzKAgLU3kmSTn1OtoOnQXFPCpSoT0yCzQ6CLNQtjGFvgKyVmFDX0QJhaHxsoif3i8Eh8R7fW+bvnhICEzAb0URmEAuVwQUyBCnhQIMcXShGsuhWaj0pm490Vqy08KnAsrWO3RlKlvPVUE+Tu8hJ3Lj2IG8xflpX8Lq/nSafn96+sOimCYsQF7ciwnygl4Y5FI6yDVmZdbCINcCK5OCRImxMilIlBgrk4JEibEyKUiUGCuTgkSJsTIpSJQYK5OCRImxMmf/NttVmHnNOXdHQR2zxxdHkChvcPBSjj4i/ZIFylsonf6beZ6wvbu7hstmA9GY6y9q4/VfT3nY7ySVRUB3EQngkJ3yqjSzrZmLBLbsCYE9bpQPQLaUcJ+J0hDKFt4nUk5LfUUSOFR/pEF6FLczmGSFVGfXsB1keieNzq6tlNE2JBtEBlUD8AC/0POCLOUDMxOHRzjseX5iqvkw+97libVV7DF2AYyPdkaX3WJSgj3YVt/pROmH02FlpqJEqGNFiZLRpW++BgMHOy3OqrtgdZXUhizSIqYP8P50elOUyxbZHLcEx+hjLKAExgwDSqJOmjVpt/HF5hUy2RDMsCkHt3oY94whVPK988SfcbnuWc6d4mZzJSd0GM+F7ReRQUQZkDsKtsHFnTRzY9uqoocQokC1mhVwBcLZJkpwFkzt2TL11QbeIolpM65VvVF6ELWEIJ3uxARSeifN4rotnSXKb646qioZMkhgkd5ARTZ4OnCl0R1BQuDgy/N/X3ERH0XEnkuOIqokFYFOFCM6vp0wxyiMQ7MwvhroLTCw/+K0dP15l7U+7kPJB/HkldCABtym+HiuiuoWKdOobBwxwaKssYGydj4Ghml4FwDbeaoDKA6AzaBLBYRpL/aY6ZNrN8h7+bUndXsZtCSU7kPisTTLOk5YmhUnmrjydswFdjoAguVLNcbSgWtu00Wjtc4EAUsMZho9VA7Vl4YOdTsl2CC4NDHHbt0AvCXig3upgVITadklgDAZMMJ0p7Nmi13pITRirFlnITRoaZAxAkNopE7C4XYINKgdktHZIafW5+17zLgvSHdZ+07Rw7IR8Rw6VBjOVZ7TUJyX07nmrZX3YdEeJC9FyA0TR8JLYrkkEF0gy2SWiMldDG9IdVKuJi5rlAwMm/aeANeLVD55LEB9l4dGhsoECUMpD3fB61CXCehjtsTgR0+n2XWC97n1HYb/llWQB5BdJOXl0uYcMc+tvNEt2E0ZwlOTas5lgC0Lx1MjNomx8n2YCn21Hfhr27MXjXlLCsYNaDlg3Sp89E95Pzn6h14vDZ96Deob9nl8QbAx5/uwWrP7tmcBn0IPJnzA8NEFw8AQIW5MVALRm0P80awSuHGAUB4sVjApTepwcnvPwl8O2QYffmRUbUOozqa8n6w09Drr5FqglQRGrYzWK60U52Fa0Wj5qoUYvHCxCDW+lIpRLDXLm2Q61/3I94drr6ePscIrxgu5n6wY9DrbinGwQ80JPGYk7Vdj7fmcPz0025BZqTBANhZSSWl4mIQEXRy/7DxvG0d48jV/QTSeVeukfACZVYsJKgKRXR5MiCg8sHU9nEOzru9a5PlxWK+e7rM+/lAYHr/1Aa9j5SeWnQzTW7XDwC/g3MgQSWAIcCthbqEwIgJWNFCxYtDlv2ybD2KeNtX7ksek8romPFF3lCdKYr84gF3dLvfyRsAboq4GXOwlyiI1MIVJ+SaUX3yq65RYD3d3182WD28Nu22BD+RWo3NsVAItL/4IlRRi2J6Ko8Fti2CokcXq7Y2OKGVZTlyiFuQDRSjPB2ApQPj/Ep+SO9l7CnVpG8J6rtOqoHBfiwBmQQUYrMUEAEMn83i6yaw3gSviaGKpxzUxzMFC5MrGnSlyVVOFuZwOc+8DLhfPcE44xQ617CV56VEHXzUK6ScfLpUEImlhZENKh7SVF/AHwPKkAHdKuaG4p5TJThIrUzC9FrmYFV5e1oMbsMkWeAM4k6gObmCM4qNXvrHqNBLznLD1pIY7tKU4XcJPqoZcdhdhY2CI6PT8SnnVnXPe1PcyblevAJNXopEb+SDmhTRGDJXX6R+sfB/kdeGfMG3cGrlI5MDmQHYCQmbC64tSP0dONrtw/IOfyyb5ojUWFpPxlNRKPPLs4JFmRyXC7OiaZd4/2aOH19yGzWa5He0aU94zE1hGAKqzPRV7YTCQNvTOVwOptJOlxv7iQBmw0Jqg1H77hnSjnuaO23Jneva6lNkXj5IjGSXHUlF6NUC+aUOQreOOAk/RhSV/hLOAEhjWDCid98pHx6BqLDGyXZT1AqFjVAaAiKx3/BqmfBR5DUOvV8SBNzJiPlMdNFnbIkih9jTiX2ZPieV8tGVPBYz21PM/e4rqp8OB6i9yOl7gZaYOWTensGFTFuwpsUwTG/ZUwGhPBRVtT1PqPY7fumeR2wG5ZdWxGZXasGBPiYcEbNhTT0Z76lmB9pS4hurengoY7aknZk8VdPZUb/YExOnEDpmtSyXLd/Ocwp2zPjmE7Lo6z4+FLUGaJ9OWIEYF+QQ6yDUms5lgkGuBzEZRAw8z9RQ18DAyG0UNPIzMRlEDDyOzUdTAw8hsFDXwMDIb0UMjMdagVaQcYsTqeSww1iaypmQjLSr5n9WRpCiqiCmZGPMn6cSATifEsoUs6CSSTiep2Q+GzH782T0ne3/O7nEP8ZuqKr7CMLGUXKCVzrBZ87jh8A61KtPcMJlCrCwupBBHKbjK4qzUbB1C3UWKVymLtTPyD5TLpFI/uGLBi+oNWQmW0OZa41jrO91dExLezvActIY2t9lwQIRYHgBeH/vYls6yCWOkkKsFK8HCwj8iiQL97sDDgFGOothNBJVgpXpJh9Kt+JzBfGBAezhxYmc71fASyoMlYQJxEG4BNFJe9oM9O9SvV1deD5CFq18llID1aMV3G8TPr4WA6CuHeYMKifKtqmFvRTWh5MJI9zARLLuFwVupOrwIQy9qlxBfXYqWFVZuCGAnEIlQ6gRrQaktRAq5WBiq+t1gkFwYrroHHapRdENVb5ZlYhVQlo7qiOOfhXX5M59pXS7kY+tytN5jTiyvqr/Ho0m9mTCX9sYwn0SHucbLpDFHe8skRd1cbJmkqJuLLZMUdXOxZZKibi7mCxWmr+jzcfZexx1J9QxChdW6q/lCnYvldYyMtjgfKt45LtvqRmXS4gqtPnVrSEIxXhYW18l0mtTTlmPEosNaazn2oD9Ty7Ha/Su65diHVSYfu53Z55PUefi3zLih6/Sg5Vhhf6YGLrv660HfpAcPHmih5djKJV4jTixI4aW5vpqQ8yTqm160HEtg1M5ofdCOVlqOHfxaL/Zt0A6vfTVfXu/ftw2evqqrlmPdGZVTWx+Uw9Fly7FrfflH9x2ozEudOe/XzmC3fXrVcuy5L5PyjvrqT6Egnbcc+54beqnZ1Vlem/f4dki/GBSn45ZjKYyaC9e55uBNFdZybOeIZit+v/CX+97RjZ7t/7DLQC9ajiE+BG3LMWAIUT81hkPjp/6bWo4R22LouOXYdz+mlmMb/LTTcqzD0rN+spo+/Jz47J7zr4bdYr3lGLG4GQtttD76MbXROu9XUS3Hhq7MMu6/qZ7PbEObkWYb121iveUY0UawgNUGRqxi/P6nWo5NoTNj/xXh/0dF+IndhLRWhH94AFMR/jv+FVGEP39hm/uOVUNdDvw57vPagAX4duvlyzZn2UbCA5OAAKaa5TYBWinCP3BO2zPmG+u6zekvqlE3sXctnRfhN2BEBYwbvdk7aJb4w14R/rpG8zL6u3vwt4VmWo7bEII/ttdlEf59/kyqS9KN6rRehL9TQEN+8DBfr7jqqz/WPTLGScdF+BErQ1tFHVgZrRXhX5gqsIp5nOqWM7Tql2V1ruILZummCL8BIzjA2GivCL/prGZfag9Y6T3P9/KnTvLn+HI6uivCj8xpWoTAnEb9tqkcGr+Nz2vb7lefq7yMe423/LH6LaGOAJLEFy6TghWd7LMZ0uDcpSREIim5H62FARCXyyYEh3BVTWM1qeVA7LBI+7bkqgdqwrJy+4AjxBkI8C0C+GYQ3aQCgO/gAeVNrDIteS1wFcWC8qt/Wb+mXi1JL/elL0IOXS0YgGf0/qPeXQQXimgYy+lCwbK3nwfQdbFLAWO3YIBGLlRN5fQViYPlYmr/8kxcz2PvCp84rUswy721vtiVkCGF3EiRIaW8XhFlfzMYv3/sAF07S6qRqYGjBF9ZIhNJAhlq2/TNcJ8xx9vfY4mpwit265JE/FjFHkAeqypJRShjMKMy2utGGUT3h6NJxMLOM0ymAMuXMBCenVq37wO2rGBnEWrD7dAnMEQmF9lwO/aJGC9XIL9Qe6v+M64V5p9pzl845NmL4ptnZPh1DX6AvyJaStH/skRUEcoyZFTWgwB9mDnwURp5q2YlB91hE+RjIhhmUNxdIzP7MT5O8YfSF/u+79qyPFvl8m4d2qOGHKZ6FpDqQnXgbz02QDMvFbXkDN7WMfM5IsPqRbwDSTOzerl9nqnbbS8AIBkDoJACAGhaNPJEsaWMvsiEc97j2rMO+Tgn7r05dE+j/g10muwLAWjBBMDA1wGYozmN8+/i4xAbc2uNj/N9EBMfx2ZQRfNxuFsjJ+/PK3Rc/+T3P98WTjmuB3ycj4OYopvnB+kBqeDUqVNa4OPcGlUpu+uAkc7bbyv21gx+E6UXfJwNjNqJ0QftaIWPk+fDGd3Kx9gtsUnsrqYrRgzVCz5OAKNybPRBORxd8nH6X05+cvSUk2dseqfEg7t2GOoVH8eAUXl3Bura2dUjPo59TauntbblC2Y8etJ07uEePXXMx9k3kElzSTrXXIXycWw2ia473VjtujRz/qrkEXvT9IKPg/gQtHwcYAhRPzWW8/+Aj/N07c2QKP4X7wNtA/ssXBcXo2M+jsEQJj7OtsHa4ePEXkqbuuRUumtS1JIh0gMdt7DOxyHuzVngmHwfzMQxuTq4ovg48094riyaMNwla0Nw65+/Hc1gnY9DtBEsYLWNEav4wf9TfJzpdGZsfJ6kncQ70+lAro/02eNh+Da+Rv0nwNxJV7kwPIScYapB+KKFsyQiHGaPqaI50bbKLFOuENbMC4afQDnyjHtsibG5c42fE20enDvyBf37kSM56kLS+KvuD0yYj3oqFsWoJOY9lXFUqp5GbJzUms8JcQOj0twJ/iPkf45tzXcLdss39hdLgcLEIndg16OwxyFqVaoyjk6VGuekWavGdsXnpC0e/zXyt0YDvVcmre47fdqpfmo5aae7LDp8v5orb3tXs7fdem15o5aTVitojonh2fO8OT3tk190ahGrlpPm0vPX739+3e61qu6B+Xen94tQy0l7UP/c6NB9bXmZv7ew/rxiyR61nLSWsl7vKs+YxktfmC0JzHv0Ui0/v8XOpwZX/jrrOm927veCqz3XqzWbMUu94jP92iiP2Yc8f2bmfukIRIao6FDNicXZfc7w9/V7ZC2IjO4MRNVR0atppvaLG3V1SJj993Tep60bgKgGKvo24/N3t65LnBYftH168G+3QCAyQkV1TzYunp61WZBocM2134CbO4CoJio6m7q42rdOIrf54mpHXqd3/g2IjFHRF487HoOmZXrsrrZ7y9lT+84BkQkqSk5/XnhSfs1tXYLowZ/G2+8DUS1UVF2yYXVc7nefNfv2Ptl75S58jdqo6E0Dl03zj8Z5pI+8U/XRChv4WXVQUetnhttq5WZ6LO4UL16efC8EiOqiopP+JjeKO5912FJH+nxowYpQIKqHikYlbZzL6WPreDjv7bx7ftY3gMgUFcldz9/b7j3TcbdnrWV+X+rVBiIzVHTm/LE0xdmW7slFee1erUkfA0TmqKhKaK+84uRdrhkWjXMm5vYKAqL6qGi49ZyVI5et9Fm7/FZY/ZMfTwORBSr6tHx9/8/vP/ms3uZm6zes4XMgskRFrg8GHfO8luE+6363U5967OsFRA1Q0eZi++m752xwnb7q54r2bQLhXVaoaEG2kWHHbZe8ZzwZ233k8NMmQNQQFb2THHz7qtdZftzcTh03/pjjCkSNUNEjK5PGt64VO85q13Rvv1d1jwJRY+x7dZjR89OJON4++3iztoODlwFRE1TUrf3dQVaRFt4LJ/d6devureVAxEVFjk9CY+Urz/vMnLa17aHbTS6Qki2bcmiSLdOKO943m/eAtzCwScfnSz/YUJgNTZMtZ9CZKLOggztTT57hp20rmnSuYUw6/jCRHxUulYkoGAR0jUlboXeoOJ9IqfWIUKFUCowQWsW+jJQBooGifDXyOScqKKNfEgv2glEj6bqQ+sI+biM1awJRwqhUvgg1Hz95aY2NOT28d1y6FJq67mUWi4RKlp1cWKQ2fCRdTM8CbJbdRmrEBujiBxwmOXJ2JxLDMr2yCAlCoQDvJ5HCpsuqccIFHhRXCLdcgZQobuX12LjKSu6d07laTsrNmNv4EKjqc8gh0BIR2ztZCBeXEa7PI/QiXk2m62nYNtQWnWiiEnUpQoQKsH8ZJ+YCB0TVhok+Vpo/U3Dmd+t1vJ1PHdPfOTovJ5yWo4+lOC3HJGxrr7YtOtidKQPYdshgJ0VMNQSuKUbswQ6txUQgKcGqvLC2ze0qVb1W+HCyr18QVik/jYgFsLiMYIGhjq4/8Rya9ee/7IN/lH1A9NC1ln1wYhRT9oHzqIrIPrjwpNjidvVmXqu/9u7WqOY5ExYXS6IFYiH74PAoJrL2klFayT4obHgx+nlnqevKttJBx16HHtN59oGUERUwbvQ0UqK97INlGxf+9fHTUJclj1KPyr5F4s9VdJl90JBRdR9H6qk7w3L2wdBU8wipaxXBnOZDayRue9Zdx9kHiJWhpY8DK6O17IOWjQV1kiIEDkcm3v5Vc6ChVA+yD6SM4DiP0mL2gXmkfYcpd+64Luy8/7zRQoMjepJ90JARITCnUb9tJofGbzuzUij40aO+a9ymxtVeNp+ci/dGkZ51/s6Csh8cOOJbRqKeMNghBoFfgd8Vrd5XERhbdLxC3wt13aaUyXEinl9SvzfZi8YkGmwDUyajrV1IrpID0IDF5AroLVnkOE16bfxW75lVTq8cmfPeghBkh3dTBNmRy6V5SkT7x0LflmQIUDjVIOS243NCJmsUO7NAAMLGhbVIIgfDF8ipF9vMU/ys6VOmOM383fPy+tu3puCnpTN2M3lalohKA+zIJf8736o4ea7q0XjPqPZtTVkAzIERMDCidOJEKdcM+DedOHQ/5JROQwZdGiG6ZLCqEWaKUQlP7Rx3rrUq/H756du6SDIOUAY/KlwuVoXuEKeW5+hvPbhN+Rxggmr93bZwRvTO8dx73aVt2CwvBxZUWzyJSbWnJ+mPf5ysWQO40vuXfqjmvyTNyNk13sG+2YqaB3x01r+UY4faJNi/NJy0v7VDphi6MM7i0CyMjlfr353Yba/D9mEjLRIHHsGXBjaFJTcV8OgTsnHFMD4s1qDrmb2TLBRAriz8iTxGVPIYZHNY0uxMBAZJmVZEYtiu9BcmqYPyrzQ4VOCKAejPHSmaoI0Gg/+5qLy5ejyBGijwuAGW8oXehiyMa4018ALoKZP44P+UNi0CnkbLIsU0GThnj2+M4Z5J8lh5WbymneeoJ3gbg/RCpWgRh14vzcZU+/7TQPx1qPMC3rveRQ/55eVfwI2cBYTZwJGi7VdKGwTm8h4Jt1RTv+p0K1AWFiEOnIAMD9hCgvp007Pei+NmThs81tQW8e0ShtfDswpKnkve/uKEFZHRhMA2nAq2QlsENtQkzKYzCedMmn/o0FXmNev9W0+7K9P4xIbB4VJhoJjrPUEqpbAFdA6zLXZfGLwPjllJ2EShVCJSDvJIiSKEKwPbFHnZLQExSs/wnlSNjdXEGnjJDiK64Fs6RDewvHPfHC5qSPtDBWzXB40kRIyaVOWzyuHP9UN4yyr9OvqtseQp3n1GHkR2n5WXS5vORFYCCy5Dd4hcPJXLAAsq1xbRus9lRM5KhZwcN9Tg0KLuczjjUdGTazNcF93x/8T7lfMVT9VGBwh1SAcvZb0xuTUykhjQOhqoVQcLe1HDgOhwsToOzdU4O3aewKUVS+3g30TYubqNgk5usFhOYAnDn/IabnNkgYSKBY8Am+popaoptUxcmMozScqp19F26Cwo5lGRCu2RWaDRQZiFso0p9BWQtQob+iJKKNqkG4RulM10X5GV7T8tas1OQmACfiuKwARyuSKgQIY4LRRgiKMLVQKHZqHSm7r1RGvJTgufCihb7xzIVLa+hQryOXoPOZEbxw7kb6VLVlc3HOK0r+jr6Nb2wz6yAPnHECbIr4ZgkM+lg1xjVmYtDHItsDIpSJQYK5OCRImxMilIlBgrk4JEibEyKUiUGCuTgkSp6ppEJlFirEy7B/36zBtf6LJr2KxYy/5ePBLlDQ5eytFHpF+yQHlLpNN/M88Ttnd313DZbCAac/1Fbbz+6ykP+52ksgjoLiIBHLJTXpVmtjVzkcCWPSGwx43yAciWEu4zURpC2cL7RMppqa9IAofqjzRIj2ohBJOskOrsGraD3DBao7NrK2W0DckGkUHVADzAL/S8oGn7Gp0ddcLEO85tZ5O9h7cuKU+srWKPsQtgfFSILrvFpAR7sK1+MJrSD6fDykxFiVDHipoDsm53VjvPzS5zT096596z+jQWaRHTB3h/Or0pymWLbI5bgmP0MRZQAmOGAaWQ0Zo1abfxxeYVMtkQzLApB7d6GPeMPlQyMPns6gutF7huvzfe3erFw7c6jOfC9ovIIKIMyB2F7RdHa+bGtlVFDyFEgWo1K+AKhLNNlOCs6ia48b7XUe+Ua7Hz+Gu6z9aDqCUE6fxoJpA2jNYsrtvSWaL85qqjqpIhgwQW6Q3U0RWSh9ntQ92z/zpsmnTx4lR8FBF7LjmKqJJUBDoxjOgEjMYcoyQOzcL4aqC3wMD+i9PS9edd1vq4DyUfxJNXQgMacJvi47kqqlukTKOyccQEi7LGBsra+RgYptFjAGznqQ6gOAA2wzEVEKZN7Oqx6fw4kWDtJd+rPZy5q/GHnUg8lmZZxwlLs+JEE1fejrnATg+GYPlSjbF04Jq3H6PRWmeCgCUGM40eqsGpTXvP8xnoHPdg9P7k5t3wrNfqfHAvNVBqIi27BBAmQ0aYHgg1W+xKD6ERY806C6FBS4OMERhCI3USDrdDoEHt0Dw6O+TU+rx9jxn3Bekua98pelg2Ip5DhwrDucpzGorzcjrXvLXyPizag+SlCLlh4kh4SSyXBKILZJnMEjG5i+ENqU7K1cRljZLBYTMR4HqRyiePBaiPnqiRoTJBwlDKw13wOtSFhj5POR+84i/H9SbnpEs39KmLd5GQB5BdJOXl0uYcMc+tvNEtAE8hhKcm1ZzLAFuWXRM1YpMYK9+HqdCX3cOPsza3eei8eeU+g3Hb6l7CR/+U95Ojf+j10vDZO+qde3H3y26xguiRsxeL/2YBnwRGfMDw0QXDwBAhbkxUAtGbQ/zRrBK4cYBQHixWMCnNtbokwmvSdV7e/XD7LhcWFuCVpryfrDT0OuvkWqCV7oxaqa1XWinOw7Si0fJVCzF44WIRanypt2NN8yq3GFedt2b09TuLllfFx3+reiH3kxWDXmdbMQ52qDmBx4yk/WqsPZ+TNlGzDZmVCgNkYyGVlIbH0/zRsoN/1hEkmLyq3qpbd3xqWzUn5QPIrFpMUBGIjGZEpMVEbF2fz6FZ13ct8vw4rFdP91kffygMj9/6gNex8hPLTobprdph4BdwbmSIJDAEuJUwt1AYEQErGqhYMejyX7bNBzFPm+p9yWNSeV0TnugElCdKYr84gF3d6AnljYA3RF0NuNhLlEVqYAqT8k0ov7jVnJstDmxcK0j4Ff45q+Z6PNe9Gp1joxJoefFHqKQQw/ZUHA1uWwRDjSxWb290RCnLcuIStSAfKEJ5PgBLAcL/l/iU3MneUygRJa7nOq0KCve1CGAWVIDBWkwAMHQyL6CbzHoTuCKOJpZ6XBPDHCxEru4omCJXhxUY5sl0mHsfcLl4hnPCKXaoZS/JS486+KpRSD/5cKkkEEkLIxtSOqStvIA/AJYnBbhTyg3FPaVMdpJYmYLptcjFrPDysh7cwNJL0QDOJKqDGyRGEZ1vrDqNxDwnbD2p4Q5tKU6X8JOqIZfdRdgYGCI6Pb9SXnXnnDf1vYzb1SvA5JVo5EY+iHkhjRFD5XX6ByvfB3ld+CdMG7dGLhI5sDmQnYCQmfD6otTPJmGNzTVWP3XZv7mg+nQ7aVecfirxyLODR5odlQiz46T7309qzjdwzN0713B3m/yk8p6ZwLguVGd7KvbCYFhDNjpfDaTSTpYa+4sDZcBCa4JSh40OcbOmLXffPnbX0jThzDF4lBzJKDmWitJfJr2aO32+7rzi++pL1aZYRbGA0gZGlGKi89ExqBpLjGwXZb1A6BiVASAi6x2/hikfRV7D0OsVceCNjJjPVAdN1rYIUqg9Xfgvs6fEcj5asqe+UUz29HPkf/YU1c/co+5rii8OcN+1xsrF7NO1lmzYU0KZJhYshVsUk6XgRlW0PY2XrH/du8M016WPLM3M3Dr0YMGeEg8JWEAJDGsGlAoiK9CeEtdQndtTZMTQ2lOAFGpPF9HZU73ZExCnEztkti6VLN/Ncwp3zvrkELLr6jw/FrYEgkimLYGNCvLFdJBrTGYzwSDXApmNogYeZuopauBhZDaKGngYmY2iBh5GZqOogYeR2Shq4GFkNqKHRmKsQatIOcSI1fNYYKwtYU3JRlpU8j+rI0lRVBFTMjHmT9KJAZ1OiGULWdDJUjqdpGY/GDL78Wf3nOz9ObvHPcTn+VXxFYaJpeQCrXSGzZrHDYd3qFWZ5obJFGJlcSGFOErBVRZnpfzaxLqLFK9SFmtn5B8ol0mlfnDFghfVG7ISLOGbM/XOt3jg6bxk4R/f25+1oWVSGw6IEMsDwOtjH9vSWTZhjBRytWAlWFj4RyRRoN8deBgwylEUu4mgEqxUL9GA+rbicwzGAwPaw4kTO9uphpdQHiwJE4iDcAugkfKyH+zZoX69uvJ6gCxc/SreChv4teLvqDw+vxYCoq8c5g0qJMq3qoa9FdWEkgsj3cNEsOwWBm+l6vAiDL2oXUJ8dSlaVli5IYCdQCRCqROsBaW2ECnkYmGo6neDQXJhuOoedKguoxuqerMsE6uAsnRURxz/LKzLGeOZ1uWE8di6vFzvMSeWV9Xf49E0CRPmMRIM8xQ6zDVeJo052lsmKermYsskRd1cbJmkqJuLLZMUdXMxX8hwUd7L1KV7Hee++3Sx0+ObDdR8obZjE7N+z3/jkf3Yr39YwdsWpMUVWn3q0DmhGC8Li+sKOk3qacsxYtFhrbUcS57C1HLsaExFtxxLaXXNcOjmmW57uvqPm/+4ySo9aDmWMIWpgcvoKXrQN+nmzZtaaDnmE+l3o6n0vU/876vmTJLNMtKLlmPdGbVTWx+0o5WWY0srZw++PPWiZ+73LpdC/G+N04uWY89jmJQDrInulcPRZcux0ErFaf6iHK+8F4smhSw+OEOvWo6lMCovXDfK08+WY1fuFrl9/+bmkyW99del9ZPX6LjlmBuj5rg61xy8qcJajvEC040C2ilcE371bGdqOdBJL1qOIT4EbcsxYAhRPzWVQ+On/ptajhHbYui45di2qUwtxwKmaqflGLeO3/i/ow7yd37luPgJRq1gveUYsbgZC220NkxlaqMVM7WiWo7l/bzfwvVlS5cVxZuHF7gNWMl6yzGijWABqwBGrGym/k+1HFtJZ8b+K8L/j4rwE7sJaa0If9VYpiL8SdMqogj/eOtfB7+bBXjNbXfj5IugLXgSWfmyzVm2kfDApHIsU83yO9O0UoS/6EeboCwbU6+9xjOme9Xa1FrnRfj3TWNCBYwbvdk7aJb4w14R/mGP1lhy+oZ4ZA3ds6dZFZt2elOEX8Sout66UZ3Wi/CHpUQ0qDavpsPCYbcPru58KEXHRfgRK0NbRR1YGa0V4bfPX9P6wR+DHRctmbZx0cSsqnpQhB8xNrTgJE3TYhH+NzVMhy+UFDrkRvbJ3TzlynY9KGcBERIxIgTmNOq3pXFo/DY+r227X32u8jLuNd7yx+q3nfB1BJAkvnCZFKzoZJ/NkAbnLiUhEknJ/WgtDIC4XDYhOISrahqrSS0HYodF2rclVz1QE5aV2wccoUI4PYsAvhlEN6kA4BsfW97EKtOS1wJXUSwov/rvnT5XbXfqkdOisRe9OlTbiu+y+I96dxFcKKJhLKcLBcveXo2l62KXAmNOsRq5UDWV01ckDpaLqf1LM9tbD57y0x1nG236PedZ4jpChhRyI0WGlPJ6RZT93cb4/VNide0sqUamBo4SfGWJTCQJZKhtszzziSAn9rNXmtizqMn7gU3xYxV7AHmsqiQVoYx4RmWE60YZRPeHo0nEws4zTKYAy5cwEJ6dWrfvA7asYGcRasPt0CcwRCYX2XA79okYL1cgv1B7q9W3Z930mDjXIX5Uu9kGk9z749c1+AH+imgpRf/LElFFKGs4o7Lc9GLmwEdp5K2alRx0h02Qj4lgmEETfjZpN3LWWu9Dlaq//P1Gjwfl2SqXd+vQHjXkMNWzgFQXqgN/wMFYzbxU1JIzeFtHJAaTNrba5H7E7GaTpmmxA3W77QUApGMAFFIAAE2LRp4otpTRF5loFrZiWrB5FYfE9nVPiARtH+s02RcCMJYJgEzvWMzRXMX5d/FxiI25tcbHuT6diY8TNr2i+Tg3X+WP2X7Lzy39daP95rsm1dUDPs4f05mim7nT9YBUkJeXpwU+zrhmR1KXTg4U5LzkcNq9Ss/XCz5OJqN2lumDdrTCx4lrmFDvps9p570ukjV7BQcN9YKPE8eonDB9UA5Hl3wczuO/Q258Hum1+tWdSpJawxfoFR9nKKPyXHSjPP3k4wxs3z1u5iGFa1aecdSPXnYvdczH6cioucY611yF8nHMQjv3Hp+f47Bm8MS+l8S9hXrBx0F8CFo+DjCEqJ+6mvP/gI/Trf3dQVaRFt4LJ/d6devureU65uMMjWPi49jFaYePc8l8xz3njbvdE/JykuYMkp9nnY9D3JuzwDEZGMfEMXGMqyg+ztDD1+vbbJrrvrrhzRvdHnw6wzofh2gjWMDKjhGrBnH/U3ycNXRmbHyepJ3EO9PpQK6P9NnjYfja9Eb9J8DcSVe5MDyEnGGqQfiihbMkIhxmj6miOdG2yixTrhDWzAuGn0A58hyfhMbKV573mTlta9tDt5tcoH0/ciRHXUgaf9X9gQnzUU/FohiVxLynMo5K1dOIjZNa8zkOsDCXuRP8hx+VQ8e25pv2VuQb+4ulQGFikTuw61HY4xC1KlWZTqdKjXPSrFVju+Jz0oYH1un9LOgkf+GDD+fWd1wvVMtJ43674nvvY13XNZYdMt2/zT+glpNmbDQ98vpPBW/N8LFdTeIbKNRy0nYcN7vzM63QbfG6XY2nHhvsp5aTZjnqUPfxvdNcZ/eMOSSRNstTy0njDQ5/fnct32Nekd3+qd1OBqvn59uEb46dEOO8pHG3KmMXTeSrNZsZZPLq9baOLz1WDBqcfXPR5OtAZIiKDHd+P7+vksQzxzK20ebcwd+AqDoqqjpkwN9Oa3P5+56eShgbsDMMiGqgojZ3vVc/mRPpszH95/dhb9qdAiIjVNSozdcP79+NcYlf5TDK2OTtayCqiYruFb3fGPF3IH+5v9HI3fc6wuICxqhI8OTZ8C0b4r23ndu4rPL5kNtAZIKKZvuYtL/tms/LWWoQtvJjlStAVAsVTap6cllc56MuaQsvcPcP29sWiGqjom4v8qPH+gd6b9rz/GubHvYeQFQHFVWqxd92t8F21+mu9QuvFm3JB6K6qKil25Ci2i5zfVLDWnt459S5CUT1UNHtrtF5nQZGOs0a7Zdo03zVWSAyRUVPDqbOPLnA2H3666bH362ush+IzFDR7kv7ZzVI6MxfsexVXO+qz+FXNkdF/c9kPo9XNPXYH7Xh1ckYgS0Q1UdFj7pO7OVww4u/x2q2afU2+6cBkQUqenUpwG3Mb/0dc9a0/ulwXgYHmyUqqhnz/kVK/2lec4+2HXs+a9ZGIGqAinYtqzs+4tJmz/hRBms/xJlDkRUqahJyp2df447eazssm3ns2kn4WQ1RkWv8wVZ7b7l5zbcy21u9yjoDIGqEiix2Br/Zemy9Z+auz2camPVKAaLGqMjp0ZyojfHbnDZa2PY5UKffbiBqgoo2KczrfFo+3yNZsaJZvcoZ8DW4qGjLnpd3fvIHC9bNS7Tuu67nCVKyZVMOTbKlyNTCuP2l+16LRo/YcmGgfQiF2dA02XItnYkyCzq4M/XkGX7atqJJ5xrG4IPT1fhR4VKZiIJBQNeYtBV6h4rziZRajwgVSqXACKFV7MtIGSAaKMpXI59zooIy+iWxYC/YM56uC6mvDZ9jEq9ZE4gSRqXyRSi/20hHgV99UWXehvuO9Vr3afmKRUIly04uLFLbNZ4upmcBNsvN4jViA3TxAw6THDm7E4lhmV5ZhAShUID3k0hh02XVOOECD4orhFuuQEoUAx99cth10tA7JX/Ec4c7333xIVDV55BDoCUitneyEC4TRri+ztCLeDWZrqdh21BbdKKJStSlCBEqwP5lnJgLHBBVGyb6WKl/m/XHvpvle+4ouDZ4cdGxvoTTcvSxFKflmIRt7dW2RQe7M2UA2w4Z7KSIqYbANcWIPdihtZgIJHXNodoxi6pu+puXdTGVM3jg0+Ty04hYAMuEESww1NH1Zx3nv+wDNrMPiB661rIPHsQzZR+ka7ZWljH7oPieYuzKX+/dDlll1K0WMSyExcWSaIFYyD64E89E1j6t2WL5T7MP3IveL+y/6obzvnmTWx6fJFquWxoGzD5gRAWMGz2NlGgv+2BW/OPM/hZ7vGIHfOy3J/T9Mb3JPkhiVF2UblSn9eyD1j5fPkxJs3TJ6bTSquDtmhE6zj5ArAwtffw0hZdSUdkH63+ENvu4eYfTvEYmaQ3vxeDPA3WUfcAITnq8FrMPOjb4Mu9Mtw2uh6ZbmFb1HvdTT7IPkhgRAnMa9dvWc2j8tjMrhYIfPeq7xm1qXO1l88m5eG8U6Vnn7ywo+8GBI75lJOoJgx1iEPgV+F3R6n0VgbFFxyv0vVDXbUqZHCfi+SX1e5O9aEyiwTbw8SK0tQvJVXKAFcoXVUBvyReB1r92dFnmNsPjzy4Lanw9Swiyw7spguzI5dI8JaL9Y6FvywMIUDjVIOS243POL9IodmaBAISNC2uRRA6GL5BTL7YPHG9e3/fxhiBDIJxRNT7kDX5aOmM3k6dliag0wA4cv57S6Uqi18xKB9u/OdpAygJg2YyAgRGlEydKuWbAv+nEofshp3QaMujSCNElg1U9verUVEH8cZ+9M64unlNTllcXScYByuBHhcvFqtAd4tTyHP2tB7cpnwNMUO2g+Lv1GgY946c5H+s34+nzz2z0MGJUbYyOVEvlHydr1gCu9P6lL6e1Smnd+Zb7nBEKv53zQmN11r+UY4faJNi/NJy0v7VDphi6MG7g0CyMjlfr353Yba/D9mEjLRIHHsGXBjaFJTcV8OgTsnHFMD4s1qDrmb2TLBRAriz8iTxGVPIYZHNY0uxMBAZJmVZEYtiu9BcmqYPyrzQ4VJg/G4D+3JGiCdpoMPjls8ubq8cTqIECjxtgKV/obcjCuNZYAy+AnjKJD/5PadMi4Gm0LFJMk4FjFWF/dHeHw45LauT9GG0wUIK3MUgvVIoWcej10mxMouDmx+8TO/LWPXp3d/nWvsNYOJmYC2E2cKRo+5XSBoG5vEfCLdXUrzrdCpSFRYgDJyDDA7aQoD7dTD/+m/GbgjkuWw4dmlcQP6oLnlVQ8lzy9hcnrIiMJgS24VSwFdoisKEmYSOdSThn0vxDh64yr1nv33raXZnGJzYMDpcKA8Vc7wlSKYUtoHOYbbH7wuB9cMxKwiYKpRKRcpBHShQhXBnYpsjLbgmIUXqG96RqbKwm1sBLbjybLviWDtB9P6u8c98cLmpI+0MFbNcHjSREjJpr7Hh6Q8rPzoKldz+fetC+Lw/vPiMPIrvPysulTWciK4EFl6EBRC6eymWABZWrzqZ1n8uInJUKOTluqMGhRQnfkBlW7Rs83OOTOCZpbcysVpF4qjY6QKhDOngp643JrZGRxIDWvVladbCwFzUMiA4Xq+PQXI2zY+cJXFqx1A7+TYSdq9so6OQGi+UEljD8Ka/hNkcWSKhY8AiwqY5WqppSy8SFqTyTpJx6HW2HzoJiHhWp0B6ZBRodhFko25hCXwFZq7ChL6JetJ5kvY/dft0l2Whj4xMPniQSAhPwW1EEJpDLFQEFMsRpoQBDHF2oNnFoFiq9qVtPtJbstPCpgLL16bOYytYnqyDfrPeQE7lx7EAurjxyX72vxa5xBgX57bMq72EB8qg5TJCHzMEgz6CDXGNWZi0Mci2wMilIlBgrk4JEibEyKUiUGCuTgkSJsTIpSJQYK5OCRImxMilIlBgrc3HauWspghGuOyZ99pL6j69DorzBwUs5+oj0SxYob1vo9N/M84Tt3d01XDYbiMZcf1Ebr/96ysN+J6ksArqLSACH7JRXpZltzVwksGVPCOxxo3wAsqWE+0yUhlC28D6RclrqK5LAofojDdKjkmeCSVZIdXYN20H6ztTo7NpKGW1DskFkUDUAD/ALPS9oUJ3iqX6Ojl5bbx8M80n/q7A8sbaKPcYugPHRmeiyW0xKsAfb6rCZlH44HVZmKkqEOlaUKJ0wkE6/b7fIJ/PH1tpBHYsaskiLmD7A+9PpTVEuW2Rz3BIco4+xgJIvI0odZ2rWpN3GF5tXyGRDMMOmHNzqYdwz+lBJYuiRtks9nARxdyaIY8Li7XQYz4XtF5FBRBmQOwq2wVEzNXNj26qihxCiQLWaFXAFwtkmSnBqxZ/p2Tf2l9Om9Hv1V9b3MNKDqCUEScQIku9MzeK6LZ0lym+uOqoqGTJIYJHeQNkEr+3jW9jPdUOdQat2teUb4KOI2HPJUUSVpCLQ6c2IjvVMzDHK5NAsjK8GegsM7L84LV1/3mWtj/tQ8kE8eSU0oAG3KT6eq6K6Rco0KhtHTLAoa2ygrJ2PgWGygy78eaoDKA6s8kg+gCp/mPau8ET/Si5Sl71RfypGZSXUwx92IvFYmmUdJyz1CJlg4srbMRfY6bYQLF+qMZYOXHPzWRqtdSYIWGIw0+ihivKs7BbzfA0/r/XmNrXbTB6Ft0R8cC81UGoiLbsEEKbKjDC90XCxKz2ERow16yyEBi0NMkZgCI3USTjcDoEGtUNb6eyQU+vz9j1m3Beku6x9p+hh2Yh4Dh0qDOcqz2kozsvpXPPWyvuwaA+SlyLkhokj4SWxXBKILpBlMkvE5C6GN6Q6KVcTlzVKBoZNQjLA9SKVTx4LK6sla2SoTJAwlPJwF7wO5bf8+qJHwmbLCNdlC+063N/9k9CxEXkA2UVSXi5tzhHz3Mob3QLwxEN4alLNuQywZQlP1ohNYqx8H6ZCX+PSxk/PSNzgseRSmGFuYrvx+Oif8n5y9A+9Xho+s3/ZPduY8dN58c3Hy7xvDdzEAj7DGfEBw0cXDANDhLgxUQlEbw7xR7NK4MYBQnmwWMGktNsN34xp+zDNa8lm+wNOr5tn4JWmvJ+sNPQ66+RaoJXOjFrh6pVWivMwrWi0fNVCDF64WIQaX0rFLJz+4EaL4FGCrUuXj8iY32ACXjFeyP1kxaDX2VaMgx1qTuAxI2m/GmvP5wQla7Yhs1JhgGwspJLS8Hge9Liby+s8x5n5joX2E/5wwLNqnZQPILNqMUFFIOLGiEjbZGxd38ahWdd3LfL8OKxXT/dZH38oDI/f+oDXsfITy06G6a3aYeAXcG5kiCQwBLiVMLdQGBEBKxqoWDHo8l+2zQcxT5vqfcljUnldE57oApQnSmK/OIBd3ekF5Y2AN0RdDbjYS5RFamAKk/JNqLtFPWxpOeGnsUvqtMeLN+4yPYIffHSOjUqg5cUfoZJCDNtTcTS4bREMNbJYvb3REaUsy4lL1IJ8oAjl+QAsBQj/X+JTcid7T6EeSoT1XKdVQeG+FgHMggowWIsJAIZO5u10k1lvAlfE0cRSj2timIOFyNWsBUyRq4kqzHfQYe59wOXiGc4Jp9ihlr0kLz3q4KtGIf3kw6WSQCQtjGxI6ZC28gL+AFieFOBOKTcU95Qy2UliZQqm1yIXs8LLy3pwAzbZ5pCqmUR1cANjFC8X5hurTiMxzwlbT2q4Q1uK0yX8pGrIZXcRNgaGiE7Pr5RX3TnnTX0v43b1CjB5JRq5kQ9iXkhjxFB5nf7ByvdBXhf+CdPGrZGLRA5sDmQnIGQmvL4o9ROwyDljWaWVnvEHTpyeHGSFHzaVeOTZwSPNjkqE2bF6/hPLw2fb+uQMu9p4iMHo8nZt4oDZUReqsz0Ve2EwkP5cmK8GUmknS439xYEyYKE1Qamo9dhPuVbbneevXJz1suClMR4lRzJKjqWi9Nl4191isa/L+lNzToZuLh7HAkpgWDOgdH1hPjoGVWOJke2irBcIHaMyAERkvePXMOWjyGsYer0iDryREfOZ6qDJ2hZBCrWnO/9l9pRYzkdL9tRhIZM9Nf3PnmL6idk4aIf7hz2eS++Mmvy9bcxjFuwpsUwTC5aiN6OlsK5wexo6vnla89y+jsuuh4cV9rHdwYI9JR4SsICSKSNKnIq0p8Q1VOf2FBkxtPbUVGVPd9HZU73ZExCnEztkti6VLN/Ncwp3zvrkELLr6jw/FrYEuclMW4IdqjOV3XSQa0xmM8Eg1wKZjaIGHmbqKWrgYWQ2ihp4GJmNogYeRmajqIGHkdkoauBhZDaih0ZirEGrSH2STKiexwJjbQ9rSjbSopL/WR1JiqKKmJKJMX+STgzodEIsW8iCTvbS6WTZ80+rbAckCQ6e9fnd9Vd6M3y5jpI8VLximGJO5iUli8JgTSj0ATXIOa11XHz8vHgB1s0mt+/pN6WZjU+bMvmVxNKNVQWywHFikeomuq9ArjhSIisrPb0VnxOXCGxdVyeac86gRAr/0gCFi8K/RFwWgn+Z8iM2Z+3Cwe5Zm7d4Ozxpd5st/5Gx2nUJFtyJQrlEOEZKzRnqH97l7PJFOQ5Zq52Mujw7k8OM/kD0UVwfsqPkU6qjRKypWc6VKhZob2oi6iiRs+BaIdojOkpM/qRpiaNUMtApUbs2zrLZhwkc5z1TWt25vvuv94yo0TlNVMd95Q2IdEAhOepAAUl4BwQS1Ibso7MhqdkPhsx+/Nk9J3t/zu5xD/G5wlV8hWFiKbnIM535sOZxw+EdapXquWEyhVhZoEwhjlJwlQWeqUcnoXYrxauUxWMy8g+Uy6RSP+j1woslaePF/Qhj1Nve7LLl3kCHXQvXOfaYvG8v3Rg1HBAhlgeA18c+tqWzbAKcGYFSWE0aFg8TSRTodwe7FBgpLYrdRNAjVu6bpEcweJPnAT32cOLEznaq4SWUB0vCBOIg3KAwUl72g31/1K9XV14PkIWrXyWUkfZoxb+xYF5+LQREXznMPVZIlG9VDXsrqkVZLox0DxPB0n2q0V4dXoThW7VLyH5fipYmVxp/2E1IIpQ6wXpyKtVU9VfIxcJQ1e8Gg+TC8BIDohyq++mGqt649sRKwiwd9xPHPwu+/Z/zmHz7O/Mw85Cl95gTlxP9DbGcZ0wOOqxKDjpAh7nGrrYxR3uuNkXtbczVpqi9jbnaFLW3MVebovY2tp8yjx3XsUt/a7es1HUN6zduUFVtPzXpy8vMovUzBIcedL58ZrP7FpKDDq0+5UAiFvRmwUHPptOknrYtJBYu11rbwgeLmdoWRi2u6LaFopYWnWeceuuzrWO1gDtdfhPrQdvCO4uZmkCdXqwHvdcuX76shbaFrYeuzBLF1/NKMx38vqFF6my9aFu4j1E76fqgHa20Laz58Umf3+4f58/8I/H+wRUG+EbPumpbmMSonCh9UA5Hl20L48427fxjBMc796TdujppG/H1EXXdtlDEqDxf3ShPP9sWyq5cWFtcUMspt774k28Li9Y6blvYm1Fz1jrXHLypwtoWPr6ReO7Dgode+z2Spk+dOPaqXrQtRHwI2raFwBCifupBDo2f+m9qW0hsraPjtoVhS5jaFjou0U7bwnZmAqd2Ht/4GYmBFl3Sufh+3Gy0LSQWSGShFd/YJUyt+AYuqai2hQf2r3sQeHOR8+FT3YsNG8sMyj+FCVgRbQQLWDkyYmW35H+qbWEOnRn7r5HHP2rkQexIprVGHo2XMjXyuEe2nSw08nj18OiZ91+7e2YF9Us6+251EYsVK1i2kfDApMFSpr4HVZdqpZEH3+ONz9c/Fzgceb3tZm7dFvj68bpo5PF+CRMq97RrDRn3DpolD7LXyCPtc9LZeecqeSdNj/lyqMGwSXrTyOMso+qydKM6rTfymHyqbgfjb5cEcY1GhhvNjjHRcSMPxMrQdmIAVkZrjTymJ9e6svPAdPdNBs/b1rjAu6MHjTwQY0MLDjA22mvkwRnb/82XOVuc1/TNckueXD9LD0riQITOMiIE5jTqtx3i0PhtfF7bdr/6XOVl3Gu85Y/Vbzvha5EgicDhMilY0ck+myENzl1KQiSSkvvRejoAcblsQnAIV9V4WpN6MMQurbRvS66coiYsKz8YOELFcHoWAXwziG5SAcA3bWl5kzNNS14LMoiUWFB+9V5HgmxXxd13yl0XWdhR9ju+2Og/6v9HcKGIhrGcLhQsnf3nUrpOmClg7BZq5kLVVE5fkThYLqb2L32fdUgo+vM3ftq34qG97d6cJGRZIjdSZFkqr1dE6fATjN9/11JdO0uqkamBowRfWSITSQIZ6mMdtr2wNbd9gs8Mt/Xvo6NHWOLHKvYA8lhVSSpCGWmMykjQjTKI7g9Hk4iFnWeYTAGWL2EgPDu1bt8HbFnBziLUhtuhT2CITC6y4XbsEzFerkB+ofZW7yb1DX48Zj9/+5DECR7bax7Cr2vwA/wV0VKKHroloopQloJRWaP1YubAR2nkrZqVHHSHTZCPiWCYQS+y3j0bEbPIY3q/9TtfJu45Up6tcnm3Du1RQw7TxQtIteU68Adc1tBLRS05g7dVzPV0PWa9zWfu2Sn8zQ/9Z+p22wsAyMYAKKQAAJoWjTxRbCmjL1Szbef3dZea7uanNgx5U9DqTT3CUqbdggEQgDgmADKDlmKO5mHOv4uP4/RoTtTG+G1OGy1s+xyo02+31vg4b5Yx8XFmLatoPs7mn14v3UyqeC7ysOv4rvaHQD3g47xcxhTdvL5MD0gF2dnZWuDjFA38Ih+6otB7VdSAZ2lfvGrpBR/nGKN2duiDdrTCx+lU7JTk++aw58alxwpD/9obrRd8nFRG5czSB+VwdMnH2eB/cesO7xj3hY3WpTiErnuoV3wcOaPyRupGefrJx3mdfUhWZWQbh7iiY6+3df2VrmM+jgej5rrqXHMVysfhJsninowTOK6q0zRvpIdlil7wcRAfgpaPAwwh6qce4fw/4ONsUpjX+bR8vkeyYkWzepUzNuqYjyNfzsTHcVmuHT5O/3s1fl/S7y4/Y3x+v4F9BINY5+MQ9+YscEzCljNxTIYuryg+zide42nmg856zVv6dkng97RM1vk4RBvBAlYujFh1XP4/xcfJpTNj4/Mk7STemU4Hcn2kzx4Pe4uPlPSfAHMnXeXC8BByhqkG4YsWzpKIcJg9pormRNsqs0y5Qlh3Mxh+AuXI27Ln5Z2f/MGCdfMSrfuu63mC9v3IkRx1IWn8VfcHJsxHPRWLYlT+w/xo1dOI2e2t+RwLWNzP3An+I+R/jm3Nv1F/Qb6xv1gKFCYWuQO7HoU9DlGrUpV5dKrUOCfNWjW2Kz4nbTO/s5Wp3VWnpeFTAg9Uck5Ty0m7npK1O+YPOX/ffseoIlFCkVpO2rXa86RzLV87H34nlvdNO9FHLSfNq8Mj//S2S/grDsRvH1qU3UgtJy0hevW0ITO4Xkmn7UZ1+tj7m1pOWqMXJ5dJ8q34eYeq357+cluBWo2PrkuXcgTN97pvOTJ4XsF7V0e1hlXzcodO4p519d4+eXnwpEO3PgKRIfbAoPXdm29Z57qrYdP3cTV+uw9E1TGRbGVOw8YzHBamXqvLO9JECkQ1sJe3HFkQ+iTMa3P7gC2K2bdrA5ERKtrh/6fLp9+jvRM2jvrW9+uwRCCqiYoGjZTN/5wVyVsnFHTfKNsHi2EYo6K1q1rcmbZ+oPOMZe1aezWoGwJEJqjojldy5IE+RwQzR1+/V7vLgr5AVAsV1d97+mqs7023xGHb7nU8mlEPiGqjIlnN1CPH+3TnbWgT3PzT7obmQFQHFb0L61N71YShLuv3vvGoW/vmViCqi4o4KdZehQFVXTYeP5HoM2jWCCCqh4q2VloyObzaR5/dVq3cdmY9aQFEpqio55o6Jxe0TfKedyfo4tcpXo+AyAx7jYf9uJGvGzvvS6gWeLvPoV1AZI6KfgVZv205NoM3a1aMx+uRUjcgqo+Kjgg5y9ed6+I216/JU+8esZ+ByAIVjZsWM27nwQmes3cljXjw5FpPILJERV2evN4Z65HnNXforI5rjz1/AUQNUFHieIX38Bl1BDOHTti2KC7FB4isUNHvVV9eqhZrKtjT+ZthjezxhUDUEBWZjvZo1qlHpsvhHw/kTSXOS4CoESqamjc1e1my1GPx8ROWZx+chcg3xvQlabih+YYb7od/O/WL98ATDoAmqOiCm+9x6ce/vROajbeUBSQsByIuKno040XU1JfVeatOn89tlnjLhZRs2ZRDk2yZdnGlkW3cdI+tt74Nv/TL+D2F2dA02fIonYkyCzq4M/XkGX7atqJJ5xrG4Ldl1fhR4VKZiIJBQNfcuBV6h4rzibRriAgVSqXACKGdMMpIGSAaKMpXI59zooKyVsgAe8HvKfk0nYx9bficghTNGsmUMCqVL0Lt/7ddPPKHsK7XzBTuKO6BG31ZJFSy7OTCQtefU+hiehZgs/w4RSM2QBc/4DDJkbM7kRiW+pZFSBAKBXg/iRQ2bleNEy7woLhCuOUKpERRmPbiGH/LJ6cU6T1ZlVsNV+BDoKrPIYdAS0Rs72QhXAWMcB1O0Yt4NZmup2HrYVt0oolK1KUIESrA/mWcmAscEFUrN4ZuXAdN/QZ9u+18pPOAdt0e3+ETTsvRx1KclmMStrVX2xYd7M6UAWw7ZLCTIqYaAtcUI/Zgh9ZiIpDUPYsHNuZs67raO+l+rfs9m77klZ9GxAJYBYxggaGOrj+/c/7LPmAz+4DooWst+2DTCqbsg6AVFZF98OGv0VEfrl7zXnjtiuuh5nWfs7hYEi0QC9kH61YwkbXnr9BK9oHcqaZ74lNv/oLb1YIW+85prvPsg0mMqIBxo6eREu1lH/xcO2HR2H4mTlkmd/c/XLmghd5kH/gxqq6vblSn9eyDKwMaDjGMmOh2ONm+7dZz8+N1nH2AWBla+jiwMlrLPpi/3Mlg1ZDZjrncYdIuy1bjCyboJvtgEiM4QSu0mH3Qu/FE78Rre1zmGgyp9mZg1HA9yT7wY0QIzGnUbzvGofHbzqwUCn70qO8at6lxtZfNJ+O1boj0vfR3FpT94MAR33YW9YTBDjEI/Ar8rmj13qzA2KLjFfpeqOs2pUyOE/H8kvq9yV40JtFgG3hnM9oeiuQqOQANpG2ugP60davZnJOE7XJcf3rN0pwqvnUIQXZ4N0WQHblcmqdEtH8s9H4qhACFUw1Cbjs+58RmjWJnFghA2LiwFknkYPgCOfVi637ySN8XG3bxVnV6nnfWOe0Yflo6YzeTp2WJqDTA9v7eqn5oQC+fhYa7zhp3zStvzXsI2C5GwMCI0okTpVwz4N904tD9kFM6DRl0aYToksGq8p7e9hk+8IRrirvNosYxRR/rIsk4QBnkkstVeY7+1oPblM8BJqh23/efa9485bmk5vaNvTapxQUWVJvAqFqFjlRL5R8na9ZEsvQeyIpmj8YObWbpusbQb1Mzh5w8nfVA5tihNgn2QA4n7W/tkCmGLozHOTQLo+PV+ncndtvrsH3YSIvEgUfwpYFNYclNBTz6hGxcMYwPizXonGjvJAsFkCsLfyKPEZU8BtkcljRMFIFBUqYVkRi2K/2FSeqg/CsNDhUC0gDozx0pCoyPBoO/e1p5c/V4AjVQ4HEDLOULvQ1ZGNcaawII0FMm8cH/KW1aBDyNlkWKaTJw3D1u8NuFRvGWWUYpPnR6i2+zXBXpp0zRZhK9XpqN+Sv6yIXQ77OclvRpP6b19xUfWDiZ8IUwGzhSlL1OaYPAXN4j4ZZq6ledbgXKwiLEgROQ4QHb0FCfbgb17tGtielXn1VrVk4xys/Ft6IzKnkuefuLE1ZERhMC23Aq2AptEdhQk3CCziScM2n+oUNXmdes92897a5Mwx9zG/uJw6XCQDHXe4JUSmEL6BxmW+y+MHgfHLOSsIlCqUSkHOSREkUIVwa2KfKyWwJilJ7hPamao6uJNWmiupIu+JYO0M1eWd65bw4XNaSFqgK2/IRGEiJGnVJiZHH28cfKgoOfbwbNEk/siHefkQeR3Wfl5dKmM5GVwEbrVIhcPJXLgBRUXknrPpcROSsVcnLcUINDixK+ZXVd082Tq3guzzwY0Gdo5gg8VRsdINQhHbyU7VkM0cpmRGvDSq06WNiLGgZEh4vVcWiuxtmx8wQurVhqB/8mws7VbRR0coPFcgJLGP6U13CbIwskVCx4BNhURytVTall4sJUnklSTr2OtkNnQTGPilRoj8wCjQ7CLJStkKGvgKxV2NAXUULxNnfW0jCvN24H3j140bD25SaEwAT8VhSBCeRyRUCRzQgFGOLoQnWSQ7NQ6U3deqK1ZKcNWAWUrQ9ayVS2fqAK8nz9h5zAjWMH8s7vxqRNPljXY9Wafh/P1hKX99QIQt53NRPkdqsxyE/RQa4xK7MWBrkWWJkUJEqMlUlBosRYmRQkSoyVSUGixFiZFCRKFSuTTKLEWJkUJEqMlSn1PV1QvUYDp7UeYbMafBZ8JFHe4OCl3oQS6JcsUN5O0+m/mecJ27u7a7hsNhCNuf6iNl7/9ZSH/U5SWQR0F5EADtkpr0oz25q5SGDLnhDY40b5AGRLCfeZKA2hbOF9IuW01FckgUP1RxqkRw1MBZOskOrsGraUNU/V6OzaShltQ7JBZFA1AA/wCz0v6GtQ1eNrZC2csw+P6X4srHhoeWJtFXuMXQDjo6nosltMSrAH2+rOqZR+OB1WZipKhDpWlCgN+zgp71IlOS/nUVornwOHKrNIi5g+wPvT6U1RLltkc9wSHKOPsYCSOSNKn1eQDx+Y/DQbX2xeIZMNwQybcnCrh3HP6EMlwT9a98tNa82Pu9RlpZFni1o6jOfCFq7IIKIMyB0F2+C+qZq5sW1V0UMIUaBazQq4AuFsE3Wyprd9t29/7PHIbrV1TSXBxAV6ELWEILVlBMk8VbO4bktnifKbq46qSoYMElikN1AT6/UfN+SPxV5bOx5I/M63xTezM8SeS44iqiQVgU5lRnTeqGK6Zzg0C+Orgd4CA/svTkvXn3dZ6+M+lHwQT14JDWjAbYqP56qobpEyjcrGERMsyhobKGv3dGCYPkLYzlMdQHEAbKc1W+rKFqbNTRx25frNpy577QZEWCyxqYk/7ETisTTLOk5YmhUnmrjydt0GdroYguVLNcbSgWt+R7O1zgQBSwxmGj1U98fuG13NNN999clRj3b8lZ+Mt0R8cC81UGoiLbsEEKbTjDDtS9VssSs9hEaMNesshAYtDTJGYAiN1I083A6BBrVDZ+nskFPr8/Y9ZtwXpLusfafoYdmIeA4dKgznKs9pKM7L6Vzz1sr7sGgPkpci5IaJI+ElsVwSiC6QZTJLxOQuhjekOilXE5c1SgaGTexGgOtFKp88FqDusFEjQ2WChKGUh7vgdSi/5aRL9uYuhesd5o2vtCpn+87xeBcJeQDZRVJeLm3OEfPcyhvdAvDEQHhqUs25DLBlCdmoEZvEWPk+TIW++FN8hQWL1wpyAyeKXZol/IaP/invJ0f/0Oul4dPDa3zRj7RPXgf73DmXcuzVOxbwCWDEBwwfXTAMDBHixkQlEL05xB/NKoEbBwjlwWIFk9K+Ri/22Znt4rXQ77NxWspzPJW8qvJ+stLQ66yTa4FWbBi1YqFXWinOw7Si0fJVCzF44WIRanypS5KkRA/uGurhOGNd1cHGnTmH8YrxQu4nKwa9znqPaDvUnMBjRtJ+Ndaezxm5UbMNmZUKA2RjIZWUhseXT12NB/NMPBN+frJtbN+5KZ5V66R8AJlViwkqAhEHRkSabcTW9XMcmnV91yLPj8N69XSf9fGHwvD4LXzkCP3EspNheqt2GPgFnBsZIgkMAW4lzC0URkTAigYqVgy6/Jdt80HM06Z6X/KYVF7XhCe6AeWJktgvDmBXd3RDeSPgDVFXAy72EmWRGpjCpHwT6u3tky9V7N7UdM30532+s2ID/jS2Gp1joxJoefFHqKQQw/ZUHA1uWwRDjSxWb290RCnLcuIStSAfKEJ5PgBLAcL/l/iU3MneUygRJa7nOq0KCve1CGAWVIDBWkwAMHQyn6ebzHoTuCKOJpZ6XBPDHCxErqZuYIpchakwv0CHufcBl4tnOCecYoda9pK89MDTu02QfvLhUkkgkhZGNqR0SFt5AX8ALE8KcKeUG4p7SpnsJLEyBdNrkYtZ4eVlPbgBm2wTSNVMojq4gTGKok35xqrTSMxzwtaTGu7QluJ0CT+pGnLZXYSNgSGi0/Mr5VV3znlT38u4Xb0CTF6JRm7kg5gX0hgxVF6nf7DyfZDXhX/CtHFr5CKRA5sD2QkImQmvL0r9jOtaP7/K5aeC5AG3LZ/uT5uO008lHnl28EizoxJhdrSusfYtp8l4r9V3+wXmXSo+Xt4zEzA7akB1tqdiLwwG0r825auBVNrJUmN/caAMWGhNUApYb2Pa1ecv7wVLrqd3irjsjEfJkYySY6kozXln8+7aqkTPOFvbjGHbJpU3uxSiBIY1A0oXN+WjY1A1lhjZLsp6gdAxKgNARNY7fg1TPoq8hqHXK+LAGxkxn6kOmqxtEaRQe3rxX2ZPieV8tGRPu29isqc1/7OnmH4GuJwYO7Nxd5cDLhNrXxo1RM6CPSWWaWLBUnRmtBTcCrenPY1W2SbfmOKZGjIso9dqgzAW7CnxkIAFlGoyovR5YwXaU+IaqnN7iowYWntaU2VPL9HZU73ZExCnEztkti6VLN/Ncwp3zvrkELLr6jw/FrYEWRuZtgSbVGcqBXSQa0xmM8Eg1wKZjaIGHmbqKWrgYWQ2ihp4GJmNogYeRmajqIGHkdkoauBhZDaih0ZirEGrSDnEiNXzWGCsXWZNyUZaVPI/qyNJUVQRUzIx5k/SiQGdTohlC1nQyR90OknNfjBk9uPP7jnZ+3N2j3uIz/Or4isME0vJBVrpDJs1jxsO71CrMs0NkynEyuJCCnGUgqsszkr5tYl1FylepSzWzsg/UC6TSv3gigUvqjdkJVjC+DbLvB+2OO6dtGjeoiMP3j2js4SGAyLE8gDw+tjHtnSWTRgjhVwtWAkWFv4RSRTodwceBoxyFMVuIqgEK9VLOpRuBXY864AB7eHEiZ3tVMNLKA+WhAnEQbgF0Eh52Q/27FC/Xl15PUAWrn4Vb4WrerbiTzy/Lr8WAqKvHOYNKiTKt6qGvRXVhJILI93DRLDsFgZvperwIgy9qF1CfHUpWlZYuSGAnUAkQqkTrAWlthAp5GJhqOp3g0FyYbjqHnSoXqEbqnqzLBOrgLJ0VEcc/yysy4/XMa3LV9dh6/JVvcecWF5Vf49HFzES++NUxP5rdJhrvEwac7S3TFLUzcWWSYq6udgySVE3F1smKermYr7QMpcvDXrF8Jz2HeINWzx8H0/NF+rn6uBePDTRJedqUf3UNcHrSYsrtPqUA4lYjJeFxfU6nSb1tOUYseiw1lqOFWYwtRwLz6jolmP7WycfKYjxdlvsd1ohG5TE1YOWY1czmBq4HM3Qg75JZ86c0ULLsRd/OtWoteFPj5wz/VMOTOlorRctx7YxaidFH7SjlZZj35/sdbc/YeKyu1ZxP3FKDp7KqKuWY/GMygnXB+VwdNlybN25azF+a/p7rah8ZVnI3wkd9Krl2HBG5bnpRnn62XJs2ovEpKpD7vNn/BzyrPmqfI6OW451ZtQcV+eagzdVWMuxoyddW1hZVXLPSx+/songzx560XIM8SFoW44BQ4j6qTc4NH7qv6nlGLEtho5bjgVtYWo51nOLdlqOGdibP567+TgvznzLgfXbnuL5wGy0HCMWN2OhjdaYLUxttLy3VFTLsZe1BybWeiTz2HzLpGjhlj2zWW85RrQRLGDVkxGrVlv+p1qOFdKZsf+K8P+jIvzEbkJaK8JvnslUhP862XayUIQ/vK97u7OtL3lmHWgn25XnvofFbHOWbSQ8MKmbyVSz/CfZRlZEEf4jnxvm1uC19Mys1bXtioNZ+CKzuijC/3ILEyrXtWsNGfcOmiX+sFeEf8L9Sa9HSG0Eay7PGNah+SB84Q1dFuE/xqi6HbpRndaL8Hda+abeoBpzXBbnCYODEnpa6LgIP2JlaKuoAyujtSL8iZur3TKvVEuw5nryg+rZfcz0oAg/Ymxowbm+RYtF+KfLNjxcUrmRa+zBnRv61Y44pQflLCBCxxgRAnMa9dtucmj8Nj6vbbtffa7yMu413vLH6red8HUEkCS+cJkUrOhkn82QBucuJSESScn9aC0MgLhcNiE4hKtqGqtJLQdih0XatyVXPVATlpXbBxyh53B6FgF8M4huUgHAd0lmeROrTEteC1xFsaD86gXvgjoHe2T47D91pkXk6cv4RnX/qHcXwYUiGsZyulCw7O3jTLoudimw8VemRi5UTeX0FYmD5WJq/zKiQZeeVYPuO+Scu39w3KZq+KOUqs7IjRQZUsrrFVH29zDj98/I1LWzpBqZGjhK8JUlMpEkkKG2jeGxkZE2YZ+915te/vPs5BZ38WMVewB5rKokFaGMJYzKiNWNMojuD0eTiIWdZ5hMAZYvYSA8O7Vu3wdsWcHOItSG26FPYIhMLrLhduwTMV6uQH6h9lYrv8qpXXXiZredit9uyZ8cccKva/AD/BXRUor+lyWiilCWlFFZg/Vi5sBHaeStmpUcdIdNkI+JYJhBiUYZP7M/VPY80KW2zSrH483Ks1Uu79ahPWrIYapnAakuVAf+gDOZmnmpqCVn8LYu2L16Vjfb0ycpcGj4MdMm1XW77QUA7MIAKKQAAJoWjTxRbCmjLzJxIe9Qp6a3znhkz6j6rdmn3BWEpUy7yb4QgElMAGSOzMQczVucfxcfh9iYW2t8nKdbmfg4U7dWNB/nnsGFiw0W9HDZnPF2U/t9E4P0gI9TtJUpunlxqx6QCnbt2qUFPk6tv1rcfFurp9fmLwkugUFjn+oFHyeHUTub9EE7WuHjREx+a7/hxFqftE1dhvX+27CtXvBxFjEqZ6o+KIejSz5Ozu3V2aPt3jjMrmdUu/j5rji94uOMZVTeQN0oTz/5OH8a+HyLNarrPDPN/Pu5jdU/6piP48ioOTuda65C+TivPYaFnIw665FoerAo5WOfTnrBx0F8CFo+DjCEqJ96m/P/gI9zwc33uPTj394JzcZbygISluuYjzN2GxMfp+827fBxWq3I97eZNoq/7Hq7xyf2/JbFOh+HuDdngWMStI2JY+K3raL4OP2NWr0e8qanR65lQo8D1XkfWefjEG0EC1j1ZcSq7bb/KT7OHTozNj5P0k7inel0INdH+uzxsLf4SEn/CTB30lUuDA8hZ5hqEL5o4SyJCIfZY6poTrStMsuUK4Q184LhJ1COvEczXkRNfVmdt+r0+dxmibdcaN+PHMlRF5LGX3V/YMJ81FOxKEYlMe+pjKNS9TRi46TWfE5NWJjL3An+w4/KoWNb82fW2JBv7C+WAoWJRe7Arkdhj0PUqlTlXTpVapyTZq0a2xWfk5Z1xbrpj2tTXdbaLTv/6e3ScWo5aWv6nrCpn/yb4yFhs22PGnpaqOWkTZ0Yx+1Wtaf7HMeOO3IEAVK1nLSXz4wOtl3yzXXvK5HH5I+titVy0oavaVWba7nFc+6P34q8L/wpUctJc/15aoVkUrFPUmHdTC/TR2PV8vNvdlsmX/iymiBxqN+2NKcJqWrNZjIfzVnrvWsPb+egqPatInyOAJEhKuoTmjFj6vuXruti/jjZsrZBChBVR0VLJ6afDGhq4pgnT7P5PtxnExDVQEUu9TdvsU//5pIyK/HytntLfYDICBU1Ulh0fndDzku4+5vZPs+uMJG9JirqXv9KpXp/yAV76vUNN3uabApExqio/zyX4pHhJ/jZg5Z/3fyrfwIQmWDfq/EfK9zc73lvOVu5helL805AVAsVRd2z3sifWp+X/XDJt6cL958Aotqo6I+VU34ZH0hwSTAWBtQb0n4WENVBRbULe08WJ1f2ydsfNEFR88QjIKqLit6+fWryfIOh08IuxebvVjf5AUT1UJG3R0j6tK0R3muvhT5fcOXwRSAyRUUOrfg+Tzss5+0cMaKrQVDATSAyQ0Wv6jxZ0KnuAveMv694Xf2r/i8gMkdFdQumv0x68bvPokF34yWHPX8DovqoaMnmnicP9mgrWGu2vfJI40prgMgCFdnFJ60fc/yX29y32Y7df/yxEYgsUdGQfq87Kpp1clmadOfHvCNmUMsNUNEMP5OOdfeYumUOW259pYbiCxBZoSK3xfLTp5+ucZ312nD2nYZnzwBRQ1QU0KKWieyDB+/AjYOHzTkWEMNGqGi5SX7f7rM6u2Z/WnBIGtwgGIgaoyL39J5/Ls/t7LOwONdv4sgdC4GoCSoqqlprqmmIOy9VUXlY68Ohk4CIi4ou/DFqaf8qj7228g657l2+RURKtmzKoUm2bCG+/myr3QXv2BFHrgzJez2XhWTLe3Qmyizo4M7Uk2f4aduKJp1rGJOOP0zkR4VLZSIKBgFdY9JW6B0qzidSaj0iVCiVAiOEVrEvI2WAaKAoX418zokKyuiXxIK9YMx2ui6kvrAD7HbNmkCUMCqVL0L53VZFvxkprzTWYVno4phWky1qlydKVLFOLixSG7WdLqZnATbLou0asQG6+AGHSY6c3YnEsEyvLEKCUCjA+0mksOmyapxwgQfFFcItVyB1js/G8KPnBW8cV039Xdi897hb+BCo6nPIIdASEds7WQiXLyNcvbfrRbyaTNfTsG2oLTrRRCXqUoQIFWD/Mk7MBQ6Iqg0Tfaz0bNWbE8YL2rnvedXCvMEAey7htBx9LMVpOSZhW3u1bdHB7kwZwLZDBjspYqohcE0xYg92aC0mAkndevXBvvr1ph1wPjJ4+SaDrUPXlZ9GxAJYvoxggaGOrj/3OTTrz3/ZB/8o+4DooWst+6DZDqbsgyLN1soyZh9USph+PWbfWt6+VYKcQdYbd7O4WBItEAvZB413MJG1a+zQSvbB0eX1Wo54b86fMXBznwE/k6J0nn3w13YmVIp0syaWIVKiveyDgiz++Kshcz0P3/m+8tWCm7v0JvvgIqPqcvTVnWE5+2DzoKCPB6dH83dOfbI4YXkyoR+S1rMPECtDSx8HVub/2LsOuCaW5x8VFcWCYK+xowJi70oSOqEoiL1ECBANCSZgL1ge9t472EGf2BVQ9KlgV54VuyL2hoq9/Xcvd4G72zsSOZL8/T0/H9+TW+5y+c7szOzO7HcMdvqgE082ZP/kDuJJ2XujWtU/S86qG+f0AWZsGMHJ/NuApw8WlX/DDxaGeO6tUH7sRe+KZiZy+uACK0JJ2rjtPo8hbju9SiL+0aGK6+TNtUs+rz82hRyNYj3r/JzEum8cCMktI/FIGKwQg8GPIO4anbevIjC2uL7C2AsP3cbrdg6Bsn+Jfm96FE2M6LEMLH0Ib+1CC5UcgQTOJBdCb8nTT7vXsW5203FmkeKXGkmqtKMk2eHdiCQ7djm/SIlq/zjo21ICAhSOUkJ+M2feu2S9cmdVMYAIvbAJkqmA+oJxtLN1EHU9V/F9pMehhXVe+HbtMZc8LZ2Im+nTMncoP8B8x2RIJw9OFcaXq7GimvDdIg4Au5vMBhjQKKMEURqfAX+nFY/pD/1IpzmLLC0wWbJY1Ss+l2qn/2rgtEC1PvJTndpPrLDDOEAYzqPCVVJt6g4LagVCP5veTQoWAFNEKxhu2Wp431rO8z+tmx0x5JE3B6Ldzyra9UYSLSo+nq9fA7j8+5e+H3BqZPSobOftLZvOK+5r19Jo/Ut59rhNgv1Lw2nrW3tsiuGO8QGPwTEKr1S5M6LdHse/+w2sOivgMJkauCKk3IyAW5+wGlcK88NSPbqeNRcpwwDkGuJP7DFBuY/BFoe5zc6CgJLo5BGpabv8X5gmDuRv6bGpkL4TgP5UiGiCNhgo/96dBT2rJxDnAQVuN0AqXxhtKBV8G6KBF0BPc4gP/ktj09RwN1o5UspwAqfv14aLvlSLEywo+j2114Wbt8k2BuuFimgRh1/P18Zc++vRq637HLcdvF1mUu1R8RzsTJyDMJsJEW2/ljfBYC7olnDDPOLX7m4FKhVqaWAkph6whQRD17lG1/yKtmvvtTVNei/z3tA25KqC3OfSl7+kwcI40YTB1h8FW4YdBhtuEjKZTMLZcvXft2ir9Ip+98bT/vJEZ2rD4HC5JFDK946UyxG2gClgtiPuU8D7oM7KFCMkclmQRslHyiJC+UqwTFHpbgmoWXqW90Q1Ns4zrEeUPHgnU/ItBqDbusBzvzJ0alj7wwjYrg8aSYgYEoD2N1x7leq6UBBfwXKfd7na9cnhM/YgevisuZzfdKZWJXAQMvSHyE1FhQyQUNltJ2P4rCNyNbTIqUiqBlULnbeOfzvswRq+d3TRUUPtc3wnkku1cQVBp3TIo5w3JrfBNIkFLf5OgwZYxIua+48Ol+bFoX6emh17TxDSSuX28HfU9q5ug2CQGyJVUaqE4Z+CGu7KmIOEggWPAIvq0RpRI6VMdUwFmSQFlOtge3wWZAtQRYXNsVmg10ZYVU0bUxgrYL6KUP0gJBQXq5YrN/GWSrBwWoZTz1PFf1ISE/BbIRIT2OXCgKI1KxR8raN6yGNwVCbDW0+1lty08CkE2vrMBDba+ksJBORZJg85tTaOG8gldX951Rk20XWbW4mqNVo4XuUA8qTdbJDH7yYgf8QEud5VmeUJyA1QlYkooiSqMhFFlERVJqKIkqjKRBRRElWZiCJKoioTUURJVGUiiiiJqszMVXW+tdzd1Gtjv5CzM/d52dNK3qDyIrWPWn7JQcnbYyb51/M8YXdnV2mXLWZBQ649syTL31qz2S+SK9UwXMQSOPSgvATDbKvnIoMte0JhjxvNA7AlJVxn4mUIuqX3qSWn+b4iDRzUL+lxPOoSTC9loPauYTvIhTv02ruuocm2YadBlFA0AA/wA3Nd0NfTao/eW6u6bb7vMPaRR+qAguTaCncbOx3mR3fgbjebdsAeLKt30hP+bFhV0pZE5MUKiVJYstvzV9v/Fh20drVu3z2uLodlEZN6en84tXmUS5xyhtt04ehjHKC0kBWliB36NWm39SXmFTbZMMyIKQeXekTtGXOqxP/yiRVOb4e6LR8YHN375e2xRsznwvaLFxjzuUfBMjhJz3xuU232EEIUmIezAnogkm1CZy09/Zzu/lVKPKmJ07wLneJ+mkDWEoK0mRWkhTv0y+s2dJJpvrl2qypXZbDEIrOBetT9a9Nhj5p6JVi7/ft97doochaReC49i6gdKQx0JrCiM3QHERg94TE4xhcB3mKz5l9ESzacc4n1ce9L34ine0IzBnDrkvO52lK3kUq9aOOoByx0zQ3o2vkYGKZwGMKfQ21A8QBsTgmFkKZdeiI7IrrtFNe1K/tWE1++dpe82YnlYxncOmkwPytONXEF7ZgL7LQcguWL0rEYEJr3TtDL15XDwJKCmcYMVc/UFRUOre3tcjhiuxv/tA3ZyZVyBveigcozZOCQAMLkxAqTQ4J+zi7/FBo112y0FBq0NJiOwBQarZNwuD0GDW6HnjLZIVHjc807TLknjnGJfRvRoVot6j50mCScr9mnQeyXM4XmjTX3Edke7FyKhK+QjoSXpCpZIO4gdTJL1MNdLG+I2inPM6xrlgzy/CYCXC+gYvIogLoiUS9DVQ5LQ2k2d8HrIL9l7Trr+i+y++Qe7XdMeX3wrdXkEAl7AD1E0lzOb85Rz7kVNLsF4ImH8JRBzbmtYMmyNFGvapKymvdhI/qaXWxGwPpnEzz39HjewuXBmCLk7J/mfnr2D7+eHz7h3cb8u7b1AadZ1h6r9tV9EMYBPpNZ8QHqY4wKA3OscGOEBojOPOof/ZjAy/pLVCHSCDahdTw2qvGt4yW84i5Fqtb0nPiKLDTN/XSh4dc5L64FUunLKhUXk5JK9hFCKnq5r/KYwQuXBuHGFymYtjO3PXIutlB4wCJpy/2jQyVkwXhh99MFg1/nWjCO9rg5gduMtPVqVHNn3uxE/RZkNbQYYAsLuSw/PE4n3/u61Om5y+EvqcOtmvxsTq6qFWkeQK+qJQYKAxEFKyK+iYRff8Zj8Os7F3rm9OvU0T0650eE+fGb78ky1nyi7sUwnbUrDLID548MlQWGgrASni2UqNWQ0UBbFYO7f90WH9Rz2qj3peuk5ro+daKJeJ0orfrFEazqXh8saAa8Jh5qQGcv05DUwCNMmjdBfnHn2w9vDw166Tj/dfXrxaskklupl2QKbLQDBnb+WCkpxNABVaPBb4phqJfF6uyNa5SGlpN0UAvWA6k1+wOQChD+Ozem5I/1Ho9uoELx50ZlBYXrWgywqijAIBcTAAyfzM+ZJrPJJK6o2sRRj2tqmoODzNX2g2yZq9VazF8wYe59wOXCad4JUVTfap1kzz0qkFmjsH7y4XJZIHYsjG5ImZCu4QXiAeCeIsCdcn4Y6Sk62UkqMwXba9HJrMjjum7cgEV2Z1gyOxu1cQNzFJbJaWW1u5FE5ET4k9Lu0JaSZAk/qSR22T2I0IE+QafmFjlSyinpdRWvss2s04nxIgzjFj6YeaHpiLnmOvODNe+DvS78FbaFWy0XmQrYHFidgBUzkeWFlE/gV8eYGhXbecWKuz9M8905gySfIgL67BDQZkcRyuzoM7Voqx1zzT0PVIwMcB8w81VB90zA7GgPxemAql7oDUYbJKflASm/naXaftJAJbDQ+qB0aNHa3XXf/XKcP6XBuIuiGHIFYhEhHSVhvijVe/AyuWzpL6LDtfc/HvrE6R4HKFmyovQ9KQ3XQa0usVa7aPgCYWCkA0DUqneyD9M8iu7D8OuFseGNacxn1EaTjR2GFG5PX/4/s6dUOh8D2dPgJDZ72jHpP3uKy2fTiAYLWtnwxTPPdm6olL0cyoE9pdI0cWAphiSxWQrvpMK2p89WOsvmjp8uXthyyshqqfEzOLCn1E0CDlDqyIpSo8K0p1QfanR7imkMoz0FSOH29BWTPTWZNQF1OnFTzNamSLW3c0ThTvs/OIbuvDKnBwdLgqxEtiXBFe2eymsmyPUuZitHQG6AYjYEBx5h6hEceEQxG4IDjyhmQ3DgEcVsCA48opgNwYFHFLNRIzRaxRq0ikgVo7LncVCx9oYzIVsYUMi/xyOJIFUkhEzN+dNkYsYkEyptIQcyyWaSycqD9/tMy/rsnnRwX9KuYQ/I5/yK+0oUUjmdoJXJsNkI+OHwjjws03yFMkKqIReKkI6K4GvIWZFfm8q7iHgVXaydhV+gSimX94AeC17M25CVYgk9MxztzEtOFs7bPjrzmEN3ayZLaN5TLVX5g9cnPrahkzJyiBzWakEmWEj8EySLwL87iDBgliMzajNFJARVL21TuhEwkfuBAe0g4kVNE5X2kqhCZAqxNJjkAC00l3vAnh15r5fSXPdXhue9SqGA9WjkfPzS/rTyGIi+KnhuMEKmeauSxFuhJpRKMtJdEQRptwh4i5SCF2HqJc8lLFaX47TCmgUB7AQik8hFkAsqjyOKUEklYdqfzXqpJOHae3BVfcukqibjlqksoBxt1VH1nwO/bHWAzS8XPUD45XcmjzmVXtV0t0d/shb2v9YW9r9nwlxvN1mWZzg3ieDNJdwkgjeXcJMI3lzCTSJ4c4lYKNn+zM2zjXLcpv/VeIKIX35hnlho49I6zdVrhC6JgWV8zReEZtOcK7T66OUKhYyXA+eawyRJE205RiUdNljLsRKH2VqOrT1U2C3HPH4+s36QHiBYu2a2fV27dZEm0HKs6GG2Bi6vD5lA36Rjx44ZoOWY67Zqx5Z/thJuPxmf1nW4K6WZi5Fajt08xCadNFOQjkFajk0It9+5L+eay3aHcQmpPxODTKLl2G5W4aw1BeHwjNlyrNLcFSe//7PfJWXjoTOXW34fZFItx2ayCm+EcYRnmi3HOkxLvWb+0lUwL/26bY766lEjtxwbwio5b6NLDt5UaC3HxrTqPDM7o5f3xnnjntR5FFLSJFqOYTEEY8sxYAjxOPUDjyFO/f/UcozaFsPILccWH2ZrORZ62DAtx9q0/rJOeDzIe8m8Zds2vL5Ezmlz0XKMSm7GQRut+YfZ2miNO1xYLcdSKzcUN8iJdtkYVrT4P8W2byr4FKZgRbURHGAVyoqV/+H/qZZjH5nM2H8k/L9Fwk/tJmQwEn6nFDYSfrOUwiDh333s1Ohp/u0cJ513vT9xcuoSDk+bc2wj4YaJYwobZ7ltikFI+G/Z2vlPGuXumFhr6NqfM8eRmRWNQcJflRUVoDcms3bQ7+APdyT8tSIPr+3vusFrhmp5E8/Jl0eaDAl/9mE20d02rCMjRGdwEv5H5bPqTRrbVzj7WIk163f36GpkEn7MyjCyqAMrYzAS/p8v1f3H+X1xXZJpW+1Y+vUjJkDCX5UVHLMUA5LwF3Opu/zVQBef2IXdYiosUCSaAJ0FRAib04wIgTmNx22feAxxm7OgabNfXa4Itt6tHXdp7Rvy1q8FdogvXCkHHp0es5kz4NwmN0Uiy70f58IAiKuUkSGhfG3TWH24HKgdFhnfls56kGdQ19o+EAhVPgLwzQT4bqWGSekA32P0MEnPg1UVc18LXMWxQH71Gburni9//rUw+px5QpHnpV4XvHcXJYSiGsYChlCQ9tbqCFMXu+VAd3/qF0KV0UzfIGmISoqOL39uSS3iaSPw3NBRHbPqk8NZygkp7EbECSnN9cKg/X2ewvb9rxk9WNJqph6BEnxlmTJIFsjCbZPhxz+2Ka2I12GPaSdsDjbvT9ZV4gF0XdWOFIYwjrEKY4dxhEENf3j6ZCzsPRXKCOC+JIFw79TGoQtYsoKVRZgtv0WXwFClKsiW37KLergqAvsBHa1Kli0b9LZ9ae/lE30e1jmV4Uf2a/AD/CJGyxH9L3OHCkNYK1mFFW0SMwc+Sq9otVLuRrciUjVEzTKDDqROdyz+5qJrwsv1NY8/+FiuIEvlgi4dHHBDDo96ptN4oVo49/ykZ5SKW3KWaGuJtMqbMw6xwiOJh3y7t+9yy7jLXgDA3RQcgAwEANC06BWJEq6MmWRCfPVywqWxy733xRfPOvXoUoBRD/tCALayARA/O4UIND/z/n/V41AbcxusHqfiUbZ6nO1HCrseZ/HFa6lnrezc9zq4DvNxH1bHBOpxLI+yZTe/HzGBooKtW7caoB5n3TLLVX7de7glX13ttflBl+MmUY/z9AibdK6YgnQMUo/jM3Z0y4RRd9z39P808+i7TvtMoh7nKKtwtpuCcHjGrMe5eSyxzgpektuMtKOZkT5xASZVj7OcVXhTjSM806zHcfo471PK6gDHA0N6u6TdnrnEyPU44ayS6290yRVqPY7ftFeZsl4rHJc2rJ480LLvT5Oox8FiCMZ6HGAI8Tj1C+8PqMfJLFF+QsVQd8HKiKL9Gh8KG2PkepzlR9nqceRHDVOP06xfdkDHSQni1f2TrMdVKzqa83oc6tqcgxqTxUfZakyijhZWPc6M2PTbB28sEcy/tHHA4U8LjnFej0O1ERxgJWfFqvfR/6l6nK9MZmz4EVkzmXe86ECKj/xJVr835ExJ90h4dtJVJQkPpZ8w1SN90cBJpg6Hp8e02ZzRdppTpnwJ5MwLgZ+A1LzzlwYt6V48y2ubINl1z7K4IMb3o2dy8g7S9K+UHzBhPnmPYiG0knruSUet1D6N2jipsTOvPSTmqiyCfynnP4c2dvZqezCtrJ9UDgQmDXIHdn0U8ThMrBpRfmMSZau93sKOzfq4pSREec3MTrhOsfJAfCqlXENUrUfzv7bOo4B+BWpSoPh2JP4ovIclrIcaplDCbpbBfL16j2yw27kow36G4xy+f7TviXk32d4Y4ZdI43pQZkdVSOXxTggRNU1HoRUtn1oINU3+VzfXfrheLkqO/6kYwusRwmFNE8cdNPgAocEQIdhBg9aa1rIphlBBu8DVFZF1CF9Qe0P9soO5CXskijXHjf1cpfFr4d4XB+4+XVKJ3HS8BIOiENe5DiOjbHGg+CgnA+nJj1qm0ja89QSqei8p3P7BECLPOzRCP6tsPJzW4r77Aucj851LTM8gb9fhD6Nv1xEDhYER35INI6oyFf0NjLD8Fl7KAnDKV4smd1uSsPqWU9yK1xPKeG39Tp6L8GGItoKay4WBz/1ybPg4lkvFDf93JsPf5EeVqjv4xZz3CbO/SWuHkA2/BdZvkamelmkdUstLKlFHqjT1rJoEjMa6Q3Zb3Yx77Q1dzpwNC3XZu2HHjTW8NiLGt6J77jyD+pj1igDHY0IEua0lMOsx1jSzrmcNRikh7NkCAUB+31l1/Y9MX3TWe5P6sPt6dTMnamMENb0oSnM1P/tONXpc2HcI1XIBgpL1YBMMKkb7jixOoXaylCn4YiRGhydNifk2zsljRuLT3UsbhO62wspawHd3HgWWbtogGAufe9u1MGo6L70ZjhMsm6LhdN8Wwwmfmj/wqUSbmmYtcgTlTqa7bWjb9maRhPrHi4llQ4ix2Kdrag5qESBOKDFP9vNpafKqHE/9aYpOdJ+3fFepJlLTlL9oqFz0jsviinRvcErsJ4q+tHJQyc4Wp5nfjL4LmndUD410LAOQPoSavPehHCz0isn42pgsBA0Hmge93d0xx8faOW/al1PTJptnbbohmiMAjF8GD9HorMpNMcD02sur5kTRF22vM3TT1FLnN50S3xHEj3Hrf27xPyGUtLNhK6hibHE0LFETFfpQgAY+UX/yGHzo0qcf1tj1nC1OPOPzj+uvmHrkauxc80TfymPaXqmceyJFwZdqH1CabuqKC+yEzVroNDNLR69PK1P2jcfm7vaWvT3q1WB6TXrReO6YHvvWUVVTNb0ZkTyd/CqpBebpXP4jKil2QW/3/VvivB0fNbtF5emkjhuCp9M6FyswIVQyyRA5ehpceTLZ+/sYZ6+5C+wvNij5ajtZGgH4rfzfoumkukoO+iIOhtJEElDaAINytEqqHjSdOmPEa15ixYAPbh7RU+L/VXQXtmfA6LdIOqlmiAOMgE6zYBRVOVUfks6KuSSduQYAidKWByuqjb/R3jvx4oRQr2bpfxmVoHOwHa4rSILO3vYYSrhB/cVkUCtnznGy6nhRFNvm4ZGEUyOdEN4UvaVYQZNvQMDJK60ZItH+4OkJGh0QurJf84FwyzFQKYf7bFB/gXhCpAqsCwPm8tCF1ZmtzKxL3Un2mrtu8VAbH7e2Bii102bqqAks4OF3Fk+F2zPQ4+GigOjpL4oiQoOL4Xcofs/YHq98tthcryMzPtR9YW616jcofguK+mCAuuMqKupF/mTUp7VJ509PzBQt9Lom9RdsemoE1KGuf86mol70T0b9WfbTpJymaxwX942rbv7jRF8joX6/XhoF9WJ/Muoveqo2bwy2E+5I9ww6v/hSuJFQ7+xFRd3sT0b9Y7lO9UWfrzmt+L72YsnxNUYZCXX+aCrqxf9k1D+X3XknW+rrsuHkjNSwLdnDjIR6zAIq6iX+ZNRnvLV9e3XNLM/JdnZb+20f42wk1OdvpqJe8k9Gncq7biTUDyZRUTf/LdQ1VScGR94qd48f7w6NXiV9q9Zm48CWvR0Px356KD5tq0S8O2KVhF0uFLvelho5lmJC/edfuzda25sJ9/evunJzuBeKvZiMeunCR11n6uVPn7O2nK+Z7RbdVfHv/HqXUBzQv0O9XNqr7cd/19RzS/DI6DawwZXzOm6wsEnEN4wqkdJ/pESi9tneO1X/rHN82rILnezrVeRIIsGV/L4UiR7nMq3IAZWirud0DiQSdZUqEYs/UiIvylRYOaTrWre51SS96wQMv8KRRGb3rjgzZUVJwYFdFx6ndQ9+xIFE+JWovqLMHymRjJgVXXKm7RHumG1tFiYp2Z4jifzbbEYdVfVjoqTM52Lvs6fmcyCR3l2oEin7R0rEfOGR5yuX7BHOfPvhQqusG9U5ksiHZRu6f373wWftdje7Hv1qPuVAIqFDqRIp90dKpHLUsJZtutu47V+5vmaV2tVLcCSRFxf93YYU6y5MWtf4p+M55QEOJNJ2JlUi5f9IiSx1+VK90ziBaG+yoN+i/nsFHElk2MRxwxISIz2n7Zw94P6jqx05kEjOWqpELP9IiVCbUHAkkd8s/2aTSN89VIlUYJJI94f3fErKL7iuS0wpOnF/XTLlY2m/UFlwBB/Wj5HFAs/aMZVy1/AJDobl9xK5PLdQCy/pQ+K6vJbC4e6UULdpVbfbFcm6cpfpFRDg6noUq5kz79RFvP6RVo4dbgtGLxS0bq8sVk4YoYTHBYPRCmR9ZXL37TPCvPZe/Me8a3J1cuEZunZPB/0ZeceG98OjmXDtYT/3/lHLOhcwPQ2PrRyEWB11RKSno8Bo6MVUvZiSNBJUYlqBxGV7ZLmFHYcHijZXTrBo/nLsNdoxymDdgClgQhp+86qs3xxoiQkcocQ0UI9z5RawtxZbu7Wmnzp92mLZ1W395IMdGje/QM5JYJ25DAX/qAts8NsYB34aK1JBjyVoZgRk+GOq8h37vZF3i9vjvA71KnLIN77K09+0FAU9wWqXxxTQzmjA+g0wIXAHY2XCDmagW73nlZIfO24OEkt6VZw7rXAcTAOrNBYHs7FCQcn5dHAwxdcsta7+y0M0r83lv0f9W70uNw6mWHzYqB4Dj7smXBX1XCA5H8iBg6kJsWKc5zkV9KPiy9fBzOgX4jEsQOWRULzn4pQnCw8a0cGcq8D2zYGW/IkOxvXVjeKr71bxmj1IpDyxqGRT4zmYcazw+xsHfiM4mKrJdo2v/Ar2XJcxo2LLL+eyjOdgtKYA6WDAhMAdjLUJO5hpxaa5SuKvOqXsSK9QKevCgMJxMLM7sjmYMh0N4GD2NapVNnNfG8c5LUc7FNsQdp0bBxPffXGFow/Lu84wi5nb8xkvkQMHM7Uj2zzv35FjB/P6V7dO0/p+E+zyuHDyU2LwayM6mNas3xxoyZ/oYEpLom0fuEz3TnRQDCnfKs6IDiarAxv8hzr8rziYBucmflFY/RRNujcp5kHmuDrGczBaU4B0MGBC4A6mIpODiVkwJ/Klx2fXpcMrq1fOtCVb9xIusE1ChO4HdtppbuCrlWFSfhDQAH6kGpIbhcslgdJQpTwIqAdGdhCM/R5GfBQhCVHrdHDnV6fGt95erSLYZvUkumjW+YolxMrAYdIg7U2oV6cX/Guu63ouqqkzz8ELLBJ3IqkOAMQOnogDPBAi6IMRB3jgX+oBHu+/7nb1O/nCcerZvVHmb32uUA/wTOkVO/FmeH+35UdjVjxePrsrMV6Uhz6no/MBH+oHIw74MFot2CceFyM6VXywbJi4eRenlI9LGrxqtm54QaTF+dQ5CuRq6YWfd6MZM3hcMlxs0O0Y4kUtFJFy+SA1+A6KEO2XLZH7M+Zyxzp07DEecdCISVZWLrmzLTBSHhGpQp8zOuSzK/vCnrmu0VEzLy/xuRLLKrKSIs2T6EQIxEBhCC3dk01oYDIawwOZiUUagwpvmaid95hsiDnK5GzqwbeEcalMoZaqsP4q4CNIBhMpq3G9/V7wzqU4L/l7kOeV8lVbUmVV0isyAp4K04JPOV8KP9WB7qUc8j0wVvz1jEhBn5lu07sL+p1XujkWMJ6FQp3vwSbUbHfagTG2U3XlcGUH/jsCmCgkeIJdoY1KV60pnjIobHPvq0HrWBXdDFo6Ou8AdpVzLgt73C4dFSBcumNzTMVxl17pD3Dpm/5qZ7u23w3h7toRlmdqX5luIJfOn8Dm0vnj/nPp6BOW1TeNWXBgslN0naOuqV33dzU5l86bwGZIBo//33PpUYKsJVPG8MXrTxadf2zTHbEJuvSj49iEBibj/4pLL/Eyoo5je1vRJLsxM5fvX3fFYC5d7D+1/7bVZi4rhnzcXCV5TDcOXHrUWDah3h/DuUs/0en2gGWSzcKd4cPu93x90c6kXDpmlxhdOlBx3KVX/gNc+p444cwE77viHaGfmqza3HqWgVy6eQabSze//p9LR/fk+PrLWdRH6rNJcjnl1NK9C0zOpX++zmZItl7/33Pp/Udtnlih5niXbZeKH53TX1zBBF16b1ahmRtWaMZ06WNn9F2blNrCc/oLnxdNeRb9DebSf/OMC5tQD15jE2roNc5d+vq6YdFBN2cKljhmRbWPHb3DpFw6ZpcYXTpQcdylV/kDXLp46eLl9fzruW341K+naJlNBwO5dMfKaSwu/WiltP9cOkpa0eqyDzOmWHtv6PZk/uXwQd1MzqW3h3JlNCSWlQ2aRTQJl36zZezQC9aTheu/mE3zcr7R0ARd+tNKbEIDk/F/xaUHjvygsC1RVDx1SUazjLD5Vw3m0n/zkCSbUJezCjW8UhrXLn3/rcnXJH2GCo+cSe3Q83vRrybl0jG7xOjSgYrjLr3qH+DSW2erKlhYxDklZycMO1jjelEDufTvXdlc+riu/7l0pLSytx4+PPT+Sc/lPTzHpY5va2VyLj2nK5shOdf1f8+lX5utdnI+WsJlwVkP1Yq7Zz+YoEvfyCq0cYYVmjFdepWGxxMSDt5wi5YM6fVRvvqGwVz6b56yZxOqP6tQbbty7tJtr9aOsrnd3nX69DdTPHutq2ZSLh2zS4wuHag47tKr/QEuvenQWfv/SXvtcTCrR3dF+psGBnLpZeRsLn32sP9cOlJa5Rsqd47Obiye1+JgpeDKl1aZnEs3k7MZktvD/vdcuuWklp3N9zcUTpPeHV62m299E3Tpe4exCW22YYVmTJfe7uiSSXWfKX123ZV93vVXv+oGc+m/SdPCJtQgVqF2Hsa5S3992vpcg/ueTosXXPrucMb2uUm5dMwuMbp0oOK4S6/+B7j0MV+ex2dumCJOvt/639Nb3OMM5NJfz2Rz6Ttm/ufS0QHYisG3vy7YJFxkXdmp2EkVu38whkt/PpPNkFyb+b/n0u0zfOv9/DrVbWM/24HfnJ53N0GXfoxVaDsMKzRjuvTht+Mm/ORlekW3U2w5uKRrPYO59N/k+WIT6kpWoUbP5Nylezev9G+1PYGOOxesF3YYu3ePSbl0zC4xunSg4rhLr/EHuPRuro7u2X1nuSRdyayycl3IBgO59Lvr2Fz62nX/uXSktA4kn3iX1bGt419Dbfp3Gn3rkMm59Jvr2AxJ2rr/PZcuaXHh+WSJk3DWuHELBMcasZ8SNY5L380qtLWGFZoxXfqqlmPubHy3zTvJQ1D7SmDSDIO59N8kimQT6kxWoY5Yx7lLn9pkqfeDBse9Zy+cs/Dw/bdPTMqlY3aJ0aUDFcddes0/wKVvXFqnuXqN0CUxsIyv+YLQbAO59KZ72Vz68z3/uXSktKTy2v5b0ve7pbj+0+JNrcQ5JufSG+1lMyRWe//3XHqEvHsbm17/OO2ZaV/ih13/fibo0n/uYRMamIz/Ky7935QX1oefxLjPOnz99ZneD8sazKX/JtMwm1CvsQr12B7OXbpnhqOdecnJwnnbR2cec+hubVIuHbNLjC4dqDju0msxufQWG3uk9kuIc9m6sfzZYxM+LCXzSLmqlJHhZI9uo50OSlUQmWCphEgpB98IXmoAfoT/RzY7EvBD4HNhzx1XlUStDlWGh8MWPNibqou6OxHq0zhx4o5hqX2cpiyobJbc5PZAMES4ud2tJkQtvZQs3t9a7l4j7acbGCJmzx5Fxyzxo4ai9YtKT1wa+7UZGCqGDz09/eW9+fsQt6nJ6bZtz+fIwZAZPrS+wYBOztFvnWJfvh829tvJOmCoOD70eKzP9OSWTTzmd3xovbFj3RgwVAIfWlBtcqe4fcU8d6k9Svp3O34EDJXEh/r/U6PFzXt2HjEbUio/kg1oDobM8aHjQ28O37vvm/DwZ8sn5xyH/QuGSuFDk6p3vtT52FfRrmZFFQ9inPuDodL4UOKl5ovHp/Z1mXZfGVVz3QyIhgU+dLDS8wVPJAcc51uVPzev4Q1zMFQGH+qYrtotOKQSLQv4bJE45PRpMFQWH7o39MS7226jHDcWX3z3r3UNx4ChcviQ6OQd22J/W3hviN0yq/1xqypgqDw+tGXuti+Pq333iT298KIkZsUBMGSJD7msLJrW6JC7V+L33Zv+jh0Jv3IFfOjU1tlv1shPOe6Vtznffm3Pl2DICh86+4/30mfDrvhM69dwyyNR855gyBofcp9To1qSSz/XxTlt7t39+PgSGKqID513npZwvWhj8cy38uTajY80BkOV8KEXFR7Na2U1z33rp8teVz5W+QWGKuNDrn8d3jPpqatgcevidfbc/QxFWQUfWlhTdv9TjzHOs/oGHJQ39L0IhqriQ+vmPRqRVGOv465p1X+WirfwA0PV8KE6l26NiCrj6T2nf5c7o/tfnAyGquNDSzo9HtKx8kfx7gGzOsVXu3IGDNXAhy49XOc48Ei8x9wQ0evTWTvgA2viQ6/iY6r/GFXcKWnekQ4VHE5PAUO18KHND7qP3Pu3t3D/leKT+U5doPbWxofGnx0sXXWvt3CKsEnl5bJt78BQHXzo/eNfm6t1jhNsLdPx3MtlqbFgiI8PPTu7tPvlfc6CJVfik/ukBJibuzsNIlmjuuAv0ijWbHlhj7SNm+fspRXFIQnJ5RFmg2YFqXaNR9g1jYmqzWSiKgUnJqxMPe28envmmLM1x8WQIwvnUeFyZRCl5zKcuUxci43wO/gSTVdk4EwhA2GYRC4HRohoAmav0yqDaqCQr0YPevABXe28jTPP4Riw85+FiIb1vrbOPLNjNCZGNq9niXVvhnGEVPMiyO92xHpJQOXBXb2Weh7+llrleoH6QlPCggOp0x2Lv7nomvByfc3jDz6WK2BYEAMAsoUAdUaFBVVB0FD1mF70i216SIFqqGUApCBpoDIsXKmWwXE+eD+ZHGPpJPSEL1EBTYpQhskCkSgOS1/3TN73iPf2xncvOg4aTCYCLqX9HBqSeYa4jhsgXGascGX/YxKkgUUKShpoh0+0oFxxRYSCoDlMMkzKBwFIRKiUP0SilmoMAVJ+iZtyzKtH33RevansgtvCfzqR5Gfuhz+WJr7cEa6lZ2mHK7sTSnrL7TFlJwFXRH/g6gaA5YUM/CaM0SBKUiqQSLDer3uZs6nPDtHs9kuiJ0r/aUAGi3gmHSztSGGAZcYKFlB13P/UYfI/AXWKDlu8y1KYGCt/02m8uRvpW5V3hiShkggpXyxVhESE0v1QSQaME4tobyU8EVBN8E8ABngAP1gSGKFUAWOjBCtxGVBdOfYB9vgH4eNqfqBEwR8i5asjw8PlMiChIUowCO7XPDJSAW+Fu2gKuNSRy8aAX8Eu2vNFoRJFiBSTbz/vAfxwYmcKeoYIZUiIHMwOacRIqVSB/U7ESCU/DCiBjr6RGqGzwkbTCeov6CjwcGDbrkGBm4kQe3A7ga9cqp+vrJDrK/EXQvdOOpG2OqzmFJfD62PXFmleLJZDZ0m1QAV0lvMBQpcgQr1RU8IRWP8U/ZxlPZI+Yt1rNaqHAyZj6F8r3FxU6LQuXhD1+XDLpCKL+eQ9Bwa1IK5zbSggKvGsqAC9MTKPcQke8ed+N324jFu7B/P9VZFSW2wWk6UlU+e1CzYO9g78CfwW9g5NkCJLC61+Z8OFUPfV2+YNnzCwfiMy67i39kE0seUdKwzRTWYVncI4oss/nCnBYnhq+SrBwgS6BCg1dbg0UBYMzbvGCyDFM6rR6uBbLVa6Hv67uNW68cdKk40Q9jy6EdJc5loo4Xa4lXFDCYXXHLMytCiFDY9G/tBZAURGSDV+UQ9gTkwp8frY4ls+ia1G/lg24+Zq8jINfzB9mUYMFAY48azgLKWAUzQfcBprvFSuB9cHnQZWpXN2y065RbX84n2r86+55CWKNl9FX6LkDhUGQpNZEQJzGo/b+Exx2+lVEvGPDlVcJ2+uXfJ5/bEp5GhUDGI0vp+TWPeNA6FIJdVEa3J4Lx4JgxViMPgRxF2j+QBbVQQ/HM4oYGxxfYWxFx66jdeNrIuyf4l+b3oUTYzosQxMSQcY30alKx2BBCak67etgL1AHgyQ325e63/nZCT0d4vy77Ns3slb5NZIxf3g3XQjpbmcX6REtX8FzTYAgJLS8b6GNCXkN3PmbU6nRUpsqbWqGECEXtgEyVRAfcE42tmG7lMtex422XvL7LZNN4VcDSZPSyfiZvq0zB3Kt89S1YNXdh97L1yTU61YQMv1BWYvAIAtZAUMaJRRgiiNz4C/04rH9CebFlSZs8jSApMli1W9UmaPxY9kO/eknm/GXfzL/6qVuwJYSiAM51HhKrAEz/OsEgKhn03vJgULgCmi3ZI6bvSiVW+F+5Ks/EfVbP6YA9EOZRVtgJFEi4qP53fTK9QqI85jz5HCfDUze+L8FDevqKMbXC9IbqRTe0so6Ks7zVWuHSPPHrdJO1E5v5322BTDHWNdJscovFLlzoh2exz/7jew6qyAw2LSt6kI28pGwK1PJ1lwsFQlBVCo6U6yGAOWzUXKMAC5prkt9pig3Mdgi0NNWyO4sQRrfnTyiNS0Xf4vTBMH8rf02FSYmgpAfwqU/z5V+QdDorXUgrZCEojzgAK3G5ThUhWMNpQKvo1Gx9V8gB7mWLF/aWyaGu5GK0dKg9BOZMeSAVUCzbO9DwXXio2buKE+2cYEYP1t6DYGv56fjWn64k2x8od+uE11aTD49T+zr3KwMxEFYTYTwpw2dbOuCQZzQbeEG+YRv3Z3K1CpUEsDIzH1wNpvIbFcFLktweGYj8uiE8NrHHziepuEpUXuc+nLX9Ig1yaBb4vD1h8FW4YdBhtuEuoxmYSz5eq/b9FW6RX97o2n/eWJzqTvVraHFCsx4XtHyuUIW8AUMNsR98E6JUxnZYoRErksSKPkI2URoXwlWKaodLcE1Cw9y3vSpEAe1iNKrpjKlHyLAeg+PVHQuV/ZHWv5BnddpWqsTg5DDAnArj3ff4zZtNcjKsznnv9rBbn6pDj2IHr4rLmc33SmViVwEDJYQuSmokKGdEg8dIIxfNYRuRpa5FQkVYOqhYTP7LzZ3l4Zj5yTaxQtnqjcdJQEXxlcQdApHfIo5/VqNpgmsaB15YRRigzN/UeHS/PiUD9PzY69JwhppXJ7+Dtqe1e3QTDIDZGqKN3X4J+CGu7KmIOEggWPAIvq0RpRow99UhxTQSZJAeU62B6fBdkChFx9m2OzQK+NsKreGLYwVtC0isRVPwjdHqJ8v6XHV+1x31p/wpY69g2GUBIT8FshEhPY5cKAAlNxRiiAiuOOqj6To+KH1N8/fc4M4aLj28UrviSOJX8fGOSNJjsoBlvMtK6zFgAdU2nC19F4SRoSWKq1RLwIvQImXxu8ZERMqn/dcsIjqtW23/v7bC6gDYZ2Y+kJooknFXJLEDlEayFvYPKQU2vjuIHc3WzTz67jYwTrjwV8WFZyyT0OIFecZIN84EkC8oacVWWWJyA3QFUmooiSqMpEFFESVZmIIkqiKhNRRElUZSKKKImqTEQRJVGViSiiJKoyb5SsaZ+0U+I05UaXhzuKH2xGK3mDyouuBKGUX3JQ8taISf71PE/Y3dlV2mWLWdCQa88syfK31mz2i+RKNQwXsQQOPSgvwTDb6rnIFEFYciAQfwC2pITrTLwMQbf0PrXkNN9XpIGD+iUdJ9lOEC1FHweTLAO1dx0OVuQux/Xau66hybaBQDJcpcSyCkpYFchcF9Rue91+oY9KClIavH5QXRK9syC5tsLdxk6H+dHjuNvNphqko2BZHXQcGYczYVVJWxKRFyskSllvSxdt9cTHZ82MG+6BJ8/FcVgWMamn94dTm0e5xClnuE0Xjj7GAUourCjZHKdvPrDFaba+xLzCJhuGGTHl4FKPqD1jTpV0e9PS5kOxl45L0reNv2h53MaI+VwHW1yJkAk5eLZNcVy/MLapNnsIIdLAE6QMg5VPwAORbBM6GHh94N/r5Yd7rDtzssKmd+O+m0DWEoLUlxUkl+P65XUbOsk031y7VZWrMlhikdlACU613DH48w7X3ceX7nYRfCNnF8yJ59KziNqRwkCnJSs6tY8TgVFjJsf4IsBbbNb8i2jJhnMusT7ufekb8XRPaMYAbl1yPldb6jZSie+y6uYIqQcsdM0N6AjbfWCYGsAQ/hxqA4oHYPusn6vTLU37anm09enLPd2X9Bl4y3f5uZnkzU4sH8vg1kmD+VlxqokroBXnATvNh2D5onQMY8ZE7zkxgVUOA0sKZhozVBdjvnvPOfjKbeP4ZSP79YskrwRLOYN70UDlGTJwSABh+nycDaYsPZ1d/ik0aq7ZaCk0rJvoCTyFxqfFjvYYNLgdsmGyQ6LG55p3mHJPHOMS+zaiQ7Va1H3oMEk4X7NPg9gvZwrNG2vuI7I92LkUCV8hHQkvSVWyQNxB6mSWqIe7WN4QtVOeZ1jXLBlQmyEXAK4XUDF5FEC93gW9DFU5LA2l2dwFr4P8lmV3q38skXT33hvfu5bHt3AzcoiEPYAeImku55tBp5xzK2h2C8AzEMJTBjXntoIli8cFvapJymreB9cJJDp/WTQYMC2loU+i5N2dqSPnbyVn/zT307N/+PX88LlWqX7rvUddfVKqHmh16X5wQW0SxKctKz5AfYxRYWCOFW6M0ADRmUf9Qy8bYavFLesvUYVII9iEZqVIOFByxSCv+Z1Lt7r0PpZ87qqE5n660PDrnBfXAqmUY5XK1/OmJJXsI4RU9HJf5TGDFy4Nwo0vUjCDTze+O6peNa+9M9+f7XuwXyJZMF7Y/XTB4Ne5FoyjPW5O4DYjbb0a1dyZ53hBvwVZDS0G2MJCLssPj9iT81e07m0t3rS14s8+nVbWoDA+aB6AYHzABwoDkXqsiJhdIPx6Eya/vnOhZ06/Th3do3N+RJgfv/meLGPNJ+peDNNZu8IgO3D+yFBZYCgIK+HZQokarHTzVMXg7l+3xQf1nDbqfek6qbmuT53oebxOlFb94ghWdevPFzQDXhMPNTTcFoHyyCB4LJeveRPkF/800nZCY/czjlOnX7y3/ea7NLLyMQU22gEDO3+slBRi6ICq0eA3xTDUy2J19sY1ykmjUXkPasF6ILVmfyBUFhIK/50bU/LHeo9HN0eh+HMKBwj2MXRVwq9zXudmhwNWFQWYgz0GGD6Zm5p84oqqTbokrorw898CpaQ5OMhcDT7Plrny1WLejAlz7wMuF07zToii+lbrJHvuUYH0Vct5RcojZOFyWSB2LIxuSJmQruEF4gHgniLAnXJ+GOkpOtlJKjMF22vRREEZ13XjBiyysy8COGejNm5gjuLERQQdGOFPEHRg8JOodGBUOi8qHdhv031Rb0TQfTHZplouMhWwObA6AStmIssLKZ/Vjf4+9fPEWPedHRKbbW5vNZgknyIC+uwQ5Ms9tD744JElb6oIk27WShra8bxrQfdMwOx4CcXpgKpe6A1GMy6mIXi2mECq7ScNVAILrQ9K1yq3KhfYYrJwcfjz8JEVB5LJBIoI6SgJ80Vp/KCUtou6DPZe1ds+xir0+C8OUDrBitLOizSGJtZqlx5SNQAGBkY6AESteif7MM2j6D4Mv14YG96YxnxGbTTZ2GFI4fbU9v+ZPaXS+RjInlZntaevL/xnT3H5PD0k3huw+oDLtMEdJBkP68zlwJ5SaZo4sBSVWS1F0UK3p62qFy3bYFU/1xVb4pYd+nyxNAf2lLpJwAFKry+woXTzQiHaU6oPNbo9rcxqT19rF/h2Jr8moE4nborZ2hSp9naOKNxp/wfH0J1X5vTgYEmw/ALbkmC6FnJ7zorZyhGQG6CYDcGBR5h6BAceUcyG4MAjitkQHHhEMRuCA48oZkNw4BHFbNQIjVaxBq0iUsWo7HkcVKw150zIFgYU8u/xSCJIFQkhU3P+NJmYMcmESlvIgUwcmGSy8uD9PtOyPrsnHdyXtGvYA/I5v+K+EoVUTpZJKRbDZiPgh8M7cIIXdYQyjK9QRkg15EKQPZU/Ajs2hvzaVN5FxKvoYu0s/AJVSrm8B/RY8GLukc/sbhRLGPfB6Vjc0u1uS+MDv8d3vZrFZAnNe6qlKsjPSnxsQydl5BA5rNUC74MR/wTJIvDvDiIMmOXIjNpMEUlxBgPq28iZF3UWGNAOIl7UNFFpL4kqRKYQS4NJDtBCc7mHLCSUdL2U5rq/MjzvVbIVPtm9kXPcxLNp5TEQfVXw3GCETPNWJYm3Qk0olWSkuyII0m4R8BYpBS/C1EueS1isDgtktJfK+EFWCYlcBLmg8jiiCJVUEqb92ayXShKuvQdX1RYm75apLKAcbdVR9Z8Dv5x2ls0v7z9L+OWWJo85lV7VdLdHd7MW9q/XFva34sxNluUZzk0ieHMJN4ngzSXcJII3l3CTCN5cIhZavujW9OgzfOFfe/5tH+5SpHyeWOjHxIAPk6xtXbZaTrPIGhx2meZcodVHKhKVjJcD59qaSZKl/JaN2Bw51Cnh1WdpO37cOzK9HZ748wL/UQFTqTsrYHUiZajg+4RLFa5ifhj+DN0SglTSYdbXorPuUX5Bj5PbSf/irHvptK0ZsDLr8S8tRchWJlFLo9oE+ySkEIiENJ2hEgVwcsgvPrfLkSZF+40QLul37cnyVtOHkxOCTpon0BOCxADXi1V4QmE/hCQKVTixE2b8/jVK4UTxQACt1mgkJSX90ofsj08WDOSXipRLVFieUQ7DF3TlROO2bTyHDXZb02vpgJ4Hn5K3Ecz98IcgSFSJkcKQzlxW6YwxBekAa/RLn+qiOs5hMjVGWxxIEhNhQpDCqTh9ZW95x6aeSbvcX+yf/tKJLBzNExGbuLkjhSGcYFbh9DAF4UD55BUO4ZmYhNNOEAY/EpMJeB01uFWqCBytIV3swleGS4ZDjsYW2E+5v4GeUe1sv26LK39dkNjm0Zw9s67vIp9j98/zfPo5dtJoYQivK6vwmhpHeDoQaZrlI8EuuRJUh8oUoxUgCAbiA+JSKBVQdOBfcuVIbBD+6ACHwiSjNBeQcnx+oaYq3LuY8MCpgLOrpv17ncKGFooqi8YvF4bkKrNKrqjRJQdvghkVvUplrDT70bChEashHB8osNn9bL37hmeng1alxO8lG0LGmCl3hPMNb3s8hoArjlO0sKo5ZgjxOLUNU5xazWys37HkHJ8j5gmPGrUda0vO1Ik0Gzm+KukImXQkvXcbU2VbYwFkHVLn2QzCCGRDpMowaYRqND9c80B1eXdNNZe7oodUga9fmINXalsMtnelZxXJ4+UCwH/ClaoIF5k8QvPBqHCfcTY0cea5XQLYL0dlG+eDkLbmJcaqN+Rq2JXABjs4ib2jThF9/NJnlyz3t3afH1HJJnmYVQ5ZLYmn0tVSO5LfOplKblbQdTJAzgki54iyI77NnHkOl/QqdK/knyeE4StHSFUqGUPPiquuVVc18X4gjMuafO7TDIebBZ/C1HIJio3gAKuarFiZXzKozSX2MUviSy74SzDYuRNz55e5FI/4iItCB+Gv4phvo3pVc2JhQPwq/H+ZvGEP+Q7tcrstkxn7j4T/t0j4qd2EDEbC//kSGwn/Qbrt5ICE/23lrBVHfgx1/Nu9/N6xzyeSj7sU7LQ5xzYSbpjkXGLjLL9Pt5GFQcJv0/XdObtYG6+Vz6vUL5IlcTQ6Cf85VlQOGtYasq4d9Dv4wx0J/9Foqw4lV3VzPXRy7qwmJTeQMxTGJOHfyCq6+cYRncFJ+OtKru46Pyfdef7Dc7NG2l+bZ2QSfszKMLKoAytjMBL+k2/dr4lelvSZMX+qebtnOatMgIT/HCs4By8ZkIRfPLb/38rhZsKDJS3KiRK2kPlkjEfCv5EVITCn8bitHVPc5ixo2uxXlyuCrXdrx11a+6YVmUcAO8QXrpQDj06P2cwZcG6TmyKR5d6Pc2EAxFXKyJBQEMOppdhWjT5cDtQOi4xvS2c9yDOoa20fCITOXAb4ZgJ8t1LDpHSA74jLBT1YVTH3tcBVHAvkVy8+f/r7K30eu84NaDrkuGWouuC9uyghFNUwFjCEgrS3aZeZutgtB7q7+7JeIVQZzfQNkoaopOj4svHc+T0bTK7lPDXr5M1SddPcKSeksBsRJ6Q01wuD9nct6/efednYwZJWM/UIlOAry5RBskAWbptH2W/Lv4jZ7Bxd1nFWp60byNXn5sQD6LqqHSkMYYxgFcYQ4wiDGv7w9MlY2HsqlBHAfUkC4d6pjUMXsGQFK4swW36LLoGhSlWQLb9lF/VwVQT2AzpaHdXZ7s0/r5PEq9pmvB2568xGsl+DH+AXMVqO6H+ZO1QYwvJmFVZHk5g58FF6RauVcje6FZGqIWqWGVTjjt8cyb3t7lPOLnZ/fvJm04IslQu6dHDADTk86plO44Vq4dxz22X9olTckrNEW8HWrXpW+FxPuDVpfK/AH+NrGHfZCwBYSACQgQAAmha9IlHClTGTTKxeOF6xveQL17+3PO2cIU10orgywx72hQD0ZwMg3vEyEWi2/39Wj0NtzG2wepxTV9jqcQZfKex6nEorXZP3VbH3Wdyztv3aHhnlTKAe58QVtuzmzismUFQQGxtrgHqc9qtWu88efMF57yJLdfskvq9J1OOsZpXOdFOQjkHqcdI7FW9S7Phjt0VlxxSLnbe2lUnU40SwCmewKQiHZ8x6nBNXYrfYBLl47E+XBMQt3JlsUvU4YlbhtTeO8EyzHude+LaQYi87eO+d/MX31rYui41cj9OAVXKWRpdcodbj/Btj537ufRPHuZf9FZm8tD4mUY+DxRCM9TjAEOJxaoc/oR7n/eNfm6t1jhNsLdPx3MtlqbFGrscRX2Wrx+FfNUw9Dr/46OWPPW2Ffz/7XiYs9ZWa83oc6tqcgxoTt6tsNSatrxZWPc7DIAHv2ZwqXnM7Vbq+1uxRJuf1OFQbwQFWfFasylz9n6rH6chkxoYfkTWTeceLDqT4yJ9k9XtDzpR0j4RnJ11VkvBQ+glTPdIXDZxk6nB4ekybzRltpzllypdAzrwQ+AlIzXt2dmn3y/ucBUuuxCf3SQkwZ3w/eiYn7yBN/0r5ARPmk/coFkIrqeeedNRK7dOojZMaO/OyzgGtrCyCfynnPyWNnVs9PJdW1k8qBwKTBrkDuz6KeBwmVo0oOzGJsnLmHCerjhdFsW0eHkk4NZK8F1REiBZgBY11R8iMV1ozRDpkhTsD2uErrpg8qIfkf4PJQ9fooAiDlBxARCaH9BSwRe5RAY56ZybUf/61e6O1vZlwf/+qKzeHe23K9/Rl6cJHXucTm9TTexyd2PzNecMmkXKnqBLpwiSRmAVzIl96fHZdOryyeuVM2wHkPVEXWDwTQY/IGJeXmhv4auD1Nf0uI9Uw5MV6tYUq5UGQjhGWBAZjv4eFwxGSELVOMQj1iGQJsTJwmDRIexPq1enbuZrrutKAAjDvQjB3ChFFfZBUfe0pBP0ShAiu4xD0S/AvlX7J+6+7Xf1OvnCcenZvlPlbnytU+qUpvWIn3gzv77b8aMyKx8tndyXGicOov03PRP1gBD0Tk6QtIHsALkaktGbtOd5h+LZgcZT32PTSaf52BZEW93T4kEMIytUSFfLcByFP2imjNJ60gP0dB6nBd1CE5BqM3J8xUzPWoWOP8QiWKCZZWbnkzjYQEEVEqhgC18xRDRuOGuGdVGaboNmA9LWsIisp0jwJwXWMDxSG0HazCm2tYYVGmGAzsUhjUOEtE7XzHpMNMUeZgr16Tnjra5lCLVVhVXfgI0gGEymrld1bvhrQ+LLHomzzZ89fBs2iyqqkV2SEZIhcS2DBoyS74Kc60N2VQ75cX7/prtiEOpNVqCNO0bi+WBso4Mou1fCzIMGj0qSwKroZtHT0Nh3YVa5VPMoet0tHBYhO947NMRXHXXpXJpfe/eE9n5LyC67rElOKTtxfN5pcK+sXKguO4MO+smS3Dv0VU0/rGj7BwXApIpHL8farMtg4D5J32yMBtr/frcuc4RkuO/tFR1Xr7iVgegVEvKTrthTQjP4hBDEFbVvK1pl3O7igdWRlse67YG6q4QujyRemehzsUaypd9SlastufKtal9rgBfkV8w0JPa2fHa8k2uixzjLI2X56f+sCzjG4hPeHWB11RMyxKDBqG6Jf1ZhGgkpMK5C4eKpbNfQqe99rl2zHsS1pDe7RtpSDdQOmgPMJfnMz1m8OtMQEtpMxDdQjx2YBeYbYqKeO2UvsRZ+EXrPW9O/zq+jdF2S9hHcbCv69wWzwzzYO/LQKsYI26tbMCFjtDL4JUiJv5IvXljLvI9qb+XVw4+b9cn7TUhR0N98ujymgOZjBdtiEwB1MNxN2MItWn726XDzAdceYz15yv+EVCsfBrJzO5mD6TjeAg7l4Qh1kduqR25SpJR7N2P/NnhsHE3O8WNnX6TNc4pKT56RPHdSGAwezdDrbPJ88nWMHM2dl5XW/vgW4zvDyPDtu0CBPIzoYBes3B1ryJzqY6is/FP/48ZbrdIdOd7qefDDQeA7GhRX+lsaB3wgORlp04F7rr9muk83S0xz2F91tPAejNQVIBwMmBO5gHE3Ywch9T6WXKl1dFOuhiK7+WZxTOA4meg2bg3FZYwAHY7W39RGb2ns94i/6D/tuJ47lxsEEd+7Qrk7Frz5r1q0ab5GW4sGBg5m8hm2eK9Zw7GBmVGwtun95h+uydX23lfC+tNKIDqYv6zcHWvInOpglkipD1h595b61+56GC7JLPTeeg2nJCn9t48BvBAfT+u2Q1WMTrTzWrOuWc6a8dKrxHIzWFCAdDJgQuIMRmLCDyVxV51vL3U29NvYLOTtzn5d94TiYnF1sDmbvLgM4mCSvVL/aY2zdl4wsNqfprqd7uXEwIxpd8yvarr3X1jTpvcx7Q7lYwWTvYt0o2sWxg+k6LOBE5w7nvFcWH/N6nU//HCM6mFOs3xxoyZ/oYLpvbjJ7dYaF85EW3Tpuqzirv/EcTAwr/LONA78RHIyk7i+vOsMmum5zK1G1RgvHq8ZzMFpTgHQwYELgDkZowg7mRsma9kk7JU5TbnR5uKP4wWaF42A2p7E5mOA0AziYbeNt/U9NmOq5cO3rXV9fLL/DjYNZFLktweGYj8uiE8NrHHziepsDB7M+jW2ez03j2MEMDv/U66PnX47ba+Y8sLq70MmIDmYM6zcHWvInOpgx7xo0LPL5rPOGO2ue3Pi12tV4DqYHK/xdjQO/ERyMu9mmn13HxwjWHwv4sKzkknvGczBaU4B0MGBC4A5GxORg9O6pYKOVXuH3VKhxt/bbf0ZNEi/9/u7TssiUlDw9FeyPJzx0rlxXPEtgV3tuS8HMPD0Vpk3YU/OaOsBjacCOntUSbs3O01PhbmiLZwNW3fdM4hWLSasQtDBPT4Umrg+CXvCsnOY+3hBZURbwOU9PhcdjfaYnt2ziMb/jQ+uNHevG5OkvtaDa5E5x+4p57lJ7lPTvdvwIGCqJD/X/p0aLm/fsPGI2pFR+JBsAe1mZ40NOfWwW9Ws+xH3DwaTwwNvrYAesUvhQqyfxk2IyvByT0lULHHJcvcFQaXzo8+xjyQMGtBD+PWlAjYDts2CvCAt8iN/nVwPnplfdl+2ZOPHas6nbwVAZfMhWHpd4d+FJ9/htD/cuOuyVBobK4kNTV6zdlLqwmGj+1got3GxdssBQOXwofV7LhUWfrvGZvmWrnW+trm3BUHl86M6m5t7fi5x23ffZrM+3i1t4YMgSHwro8nbuzfetvKJ8WlmW/dr1HzBUAR9abPUx/p7knesG2wrNvqQXGwKGrAh4A4our3BA7bN0ZtzdrQ6tIPLWxAPnl0oYs2CFR9w19+ffkxPqg6GK+NDCJlVmfXtQwXl5r6xZjU7VLQWGKvEYW3FUJh44YWL4CS8bYcKVH7WLN8qeCIaq4ENK8ZdV6xff8lj5769HDc2LTwJDVQmh2HzuPmjJDZ+lvZ8X6bPnagcwVA0fCq66qHSrabZuM11iNo+Y5V8aDFXHh17Ve1M2rNp6l53tNz6Jf7RyBBiqgQ9VUd8/2r7NZs+oIZKEDd9LVAJDNfGhePP0b5d8hjnt8f6a07hPSAAYqoUP9ShbJDzSYovzuo+2LcwyRKPBUG18aMc3/9gmDmcdd3Q4u/9lsfOzwFAdfGjteHvvnDvB4k0fX5wO+dR0FBji40Mb65xLOfMxRrCq3CLJ0oRVb2nNQuryGJqFHJamzS5/YZ1oo1nK6ho9buxCmA19m4U4MZmoSsGJCStTTzuv3p455mzNceT2VyWdR4XLlUEIBiymALgRfgef4CyVKWBYGAYCYmCE1NKQMKnOlFdUA4V8NXplIz6gazGXjTPvbgZs3Yg6veULwuPdGXoxglrmMoJqXgT53aJOp30fwe/uM2lfEcETwdtFHBKCcnxIKwYAdDODiZOmKmz3lKFXTNymhxSoBnb2PEgaqAwLV6plGAUYeD+ZHFs6EXrCl6gg660yTBaI1pDM1b86bfX23Pdr3j+j5eP9yRQ+2s+hU/jkDnEdN0C4drPCtTbDJCI5Ot2knpGcHT7RgnLFFREqieCHSYZJ+SAAgXQCQySQi4OR66fZk4ybPY+9E27paj7yzMpO/1LYHvDHItgeiBGupWdphyu7E0p6y+0xZacx/ugJXF2CmI4gXZBSgUS3BC5Z/vi9DlaiXU8HB9TrNfFpwWnwOABrNytYQNVx/+PM5H/+Y8/+LfZsaoRuMPbsqTfY2LOdbhQGe/bJL80uyB0thbsrBN/b3utoIIfOkmqBOGDPjrrBRjYsv2EQ9uzEjPufvNv5ue6fspDXO8ezr9HZs3uzogL0xkSZPvLbYOKOPXvhDUerofx7LslXhh65sWv9fpNhz3ZgFV1N44jO4OzZDWXxxwWXvrrOOZryKPLOPL6R2bMxK8NIfwysjMHYsz+tt6ksjfYUrJsiP9rxvBk5hWEc9uzerOA43TAge3a5nO/L2sS88ombd6GH0xqvoSbCnu3AihCY03jc5sIUt51eJRH/6FDFdfLm2iWf1x9LXpybi0GMxvdzEuu+cSAk2Az5sKMzEQmDFWIw+BHEXaP5AFtVhIYnGhhbXF9h7IWHbuN1Cpyo+5fo96ZH0cSIHstA+ROA8W1U1s0RSMD2iX7bCtgL5MEAHSm1rJBZrJ/A6UDCKn/ZwNmtKNkkeDeCJAq7nF+kRLV/BT1SCAAKfYKfgKcpIR8ehnqiF/dLVQwgQi9sgmQqoL5gHO1swxSV6gasau6x5OiT72F3T8nI09KJuJk+LXOH8m3IdO2m+JXVMtclr2KeLDiV8Z4DwBxZAQMaZZQgSuMz4O+04jH9obckMWeRpQUmSxar+jzWrWdUptJ9d5/p9Ta6ptW2wsjkgTCcR4WrpFrqGSyoFQj9bHo3KVgATBFtuWUzNk1wPSNcMfRKSserEV4ciLYqq2jNjCRaVHw8v5teoVYZcR57jhRmBfcFd4Kvl/Bc7Tr9zIgpDYOoCT8EsZ3mKteOkWeP26SdAkTOb6c9NsVwx+jK5BiFV6rcGdFuj+Pf/QZWnRVwWEz6NhUhAUkE3PqEbLJSyG8kVdOdZDEGLJuLlGEAcg0NCvaYoNzHYItDTa0J3FiCxB46eURq2i7/F6aJA/lbemwqtLwNQH8KlP8+VfkHA+WvfLug9SkCcR5Q4HaDMlyqgtGGUsG30ei4mg/Q0zShgP/S2DQ13I1WjpQyMMiXWZVqJ3Dt6zI/oFRP0ZCeFmQbE4AVHdBtDH49Pxtzs+JR34UvH3luivIRLPfeGMHBzoQ9hNlMCA+uUzfrmmAwF3RLuGEe8Wt3twKVCrU0MBJTD6wmCr2K+NxluPfNWc5TBwwVxI2yIdNbWuQ+l778JQ0WBiM/Blt/FGwZdhhsuElwYzIJZ8vVf9+irdIr+t0bT/vLE51J361sDynGI8H3jpTLEbaAKWC2I+6DZCSYzsoUIyRyWZBGyUfKIkL5SrBMUeluCahZepb3pEmBPKxHlHzsFlPyLQaeUrpV0Llf2R2rw4O7rlI1RoaDIYYEwLt4vSJeJZp5zP065NWvuVO6kMNn7EH08FlzOb/pTK1K4CBkSIHITUWFDOlNnXnxtxjDZx2Rq6FFTkVSNahaSPiud17oUTwwy/Wv8pm7Xn16Q2n9jSsIOqVDHuWclMYG0yQWtCbfMgqTkLn/6HBpXhzq56nZsfcEIa1Ubg9/R23v6jYIBrkhUhWlJA7+Kajhrow5SChY8AiwqB6tETVSylTHVJBJUkC5DrbHZ0G2AEWK2RybBXpthFX1xrCFsYKmfhdX/SAkFLUmfi9+o+FX4QH/RMUl215tKYkJ+K0QiQnscmFAsZQVCqDiuKNyZ3JU/JD6+6fPmSFcdHy7eMWXxLH5Mv8x2GKmdZ3OLH5Ua6kLix8vXxs8qXrnS52PfRXtalZU8SDGuX9BKVlh4uIWUVlNhdwSRA6ttZB7mDzk1No4biBP2x4d0ePFaaf5P2rmjKk27xoHkNe8ywZ5mbsE5J6cVWWWJyA3QFUmooiSqMpEFFESVZmIIkqiKhNRRElUZSKKKImqTEQRJVGViSiiJKoy25Z7EPXu2jKXVWnmrx56NrSglbxB5UVqH7X8koOSNzGT/Ot5nrC7s6u0yxazoCHXnlmS5W+t2ewXyZVqGC5iCRx6UF6CYbbVc5EpgrDkQCD+AGxJCdeZeBmCbul9aslpvq9IAwf1S3rQ+7e+CSZZBvLECDywqF+av4Ym24axmSuhaAAe4AfmuqCm/opEUc2ZHrGq1IdbApd3LEiurXC3sdNhfvQm7nazaQ2iwLLa6iYyDmfCqpK2JCIvVkiUakvjW9dq1Nk7+VrFaz9qvr/IYVnEpJ7eH05tHuUSp5zhNl04+hgHKOXcYEPp2g365gNbnGbrS8wrbLJhmBFTDi71iNoz5lTJXzmbcgbI7YXz7XzltUdNExsxn+tgiysRMiEHCWxr3tQvjG2qzR5CiALz9FyDHohkm5Dg/FoY92Hq/hrC/assQ4OCt4lMIGsJQTJnBSlHz7xuQyeZ5ptrt6pyVQZLLDIbKPWH7nF3M596LTuwN+uzm90hchaReC49i6gdKQx07jPmdCE657Q5XS8mx/giwFts1vyLaMmGcy6xPu596RvxdE9oxgBuXXI+V1vqNlKpV9tj6gELXXMDOsJ2HximS1CpzqE2oHgAts03CyFN6/x81Cbp2q2Oq/m8YWc8u5I70Flg+VgGt04azM+KU01cAa04D9jpCxAsX5SOQRbuJP18XTkMLCmYacxQNegqbTl4jb9oY/UxjxfVLt2GbImcwb1ooPIMGTgkgDBtZoVp4U39nF3+KTRqrtloKTRoaTAdgSk0Pi12tMegwe2QN5MdEjU+17zDlHviGJfYtxEdqtWi7kOHScL5mn0axH45U2jeWHMfke3BzqVI+ArpSHhJqpIF4g5SJ7NEPdzF8oaonfI8w7pmyWBTrUcA1wuomDwKoJ6epZehKoeloTSbu+B1kN9S/LPbl3NVZgtS6vyUHjg8mHIOCXsAPUTSXM5vzlHPuRU0uwXgKQPhKYOac1vBkuVzll7VJGU178PWqHZD10gHr0nvBUtuJLfZmDo3gZz909xPz/7h1/PD5+LJOrvCTts5LRy2J2WRvEI3DvDJymLDB6iPMSoMzLHCjREaIDrzqH/oZSNstbhl/SWqEGkEm9De3NhX3cVzvdvkYUODF7c/3YAsNM39dKHh1zkvrgVSOcQqla0mJZXsI4RU9HJf5TGDFy4Nwo0vUjCju42oFdd4hvvmvbOe73PfUJQsGC/sfrpg8OtcC8bRHjcncJuRtl6Nau7Me52l34KshhYDbGEhl+WHxxSbpbWaz7B0O5I4rFXV8s+aU9o6aB6AaOuADxQGIulZbIjsziL8ug+TX9+50DOnX6eO7tE5PyLMj98kRyn4J+peDNNZu8IgO3D+yFBZYCgIK+HZQolaDTtyaaticPev2+KDek4b9b50ndRc16dONAuvE6VVvziCVZ0v3a/rmQGviYcamgYWWJNFeIRJ8ybIL747+cW0O7sOe8e9uu05ceKNVWTlYwpstAMGdv5YKSnE0AFVo8FvimGol8Xq7I1rlKatPOmgFqwHUmv2B2Ara/jv3JiSP9Z7PJohmuLPjdrVHq5rMcCqogCDvUR9tZPZ1+QTV1Rt4qjjFzXNwUHmqlwWW+bq50MC8+5MmHsfcLlwmndCFNW3WifZcw8yoXo5L1IzOrohZUK6hheIB4B7igB3yikt7XSyk1RmCrbXojdjJY/runEDFtlrHwM4Z6M2bmCOQvUY0fOL8CeInl/wk6g9v6g9u6g9v367pxf1RkRPLybbVMtFpgI2R58WhAubbxlc96ml9xLJkU3blllMILcgFNBnhyDfBkPfD62a3mFCZ4+FD4ue3FJa9q6geyZgdqyE4nRAVS/0BqPRj9MQzbSYQPqdRo2rG0UfimhczPGIveT5z1IS8lajbo0aqShNef6wz7fuX11m3Vw058GscVygpGJFaeBjWhsm1moXTb9rGBjpABC16p3swzSPovsw/HphbHhjGvMZtdFkY4chhdvTHv/P7CmVzsdA9vTUIzZ7uvrRf/YUl0+TbSJ7uw27vGNvzgr+52XSBQ7sKZWmiQNLceIRm6XY+aiw7WmHSh6Lxzet7xi9xWrz2LYbUjmwp9RNAg5QWs2K0vRHhWhPqT7U6PYU0xhGewqQwu2pn8mvCajTiZtitjZFqr2dIwp32v/BMXTnlTk9OFgSuDxiWxK01ULuz1kxWzkCcgMUsyE48AhTj+DAI4rZEBx4RDEbggOPKGZDcOBpKQbpHHhEMRs1QqNVrEGriF70UNjzOKhY68mZkC0MKOTf45FEkCoSQqbm/GkyMWOSCZW2kAOZBDDJZOXB+32mZX12Tzq4L2nXsAfU+iGJQiqn96dnMmw2An44vAMneIFt0fkKZYRUQy4EW6SycdhSeRcRr6KLtbPwC1Qp5fIe0GPBi7lHPrO7USzhBovXd6qHN3FKcpGqNxWdp2KyhOY91VIVbMJKfGxDJ2XkEDms1QLvgxH/BMki8O8OIgyY5ciM2kwRSXEGA+rbyJnXNBMY0A4iXtQ0UWkviSpEphBLg0kO0EJzuYcsJJR0vZTmur8yPO9VshWu69/I+VuTzLTyGIi+KnhuMEKmeauSxFuhJpRKMtJdEQRptwh4i5SCF2HqJc8lLFaHBTLaS2X8IKuERC6CXFB5HFGESioJ0/6MERNr78FVtZfJu2UqCyhHW3VU/efAL0dksvnloEzCL/c2ecyp9Kqmuz06mLWw31db2N+HMzdZlmc4N4ngzSXcJII3l3CTCN5cwk0ieHOJWCgzcfDTdveripfP7NCFtzgjK08sNGjhPxfiPFM9Dgx92LiheHwQzblCq49UJCoZLwfOtS+TJEv5LRuxOXKoU8Krz9J2/Djy0qg8nvjzAv9RAVOpOytgdSJlqOD7hEsVrmJ+GP4M3RKCVNJh1teis+5RfkGPk9uhT3HWvXTa1gxYmfGe0lKEbGUStTSqTbBPQgqBSEjTGSpRACeH/OJp1SP3b7hmJ1i7sMvZbU+ti5ETgk6aJ9ATgsQA14tVeEIhCEIShSqc2Akzfk+NUjhRPBBAqzUau3fv/qUP2R+fLBjILxUpl6iwPKMchi9I2fi98Xh40HOs15LFlc0/b5TcppCo4g9BkKgSI4Uhnc6s0rExBekAa/RLn+qiOs5hMjVGWxxIEhNhQtCF9EdEN5rtP+Ox86Fsfc6uDeTUmLnmiYhN3NyRwhBORVbh8ExBOBC6vMIhPBOTcNoJwuBHYjIBr6MGt0oVgaM1pItd+MpwyXDI0dgC+yn3NxjKs69LOou3dxX8veJLvPWCJWHkc+z+eZ5PP8dOGi0M4b18wia8DBMiCiITaZrlI8EuuRJUh8oUoxUgCAbiA+JSKBVQdOBfcuVIbBD+6ACHwiSjNBfQnCLp6sbbX5VyX/9XkZ01jm4YSeutgyiLxi8XhuROsEpup9ElB2+CGRW9SmWsNPvRMkUIuyG8G/TJ4cCpNj5bywwcUyRxEjl6NGeMmXJHON/wtsdjCLjiOEULq5pjhhCPU/sxxanVzMb6HUvO8TlinvCoUduxtuRMnUizkeOrko6QSUeSw1SIKVNlW2MBZB1S59kMwghkQ6TKMGmEajQ/XPNAdXl3TTWXu6KHVIGvX5iDV2pbDLZ3pWcVyePlAsB/wpWqCBeZPELzwahwn3E2NHHmfYTYL0dlG+eDkPYMPaQlFsjI1bArgQ12cBJ7R50i+vKddzerX6uj+5Z6DmkjTxchc4+ZE0+lq6V2JL91MpXcrKDrZIDcO4icI8qOwDZSd5/qVeheyT9PCMNXjpCqVDKGnhW8fe6jldIxrovmD/pYYdb7FgWfwhSsqDaCA6zOsGK137ChDrGPWRJfcsFfgsHOnZg7v8yleMRHXBQ6CH8Vx3wb1auaEwsD4lfh/8vkDXvId2iX2/2ZzNh/JPy/RcJP7SZkMBL+zc/YSPiDnxUGCf+kmB5PKypGuO1vsSzFt/fWTRyeNufYRsINk/XP2DjL5z4zCAn/glcBvr3ebXVeyE9/9HbFuNNGJ+Efw4oK0BuTWTvod/CHOxL+slXUb1eO4TluaD10e/9g++UmQ8Lfg1V0XY0jOoOT8C+/Hvxg3rqePtv8tszP8Zjx3cgk/JiVYWRRB1bGYCT8pTbElt3RLdR16mzP4LbXxZdNgIR/DCs4wc8MSMK/ptqUkjXvVXeZZv267qroUKUJ0FlAhHqwIgTmNB63DWCK25wFTZv96nJFsPVu7bhLa9+Q6d4tsEN84Uo58Oj0mM2cAec2uSkSWe79OBcGQFyljAwJBTEc7HKtDNaLy4HaYZHxbemsB3kGda3tA4HQqOcA30yA71ZqmJQO8G3wvKAHqyrmvha4imOB/OqnRg2QLposcFt2ymfHZ7d0s4L37qKEUFTDWMAQCtLeRjxn6mK3HOju4Of6NcLWTN8gaYhKio4vPVo7lYl9eMAran3Fk4ca/1xGOSGF3Yg4IaW5Xhi0v2LW79/+ubGDJa1m6hEowVeWKYNkgSzcNkse8I5a8hZ57lVm9mu+6yOlzxzxALquakcKQxgNWIVhaRxh0Jpj65OxsPdUKCOA+5IEwr1TG4cuYMkKVhZhtvwWXQJDlaogW37LLurhqgjsB3S0+rh7Ve/rHg+ct0y/s/tIx4hvZL8GP8AvYrQc0f8yd6gwhPX9GZuwnhp9mUHU1egVrVbK3ehWRKqGqFlmUPwH3557Z8d4pPgGzVTn9O1akKVyQZcODrghh0c902m8UC2ce/Z5rl+Uiltylmgr8uWCJS/nRPssKv8t1CLJQWzcZS8AwJEAIAMBADQtekWihCtjJpn4687c+BJ2353Xx59pMiXgTQuKKzPsYV8IQGk2AOJfawPNgf/P6nGojbkNVo8z4gVbPU65F4Vdj7Pz1pqhD8pmex5c1G9gelZ2qgnU46hesGU3B74wgaKCFStWGKAe51G/LWqzlk4eG+/8267uwidZJlGP48EqnbamIB2D1OPM8qnt+X6PrfuuCVkf1jxSzTWJepx6rMIpZwrC4RmzHqdcmGV0rX/fOC4vkz1li7lVlEnV43x9zia8x0ZfJppQPU5IkyI86wkNvNZnzZ9jEzbttpHrcS6xSi7F6JIr1Hocxx/t3kyt39E17q7148bfkq+bRD0OFkMw1uMAQ4jHqYP+hHqctePtvXPuBIs3fXxxOuRT01FGrsf5+oKtHucCPaQtlHqcZInV9VPW1q4J3VKOPp+6RcZ5PQ51bc5BjcnHF2w1JpkvCqseJyLjia/1RG/HZWYhnb99fhbGeT0O1UZwgNUFVqySDBvqGLseZzCTGRt+RNZM5h0vOpDiI3+S1e8NOVPSPRKenXRVScJD6SdM9UhfNHCSqcPh6TFtNme0neaUKV8COfNC4CcgNW9jnXMpZz7GCFaVWyRZmrDqLeP70TM5eQdp+lfKD5gwn7xHsRBaST33pKNWap9GbZzU2Jk39yHQysoi+Jdy/jOosfNfcx6mlfWTyoHApEHuwK7/H3vfAdZE9r0dFaWLoiKIYOxYQNS1lwVC6E2w7NojCRINBJMgIhbsFXvBjg1FRbEr9t67q667NixrW3uv371TAjNzZ0hgSPL7f8vz+Dwyh5lM3nPvOefec+57hpCPw9SKq1LCpkqHvDRf+7YXRMtb3D+w6WSSL40FA63Airh1R+hMYIWLKIesCGfAOHzFF5MH/ZB8EZg8dI0OSrFoyRNEZNUg3Q9skXvQm0C9HxvqP8ZtWVXJw8xnR0/HhZkJobRiJcTpS6uSR17nE5v003t8ndgs2rzh0sje23SNRLNpJGNmWuLzoE/+8wY5qBdObtyLuifqB4tnNMyIjHV5id8gVAOvj/e7TFTDkBfr1RarVEghHSMsCYzB/g4LhzWS/mqdYhD6EclyIcrogTKp9ibUqzO3c/HrutKAAjCn3oG06T6Ioj5Iqh5yB0G/BCGC6zgE/RL8R6dfCht3u2PUiWdeY89sS7V4HX6VTr80ptvykTcTegakH8xY8Ch9akdSTh5GLTI9E/2DEfRMbJq2huwBhBrROTDLj6vazFoUtF3p3fr2rv2tiqMt/unwIYcQ1GsFVMhzF4Q8mjtGaTxpDfs79lGD7xDfP99g5P+OmZoUz7aRwxEsUWy6svfLn20gINIkqtCB61P/U790tjnjNTF27GGP6h2vc6rMXIQ/CcF1TAhKQml9OZUWYlilkSbYLESEG1R4y0jtvMd0Q85RtmCvli/R+loer5apsKo78BEUg4nU1cBO23oPe7zUe6/LvmZBwVVX03VlHpqokfRTaAksBLRkF/xUT6a78iyU66uI7opLqa05lVrnDoPri7OBAjHYZTg/C7pFAI0mhXOgm0FLx2zTgV3le4inehB26aA3otO9VxNsiBMuXcrm0jvdvxNurjjvv2z3/tIjd9QcT62VjYqVx2iEsK8s1a1Df8XW09o5PCYGLkUkCgXRflUOG+dB8m4PJMD0hoNsr4CIl3TdlgIjo/MtkpiCsS3VWCyofKu4dWS2WPddMDfV8IXR9Pg1N235evhg0MyRWU//MX+VTW/wgvyKhYaE9KbrxZxjcAkfAbE66IWYY6lA2v6WflVjuAaV2KhA4tIjIL31nQmbRGl/R0SPm76+AWNLOUY3YIo5n+A3d+P85mCUmMB2MjYC9cixWUOeIS7qqS7hm1OrlRkrGtNLWe3k9ps51HEJ7zYU/AJO+J//bRoVYsVt1I3PCFjtDL4JmqqD1nG3iJaiuLv57gVMAcPB9HXHJgThYGRsDkZvPh83rfZKns9HM/PgiH4nW3vvq56WvCCpZkoBPp+mi855zVnsFJp+dOzjf7dNtC/A53PKY8JvJ2JWh89sMW3gmT7WoQX4fI5W2FtnkKM8fG0p0YQ3d8SLCvD57HYu659QPc9756blE+N7/TG9ILchs/MvyW2I6PxLNupFdP61IEQLqvbu2Ts3wye1y1+Bj/74CIkZLQlRuX3lV9vHdw5ZUuvs249hweWByIoQ1bLx2/Bi3+zg3SPjRkvsqsUDkTUh8u10LGp4/ZPeM6qv++IzYf13ILIhRDl3hzZwaH/ZLyvq13uKub06AJEtIbp3dVzVVOv3gcuazDk91ulZABCVJ0TN/JQfmuxd4rNkaNJB/yP+W4HIjhCtiR1RLe1E1eCV9mtG1pnRvQIQVSBEZeK2H3Oxey5e+rV3Ro9D5j5AVJEQvfl72+W1MQNES/6Ne1l67bb1QGRPiD48H9d5h3OHgJ2SyIHjYixVQFSJENXo+GL7mpPpolUfZjRNuZqRBkSVye81eJ7L0PGa8OWWV5svmPIkGoiqCFhpoBwI0fovQ2PrzggSrav466m/JJMcgagqIbqbuK9jTE8/vxlPHEcd6PutOhA5EqJRdw+WutuwpdeyrvVanqgyeBAQORGi74vWN1zXeIjXnn7H/7z59fU6IKpGiB680WTeazsxaNy8am+7D/1jCRA5E6Lmjod33X/5OmTRpAGzo7KPQKCqE6LYuz+Wjh12wDtrfvs6fzZ+3gCIXAiRrFXt2W+7+IRuTuluv7LRvrpA5Erqa3sb8xu3vvqsvhT9plb1BEjaWYMQ3RfXDxr6SCVetCw3u/2HBVOBSEhOh6i3i5KjAkJ3erqM2dB9RH0GUVVNAQtR1QPF75Ia520C5n7+263tdKuLPBBVxbCZqCoxuzctPHZKvHhD3tAz1YdlUJeu4iEJCqUUcfqCLQCuR9whJM/LYm3q1HEgIAZGiOgAqONxC7qBQr4ac1VNCHRdSLiBZdULSBuMyhxGwIbsL/RroJl/GhV/EeR3+6f6wnZPHsYGLL/45Yj9kBobeTyMynOCEDb4+eUFWz20I1iVCl/oFRO3iJSBoYHVPUllsMWRUi3Hjp+A95MrsKUTOU6EEhU8ca2Mk0ejK9WGpjQsVXN40JrFre/KDu5YTi0f134Os3w8X8R33ADhsuGE69O/JhHJMY866hnJuRMTTZqvLk2sRCOMkwyUCUEAom1hzV5nbpGjPDS8xmb/TfvMjkWHKmrQKg2JxyIqDUkJ39qr4E4Mdl9k8b8HNtgZ1eZ6AleTPBRFFvzJ6EAiwfJs2Uuscm4cMrmh78mTnWdSLXWRjmDxAJYNJ1hgqBP+pz+b//mPuaFIzA30CN1gzA23X3AxNyzVz1fqyNzwssNvf9kdrBSYO1c61OnDufs8Oku6BeKBueHmC66D7sf1c5ZFZW7o4rqu0Y5LA0LHfq5p1shhTaLRmRu2cKICxo2JVpkWtsHEH3ODz4OyLWbF3/da4V42RPqgbX+TYW6YzKm6wcZRncGZG4SlMjcoJ/cQbXL8Hq08POmFkZkbMCvDevT+OCJKKSnmhhNDhHaD5+4IG7ejWsDKaXnrTIC5YQsnOEtfGJC5od44y7tuK6VBUz+8jb798RC1KZvxmBsmcyIE5jQRt8WyxW2nFklCvrep6j8609X8ae2U/dRoNATEaMIo3xDdNw58tM1wYTcBMhIGK8QY8CuIu5KFAFuVBucoAMaWGK8w9iJCt+E6BU70/Uv0ezOjaFKixzLw+DeiLS4jVPICGhj/Tb9tBewFCmCA/HaZgiu9D5295Tf+37lttw1924+WTYJ3Iw4oYJcLi5To9o+HnreHvxHVV4xBKGwkFmz8plfdsSMGEDku3KRyFRi+QI52thZNrIVbVz4OXVX1ucrKeRiV1tjSl7yZOS3zRYUBNtru3LLLNs/EW3M+mB/o3KouD4At5AQMjCijBFG4z4B/01zA9sOkw7Lg0KU1pksOq9rE/Mzcp5LSgRvTN69KvXX9pz1GZAKUIR6SoJJpy56xoNbbJ8rttwbFC4Bpqt0TkV5bPDAyeFPr1+/GrMlx40G1Kk7V9jaSalHx8Yxf9Qq1bEIK2HOkMkfc7Xo74NQQr/QaFyJTsm7spSf8EIeq8Ku8t5X2IGxSDqqoJMcDm2KEY5SzOUafq1VvDW611Su7R2/HKV33UckDKsPiVw3c+oQnmWWwtl6mR8f4JiJlHIAcL8HFHiPNfwy2OMxvFA+LSnXyiPS0XeEvzFAH8q/02FSY+hqA/tgH0UC+Lxj8Ca+LW5/iHVIAFLjdANsgwWhDGS90I5ufA/RwAiT4P9ymqeFutDJJxsJe8kdWl7SWDZ+Jlh6z/7u652Kqty3XFSs6YNoY4nphNqbap9sNkj76hW1b2LaeddMum3nYmZgIYTbzQbRMT2+AwVzcLeG6BdSv3d2KVsarZdGJ2PDAaqLQ3FrCu3/vuHwkYNcYB6/AD/eoDQ+t85/LXP5ShCXBBoPB1hMF2w13DDbCJAxgMwlnytd+27SlMnT8m5fBHldGiinfzTZShtUwCsMSFQqELWALmN3J+2AhLDZm5fGDJQq5FB/kSXJNrFAJlikq3S0BPUvP8Z4MLVDFekTJ1V+zJd8yALqvXhV37jsEYnV4cNdVpsYKsTHEkAAM8Rj/vW3nUeFTtz8tVevkje7U8Bl7EDN8xi8XNp3pVQk8hAyOELmxqJABNqMye80aPuuInLMWORVlqMGhhYTvw6bBdrNXV/IZ0/rFb19821KDahtigKBTOlQp7wXRbthI4kDr71dGqWK36JycICuIQ+0CNTsewSCklSk84N+oPfwD+sAgt79MRSuJgz/FNdwOmIOEigWPAIvqZFzVSC3THVNxJkkx9drXg5gFr7xRBzKbYLNAr40wxzAMWxgr4PW7xNCXIqFoOGLR0NU314WPaWVV7sDg8Ju0xAT8VojEBHa5JKDAhjgrFGCIE45qIJujMpmef3RryU/74xJo+bf0FVfLv2layBUmDzm9No4fyEeZlWs+q21M4CJNuxV7nzn/ygPkg99yQR7zloQ8jreqTDsScgNUZSKKKMmqTEQRJVmViSiiJKsyEUWUZFUmooiSrMpEFFGSVZmIIkqyKrNDmuyD2WKR37yphzRHrC2WMEre4OBFjj56+SUPJW/xbPqvFXzU/dZmK781ZtJ+155UoOq/Er7ZL1Io1TBcxBI4zKC8HMtsq+Unh+2OY2F/YPwB2JISrjOJMgTd0vv0ktNCX5EBDuqP9KCWmfYSTLIbyBMjYEUe9lKvvWtnPNuGMWkooWoAHuAX9rqgztN+DH3U6XlIepxbZo2JeduKk2sr2W3sizA/+pJwu68Y5IRgWa14iYzD2bCqoi2JKIgVEqXZ87vG/HOtvte6Bm/nrus/NoDHsohRXcLen8wc4pelnBQw0Sf5MA8ohXGi5PmSufnAFac1jiDnFTbZMMzIKQeXemTtGXuqpOGUT6U2dvw3ZLT1WRdVb9s3RsznejYmBhEyIQcPTw9+qV8Y21CbPYQQRRfg+4QeiGKbkOAcS/HN7fe0SsDMiK0zU6+N6WECWUsIUj9OkMJe6pfXresrx7+5dqsqf8hgiUV2A/Wy97oWbn7ZQWu8rFe5hXWhFS6Sz2VmEbWSkkCnLSc69V6SgZGSzTE+6xoWYtbks2juyrN+y8MDuzM34pme0IwF3JrUfK621C1JqRflPv2Aha65AR1huwsMU2MYwp9FbUAJYGti5gZU8dO0vzjb9fiz70LvsQ1jKgY1e05tw2yN5WNZ3DpFWJgVp5u4YlpxAbDTbhCsCNQYgwwQlV/p5evKY2DJwExjh0rze501ZXeo/af+2WpLN7taZ6mWSAzuRQNVQGTgkADCJOCE6bmezq7wFBo912y0FBq0NNgYgSk0ISN29MCgIexQApsdEtU/26TNmDshGX7LX2vaOLnQ96HjJAlCfJ8GsV/OFprXx+8jsz3YuRSJMF6WBC/JVPJowkHqZJboh7s43hC1U15ArGuWDAybAV8ArudRMXkqQL3hF70MVXksDYVv7oLXQW+H/xyeutb7vc+u121dxW1vU1uelsUewAyR8MuFzTn6ObfiZrdg9y8Ijw1qzq0FS5bIL3pVk9ji78NFkv7ri5tj3R1bB6bWO/ZX0IIKWdTsH34/M/tHXC8MH6ereU8HN98UOsq/oUWP3j0G8IBPR058wPAxRoWBBVa4MRgHor2A/qNfFzXbzhJVf5mGS2lPt0hrfVmTFZ7TceBVV2X3SKrS8PuZSiOu815cC7TiwKmV0iallVcHSK3o5b7sMIOXIJMSxhepmFtJiyftbbVRtNSx2eDgViMvUBUTit3PVAxxnW/FeHkQ5gRuMzLWq6lNxIKAL/otyJy1GGALC4W8MDwi1tY46T5oSkjW9tAte83s99AohfAHICiFCEFJINKQExGbL6RfH8Tm13NmBb/r0a5t4Ph33zUWR26+peoY/0Tdi2Haa1cYVAcuTIqVR8eCsBKeLZSo1ZANUlsVQ7h/3RYf9HPaqPdljkn8uj51op+JOlFG9YsXWNWt+1zcDHh1ItTAyZMwgl94hAl/E+QX93g+IyJOeS90ruuG9/7mnVtQBx9bYKMVGNj5Y6WkEENPVI2GsCGGoV4Wq30YMaLwliaUg1qwHkiN7w/ANgrw//kxpTAlbDgSUbo/N2pHFbiuxQBzRAEGeawBYMRkVpl84oo+mnhim6SnOXjIXMV+5spc/abFXM2GedhOv/OnBEdFqd2d2smfBlWkMm6HUohQmYaUDWnnUBAPAPekAXcqaHSqOtlJOjMF12sxicCpcl03bsAi+9NXAOdU1MYNzFGc/YrgmyT9CYJvEn4SnW+SzhdJ55ssMp8k/UYEnySbbXLxk6uAzdGH/vZ5xe+u9Sw9vKf1bnCsQ27dP6n0t97M2eFdKLndl46xZRu2eh6++NWwvHsHXZcVd88EzI53UJ2eqOqF34D07tfjCCJHNpCKQhL8/dSd7A61XEKn3rFdETylFvV8tW4kwXSU7rauPeLhN2lg7omnijoNfxS3hhOidJYTpV1fGRSAnNUueK8FGBjpABC96p3qw/BHMX0Ycb0kNryxEfMJtdHk5o4hRdhTzf+YPaXT+RjIntbitKcfvvxnTwn9yHwkVcZpngfNWh+T1aCcx1Ie7CmdpokHS+HKaSmsStyevrCdJV7wOiR4WdNOb8tnXR7Bgz2lbxLwgNKHL1wo5X0pQXtK96FGt6eunPb0g3aBn2jyawL6dOKnmK1FKafXaaIE3x3vvWJzrqZF8rAkyPjCtSSYoYV8MG/FbOVJyA1QzIbgwCNNPYIDjyxmQ3DgkcVsCA48spgNwYFHFrMhOPDIYjZ6hMaoWINWETnE6Ox5PFSsJfGmZGsDKrloPJIIUkVSyfScP0MnZmw6odMW8qCTIWw6Wbjr7u8THnwKzN21PXfzwHvUc35lIyTxMgWzNwqbYXPzFibAOwp06BLGKzUynFwI0nNzcdjSeRcRr6KLtbOOilYpFYpI6LHgxfwjn69+pVnC7T1+vL6TVS58pvr0oBcTnFgrqS26qGUqSABOfmxdX2ViPwWs1YJddCDxj1SuIb47iDBgliMvNZOmErLNEYM1t55YMPojMKBtRILUCSKrUImqvzw+RBZDcYDW+OVI2O+04HVL/HpnZULBq1QrXLlrPfHlUR+P22EgRqjguUGNHH8rc/KtUBNKJUkKjJdC2i0S3lKW8CJMvRS4hMXqCqIlE74ggF1U5RKFCHJBFXBEGpVMEqf9HSMm1t5DDNVkk3fLdBZQnrbq6OOfB798/iOXX97/kfTLQ00eczq9quluj+ZyFvav0xb2p/DmJm0FhnOTCN5c0k0ieHNJN4ngzSXdJII3l4yFYjpWiro3vpZoz7ih31YfrhFeIBY6PCb5wI0dY7zHdT/f227Y49sM5wqtPnp/jEbGy4NzHcamSRNt104nHTZYu/bD37natXf/XtLt2o8PXPg+vU2Y38wj5g2P9/s9xgTate//ztX8dt13E+g5vX79egO0aw8859r2+e/p4Uv3PVgR1WYRreOokdq1z+PUzmhT0I5B2rWXibiUp94S67VEEDdle1LmYpNo1x7PqZzupqAcgTHbtZ8NP38193QP750xj8pFDjxG7Utr7HbtfpzKa2Yc5Zlmu/b9Ntm1HD0Xe0/eu1b252ULarcqw7drd+XUnJXRNQdvKrF27W1kH6us8HAO2T575ZiOEZuo3BDGateOxRCs7dqBISTi1OFscer/Urt2elsMI7drj/jB1a69zg/DtGuv9CF0+aGZoYF7P/jH1V9VdiDv7drp5GY8tCAP+cHVgrz1j5Jq115hTE7VueMXhq3q1Lp5suuAXby3a6fbCB6wqsOJVYUf/1+1ax/BZsb+I+EvEgk/vZuQwUj4BT+5SPgPMm0nDyT8f3T09pxZq7Xf8hHOCbLV6VR68uKdNufZRsINk28/uDjLHzNtZEmQ8K98dTbrxo1GASs9nrXxWCluY3QS/qucqBw0rDXkXDvod/CHPxL+GNurv77d1zR0XO3Fu+ttc6W2rjcmCf8GTtWlG0d1Bifh7zhr0G+fq1f23ZA0/nmkzTVaVsXgJPyYlWFlUQdWxmAk/Dknr52WdBAF51Rv8O3ihXrUzJpxSPivcoJz8IcBSfjbHvt5YN8fM303fFrawzbLk7pMMx4J/wZOhMCcJuK2kWxxm9i7YaOfHa56r73tmnV56cvmVB4B7BBfglIBPDozZrNgwblFfopEnn8/wYUBEFcpE/vHghgOdrlWxujF5UDvsMj6tkzWgwJCXWv7QCB0GYZJeQDftfQw6SLAd8TP4h6sqpz/WuAqgQXyqy9W96iVnvNKtPSwXZMqvROoFNdF6t1FC6HohrGYIRSkvT3/k62LXToYu7k/9WuEjU9fqay/SoaOL+uuWSjwHl4xZOqNDY6bj8QIaSeksBsRJ6Tw6yVB+5vJ+f1n/TR2sKQdmXoESvCV5UqpPJqD2yaihdmC5IvbfLddrnhfk32hFXWskg9gjlWtpCSUMYJTGQOMowxGc2x9MhYewfFKDXBfkmi4d+rm2QEsWcHKIq6xsGmH6FilStpY2KyDepBKg/2CjlZvRl986hQWHrDo8a6g6Qebr6L6NfgBUZpkBaL/Zb6oJJTVlVNZPiYxc+Cj9IpWq+RvdMcnqvqpOWbQmEmarMC8+UG7Gt4emvGx4r7iLJWLu3TwJAw5POp5kcEL1VTcZetP/aJUwpJzRFtrWt3NPHFMIVq54vSJwOcd5xt32QsAWEgCcAMBADQtekWipCtjJ5mo2yzgqGWL9V57LHsNnjpSs5fmygx72BcCIOUCYF3ATzLQTP0fq8ehN+Y2WD1OrOAERz3OL4ITJVyPs2JzRM0vEx6HTRg1c+vqFqlrTKAeJwZCwprd7Ck4YfyigpkzZxqgHudG+qvN9o2yfCY4lWr23SZtqUnU40RyaifAFLRjkHqcdjWmnn5/VRi+c9cfp9p87nTRJOpxOnIq5xdTUI7AmPU4sbHXMtv4rwybvSVo0pkOYedNqh6nIafyhMZRnmnW4yzY5tF6RYP3fhtiDi0e/LVFXSPX4zhwas7G6Jor0XqcFbO7NT1lLwydt3PHsbZzVlwziXocLIZgrccBhpCIU0f9X6jHuS+uHzT0kUq8aFludvsPC6YauR5nHcSetR5nDjOkLZF6nK9pY05VUgWGZl7cePJ11bMi3utx6GtzHmpM1kLkWGtMllKR47Ee530V9YcAs6Vh2zovaFqu3pJk3utx6DaCB6zmcGI12bA219j1OKPZzNigA/JG8rB1op37wxX/POjxkpop6ZQIz076qyQJscwTpnqkL+r4ytUJ8PSYNpuT7I6fMhVKIGdef/gJ6JaRUW8XJUcFhO70dBmzofuI+qzvx8zkFBQyxp9lFDBh4QWPYiFGJf3ck46jUvs0euOk+mLBo0/HBQIHEfxHO/8ZU1/c8+Gn47ZRMgVQmEwaCOz6EPJxmFpxVY5hU6VDXpqvfdsLouUt7h/YdDLJl8aCgVZgRdy6I3QmsMJFlENWhDNgHL7ii8mDfki+CEweukYHpVi05AkiMs1XokXuQW8C9bFsqP8Yt2VVJQ8znx09HRdmJoSuLvT0pVXJI6/ziU366T2eTmwWcd5wacThHV0j49g0kjEzLfF50Cf/eYMc1AsnN+5F3RP1g8UzGmZExrq8xG8QqoHXx/tdJqphyIv1aotVKqSQjhGWBMZgf4eFwxpJf7VOMQj9iGS5EGX0QJlUexPq1Znbufh1XWlAAZiPIJg5PoiiPkiqnvkOQb8EIYLrOAT9EvxHp18KG3e7Y9SJZ15jz2xLtXgdfpVOvzSm2/KRNxN6BqQfzFjwKH1qR1JOHkYtMj0T/YMR9ExsmraG7AGEGpHasnrWPu3vrCZh+2JfJV0dWDGvONrinw4fcghBvVZAhTx3Qchz/p1RGk9aw/6OfdTgO8T3zzcY+b9jpibFs23kcARLFJuu7P3yZxsIiDSJKnTg2upynZbn2qcGr73qVNVG9uoBp8rMRfiTEFzHhKAklJbLqbRMwyqNNMFmISLcoMJbRmrnPaYbco6yBXu1fInW1/J4tUyFVd2Bj6AYTKSuloXL3DsNXxicGffcfMCi233pujIPTdRI+im0BBYCWrILfqon0115Fsr1VUR3xaXUWZxKHfGOwfXF2UCBGOwynJ8FCR6dJoVzoJtBS8ds04Fd5XuIp3oQdumgN6LTvVcTbIgTLn08m0vvdP9OuLnivP+y3ftLj9xRczy1VjYqVh6jEcK+slS3Dv0VW09r5/CYGLgUkSgURPtVOWycB8m7PZAA0xsOsr0CIl7SdVsKjIyNb0hiCsa2VGOxIP5NcevIbLHuu2BuquELI7+oj539i0W3nwZNm7p3kP3xLxH0Bi/Ir1hoSEhvul7MOQaX8OsgVge9EHMsFUjnvdGvagzXoBIbFUhcHNzePRvWzS54T/8V0oa/f/vB2FKO0Q2YYs4n+M1Hc35zMEpMYDsZG4F65NisIc8QF/VUK8WudK+rs0SzA2b83N4qtCd1XMK7DQV/d074/YwDP6NCrLiNuvEZAaudwTdB8/3QOu4W0VIUdzffvYApYDiYvu7YhCAczAQ2B6M3n4+bVnslz+fTzbVzo+TDu72X/zuyU5W3v4YU4PO5+u3aX1/dBolzpQ1stgdaPSrA5zMi59q8pet+C5qhqTjpRdNXgwrw+UQ3EvR58uNv76VXr8q39el5pQCfz6zsRvVnJFwKmn82oPyhe/VeF+DzQXT+JbkNEZ1/yUa9iM6/FoToztFqTe26Tg0Z9Xn9v06nHx4BIktCZJFSdvkH+fPQrNV95Vk7FRANK0J0r80hp/ZlbnqlldcERA180gKIrAnRlYHPlvzdNU+UNiio177rrueByIYQ3do8+3TjZReC1vv/Imj+19U7QGRLiLJTfs7zCpf7jGrc/MzP2QHJQFSeEAVEtJJ6nleL9kufZk2+3nENENkRopQmFoqkO9MCctt/u5+eI58JRBUIUaut0iv/vN0Qkno3fsHdY2dcgKgiIZr8+pzrE1m5kIxTZ/7O63fDFojsCdHZDtsvfs2tEpbevMXF+Jd9fwGiSiS8dUeUWnnsUtD+M/PqvN/2+CgQVSZE5V7efdgia6Boe9Ubmz9da9YdiKoIWGmgHAjRxLUPX26OnBy4qdeR3jekLn2BqCoh8pt5dcCvd2cHjndbluK8oN0pIHIkRGPT1EdX3+3oPfFSQF/VkRN7gMiJEHlM3hwTljHAd7V76Q29etS/BkTVCJF4y/Zz7xVPQibUbGsjmtQVMkQ5E6LISmbrzv99STTjTIMzN1vWewpE1QlRZdfWnhrlKZ9lTaZV2fntCRwbLoToy9JhHV/3/uaTtvOxcIdZzgogciVEbXLkkXcbDPWdIh1RZV5rh4NAVIMQ2ZRuIN5Ufqjf+CnxNw8uqAQ/S0iIPru2PTNrZl2/NdNtAr7suBDBIKqqKWAhqrJaVvdct65NvJb30Uyfty9XyQNR1UQ2E1UlZvemhcdOiRdvyBt6pvowKmm8uXhIgkIpRZy+YAuA6xF3CMnzslibOnUcCIiBESI6AOp43IJuoJCvxlxVEwJdFxJuYsGrUicEgk+ozGEECI9vlmJkDjkbaOafRsVfBPndSr31V8/v5iFa+7rzoE6Lxpfl8TAqzwlC2ODnBQQIWQ/tCFalD0oxEoRcIVmLSBkYGljdk1QGWxwp1XLs+Al4P7kCWzqR40QoUcET18o4eTS6g53jjsOTV+eFjzsafn/AYgm1Daml9nOY5eP5Ir7jBgjXTU64LpYySl1G4Ucd9Yzk3ImJJs1XlyZWohHGSQbKhCAA0bawZq8zb3M/7nXFxR9DN7w4nbvQTEhtZmcRRTwWUWlISvjWXgV3YrD7Iov/PbDBzqg21xO4muShKLLgT0YHEgnW1BUTf7V/IQqbVerhuG2+jagnJIt0BIsHsG5yggWGOuF/JrH5n/+YG4rE3ECP0A3G3CAqfYKDuaF2ab18pY7MDc7vU7/3dT8jyl19pvuUQxZuPDpLugXigbnBGyLEetC9VWm9nGVRmRsEtVO2zR1xy2vloUajs/qsuGJ05gZ3TlTAuDHRKtPCNpj4Y26o8G/390dvvA/fkD3PXfChMzXlb0zmBidO1dkZR3UGZ26o2jvbvUlCtveC2+bXmvemHe81PHMDZmVYj94DK2Mw5oYLmQdyZvZvFZ7942HwjdVCKq+OcZgb3DnBqU0Dp7DzcsViboj3+Oz3IO1w+NK2u75WGVPqg4kwNzhxIgTmNBG3TWaL204tkoR8b1PVf3Smq/nT2in7qdFoCIjRhFG+IbpvHPhom+HCbgJkJAxWiDHgVxB3JQsBtioNzlEAjC0xXmHsRYRuw3UKnOj7l+j3ZkbRpESPZWAryxN4W1xGqOQFNFDVUr9tBewFCmCA/Hb/OvRvlbanY3hG5IIt47+Z9aVlk+DdiAMK2OXCIiW6/eOh520LCFACahAKG4kFjSz1qjt2xAAix4WbVK4CwxfI0c520vvtLx98O+a1tZK8csOt/lQeHktf8mbmtMwXFQZYbv3rM/7q29M3516Zia1PHTnIA2A1OQEDI8ooQRTuM+DfNBew/TDpsCw4dGmN6ZLDqtq9eLDF5VTbgHVju7R4veNRtj1GZAKUIR6SoJJpy56xoNbbJ8rttwbFC4Bpqj21MfX0vYF/heaedndrPNDWhwfV2nKqtoyRVIuKj2f8qleoZRNSwJ4jlTnP922SxfM2/kskG+6/CdvpQ0/4IQ5V4Vd5byvtQdikHFRRSY4HNsUIxziFzTH6XK16a3CrrV7ZPXo7Tum6j7prXRkWv2rg1ic8ySyDtfUyPTrGNxEp4wDkeAku9hhp/mOwxWF+o3hYVKqTR6Sn7Qp/YYY6kH+lx6bCwjIA9Mc+iAbyfcHgn1qG9eiOjjtu3iEFQIHbDbANEow2lPFCN7L5OUAPJ0CC/8NtmhruRiuTZCzsJVVdsn980TwVT1Ze+3xv6ntq7qRcV6zogGljiOuF2RgX/1t2AzZuFK2Of/5C2nD6Uh52JtIhzGY+iJbp6Q0wmIu7JVy3gPq1u1vRyni1LDoRGx5YTRQSy6bvDl6d8mKb/+byghrdL7a8Tj2Rkf9c5vKXIiwJNhgMtp4o2G64Y7ARJmEqm0k4U77226YtlaHj37wM9rgyUkz5braRMqyGURiWqFAgbAFbwOxO3gcLYbExK48fLFHIpfggT5JrYoVKsExR6W4J6Fl6jvdkaIEq1iNK7leGLfmWAdANKfbcdwjE6vDgrqtMjRViY4ihB6EkooMo08Vv7tXxif4Lp7lQw2fsQczwGb9c2HSmVyXwEDL0hciNRYUMsBlV1zKs4bOOyDlrkVNRhhocWkj43k5ZmetSb2PArtmv+lf+Ue536jF3YoCgUzpUKe8F0W7YSOJAy6eMQQMs8kUtOicnyAriULtAzY5HMAhpZQoP+DdqD/+APjDI7S9T0Uri4E9xDbcD5iChYsEjwKI6GVc1Ust0x1ScSVJMvfb1IGbBK2/Ugcwm2CzQayPMMQzDFsYKeP0uMfSlaFrOg5aTWr9t4jOzwu0/v3+scoGWmIDfCpGYwC6XBBQhnFD4aB1VGpujMpmef3RryU/74xJo+Ve7DHHgH9nyz1kL+TSTh5xeG8cP5DFznLvJJ+/1Suv48dFjc/FHHiCfbsYF+QQzEvLpvFVl2pGQG6AqE1FESVZlIoooyapMRBElWZWJKKIkqzIRRZRkVSaiiJKsykQUUZJVmRP2hdS2m9TYb9a8P5tFfN61lFHyBgcvcvTRyy95KHmbwab/WsFH3W9ttvJbYybtd+1JBar+K+Gb/SKFUg3DRSyBwwzKy7HMtlp+ctjuOBb2B8YfgC0p4TqTKEPQLb1PLzkt9BUZ4KD+SA9qmUUwP3ADeWIErMhT9EvzO+PZNoxJQwlVA/AAv7DXBR0N6uyQMGNW2NTnDTo0GdvudHFybSW7jX0RYLWgNOF2XzHICcGyejIz4c+FVRVtSURBrJAopR9xm7Q3933o9tLzmle7PvoMj2URo7qEvT+ZOcQvSzkpYKJP8mEeUErhRElRmrn5wBWnNY4g5xU22TDMyCkHl3pk7Rl7quSnfYbT/E19Q3a7qa+dy2mrMWI+17MxMYiQCTl4eHq6nvnchtrsIYQougDfJ/RAFNuEBGfD2+kHwz6V8c8t23jBtcGjPU0gawlBGscJUoqeed26vnL8m2u3qvKHDJZYZDdQn7Lrz1Ek5AVkZj3zCvL7m1aLRz6XmUXUSkoCnUGc6PTX5nRnsjnGZ13DQsyafBbNXXnWb3l4YHfmRjzTE5qxgFuTms/VlrolKfWi3KcfsNA1N6AjbHeBYXoKYTuL2oASwCYQ+rk63dK0M2/ufPK43MqwMd9/j2o65MBO6mYnlo9lcesUYWFWnG7iimnFBcBOP4ZgRaDGGGSAuK2fryuPgSUDM40dqqeJj0KqpvsHjG36JmX8+aFUMndLMbgXDVQBkYFDAgjTVU6YTuvp7ApPodFzzUZLoUFLg40RmEITMmJHDwwawg7NYrNDovpnm7QZcyckw2/5a00bJxf6PnScJEGI79Mg9svZQvP6+H1ktgc7lyIRxsuS4CWZSh5NOEidzBL9cBfHG6J2yguIdc2SgWFjaQFwPY+KyVMB6k/M9TJU5bE0FL65C14H+S2DSk8/MeXn5sDxW2vtfBub3ZAaImEPYIZI+OXC5hz9nFtxs1sAHnMIjw1qzq0FS5bv5npVk9ji78NFkr5pYJ4wq461z4bNl46UnnjiPjX7h9/PzP4R1wvD59GJZg0iKk3y2pOS5Wvxb/Pi7ptAfN6ac+EDho8xKgwssMKNwTgQ7QX0H/26qNl2lqj6yzRcStvbvezEY3M2+a8JX5QzqMW3YKrS8PuZSiOu815cC7Ryh1Mrf5iUVl4dILWil/uywwxegkxKGF90z4Un2YLNHZb7TMs9NbVllXBXqmJCsfuZiiGu860YLw/CnMBtRsZ6NbWJWPDJXL8FmbMWA2xhoZAXhsfSFPHe1um/BE590b3WsLz5UhqlEP4ABKUQISgJRJ6YcyFy05z067PZ/HrOrOB3Pdq1DRz/7rvG4sjNt1Qd45+oezFMe+0Kg+rAhUmx8uhYEFbCs4UStRqyQWqrYgj3r9vig35OG/W+zDGJX9cjA77TnKgTZVS/eIFVXRbTr+uZAa9OhBo4eRJG8AuPMOFvgvzilhvUURPeNfDeExfXrKa8L9W1mbMFNlqBgZ0/zO5uhxh6omo0hA0xDPWyWO3DiBGFtzShHNSC9UBqfH8AtlGA/8+PKYUpYcORiNL9uVE7qsB1LQaYIwowyGOdpZ3Mc0w+cUUfTTyxTdLTHDxkriaac2WuUrWYz2XDPGyn3/lTgqOi1O5O7eRPgypSGbdDKUSoTEPKhrRzKIgHgHvSgDsVNDpVnewknZmC67WYROBUua4bN2CRfRF66KmojRuYo8i1OMHkmyT9CYJvEn4SnW+SzhdJ55ssMp8k/UYEnySbbXLxk6uAzdGH/rbzhEO5t44fFi2MfbvnaJkNVaj0t97M2eFdKLndK7XrCLPQAeFL/zX/Hn7s4Yni7pmA2XEeqtMTVb3wG5AetTiBIHJkA6koJMG3Qo7L+s0KDZhpeTqysWvrdUUgCaajlPz7vTSbiqsCDwz63LhnFVlxazghSrmcKOVYnKBTAHJWu+C9FmBgpANA9Kp3qg/DH8X0YcT1ktjwxkbMJ9RGk5s7hhRhT+f9j9lTOp2PgeypjNOehv9nT0n9TNm1Prhp8399lk+vYKb+8/5NHuwpnaaJB0sRzWkpfi9xe5oyo2fH15PcQ5b7388dsWpPXR7sKX2TgAeUwjlREpekPaX7UKPb02hOexqutafzTX5NQJ9O/BSztSjl9DpNlOC7471XbM7VtOKSRcAlQR0LriVBdS3k6bwVs5UnITdAMRuCA4809QgOPLKYDcGBRxazITjwyGI2BAceWcyG4MAji9noERqjYg1aRXQOl8aex0PF2gLelGxtQCUXjUcSQapIKpme82foxIxNJ3TaQh50spBNJwt33f19woNPgbm7tuduHniPes6vbIQkXqZg9kZhM2xu3sIEeEeBDl3CeKVGhpMLQXpuLg5bOu8i4lV0sXbWUdEqpUIRCT0WvJh/5PPVrzRL2K6J08lqE2t6zagVK3hcLZGVd9mii1qmggTg5MfW9VUm9lPAWi3YRQcS/0jlGuK7gwgDZjnyUjNpKiHbHDE2peuJBbPLAQPaRiRInSCyCpWo+svjQ2QxFAdojV+OhP1OC163xK93ViYUvEq1wuUD64ltZ5U7YYeBGKGC5wY1cvytzMm3Qk0olSQpMF4KabdIeEtZwosw9VLgEharK4iWTPiCAHZRlUsUIsgFVcARaVQySZz2d4yYWHsPMVQXmbxbprOA8rRVRx//PPjlPeW4/PLWcqRfXmzymNPpVU13e3QzZ2F/lrawfwlvbtJWYDg3ieDNJd0kgjeXdJMI3lzSTSJ4c8lYKPes55k5a8+IN/8xduh1Qae6BWKhRX9uW+D9pHXgzPLxzVcHDx/BcK7Q6iMHEp2MlwfnupRNkybarp1OOmywdu3bLbnatY9iUsnw3K79YfcKpUunDg9NT26SNndn744m0K59qyVX89ss4xBmUHtOr1y50gDt2vu4142KmXxavHDCuG6DXcTzTaJd+zJO7cw1Be0YpF37pePV1y3UTPaa9D3GLPKNxUOTaNc+hVM5o0xBOQJjtmtfaXFLsWdnrtdW2Y3DdxQV7EyqXXsSp/LiTIgoyOjt2h1udheWHXRbNPdOmdOHgkY7G7ldezSn5n43uubgTSXWrl0o+71Cw33ufgvbJ5itKX//kkm0a8diCNZ27aO0ZE/L2OLU/6V27fS2GEZu1/7Nkqtd+yNmSFsi7dqVvhd6Tl70h++UWjHB/1qu2cF7u3Y6uRkPLci/WHK1IH+lH22iHu3a/6rYvPTyPlt9t7RJL9WghWx88acwDSu6jeABq0ecWP1tWJtr7HbtGWxm7D8S/iKR8NO7CRmMhL+zFRcJ/y9WJUHC3044st5h4WrR3EP3vu8w63Sbx9PmPNtIuGESacXFWR5gZRAS/n+O3mw7IOdb+Jqy3xKPHOkdaHQS/o6cqIBxYzJrB/0O/vBHwh90+sytFK9zXgfmWjh71Pxy1mRI+Btyqk5oHNUZnIS/Wrslitx97wMnNeu1b9D1ax9omU5Dk/BjVoaVRR1YGYOR8A9RLP/z8+OD4St+RluNCo+eaAIk/B05wfnFyoAk/H836WG57ZcfQYsulsv4ciiZuvQxHgl/Q06EwJwm4rblbHGb2Ltho58drnqvve2adXnpy+ZUHgHsEF+CUgE8OjNms2DBuUV+ikSefz/BhQEQVykT+8eCGA52uVbG6MXlQO+wyPq2TNaDAkJda/tAILQP4psH8F1LD5MuAnxnM8MkPQ9WVc5/LXCVwAJdLNR77sdLzSoHrztyq3PKaQtao7Oi9O6ihVB0w1jMEArS3u6xYutilw7G7mb9QigbfPpKZf1VMnR8KR3uofr2tabPjiVHniVuzI2nnZDCbkSckMKvlwTt7xrO77/E6MGSdmTqESjBV5YrpfJoDm6bES611m28IvCbFH3QYWnn4XWoY5V8AHOsaiUloYzZnMqYZBrhj0CfjIVHcLxSA9yXJBrunbp5dgBLVrCyiGssbNohOlapkjYWNuugHqTSYL+go9XRH0cIVsTMC14+MN1vzvI+y6h+DX5AlCZZgeh/mS8qCWWN5FRWoknMHPgovaLVKvkb3fGJqn5qjhnkPG3GxGEOfwfumTdoyezK45KKs1Qu7tLBkzDk8KjnRQYvVFPx+mw9o1TCknNEW9vVEQkNXR39U5ft8fdtVuGUcZe9AIDlJAA3EABA06JXJEq6MnaSiWMv76anSc0CZv1R+17v6XeTaa7MsId9IQDjuQDoOkQbaK74H6vHoTfmNlg9TntrrnocC+uSrsf560Vn8aDu30Nmyzb0iu1VX2UC9Thtrbmym57WJlBUMHnyZAPU41hN3TPRp/1Nn2Xj6yf+XUNyziTqcepxaqe6KWjHIPU4+weI43rf7xo4qc87Uc0P6jiTqMex51SOhSkoR2DMepylsVGua2olhKRNnXy2gZ3rR5Oqx/lhxaW8d0YPdk2oHifvymrPFO9pPpsne8cPOu7UyMj1OE85NXfX6Jor0Xqcnx/3+zeo18p7tn3r5MnSq5tMoh4HiyFY63GAISTi1JX/F+pxbEo3EG8qP9Rv/JT4mwcXVDJ2Pc4Ia656nFhmSFsi9TijRx6K/fgyRbRnllfTsXb13/Bej0Nfm/NQYzLMmqvGRGVdUvU4Fbe/UZr9IvNZuPp8W7t2UaN4r8eh2wgesIrlxKq3YUMdY9fjrGIzY4MOyBvJw9aJdu4PV/zzoMdLaqakUyI8O+mvkiTEMk+Y6pG+qOMrVyfA02PabE6yO37KVCiBnHn94ScgR95n17ZnZs2s67dmuk3Alx0XIljfj5nJKShkjD/LKGDCwgsexUKMSvq5Jx1HpfZp9MZJ9cUCX0jM5SCC/2jnP+X1xZdF5idso2QKoDCZNBDY9SHk4zC14qpczaZKh7w0X/u2F0TLW9w/sOlkki+NBQOtwIq4dUfoTGCFiyiHrAhnwDh8xReTB/2QfBGYPHSNDkqxaMkTRGTTLIgWuQe9CdQz2VD/MW7LqkoeZj47ejouzEwIXV3o6Uurkkde5xOb9NN7PJ3YLOK84dLIHTO6RtawaSRjZlri86BP/vMGOagXTm7ci7on6geLZzTMiIx1eYnfIFQDr4/3u0xUw5AX69UWq1RIIR0jLAmMwf4OC4c1kv5qnWIQ+hHJciHK6IEyqfYm1Kszt3Px67rSgAIw/ctC2nQfRFEfJFWvXxZBvwQhgus4BP0S/EenXwobd7tj1IlnXmPPbEu1eB1+lU6/NKbb8pE3E3oGpB/MWPAofWpHUk4eRi0yPRP9gxH0TGyatobsAYQa0eSDX54Orf9qk3ju24PnvnTZs7M42uKfDh9yCEG9VkCFPHdByNOurFEaT1rD/o591OA7xPfPNxj5v2OmJsWzbeRwBEsUm67s/fJnGwiINIkqdOB6sqF40Yr7FUNz3vyhGNg6619OlZmL8CchuI4JQUkorSmn0uobVmmkCTYLEeEGFd4yUjvvMd2Qc5Qt2KvlS7S+lserZSqs6g58BMVgInWV9PrzizFrPoRN+aVOZs7iEQK6rsxDEzWSfgotgYWAluyCn+rJdFeehXJ9FdFdcSnVhVOplcoyuL44GygQg12G87Oga6ZpNCmcA90MWjpmmw7sKt9DPNWDsEsHvRGd7r2aYEOccOlr2Vx6p/t3ws0V5/2X7d5feuSOmtTzIFZRsfIYjRD2laW6deiv2HpaO4fHxMCliEShINqvymHjPEje7YEEmN5wkO0VEPGSrttSYGQ00hJTMLalGosF1mbFrSOzxbrvgrmphi+M/KLBnnsXZC4+EDauU26dcV3GUtmGzFi+YqEhIb3pejHnGFzCN4BYHfRCzLFUIK1hpl/VGK5BJTYqkLjkeDa628D1rM/4ShtarMv7YsfYUo7RDZhizif4zatwfnMwSkxgOxkbgXrk2KwhzxAX9dTB7b2HVJooC5jVXDj4zrb2x6jjEt5tKPhLccL/0bD9vUn4GRVixW3Ujc8IWO0MvglSI/SOu0W0FMXdzXcvYAoYDqavOzYhCAeTxeZg9ObzcdNqr+T5fERpW7t7uX0P2lk3YFS38+XUBfh83F/UFSSnrQ1becHub808h6wCfD4t67UfEbf8gNfWi86PD66tX7YAn8+p0JQpWY8qBs169nKFZEfE3wX4fFadW/HYecSM4LXbm465X+l4ywJ8PojOvyS3IaLzL9moF9H514IQNZtfOXD91h+iyS4/DnndS10FRJaEaL65X2JrH3ngNN85tU9/PD8biKwIkdW01WERfbxD54/dez9i5GQvILImRHlDwpYlflwUutMuvVf7lx8g+6INIZqxZsWBlHBb3/1TJyf0694sEIhsCVHbMtf9Kn54Hjyp7LkLmc36ngCi8uQDV9+/ODH+Zti61VVav5S2sgQiO0IU2/j3Lu6qpkELrpV+G9djwlAgqkCIGiRYVekj3O+fLf5uMeJO/EQgqkiIVE29IgTul/33lz7nP8LnbhoQ2ROiVt9GjfItJw4evSzE68volvOBqBIherJOYStN6BGaMenTObN/u74DosqEKOboE/M9A7/4jk24/e5Gr5n/AFEVASsNlAMhutKj4Xeb13O8clatiJ639uFWIKpKiF4/O3ok2Gpk8Px+Povtms6GRIqOhGjYjqmxIbad/Dcfjpd2ayu1ACInQrTNseyjurcTQ+dnX6s+4uL8Q0BUjRBZj/ir88AF14M316+3p7nfJBUQORMih4dPGpyZ+TJ8ttqqYqRXhRlAVJ0QTehuETIu+Vfx3LRBr+NHfDYDIhdCVCvK/dSep0N8lvX6sGu2Y2sociVEv4mm/T7M7c/QbUOFFSrkOi4AohqEKKCBZs69IdV85gy81Dy7UvITIBKSk2j3gaNXMoeFZre66hPX1vEMg6iqpoCFqCr2tXJvi2pnw5fKJtfdMKH2KYTZ0Jeoah2biaoSs3vTwmOnxIs35A09U31YBnXpKh6SoFBKEacv2ALgesQdQvK8LNamTh0HAmJghIgOgDoet6AbKOSrMVfVhEDXhYSbWHDHBtIGozKHESA8PmWjXwPN/NOo+Iugm9Xb3Jt045cIv8WjfvnY5NR9KhV98Q6j8pwghA1+btmw1UM7glXpFRu9YuIWkTIwNLC6J6kMtjhSquXY8RPwfnIFtnQix4lQooInrpVx8mgkir2fvNowPlQYuKjOkjcdohIeUcvHtZ/DLB/PF/EdN0C4TnHCdcDGJCI55lFHPSM5d2KiSfPVpYmVaIRxkoEyIQhAtC2s2evMra5sPzzX77woPfb1pje/eFelVRoSj0VUGpISvrVXwZ0Y7L7I4n8PbLAzqs31BK4meSiKLPiT0YFEgrU4rNqAfS8X+85dYvng5K9bqTyYRTqCxQNYpzjBAkOd8D/r2fzPf8wNRWJuoEfoBmNuaGbLxdxgb1sSzA2OFheXHT8WF7Zs8eaab5cebM6js6RbIB6YGzxtuQ6617M1CHPDUvPLa8eddBDlZte7W7mxZUujMzdU50QFjBsTrTItbIOJP+aGC8E2gS2/xgetrbQzdeW4KT1MhrnBglN1P0w1nOGZucFq+Orupy3mhmf8OPplyR0Pao84wzM3YFaG9eg9sDIGY25o6Tw79cX3r+L5cyXm/2aN+mkCzA3VOcGxtzUgc8Oi38rnjVjW0H+JY+be2pHrnpsIc4MFJ0I/tHHbBra47dQiScj3NlX9R2e6mj+tnbKfGo2GgBhNGOUbovvGgY+2GS7sJkBGwmCFGAN+BXFXshBgq9LgHAXA2BLjFcZeROg2XKfAib5/iX5vZhRNSvRYBtarTLTFZYRKXkAD5Srrt62AvUABDNBF8XO2/n1HNtJ/2yKn3PYDYl/TsknwbsQBBexyoZESzf7x0PO2TmWi+ooxCIWNxIJqlfWqO3bEACLHhZtUrgLDF8jRzvZI1O6seqd+C1mR2GNiVsqjH9Rp6UvezJyW+aLCAHt84m6dmgkzwyY/Ej7b3Wl7Qx4Aq8AJGBhRRgmicJ8B/6a5gO2HSYdlwaFLa0yXHFZ17PN3FyuM8w/dV6XLq8wVW3rYY0QmQBniIQkqmbbsGQtqvX2i3H5rULwAmKbafqrkOt9nvA/Y+myS0x2VQwgPqv1WiUu1byqZTnw841e9Qi2bkAL2HE1ZtsLCfpLXbK/t4xYP+3Pph930hB/iUBV+lfe20h6ETcpBFZXkeGBTjHCM2WyO0edq1VuDW231yu7R23FK133UQofKsPhVA7c+4UlmGaytl+nRMb6JSBkHIMdLcLHHSPMfgy0O8xvFw6JSnTwiPW1X+Asz1IH8Kz02FSaVB6A/9kE0kO8LBn9K+eLWp3iHFAAFbjfANkgw2lDGC93I5ucAPZwACf4Pt2lquButTJKxsJf0W+95uNLY3T454w7NDz9eg9qWuFxXrOiAaWOI64XZmOEhf55IO+cVMHnwxuBmgtu7ediZmABhNvNBtExPb4DBXNwt4boF1K/d3YpWxqtl0YnY8MBqopBY7v5rxR8+Iz97TfW6+OzyhjHVqCcy8p/LXP5ShCXBBoPB1hMF2w13DDbCJGxkMwlnytd+27SlMnT8m5fBHldGiinfzTZShtUwCsMSFQqELWALmN3J+2AhLDZm5fGDJQq5FB/kSXJNrFAJlikq3S0BPUvP8Z4MLVDFekTJncqzJd8yALrtij33HQKxOjy46ypTY4XYGGJIAOqOfD/xrLif35J/J1pMjO1DK8bCHsQMn/HLhU1nelUCDyFDOERuLCpkgM2oxOVZw2cdkXPWIqeiDDU4tNCNXOoPnRfmOyhw9bNqE74oF/WhHnMnBgg6pUOV8l4Q7YaNJA60mpY3ShW7RefkBFlBHGoXqNnxCAYhrUzhAf9G7eEf0AcGuf1lKlpJHPwpruF2wBwkVCx4BFhUJ+OqRmqZ7piKM0mKqde+HsQseOWNOpDZBJsFem2EOYZh2MJYAa/fJYa+FAlF/7yxrr0vXfJa16TZpohvGedpiQn4rRCJCexySUDRjhOKplpHtYnNUZlMzz+6teSn/XEJtPyzL8/V8s9KC3mOyUNOr43jB/Jv8itPrOp18l37SDk/QDj8IA+Qj7DjgnywHQn5Zt6qMu1IyA1QlYkooiSrMhFFlGRVJqKIkqzKRBRRklWZiCJKsioTUURJVmUiiijJqsx5x7Nd6is+++1opcg2z8nZxCh5g4MXnV2hlV/yUPK2hU3/tYKPut/abOW3xkza79qTClT9V8I3+0UKpRqGi1gChxmUl2OZbbX85LDdcSzsD4w/AFtSwnUmUYagW3qfXnJa6CsywEH9kR7UMpNhfuAG8sQIWJEP0C/N74xn2zAmDSVUDcAD/MJeFzRmwbWv08zTRFll/jr5qsmaCcXJtZXsNvZFgNVEW8LtvmKQE4JldTIz4c+FVRVtSURBrNCpjHt2nhMDv3mNae2cff3hhXk8lkWM6hL2/mTmEL8s5aSAiT7Jh3lAaQAnSj1smZsPXHFa4whyXmGTDcOMnHJwqUfWnrGnSoJO3fqrY4uH4XtG/rPufmaVf4yYz/VsTAwiZEIOHp4eoWc+t6E2ewghii7A9wk9EMU2IcHJrhtR5xfX3SFpE9WZqjEZShPIWkKQNJwgDdAzr1vXV45/c+1WVf6QwRKL7Aaq5fM0q382/ek3La3h0RZVd7emZhHJ5zKziFpJSaDTlxOdrrZkYLSVzTE+6xoWYtbks2juyrN+y8MDuzM34pme0IwF3JrUfK621C1JqRflPv2Aha65AR1huwsM058QtrOoDSgBgO2Ifq5OtzTt1Jbnrden/eW3/dL6h5c++felbnZi+VgWt04RFmbF6SaumFZcAOz0dQhWBGqMQQaIc/r5uvIYWDIw09ihGjHo2uibVrf919kf7pTe3bUt1RKJwb1ooAqIDBwSQJiOcMK0W09nV3gKjZ5rNloKDVoabIzAFJqQETt6YNAQdmgbmx0S1T/bpM2YOyEZfstfa9o4udD3oeMkCUJ8nwaxX84WmtfH7yOzPdi5FIkwXpYEL8lU8mjCQepkluiHuzjeELVTXkCsa5YMDJtP9gDX86iYPBWgfsNeL0NVHktD4Zu74HWQ3/L68z436hweEpjdt/WxrxfyhlNDJOwBzBAJv1zYnKOfcytudgvA8wHCY4Oac2vBkuW5vV7VJLb4+3CRpGevT9tzZEp10UbnrLM/4kOoLEfE12Vm/4jrheEzcOsX+cVLdn5pNy8k5tmaC3nAJ48THzB8jFFhYIEVbgzGgWgvoP/o10XNtrNE1V+m4VLapwnN9zX/53f/1L4Od6Mq32pGVRp+P1NpxHXei2uBVs5zauWoSWnl1QFSK3q5LzvM4CXIpITxRTPhBxyy8XvrGj5v4IYDQ7MGlaMqJhS7n6kY4jrfivHyIMwJ3GZkrFdTm4gF/9jrtyBz1mKALSwU8sLwGFz6xtnRs277bvh1waGqX9p1o1EK4Q9AUAoRgpJA5AYnIqfsSb++nc2v58wKftejXdvA8e++ayyO3HxL1TH+iboXw7TXrjCoDlyYFCuPjgVhJTxbKFGrIRuktiqGcP867sLRzmmj3pc5JvHremTAM+2JOlFG9YsXWNWlM/26nhnw6kSogZMnYQS/8AgT/ibIL15mnNPEoHk/gkeVe7bCt3S76tTBxxbYaAUGdv4wu7sKYuiJqtEQNsQw1MtitQ8jRhTe0oRyUAvWA6nx/QHYRgH+Pz+mFKaEDUciSvfnRu2oAte1GGCOKMAgj3W6djLvMPnEFX008cQ2SU9z8JC5SrLnylwptZjvZMM8bKff+VOCo6LU7k7t5E+DKlIZt0MpRKhMQ8qGtHMoiAeAe9KAOxU0OlWd7CSdmYLrtZhE4FS5rhs3YJF9AJbMTkVt3MAcRVYlBN8k6U8QfJPwk+h8k3S+SDrfZJH5JOk3Ivgk2WyTi59cBWyOPvS33h5X87YMlfqPqvFgxsdtn59Q6W+9mbPDu1Byu4iGwTcGPDrrneuf+qjmpRZNirtnAmbHPqhOT1T1wm9AurXSCQSRIxtIRSEJdu+lHLm0bf3AjP1pq6bOrzmsCCTBdJTqZPVSr7l/WjxX2vJQ3X7DrHhAKYsTpWWVGBSAnNUueK8FGBjpABC96p3qw/BHMX0Ycb0kNryxEfMJtdHk5o4hRdjTXf9j9pRO52Mge9qZ0552/M+ekvrJej8mo/L1W2H79p7o5ZSkOsmDPaXTNPFgKSI5LUVAidtTl+jDreetveO3Wv7s36DfN7bgwZ7SNwl4QKkjJ0q/lKQ9pftQo9vTSE572lFrT3eb/JqAPp34KWZrUcrpdZoowXfHe6/YnKtpkTwsCSpV4loSWGshz+WtmK08CbkBitkQHHikqUdw4JHFbAgOPLKYDcGBRxazITjwyGI2BAceWcxGj9AYFWvQKiKHGJ09j4eKtT28KdnagEouGo8kglSRVDI958/QiRmbTui0hTzoZC+bThbuuvv7hAefAnN3bc/dPPAeNRouGyGJlymYvVHYDJubtzAB3lGgQ5cwXqmR4eRCkJ6bi8OWzruIeBVdrJ11VLRKqVBEQo8FL+Yf+Xz1K80Slu9yIUja5E149tcatVdPa1WRzRJadFHLVJAAnPzYur7KxH4KWKsFu+hA4h+pXEN8dxBhwCxHXmomTSVkmyPGpnQ9sSC1IjCgbUSC1Akiq1CJqr88PkQWQ3GA1vjlSNjvtOB1S/x6Z2VCwatUKzw9oJ747ciKJ+wwECNU8NygRo6/lTn5VqgJpZIkBcZLIe0WCW8pS3gRpl4KXMJidQXRkglfEMAuqnKJQgS5oAo4Io1KJonT/o4RE2vvIYbqPpN3y3QWUJ626ujjnwe/vK4il19eUZH0y/tNHnM6varpbo9mcBb2p2sL+w/w5iZtBYZzkwjeXNJNInhzSTeJ4M0l3SSCN5eMhTbvrd/gxNp5gdsuuFqrf6gaF4iFLh+5cbju9JchaUkR1+IOKA4xnCu0+siBRCfj5cG5HmTTpIm2a6eTDhusXfuqylzt2hOYVDI8t2u3c9wx55j8eejKy3+Mbp552BTata+ozNX8Nt04XCjUntOLFy82QLv2ybMHWgalxoUs9Iy8Mv6PU0km0a59Gqd2xpqCdgzSrv2Lol6Ufd0V4m0ql/sdnCKomXRjtWsfyqmcBFNQjsCY7dpnWeckaDZJAha++qt+ysfjVFpiY7drj+FUXk8jcUCZZLv2Iw5dUnu0nRWSHjx+u/uBxEwjt2uP5NRcgNE1B28qsXbtKdXMa6XWig+d5Wd7Ntl+MrWxubHatWMxBGu79gQt2dMhtjj1f6ldO70thpHbtT+rzNWu/Q9mSFsi7doFY/5st/b0Tf+dvef/VV0xaRPv7drp5GY8tCB/UpmrBfkd/WgT9WjX/mlZSo56W+XwTSPzJlb/q48N7+3a6TaCB6z+4MTqjGFtrrHbtR9mM2P/kfAXiYSf3k3IYCT8oipcJPy1q5QECX+3yS6aF+N+8duwdsDlw+e87vN42pxnGwk3TLyrcHGWt6piEBL+7EuP485erO43N/iQ3d5R6u1GJ+F350QFjBuTWTvod/CHPxL+cuOjtzmEXw3IObdqWHR/x54mQ8LvxKk6O+OozuAk/NcedcwNfh8aNG/QxczH/dN3GJmEH7MyrCzqwMoYjIT/kTR1xZUGft4TuyVEmNWtOt0ESPjdOcGpXcWAJPw7nlp0OHiwc8DWQ7uON6/950sToLOACDlxIgTmNBG3HWGL28TeDRv97HDVe+1t16zLS19SG+NYY4f4EpQK4NGZMZsFC84t8lMk8vz7CS4MgLhKmdg/FsRwsMu1MkYvLgd6h0XWt2WyHhQQ6lrbBwKhDRDfPIDvWnqYdBHgO5oZJul5sKpy/muBqwQW6KXTSKnPhu1r/LMtOo65W2kxtadtkXp30UIoumEsZggFaW/XVWHrYpcOxm6GfiGUDT59pbL+Khk6vtxwd2rOj7Nz/dc7BTb5u30mlUuxnC92I+KEFH69JGh/53F+/6lGD5a0I1OPQAm+slwplUdzcNs0/DTTIVtWwTerYURCu3VraGOVfABzrGolJaGM0ZzKGGIa4Y9An4yFR3C8UgPclyQa7p26eXYAS1awsohrLGzaITpWqZI2FjbroB6k0mC/oKPVh+0ddnUc0807883uTR3iKlK39CzhB0RpkhWI/pf5opJQVjynsqQmMXPgo/SKVqvkb3THJ6r6qTlm0PGZHmd6dz4aMGZT5S3dLc2eFmepXNylgydhyOFRz4sMXqim4vWL9YxSCUvOEW0lPpnuvfONW0CW75llgoNfxhp32QsAmEECcAMBADQtekWipCtjJ5loU/bHhr9TN/rldvnFtXXZ7qOMetgXApDIBUDX/tpA8+j/WD0OvTG3wepxGjlw1eN8ZEaWPNfj+LUMn/jcolPw+h6yfhdXnf/DBOpxGjhwZTdrOJhAUcHo0aMNUI8zvM3In3NnrgpettvnSoY476lJ1ONU4dSOtSloxyD1OIsc5z5XXF3qs31L7+9eiScqmUQ9TilO5Xw0TrxkQvU40ac77DwaUs8r2+ehTfXs0k9Nqh7n3ypcyrtv9GDXhOpxXHNXdX9+tZt/6pmv1bf7nqtj5HqcPzk1d8HomivRepwqbQ5sX64cEzjh2eoFLUtPmmAS9ThYDMFaj/NRG6ce+79QjxPQQDPn3pBqPnMGXmqeXSn5iZHrceIcuOpxujkYph6n4t3RMvX1U94rXw1xm77XfSnv9Tj0tTkPNSYDHbhqTCQOJVWPcy5tYTdPj82hG1+2enjuxrVzvNfj0G0ED1h148Qq1LBxqLHrcY6zmbFBB+SN5GHrRDv3hyv+edCDmq+y7pQIz076qyQJscwTpnqkL+r4ytUJ8PSYNpuT7I6fMhVKIGdef/gJaKqc3QeOXskcFprd6qpPXFvHM6zvx8zkFBQyxp9lFDBh4QWPYiFGJf3ck46jUvs0euOk+mJBM0jM5SCC/2jnP2Pri3c0tT9hGyVTAIXJpIHArg8hH4epFVflCTZVOuSl+dq3vSBa3uL+gU0nk3xpLBhoBVbErTtCZwIrXEQ5ZEU4A8bhK76YPOiH5IvA5KFrdFCKRUueICIbTrbIPehNoH6SDfUf47asquRh5rOjp+PCzITQ1YWevrQqeeR1PrFJP73H04nNIs4bLo2ct6Nr5BSbRjJmpiU+D/rkP2+Qg3rh5Ma9qHuifrB4RsOMyFiXl/gNQjXw+ni/y0Q1DHmxXm2xSoUU0jHCksAY7O+wcFgj6a/WKQahH5EsF6KMHiiTam9CvTpzOxe/risNKACzZQVIm+6DKOqDpOoOFRD0SxAiuI5D0C/Bf3T6pbBxtztGnXjmNfbMtlSL1+FX6fRLY7otH3kzoWdA+sGMBY/Sp3Yk5eRh1CLTM9E/GEHPxKZpa8geQKgR3SDgF9cty0vl+c9pmzlgzYTjLYqjLf7p8CGHENRrBVTIcxeEPA0rGKXxpDXs79hHDb5DfP98g5H/O2ZqUjzbRg5HsESx6creL3+2gYBIk6hCB67mS4Q/3/1+WrQs5tahRFf7DE6VmYvwJyG4jglBSShNyKk0B8MqjTTBZiEi3KDCW0Zq5z2mG3KOsgV7tXyJ1tfyeLVMhVXdgY+gGEykrm4OGXpmtjxHvNVm44/h//Ryo+vKPDRRI+mn0BJYCGjJLvipnkx35Vko11cR3RWXUm04lVq6AoPri7OBAjHYZTg/CxI8Ok0K50A3g5aO2aYDu8r3EE/1IOzSQW9Ep3uvJtgQJ1z6aTaX3un+nXBzxXn/Zbv3lx65o+Z4aq1sVKw8RiOEfWWpbh36K7ae1s7hMTFwKSJRKIj2q3LYOA+Sd3sgAaY3HGR7BUS8pOu2FBgZ1bTEFIxtqcZiwZdit6i2xbrvgrmphi+M/KKDlrx/8mfcr+IZ/1Tu1D97C5U5xYzlKxYaEtKbrhdzjsElvCPE6qAXYo6lAml5O/2qxnANKrFRgcSlXd8qZeznx4dtiC33rKn12fOMLeUY3YAp5nyC39yM85t/MWyDaZbtZGwE6pFjs4Y8Q1zUU/vXVa6mGG/lN6HsnX+fK7pS96AwliJDwf+qPBf8j4wDP6NCrLiNuvEZAaudwTdBaoTecbeIlqK4u/nuBUwBw8H0dccmBOFgzrA5GL35fNy02it5Pp99r1RmbYZdDNiWNzl86Lw6wgJ8PvbdLLw7HdsSuLzCfIexaxT3C/D5HEnaePN0mwuBGfIbz9KjA5sW4PM5cn/AzF6LVMG7F763rDW0+e0CfD4f7q1ZtVM1yGtukG1Mlb72xwvw+SA6/5LchojOv2SjXkTnXwtCNN6yddDuES5hGaP2p9xv/8QaiCwJ0Yvdf6Yk+P4RtHVKyC53txajgciKEN2YNS9z56tIr4WrVszvOazlr0BkTYgs6tzrduRaj+Adw2ZpElN2iYDIhhC1G2XTWLr3N9/UC2dkDTY92ANEtoTocamINd8iHwdtq3tt/qAtlb2BqDyJxq+WXQaED/Za+KNn18i/tswBIjtC5H60q8PH8Vd8lt++1nXmbok/EFUgRKWGmYeWFgp8l+bVyXs049gKIKpIiEq39o85+o+n174/qtmOHdp4PBDZE6Idw2zaZJ2/673taPiKpQ+b9wWiSoRolEfYvsjfvgVmp95+17nCnllAVJkQJQVVl5facTz4wLWuj+0+/WUDRFUErDRQDoRo26Y/GwtU4IGPdzpPfhpzHYiqEqIBQ5+VTn6TFzj97rpPQ1XPdgGRIyEanej0+8KnYwM2lorWZH5O9gQiJ0I0Y8wRm07vr4YvvbSwzPT6jYYDUTVC5Lv9nMDsZbvwCZ5vnA9fPVgHiJwJkV/a8xsTv24MGuXlq259cDHUcnVC1PbavDyXR99Cd4iXJQeVKQd5pVwIUdU6G+6LSqn9dvipKu2xd4kGIldCVL/+njeLNv0jmvPyydzfJpaXA1ENQtQh9bIyya+e17bhz0bd6j4fEoQKCVGt0dt7fv7pGH7g99sfJ7kHLWQQVdUUsBBVtXm8YnDzNWu8dk9bf33Zng8ZPBBVnWUzUVVidm9aeOyUePGGvKFnqg+jfpa5eEiCQilFnL5gC4DrEXcIyfOyWJs6dRwIiIERIjoA6njcgm6gkK/GXFUTAl0XEm5iwemqkDYYlTmMAOHxtqr6NdDMP42Kvwi6/17F6LAzbToGrz357Ppc/4lTeTyMynOCEDb4OVmVrR7aEaxK91fVKyZuESkDQwOre5LKYIsjpVqOHT8B7ydXYEsncpwIJSp44loZJ49Gonj6SbxTG8v5QTMDT2yYP6L8XGr5uPZzmOXj+SK+4wYI1zZOuNZVNYlIjnnUUc9Izp2YaNJ8dWliJRphnGSgTAgCEG0La/Y6c0G98dcmdBjks+binO2XHnfpQas0JB6LqDQkJXxrr4I7Mdh9kcX/HthgZ1Sb6wlcTfJQFFnwJ6MDiQRrYVJwjZYVDgRPsthjHRTQi7pSLNIRLB7A2sYJFhjqhP85x+Z//mNuKBJzAz1CNxhzg4sjF3PDd/18pY7MDZqXLWZPenjDa+3t/hd+ez59Co/Okm6BeGBucHbkOuhe0dEgzA21Iu13ZTVYJVp056/WZg9aLzM6c4M5JyrfjeMTdagyLWyDiT/mBo9zDy5ezzgjnqdssKr0kZUbTYa54W1VLtU9MdVwhmfmhpFL4+++W9jXf/WqDr2mPrl+1sjMDZiVYT16D6yMwZgbZja+Xcba83hoVtOKF71m1qUWRRuHucGcE5zvVQ3I3PCzS+7PHt+3+c4NWDbAcuk/VApH4zE3YHOaFaEn2rjtPFvcdmqRJOR7m6r+ozNdzZ/WTtlPjUZDQIwmjPIN0X3jwEfbDBd2EyAjYbBCjAG/grgrWQiwVWlwjgJgbInxCmMvInQbrlPgRN+/RL83M4omJXosAyvWINriMkIlL6CB1676bStgL1AAA/QBhRcJs3z7eXgtcw106nAl+AotmwTvRhxQwC4XFinR7R8PPW/tahDVV4xBKGwkFpStoVfdsSMGEDku3KRyFRi+QI52tuqmc8edvPQmbMqsEcp/RzboQJ2WvuTNzGmZLyoMsEBFwJM+eS2CpytOBXUbeaYKD4B9deUCDIwoowRRuM+Af9NcwPbDpMOy4NClNaZLLp9zbMGDjI4fvHJa1n32T6JdRXuMyAQoQzwkQSXTlj1jQa23T5Tbbw2KFwDTVHvszc88396d/PbXvzXz88iWbXlQ7T+cqr1lJNWi4uMZv+oVatmEFLDnSGW2n7puTZtpvwZla55mj+gn9KIn/BCHqvCrvLeV9iBsUg6qqCTHA5tihGO8wOYYfa5WvTW41Vav7B69Had03Udtq1QZFr9q4NYnPMksg7X1Mj06xjcRKeMA5HgJLvYYaf5jsMVhfqN4WFSqm0ekpe0Kf2GGOpB/pcemgsYJgP7YB9FAvi8Y/DFOxa1P8Q4pAArcboBtkGC0oYwXupHNzwF6OAES/B9u09RwN1qZJGNhL1nTQ1m+ljAzdMua5n9IxGOoh9jLdcWKDpg2hrhemI3xWXA+YcMRK68tjlunD/xtcQ0ediZUEGYzH0TL9PQGGMzF3RKuW0D92t2taGW8WhadiA0PrCYKXaa35uGtmV/8QxaN6jr7+YPxi6gnMvKfy1z+UoQlwQaDwdYTBdsNdww2wiRcZDMJZ8rXftu0pTJ0/JuXwR5XRoop3802UobVMArDEhUKhC1gC5jdyftgISw2ZuXxgyUKuRQf5ElyTaxQCZYpKt0tAT1Lz/GeDC1QxXpEye2d2JJvGQDdesWe+w6BWB0e3HWVqbFCbAwxJAAX1p2Z+SKvrO/Wjh367Dp3cic1fMYexAyf8cuFTWd6VQIPIUNbiNxYVMgAm1F5OrGGzzoi56xFTkUZanBoIeF7s6HBxHmfx4euu73bZfA6iS31mDsxQNApHaqU94JoN2wkcaBV3ckoVewWnZMTZAVxqF2gZscjGIS0MoUH/Bu1h39AHxjk9pepaCVx8Ke4htsBc5BQseARYFGdjKsaqWW6YyrOJCmmXvt6ELPglTfqQGYTbBbotRHmGIZhC2MFvH6XGPpSJBTO8sHVrmc8982de/v+rKjNrWiJCfitEIkJ7HJJQFGPE4rqWkd1ic1RmUzPP7q15Kf9cQm0/PvuyNXy770jCfllk4ecXhvHD+RW/T9crbspPnj+9jBxjXc5r3mAXF6NC3JJNRLyK7xVZdqRkBugKhNRRElWZSKKKMmqTEQRJVmViSiiJKsyEUWUZFUmooiSrMpEFFGSVZmDfIKH9anVKWjGrsEXUrzzTjNK3uDgRY4+evklDyVvV9n0Xyv4qPutzVZ+a8yk/a49qUDVfyV8s1+kUKphuIglcJhBeTmW2VbLTw7bHcfC/sD4A7AlJVxnEmUIuqX36SWnhb4iAxzUH+lBLZMI7doN5IkRsCLv4qjX3rUznm3DmDSUUDUAD/ALe13Q5dvjUyza2/hOSHi9z325x7ji5NpKdhv7IsBK7Ui43VcMckKwrJYyE/5cWFXRlkQUxAqJ0vwydx4G74jyXvJ1xIut5l9r8VgWMapL2PuTmUP8spSTAib6JB/mAaUunCj5OTI3H7jitMYR5LzCJhuGGTnl4FKPrD1jT5XEttl8xu33H2Gj1mT8UaPX5AFGzOd6NiYGETIhBw9Py/XM5zbUZg8hRNEF+D6hB6LYJiQ4g73u3K4R+EycFRjze8iFqoEmkLWEIPXhBKmLo3553bq+cvyba7eq8ocMllhkN1DRN34mnrhfx3fcL23XNzxmMYmaRSSfy8wiaiUlgU4wJzre2lj0DzbH+KxrWIhZk8+iuSvP+i0PD+zO3IhnekIzFnBrUvO52lK3JKVelPv0Axa65gZ0hO0uMExHIWxnURtQAgDbRv1cnW5pWqccv1NXhRkh8wbfTWmyaiQ1OWWN5WNZ3DpFWJgVp5u4YlpxAbDThyFYEagxBhkgdunn68pjYMnATGOH6pXzZOmr5bUCNqY6XXreffpWqiUSg3vRQBUQGTgkgDBt5IRplZ7OrvAUGj3XbLQUGrQ02BiBKTQhI3b0wKAh7NA1Njskqn+2SZsxd0Iy/Ja/1rRxcqHvQ8dJEoT4Pg1iv5wtNK+P30dme7BzKRJhvCwJXpKp5NGEg9TJLNEPd3G8IWqnvIBY1ywZpOJ0AbieR8XkqQD1Iy56GaryWBoK39wFr4P8lqunTJ3RfNiegO3iMrvvJEf+Qg2RsAcwQyT8cmFzjn7OrbjZLQDPPQiPDWrOrQVLlusuelWT2OLvw0WSfrjUwx5tdnf2Wv7VfLP1T1EwNfuH38/M/hHXC8PHcm3nSy+tA0J2NKx9VhK01oEHfM5x4gOGjzEqDCywwo3BOBDtBfQf/bqo2XaWqPrLNFxKe/DlVd9SJ7aGTG0Z1T7r+K2WVKXh9zOVRlznvbgWaGU3p1Y2mZRWXh0gtaKX+7LDDF6CTEoYX6RiRk9pFTnk6J3QnPseT2taNaVuypQLxe5nKoa4zrdivDwIcwK3GRnr1dQmYsFlF/0WZM5aDLCFhUJeGB53S5V+vfPjbv8D3qUa141OoW7HmovwByAohQhBSSByhBORbS6kX7/O5tdzZgW/69GubeD4d981FkduvqXqGP9E3Yth2mtXGFQHLkyKlUfHgrASni2UqNWQDVJbFUO4f90WH/Rz2qj3ZY5J/LoeGfCZLkSdKKP6xQus6sYw/bqeGfDqRKiBkydhBL/wCBP+Juj+L5Wm+ndodjZ4q6TnhMb7T0qog48tsNEKDOz8YXZ3OsTQE1WjIWyIYaiXxWofRowovKUJ5aAWrAdS4/sDsI0C/H9+TClMCRuORJTuz43aUQWuazHAHFGAQR7rMdrJfMPkE1f00cQT2yQ9zcFD5qqfC1fmqrsW8z/ZMA/b6Xf+lOCoKLW7Uzv506CKVMbtUAoRKtOQsiHtHAriAeCeNOBOBY1OVSc7SWem4HotJhE4Va7rxg1YZK+DJbNTURs3MEcxxxXBN0n6EwTfJPwkOt8knS+SzjdZZD5J+o0IPkk22+TiJ1cBm6MP/a0kIMvzVD9FQG61hv6hknZpVPpbb+bs8C6U3G7Ahb/e/1bK02tmqXnz2wzq0by4eyZgdqyF6vREVS/8BqRLXU8giBzZQCoKSfDpnts2VLicK06/ntw5YfA/kUUgCaajFDVm9ZZTT2RhWYL4/9fed4A1kbz/R+UUROwiiiVYQWkWLNgSktCLgl1PjRAgGggm4RDLiR0LdhSxYsXeez17O8/ezga2s+t5nuVO/c9sCezu7JKYJcn9/l+ex+eRHXaz+bwz7/vOzGc+7+fYwHkNeEBpDidKk+swJAA52S54rQWYGBkAEJ31To1h+KOYMYy4XhwL3liP+YhaaHL1wJAi/Omt/5g/pcv5mMmfduL0p27/86ekfVqNPbK3xM8h0i17j37o/qy7nAd/Spdp4sFTdOD0FC2K3Z9e+Xlqm6MDEkN2VW/Z9tCDO1E8+FP6IgEPKLlxolS3OP0pPYZa3J924PSnbnp/+rvVzwnow4kfMptPiRpvMyRJ0p3vRfGbr2RE8jAl+Mo5JfhbPyW4zRuZrTwJuRnIbAgNPD2ZjamBR5LZEBp4JJkNoYFHktkQGngkmQ2hgUeS2egZGoOxBr0isovR1fN4YKzd4c3I9mY08vfpSCJEFUkj0/f8GTaxYbMJXbaQB5vcZbNJ9u77vSY+/Bi0d/eOvVsG51HP+f3QWZ6oUDFro7A5NlexMAneUahClzBRrVPg4kJQnptLw5auu4h4FUO8nX1UtEatUkXCiAUvFhz5fNOJ5gmXDwvLm/D6YNie7gtkqVKHoWye0LabVqGBAuDkxzaUqpMHqiBXC1bRgcI/MUod8d1BhgF3OfLTVtFMQpY5YixKN5IJlLWAA20rEaRNlJQNk2vilImhilhKALTHL0fCeqeFr9vh17uqkwpfpXrhxWGNZGvia52sgIHYWQPPDeqU+FuVId8KNaA08pSgxBgou0XCW8IOXoRbL4UuYbm6iijJhE8IYBVVpVwlgVpQhQKRTqOQJ+h/x4SJ9fcQXfWe1YdlugooT0t19P7PQ1zOrMUVlzNqkXH5vtVjTpdXtd7l0SmcxP6xemJ/Hm9h0kFgvjCJ0M0lwyRCN5cMkwjdXDJMInRzyVzo16wvo5ef/lE0IeHln/8u8x9VKBfq/PhtxSUZZf3Hbpxwok+Xh8mM4Aq9PrIj0cV4eQiu+WyWtNJy7XTRYbOVa59el6tce5+6xV2u/axuV1humWjZiuA7+4Lm/EKdT1mmXHtGXa7it2PrWkHN6Tlz5pihXPugU5lN+v1aOWDL+tWb03p+yLKKcu2pnNZRW4N1zFKu/cyr30rOq+0syvj6S7L8QA2qtomlyrUrOI3TxxqMI7BkufYmuS/nRO+RBh/qMse2RuiBa1ZVrr0Lp/ECLGM86yzX3mnvH99yAhcHLbFTNSy14PUPFi7X3oHTci0sbjl4U7GVa19c3jdIeGhFUO7jbWPKvOr4j1WUa8dyCNZy7cAREnnqA7Y89b9Urp1eFsPC5dqv1eUq136YmdIWS7l2x6itNkp3t4B1H/IWXfjWbxjv5drp4mY8lCC/UperBPkZ42QTjSjXrgs9Nn5Nyl7Jtujl3eSj1lYzfQjTsKL7CB6wOsyJ1U7z+lxLl2t/yObG/ifC/10i/PRqQmYT4fcUconwlxcWhwj/jr13pt37PEKac32/f99zrcrweNqcZx8JF0zchVya5fWEZhHhbzE5rOPBHVUjVvnMHTFiYnmpxUX4nThRAf3GauYOxh384U+Ef67mceUyO9oETB1QO1lXoxpVDNOSIvw2nKb7bJnJg9lF+Ct11NWw26+TrO4//d2Mbw9OWliEH/MyrCrqwMuYTYT/zrJFg22rLQ46cLrryvanX/awAhF+J05wygvNKMI/613z+allO4QtbBbSsO7ov0dbgZwFRMiGE6HP+unnI7a8TSZu0vRbhyvi3Lt11lxa/JrKILPHDvElqVUgojNzNlsWnH0KtkiUBfcTWhgAcY06OS4e5HCwyrU61igtB3qFRda3ZaoeFGo0lNsHEqF5EN98gG8uPU26APBNYKZJRh6sqlrwWuAqgQVabt7dt1XuyZzQdPnZRgsWLVhteu0uWgpFd4wmplBQ9jZTyFbFLgv03SnGpVDl8OEbo4jTKND55YWZ9e847H8qnjW3lniq+6HFtBNS2I2IE1L49eKQ/R3N+f1TLJ4s6XumEYkSfGWlOkYZzaFt03v952/xrSLEmZtOPzj0PrQCta+SD2D2VX1LcRgjgdMY0ZYxBqM4tjE7Fp4hiWodCF/yaLh26urdAUxZwcwiwV3YrEN0vFoT4y5s3kE7RKPDfkFnq2UOJ8S4yz9J1/dfvLOyTx51S94OfkCULlWFqH9Z0FQcxurFaawIqxg58FFGZavVCha6E5M1A7UcI+i3rEqHHNXVAlfWHTTm0r6026ZMlU2dOngTjhwe9bzA0IVqJls30cgslfDkHNnWeZHio6bLlpB9NXzC7j3Zvduy014AwHASgBsIAKBrMSoTJUMZu8hEpQcnQh2yu4fMqVN1R0X5w88WPewLARjABUD3SCGZaD7+j/Fx6IW5zcbHcXTh4uPkMzNLnvk4P7wRu/YWZgVlNvll/Z17zj9aAR+nqgvX7mZZFysgFQwbNswMfJz7i0fGfUlJEM1b1apf1WWvHlsFH0fAaZ2/LROSLcDHGX3MRRLfor7/vsqTfq3p/TzAKvg4L4Rcxsm3BuMILMnHGRuond934enQBYcazbk39PRGq+Lj3OA03nmLJ7tWxMdxmDeyjueR68FTSj1M901Y/NLCfJxjnJbba3HLFSsfZ+t2cZ1Fi7witm/rfT/zanCiVfBxsByClY+Tr89Tn/xf4ON0SLukTvFvJNo+8vnoO73nnbQwH6enCxcfx8/FPHycdm6p70okXg9Li+nW8p8OK1bxzsehz8154Jh0d+HimIS6FBcf51SfN5fHu5+SZoV6PLSvdzWBdz4O3UfwgJUfJ1ZtzDtLsDQf5w82NzbkkLKpMnytZNfBCNWTh31eU3dKuiTDs5MBGnlSPPOEqRHbFw2kSm0SPD2m381J9cBPmQrlUDMvDn4CsufVG7Oj76dvThGHet39MMkjOJv1/Zg7OYUbGf3PLgq4sIjCR7EQvZJ+7snAXql/Gr1wUmOZwBmewneUwH+0858JjWWqmrVPOkQpVMBgipgg4NeHko/DzIqb8imbKR3zM6SVfX+T5Pg8OLTpVAqVA1LCD23ASrh3R9hMUBZvohyyIoIB4/AVX0oe9EPy36HkYWh2UILFSt4gI4snS+QeFhOoP2ND/ev4rSuqeNr47ezrlL0qKWxlkacvyxY/8gaf2KSf3uPpxOZ3jhsui+ypSbfIczaLLJ2Zkfwi+GPA3CGO2uzJ7tQVq9L+kDyjY2ZkrNNL/AahFkR9vN5lshamvFittni1KgbKMUJKYCz2d1g6rJPHaQ3KQehHJEuHqqMHK2L0N6Fenbmci183VAYUgOniDGXT/RCkPiiqXsIZIb8EIYLzOIT8EvxHl18KH3+3Y9TJ56JxZ7en2b6NuEKXXxrbI2fUraS+gVmHl85/nDW1I9lOHkb9bnkm+gcj5JnYLG0P1QMIM6Kr4OTUnVEy5YZko2v8+z13oxuaYi3+5fChhhC0a0VUynMfpDzVnC1SeNIe1nfsrwXfITGuwGEU/I65muHevpEjESpRbLaq7F8w2kBCpEvWoBPXTe5l4xbcXOu3b+Sti9USKgk5TVZGgj8JoXVMNBSH0ew5jVbCvEYjXbBNqAR3qPCWUfpxj9mGHKNsyV49KVH6WpmoVWgw1h34CIrDRNqq+4OPpUuvGRsybvO2IStyBp2l26pMWLJOPlClF7AQ0Da74Kd6M8OVd9FaX98XrriM+qEml1Ff1mRofXEWUCA6uwLXZ0GCR5dJ4ezoNtDTMct0YFf57uJpnoRfOixGVLoXeWFdnAjpL9hCepcH9yLKqM4HLNlzsOSonS5UmcKyUfHKWJ0Q1pWlhnUYr9hqWjtHxMbCqYhcpSLKryph4Two3u2JBJhecJDtFRD5kqHLUqBn/KAXpmAsS7nLBI9MLlHtgFXfBWNTC18Yze88OezZssyTouzhvzlGeYZTC6LasHzFIlNCetF1E8cYnMKXglgdFiHGWBpo/cQsSs3JGsMtqMZ6Bbps/OnlLYbN/lOyfcXChsuVv8gZS8qxhgFj4niC3/x1Da5v/si8BaZZlpOxHmjEHps91Bnikp6aX99x9PmX6f5zxr6qfSqjRTi1X8K7zQX/75zwX7QM/AyGmKmFuvERAdnO4JsgLUKvuPudnsLU1XyPQq6AEWAGeGADgggwL9kCjNF6Pq566xW/nk+1C15uS367Jt5w62SDw68yTxbS82nz9/wBlcUDxQtVnyQfor2fFtLz8f318qUDtZaKp8/u9fHD8V1XC+n5aO5fWRRzZJV0b6lb5+bmTf+hkJ7P4S+21/P2Hgg8FP1HWNjN+NeF9HwQlX9JbUNE5V+yUC+i8q8t0bR2ecOb5dpHBky2T9joWdXxD9BkRzS1fT912IOnR8Rjex/7fMNmYSnQVJZomtH5icvlKc+Dt/YK//K207vjoMmeaKoT3Gj7o9lf/TPaN9F+WenwGDSVI5ruZI2rvLhNp4Cc4EHHatUSaECTAwlUdLtR7Vut8h+7eciPV39dMQQ0lSeahPkrjiydVFa2YXtnZfOd0lTQVIFomiyqV9atdV3/nVuvPSnhnuoDmioSTZ0zjxyt8c/twC1dfEf3aDGyLmiqRDQdcPiYdUQxSTR1uM2pCs77oJJSZaIpLv7RIGFgxaC0z48rBNp1jwNNVYim3Mp5fzdtPFmUVjMvb8LpAPjAqkTTuiyfRUt73Azd9VOO//aHmmGgqZqAVQbKkWj6dMJxxOnDa6TLs2Y0zPQ90go0VSea5M/bdnX3DfHPqnenyqV5YRdAkxPR9C1p7DEXT1/pBoldpf0N4kSgqQbR5F7F72RHySq/qQ62Zb78/Pg5aKpJNJ2fVHnHrarRflOWJ/3aaU7z7qDJmWgq1bR1hODWyLBt3qVaVp6vgXqOtYimzNzP55r4lgo52HbYpN5XtiwCTbXJDvDL7K+nmjuFb3mw+06t684hoKkO0ZRxKqRDxQfr/KcvCppcteWLw6CpLtHU5W25xiEuGtF0ryORzd5JaoMmIdHUatvutXZRQUGLVh0vfTSvjC1DqMpFwCJU1a7WlWqPlzmErsxyvv6o94FohNswVqjqFZuLqha7Z1P28dOyhevzh52tNWIpdeoqG5qkUscgTl+wJcCNiDuE5HlZrEydNgEkxMAJERUADTxuQXdQyFdjzqqJBkMnEpBbVB/KBqN2DjuD9PhZPeMKaBacRsVfBPndBtyZ3l738qfwdcdruMyUBOfweBiV5w1CWODnaz02PrQTmJX+Vc+onNgnUgG6BsZ7ilHAEkdqrRI7fgLeT6nCpk5kPxHKNfDEtTpBGY1W6N7gVGpITfuIvdfKLeq+f0I3Kn1c/zlM+nhBE995A4TrGSdc9+tZRSbHPOpoZCbnQQy0mAJz6eLlOmGCfLBCCBIQfQlrdp7514ODf6pVK0IyR3D5eNcOKzrSmIbEYxFMQ7KFb+tV9CA6uxRJ/vfEOjuDbW4kcC7koSiS8KegA4kES1O9+5qoe+OkM6eKe7wS+Hcw/QgWD2A94wQLdHUi/rxmiz//U274LuUGeoZuNuWGqPpcyg0t6heHcoPH9uNJzV+mB65tUrX7qJnzVvMYLOkeiAflhi71uQ66B9Q3i3LDxFGzkjdF7AqY2yat+76ut89bXLmhAycqoN9YKcu0qAUm/pQbTq/Vldj6rqPf7EEbr5bbvv+q1Sg3uHGarq5lTGd25YZnVWs8Kz/pbliu/4mnJyvOcrWwcgPmZViP3gMvYzblBo3vT60nVEz1n6RctfyXh9VpM0iLKDd04ASnRX0zKjck7559I0h9JnjM2qObzvfofd9KlBvcOBECY5rI296w5W2nF8hDv7StHjBmVZ0yz+oPP0jNRkNBjiaMkoYavnDgpy+GC6sJkJkwmCHGgl9B3pUqBNhqdLhGAXC2RH+FuReRuo00TPKKtn6Jfm9mFk22GDENDGhClMVlpEoiYIHGTYxbVsBeoBAGyG/XWhIdPOPLv9Kx56tf+fevlrRMKQrejTiggF0uKlOi+z8eat7KmhDsK0YnFDaVCdo1MYp37IQBRPYL1xilBnRf0I4Otp0vR5Y6cLW0KH3PEv8uuUpqxU87KXkzc1gWNBUF2KCaG9vUue8sXe0olDfpc13JA2DNOAEDPcoiSRQeM+DftBCw/TDlsGw5bGmP2ZLDq049duzErIvDpVvjrvU/on2ZXRkTMgHGkA1N0ij0tGcsqRX7Rbn2dDMtAaaXxezcutKAk38Epo9Ndzt/f3JPHkxbm9O0VSxkWlR+PKOTUalWudBC/hzNzn02tezAiPf+m+bVezf7Qbe69A0/xKEq/CrvZaU9CZ+0GUUq2eyJDTEiML5lC4x+V6rf+an1NtGGPv2cpnQ/QC2rVBWSX3Vw6ROeZFZAbr3CiIrxXhJ1AoAcp+Bij4kpeAw2OSwoFA9JpQZFRPq2XdEvzDAH8q+MWFRY2wCA/ocfooD8AND5FzYwlZ8iDi0EClxugGWQYLahThS6ksXPAXq4ABL8H+7TtHA1Wp2iYFEvGXjb6+ajzLXSbd297AYpdyuoPqY7Rjpg+hjielE+5kfJgAUe+Q1Fc3U5XScM6LGTh5WJXAizjR+iZHqWGwazqUvCDQuZX7+6Fa1O1Cqik7HugXGikFgmDtRdrDd4qv+qj0133Xz+1Yl6IqPguczpL6WxONRgMNj6omC74YHBRriEP9lcwtny9d81a6UOm/Dn6xDPy6NklO/mEKnAOIzC8GSVCuEL2BJmD/I+SITF+qwy8Se5ShmDd/IUpS5eqAbTFI3hnoC+S8/xngwrUJuNyJI1Ddg235YCdPuaPPYdgzAeHlx1VWgxIjaGGBKA/DsjNz6vdEuc1uf6im+jGx6lps/Yg5jpM365qOFMZyXwkDIkQeTGoVIGWIwqtgFr+mwgcs565DSUrga7FhK+RWfHDPlg8ygwd3BtRWKXWuupx9yJDoLe0qG28k6IdsV6EgdakQ0swmK37ZqapCiMQ/1CnB3PEJDSKlSe8G+0ngGB/WGSG6fQ0Chx8MdUx+2IBUhoWPAIMKlOxU2NtDI9MJkySEy06wBPYhS8EaMOZHpho8CohTCncAxbmCvg/F2i68cgoSg1usn54acOBaw9UHFa0MxRNH+BfSvExgR2uTig6MsJRaQ+UL1jC1RWU/OP7i35KX9cDCX/WjTgKvnXVA/5X1YPOZ0bxw/kwo7/hFVqPlOa4bjJvfy+yGU8QL6kIRfk8xqSkL/njZVZgYTcDKxMBImSZGUiSJQkKxNBoiRZmQgSJcnKRJAoSVYmgkRJsjIRJEqSlfnRpuq7NiNOBqzoX72EvPOTXxmUN9h50bUZafRLHihvf7PZv17IMY87W8r6r7aJGXjtaUWq/avgi/0SlVoL00VsA4eZlJdmGW31/JWw3HE8rA+MPwCbUsJ5JkFDMGx7n045LfIVGeCg/sgIaZl1cH/gBvLECJiRTzFum98Z323DlDTU0DQAD/ALOy+oSZ9Xv/9+t1LgpoVDv9Wc8Lu/KXttxbuMfQFgtaY+EXbfMMQJwbQ6m7nhz4VVNT0lojBW6CM1ru6bHn5sGDyz1+H8ms+1Oh5pEaO7hb8/tWqo/xr1pMB0v9QjPKA0hROlEfWZiw9ceZp7Z3JcYYMNw4wccnCqR3LP2LdK/PtEryjzT6Bsoa3P5DGK0akW3M/1dic6EXJDDh6eXmLkfm4T/e4hhCi6kN4njEAU34ReCfipScSpkhGy9TcTJzU+8/K0FexaQpAyOUGaYuS+bkOpEv/m+qWqgi6DbSyyOyinIUpb+waPQhdUdPonZ+CHmtRdRPK5zF1EfUtxoDOaE50U/Z7uB7bA+Lx7eKiN1ydJ5vJz/jkRQb2ZC/HMSGjDAq4LdT9XT3VLURsluU8/YGHo3oCBsN0HjukzhO0cagFKAGB7aFyoM2yb9kXZmnvTs5cE71hTLuXx62etqYud2H4sS1inNBblxekuzkQvLgB++iMEqzOqj0EFiFfGxbryGFgKMNLYodox4ty1J6kLAtdOSNj+h88HatE/Oxm4Fw1UoSYzpwQQpoecMN0yMtgVvYVG32u22BYa9DRYH4FbaEJG7uiJQUP4oY9sfkjS+JxX27H3Qpf657zVta1Rm74OnSBPEuLrNIj1crbUvDF+H7nbg51LkQsTFSnwkkKjjCYCpGEsEtrhLo43RK2UF2o2dJcMdJsabgDX86icPA2g/snVKEdVHtuGwhd3wesgv2Wz/c98VXYTAja9qzs0aOvVxtQUCXsAM0XCLxc15ujn3Ezd3QLwVIfwlEONuVwwZXFwM4pN4oC/D5dIenhq/7Zfu3QIXve055jWL25QJynE12Xu/hHXizzY3vbLCbfU2qEbN0W//Hd8tR484FOKEx/QfSzBMLDFiBs/4UC0F9B/jKui5tBVrolT6LiMdqrkodEtf+ktnn1i+LeG73+hHq0rjd/PNBpxnXdyLbDKa1cuqzyyKqu8OURaxajwVQFzeEmKGML5omsuDIkKUvgPCBodLp7fo+aCO1TDhGH3Mw1DXOfbMCJPwp3AZUbGfDXNSyawdTNuQuasxwCbWKiUReExr1+Xf6ShHcKXCZfXWvb3uAE0SSH8AQhJIaKhOBD55MqFyDNXMq5/Yovrm2eF/NWnnW/QhL++6GyP3npHtTH+iYaTYdrrZxjUAC5MiVdGx4O0Ep4tlGu1UA1Sz4ohwr9hkw/6OW3U+zL7JH7diB3wk64ET5TBfhGBWd0eZlw3cge8FpFq4OJJmMAvPMKEvwnyi/89511K/r9fgnPnP3TN+9CcSp4rw5bY6BvMHPzh7u5xiKE3iqMhbIJhaJTHah9O9Ci8pAnloBbkA2nx9QFYRgH+vyCnFA4PH4mWeaHFc4tWVIHzWgwwJxRgUMd6j34wf7b6jSt6b+JJbZK+zcHDzlWWK9fO1Qw95v+wYR6+y//8acExSVrvGu2Uz4IrURW3wyhCqExHyoa0cxjIB0B40oE7VTQ5VcP0JmnKFFyvxRQCp7YbunADJtn3YYSeilq4gXsUZ9wQepNkPEHoTcJPoutN0vUi6XqT360nSb8RoSfJ5ptq+ys1wOcYI3+7Vvbr+dGbnwbOern1H822mNlU+Vsxc3SIixS3m3E6qmLJR0sCN946IWs+doap5yYFYHTcheb0RrEXeoLWK24nEUKObCB9j0hwcvoYUf6GuuJ5h2bNGW67ptV3iATTUdr1rvryP8Y/8z+0ZveHciuPmko4gCid4UTpsBtDApCT7YLXWoCJkSEqyjTWOzWG4Y9ixjDienEseGM95iNqocnVA0OK8Kf//sf8KV3Ox0z+NJnTn/b/nz8l7TO/jyLygc160Yrb/V+d67pkBw/+lC7TxIOn0HJ6CmWx+9MD2x/77q3ZPXh2aP6GtKWDXvDgT+mLBDyg1J8TpW7F6U/pMdTi/lTL6U/76/3pF6ufE9CHEz9kNp8SNd5mSJKkO9+L4jdfyYjkYUrQ0o1rSuCuh/wrb2S28iTkZiCzITTwSFeP0MAjyWwIDTySzIbQwCPJbAgNPJLMhtDAI8ls9AyNwViDXhHZxejqeTww1r7xZmR7Mxr5+3QkEaKKpJHpe/4Mm9iw2YQuW8iDTaBBkDbJ3n2/18SHH4P27t6xd8vgPOo5vx86yxMVKmZtFDbH5ioWJsE7ClXoEiaqdQpcXAjKc3Np2NJ1FxGvYoi3s4+K1qhVqkgYseDFgiOfbzrRPOFC5/mZVfuMDMgsOaFq0CzX02ye0LabVqGBAuDkxzaUqpMHqiBXC1bRgcI/MUod8d1BhgF3OfLTVtFMQpY5YixKN5IJFjYGDrStRJA2UVI2TK6JUyaGKmIpAdAevxwJ650Wvm6HX++qTip8leqFuwc3krVY0PhkBQzEzhp4blCnxN+qDPlWqAGlkacEJcZA2S0S3hJ28CLceil0CcvVVURJJnxCAKuoKuUqCdSCKhSIdBqFPEH/OyZMrL+H6Kol2Lqq1YRlugooT0t19P7PQ1w+25grLh9tTMblklaPOV1e1XqXR3/hJPbv0RP7S7FhbnSYdBCYL0widHPJMInQzSXDJEI3lwyTCN1cMhca13LewioPZkhXp7VfHzPuz6OFcqHr67ofGPhbvfDlaSmyLldSchnBFXp9ZEeii/HyEFxt2CxppeXa6aLDZivXfrwJV7n2mUwpGZ7LtV/R7R3yXpovOTRl7pQnj13eWEG59qNNuIrf7rGMYAa15vTUqVPNUK790Z8ZlcqGT/fbFRe0ebsulbpaaKly7Zs4rbPSGqxjlnLt0ZVqf+sQ0k4y/Vqb4KNtQqkrzJYq176A0zgzrcE4AkuWa690tdTzXncHB8+LaN2u0qHuZayqXPtETuONtCKhIIuXa59WL91jjLSC/77Kl/8asFMxwsLl2rWcllNa3HLwpmIr117m0645sXfV4uWjsj8Kl316bxXl2rEcgrVc+0y92NMPbHnqf6lcO70shoXLtZdrylWu/W9mSlss5doHRd0eHD5/acBi5Y9Pl/24kyYHyUO5drq4GQ8lyMs25SpBLmhaXOXan+8Xl/zX72LY+vP9R3SZ+uoE7+Xa6T6CB6z+bsKF1Qvz+lxLl2svzebG/ifC/10i/PRqQmYT4Y9pyiXCL21aHCL8z/9K3H3gpVPQglc7vs5yr12Px9PmPPtIuGAysCmXZnlPpo8sDhH+8uM2pQXtaBm+sWa5858fBGRZXIQ/nBMV0G+sZu5g3MEf/kT4q8xx2hgUW0qyu2Ol3r1rfq5gNSL8vpym87aM6cwuwv/r9Xv/Jm5pI5o+umvktrXlKtB2Os0two95GVYVdeBlzCbCn7Hf6VPyL3PFM0RZX/Pcf69uBSL84ZzgSJuaUYT/9nrP8+PqL/dbXm77+6O5daZbgZwFRMiXEyEwpom8rQxb3iYTN2n6rcMVce7dOmsuLX7dgqojgB3iS1KrQERn5my2LDj7FGyRKAvuJ7QwAOIadXJcPMjhYJVrdaxRWg70Cousb8tUPSjUaCi3DyRCv0J88wG+ufQ06QLAdzkzTTLyYFXVgtcCVwkskF996NtL0kpVu0vnTmu/YJV/b6qeynfV7qKlUHTHaGIKBWVvzzZlq2KXBfruL8alUOXw4RujiNMo0PllUOXSfna+7cKy7ma32Hht3UPaCSnsRsQJKfx6ccj+7uL8/hssnizpe6YRiRJ8ZaU6RhnNoW0T3u5h2XO/3Peb/6WpJu/fSBW1r5IPYPZVfUtxGGM5pzHmW0f6IzBmx8IzJFGtA+FLHg3XTl29O4ApK5hZJLgLm3WIjldrYtyFzTtoh2h02C/obFXUaemVv4VHA8Y5ddnxZd1MKrfDDn5AlC5Vhah/WdBUHMaazmms8VYxcuCjjMpWqxUsdCcmawZqOUbQ2h2iXlPTy4TOvFu1WtC1MQ9NmSqbOnXwJhw5POp5gaEL1Uy27oCRWSrhyTmyrVLKL/V3Px0euE5VWryxUd0tlp32AgC2kADcQAAAXYtRmSgZythFJm7kfQptoG4v3j9p0tZmz4PHW/SwLwRgLhcA3dP1iabtf4yPQy/MbTY+Tqg7Fx/Hyb24+Tgj4gZH/+yQFzZve2b6tSpjB1gBHyfYnWt3U+RuBaQCLUjpi5+Pc6fHr9NWdxkWnLlnrMsd2xt2VsHHacVpHXdrsI5Z+DhJYzfV3JJ2zn/e773ur/o89oRV8HHqcRrHyRqMI7AkHyev5p2vd5fbh6/Mi1j7efeUw1bFxynPaTwbyxjPOvk46aWWugaW+Fkyb+kV97Rr9/0szMf53JTLcm+sYppSbHycie96XZ9zda54zYJdD17YNZNaBR8HyyFY+TjAERJ5qt3/BT5Ol7flGoe4aETTvY5ENnsnqW1hPs40dy4+zlBmSlssfJxmLzrvHpz+PHBz1Ke6TbfeDOCdj0Ofm/PAMZnqzsUxGeNeXHwch3ivxMGrP0rGZge3tamReJh3Pg7dR/CA1VBOrBLNGy0tzccpy+bGhhxSNlWGr5XsOhihevKwD7UQm32XZHh2MkAjT4pnnjA1YvuigVSpTYKnx/S7Oake+ClToRxq5sXBT0D2vFbbdq+1iwoKWrTqeOmjeWVsWd+PuZNTuJHR/+yigAuLKHwUC9Er6eeeDOyV+qfRCyc1lgnCoDCXowT+o53/HNRY9neo60mHKIUKGEwREwT8+lDycZhZcVPas5nSMT9DWtn3N0mOz4NDm06lUONsCT+0ASvh3h1hM0FZvIlyyIoIBozDV3wpedAPyX+Hkoeh2UEJFit5g4xssRtRIvewmEC9HBvqX8dvXVHF08ZvZ1+n7FVJYSuLPH1ZtviRN/jEJv30Hk8nNr9z3HBZ5HVDukUc2CyydGZG8ovgjwFzhzhqsye7/0hdE/WH5BkdMyNjnV7iNwi1IOrj9S6TtTDlxWq1xatVMVCOEVICY7G/w9JhnTxOa1AOQj8iWTpUHT1YEaO/CfXqzOVc/LqhMqAAzB6NoGy6H4LUB0XVWzdCyC9BiOA8DiG/BP/R5ZfCx9/tGHXyuWjc2e1ptm8jrtDll8b2yBl1K6lvYNbhpfMfZ03tSLaXFJgoz0T/YIQ8E5ul7aF6AGFGtOaD+679qiqa0DmPf/qcVOH8OVOsxb8cPtQQgnatiEp57oOUJ6SRRQpP2sP6jv214DskxhU4jILfMVcz3Ns3ciRCJYrNVpX9C0YbSIh0yRp04jok7uC7hZ03BWalHhFcX5uwhNNkZST4kxBax0RDcRhNzGm01uY1GumCbUIluEOFt4zSj3vMNuQYZUv26kmJ0tfKRK1Cg7HuwEdQHCZaMH1X3vWhN16Lt+5L2VKj1e2JdFuVCUvWyQeq9AIWAtpmF/xUb2a48i5S6+s7wxWXUT04jVq/EUPri7OAAtHZFbg+CxI8ukwKZ0e3gZ6OWaYDu8p3F0/zJPzSYTGi0r3IC+viREgvzxbSuzy4F1FGdT5gyZ6DJUftdJlA5cpGxStjdUJYV5Ya1mG8Yqtp7RwRGwunInKViii/qoSF86B4tycSYHrBQbZXQORLhi5LgZ7RTi9MwViWcpcJnBuayiNzwKrvgrGphS+M/KIRz++O2dw4U7I860K53GHxB+gFXpBfsciUkF503cQxBqfwbSFWh0WIMZYGWr0aGscawy2oxnoFEhf7oRElstcuitgkVnXv+KO8NGNJOdYwYEwcT/CbN+T85qCXWMFyMtYDjdhjs4c6Q1zSUz2iZS5Dp0lE0+36V7+bPX8ttV/Cu80FfyVO+MtYBn4GQ8zUQt34iIBsZ/BN0EULaBV3v9NTmLqa71HIFTACzAAPbEAQAaYCW4AxWs/HVW+94tfziXeeEH53ZuvA9P2ZNVJWtyqsbfgx8+y5txFK6fTLeyce/izYXEjPp6+sQV6JfoNEm+MPNY693dKpkJ7PuKTXs5ueqhY+69qkzwEnfmpVSM+nRMSjlVXj9kn2V730k7ChuF8hPR9E5V9S2xBR+Zcs1Iuo/GtLNJVa6jDzwqqciP3794r98vLqgSY7omlpcsrwOeuv+c1YMvxLC8XImqCpLNG0bU0FUe9BQ6SHXo4699H7K3ygPdH000+ew5c8VImy3g2pkfZlbHXQVI5o6vzzmmNO/9hJM/KHT/zFPycZNDkQTZ6vHS9NizoSMev078sex/nNAE3liab+XkfDbtU4Fbph1zqnZkH3xKCpAmmUzytmbvvlZuD+5qFrju4aBF+jItFUrp7/CM/dztKNLcps6ZbT3w00VSKaTi8RPviarfFPS9mU8ccI0Y+gqTLRZHvnr/297WsFbonw7+iW1K0TaKpCNDl2eN9r3/iGIXP8+434dbxiE2iqSjStTIt90ezAZdGhNv1bBwWerAKaqglYZaAciaZ7x7LFNeYvFR0o1aPfW120L2iqTjQ5pNrtKz+nkizbY9kjt1pnYAdwIppC3i3QpDSbFZDZbX+fi68S4WfVIK3ca3dIYM1k0YRW4asmZ8V1A001iaYL2b0PVZbOEe0uFXKzXZ1p00GTM9G0L6Bhk2plVwQszryWuTLeQw6aahFNv/168fHdGuGBOT0vjY93WLIDNNUmmrYOznQWTjkhW3Y7pJfy69l80FSHaLKx7+JdZd0I2YxLNweL35b/HTTVJZr8W273rns9Jixn5diuUcd9boAmIdGUf95D/u+rOeLRty8cfVPh5mmGUJWLgEWoKm7TI99yvf6O2H8v+VyluE8OPAhVVWRzUdVi92zKPn5atnB9/rCztUYspU5dZUOTVOoYxOkLtgS4EXGHkDwvi5Wp0yaAhBg4IaICoIHHLegOCvlqzFk10WDoRMJVJljsCWWDUTuHnUF6nO5pXAHNgtOo+Isgv1uvhMAeMasr+I8/svrQj5NV13k8jMrzBiEs8LPQk40P7QRmpbM8jcqJfSIVoGtgvKcYBSxxpNYqseMn4P2UKmzqRPYToVwDT1yrE5TRSBT7vKpYrmY9x5BZK5rfazp120wqfVz/OUz6eEET33kDhCudE66fPa0ik2MedTQyk/MgBlpMgbl08XKdMEE+WCEECYi+hDU7zzy3TucA9+xOkq1z/+k7dVmFGzSmIfFYBNOQbOHbehU9iM4uRZL/PbHOzmCbGwmcC3koiiT8KehAIsF6Y9/x3/GzfCSb1pQdkXWxXIzpR7B4ACudEyzQ1Yn4U4kt/vxPueG7lBvoGbrZlBveenIpN1w0LlYaqNyQPLmkRnLgiHjiHVf5Fd9393gMlnQPxINyw2tProPuj4wLlt+r3FB1fKl6O+e0DTq0Kv7Q+CNzqf3DEsoNv3OictEyMdEAlmlRC0z8KTec+fKk8oAJD8NWtjg808PvSDurUW44yWm6A9aazvCs3JDsUMX7eZXlYZPWvc86UankZwsrN2BehvXo/SNEllJcyg21T2RtqLpZELE7w+59pdofqQQhyyg3/M4JzkVPMyo3pJdxnrIuo3NEWtzwklJp55ZWotxwkhOhA/q8rTJb3nZ6gTz0S9vqAWNW1SnzrP7wg9RsNBTkaMIoaajhCwd++mK4sJoAmQmDGWIs+BXkXalCgK1Gh2sUAGdL9FeYexGp20iDEif6+iX6vZlZNNlixDTwkQ9RFpeRKolg/VIf45YVsBcohAHy2zWIK5WeNP1S+N6RXqEVfafRDu5GwbsRBxSwy0VlSnT/x0PN2wc+BPuK0QmFTWWCmz5G8Y6dMIDIfuEao9SA7gva0cG2dw/b1pOuNRbtvv3w4bThgonUYSklb2YOy4KmogB7cjWm6fisvyUZilqp2+qp9vMA2G+cgIEeZZEkCo8Z8G9aCNh+mHJYthy2tMdsyeFVw1a6p4W12xe0Z/LMVz1KT/GsjAmZAGPIhiZpFHraM5bUiv2iXHu6mZYA00x7pva7P9pPGybJzHF79XxOjql6b9C0+zhNu8VCpkXlxzM6GZVqlQst5M/RRxrr/rEjbvR96eJzzoOiffyu0Df8EIeq8Ku8l5X2JHzSZhSpZLMnNsSIwFiFLTD6Xal+56fW20Qb+vRzmtL9ALWsUlVIftXBpU94klkBufUKIyrGe0nUCQBynIKLPSam4DHY5LCgUDwklRoUEenbdkW/MMMcyL8yYlEh0BuA/ocfooD8AND5fb1N5aeIQwuBApcbYBkkmG2oE4WuZPFzgB4ugAT/h/s0LVyNVqcoWNRL8rUlK3ya5R2RPehozmJJK2qRvtLdMdIB08cQ14vyMYq8qzl9RSv8xye5aiZ8iRzLw8qEP4TZxg9RMj3LDYPZ1CXhhoXMr1/dilYnahXRyVj3wDhRSCznpXt+leSIpDvH5g2Onxn0O/VERsFzmdNfSmNxqMFgsPVFwXbDA4ONcAlV2VzC2fL13zVrpQ6b8OfrEM/Lo2SU7+YQqcA4jMLwZJUK4QvYEmYP8j5IhMX6rDLxJ7lKGYN38hSlLl6oBtMUjeGegL5Lz/GeDCtQm43Ikit6s22+LQXofvYydew7BmE8PLjqqtBiRGwMMSQAZ/tt25SaLwjMuf9WONb/bFtq+ow9iJk+45eLGs50VgIPKUN5iNw4VMoAi1HZeLOmzwYi56xHTkPparBrIeGTdZ6ytfJtu5Apdd8caZ4xgCq8VY7oIOgtHWor74RoV6wncaD1xssiLHbbrqlJisI41C/E2fEMASmtQuUJ/0brGRDYHya5cQoNjRIHf0x13I5YgISGBY8Ak+pU3NRIK9MDkymDxES7DvAkRsEbMepAphc2CoxaCHMKx7CFuQLO3yW6fgwSCu20iCNXl3UNGvek78V3r1U0fhf2rRAbE9jl4oAC6+KsUIAuTgSqamyBympq/tG9JT/lj4uh5N9FL66Sf6f1kDtaPeR0bhw/kB89flvecIJjyIpBF+/PO/w+lgfIOzTjgtynGQl5dd5YmRVIyM3AykSQKElWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrE0GiJFmZdud9ur6qsFmS1ah05pipe5IZlDfYeZG9j06/5IHy5sRm/3ohxzzubCnrv9omZuC1pxWp9q+CL/ZLVGotTBexDRxmUl6aZbTV81fCcsfxsD4w/gBsSgnnmQQNwbDtfTrltMhXZICD+iMjpGWCoF+7gTwxAmbkbsysnGvt2hnfbcOUNNTQNAAP8As7L6hO85rjHs2ZETTth0VhAU1qJ5qy11a8y9gXAFYBZNh9wxAnBNPqNl7IPJwNq2p6SkRhrJAo/fvPob7Vul2WzV0xaMZ+3ZhHPNIiRncLf39q1VD/NepJgel+qUd4QMmNE6WaXszFB648zb0zOa6wwYZhRg45ONUjuWfsWyUDD5/Ma3G4e/As0aMwQe5ohQX3c73diU6E3JCDh6c7eBmXxjbR7x5CiKIL6X3CCETxTeg6scLVtg8W5oknXv99xeuy8ZOtYNcSgtSCEyQ3L+P2dRtKlfg31y9VFXQZbGORw0GdGvHo7YFjYePmP/2x1LdTG6m7iORzmbuI+pbiQKcuJzrV9LloDbbA+Lx7eKiN1ydJ5vJz/jkRQb2ZC/HMSGjDAq4LdT9XT3VLURsluU8/YGHo3oCBsN0HjikLwnYOtQAlALCNMS7UGbZNG+c86G+v26VkaaLU91tePzpDXezE9mNZwjqlsSgvTndxJnpxAfDTcyFYnVF9DCpATDUu1pXHwFKAkcYO1cxRL/dN9bKTTYpu4PZs/Z72VE8kA/eigSrUZOaUAMI0hhOmoUYGu6K30Oh7zRbbQoOeBusjcAtNyMgdPTFoCD9Uk80PSRqf82o79l7oUv+ct7q2NWrT16ET5ElCfJ0GsV7Olpo3xu8jd3uwcylyYaIiBV5SaJTRRIA0yC3RD3dxvCFqpbxQs6G7ZKDb7GoJcD2PysnTAOrzWhrlqMpj21D44i54HeS3vNf74Ml659Nla1OH/9v1RBtHaoqEPYCZIuGXixpz9HNupu5uAXh2QHjKocZcLpiyrGtpFJvEAX8fLpH0Wskv5Ff695NkeeyOWCVavp66+4ffz9z9I64Xhc/h6TtrJVydF75iUM7dZtnrL/CATw4nPqD7WIJhYIsRN37CgWgvoP8YV0XNoatcE6fQcRntwJbLaVMiB0sWnRjsf3F9bDDVaPj9TKMR13kn1wKrZHBaZaxVWeXNIdIqRoWvCpjDS1LEEM4XaZjWpbO1I+KvBEzP2fD7k067qYf9Sodh9zMNQ1zn2zAiT8KdwGVGxnw1zUsmWNXSuAmZsx4DbGKhUhaFx/I+yu2DX9wKW5RRfVJi1jlvmqQQ/gCEpBDRUByIzONEJL0lGded2eL65lkhf/Vp5xs04a8vOtujt95RbYx/ouFkmPb6GQY1gAtT4pXR8SCthGcL5VotVIPUs2KI8G/Y5IN+Thv1vsw+iV83Ygdc0ZLgiTLYLyIwq+vBjOtG7oDXIlINXDwJE/iFR5jwN0F+8WcNRxz3H9TSf/nvy+aGdV9J63xsiY2+wczBH+7uRkMMvVEcDWETDEOjPFb7cKJH4SVNKAe1IB9Ii68PwDIK8P8FOaVwePhIJKL0eG7RiipwXosB5oQCDOpY99AP5lpWv3FF7008qU3Stzl42Llq1ZJr58pTj3ltNszDd/mfPy04JknrXaOd8llwJaridhhFCJXpSNmQdg4D+QAITzpwp4omp2qQn6QrU3C9FlMInNpu6MINmGT/DKmaU1ELN3CPIt4HoTdJxhOE3iT8JLreJF0vkq43+d16kvQbEXqSbL6ptr9SA3yOMfK3rZ2iPl6QSvx2n3u6TLfjqpoqfytmjg5xkeJ2wyp5TalQ7rJ0Z5Bq/VBNy4GmrpmA0TECmtMbxV7oCVo1PicRQo5sIH2PSPDmodvf3p4/wW/+lIc7z7ocuPwdIsF0lBQ9IoPvrWkXMX3jkYPeoy9s5wGleE6U+vkwJAA52S54rQWYGBkAEJ31To1h+KOYMYy4XhwL3liP+YhaaHL1wJAi/Gmd/5g/pcv5mMmfVuH0p19a/s+fEvZ5XnJdTK2RP0qzDnh+VAbYlOXBn9JlmnjwFJU4PUWZYvenpyUHN9f0nBS2OH1/TI3F4u8RXaejRF8k4AGlLy25UHrXshj9KT2GWtyfVuL0p1/0+Wldq58T0IcTP2Q2nxI13mZIkqQ734viN1/JiORhSnCJc0pwRg+5kDcyW3kScjOQ2RAaeKSrR2jgkWQ2hAYeSWZDaOCRZDaEBh5JZkNo4JFkNnqGxmCsQa+I7GJ09TweGGsuvBnZ3oxG/j4dSYSoImlk+p4/wyY2bDahyxbyYJN6bDbJ3n2/18SHH4P27t6xd8vgPOo5vx86yxMVKmZtFDbH5ioWJsE7ClXoEiaqdQpcXAjKc3Np2NJ1FxGvYoi3s4+K1qhVqkgYseDFgiOfbzrRPOFvzQI2X08cGTa78Zb7/p3ve7B5QttuWoUGCoCTH9tQqk4eqIJcLVhFBwr/xCh1xHcHGQbc5chPW0UzCVnmiLEo3UgmaNsCONC2EkHaREnZMLkmTpkYqoilBEB7/HIkrHda+Lodfr2rOqnwVaoXfhPRSObQpsXJChiInTXw3KBOib9VGfKtUANKI08JSoyBslskvCXs4EW49VLoEparq4iSTPiEAFZRVcpVEqgFVSgQ6TQKeYL+d0yYWH8P0VXrW31YpquA8rRUR+//PMRlZQuuuCxvQcblBlaPOV1e1XqXR/tzEvt76In9DXkLkw4C84VJhG4uGSYRurlkmETo5pJhEqGbS+ZCTdcPn91p7XjpOJ/VIT+M87hVKBdS3Z3V8UT5vOAdLnfcxdm5YkZwhV4frZxCE+PlIbg2YrOklZZrp4sOm61ce3QrrnLtXq2Ku1z70RrCkZu0p2VrZvm1kS+sRT3ZaZly7fJWXMVve7SygprT48ePN0O59twWM3T7lmaGb72RPPpeVAx198VS5drDOK0jsQbrmKVce832mQ4u4nd+E5/M2VfiRsedVlGuvS2ncbyswTgCS5ZrPxJ6Rjm4Zoh4z5T+/epXHENV2rV0ufaGnMZztozxrLNcu2TB6OpdKutkizP7njhRLXSPhcu1V+K0XBmLWw7eVGzl2su+7X3MoeVg0WL7zFpnSq6XWEW5diyHYC3XDhwhkac2ZstT/0vl2ullMSxcrn1tK65y7XOYKW2xlGv/kNbswaj+XwM2zUr+o++mbKpgIh/l2uniZjyUIM9txVWCfHGr4irXfsfxcqj/yr4BozscFIoUF/N4L9dO9xE8YDWHE6vJ5vW5li7X7srmxv4nwv9dIvz0akJmE+Ev2ZpLhD+f6Tt5EOEv/cvfY+pW7Bg0+0H6vh13jz7m8bQ5zz4SLpgIWnNplv/N9JHFIcLv5dP7zsvpvf0WSsK3bfDeQ62DbgkR/hetuFDJt3gGWnjHyTIi/NVrJahsI/dKF1SvPnbLyv4LrEaE/wan6c5bxnRmF+Ev895t1IPAbL8Vm2cln/Jq+8rCIvyYl2FVUQdexmwi/A8vPBvr8vFeUKabd2NZhKypFYjwY86GFZz8VmYU4R+6bNu8sU0eSWY1WrOpZIMdd6xAzgIidIMTofP66acbW94mEzdp+q3DFXHu3TprLi1+3YKqI4Ad4ktSq0BEZ+Zstiw4+xRskSgL7ie0MADiGnVyXDzI4WCVa3WsUVoO9AqLrG/LVD0o1Ggotw8kQoPh8MwH+ObS06QLAF9xa1MPVlUteC1wlcAC+dXblOsaciR5fsTuHVNn76+Zesz02l20FIruGE1MoaDsrbI1WxW7LNB3+7c2rhA2PnxjFHEaBTq/HDKvc5Xm819HbHJsphmVXItaiLm0FLsRcUIKv14csr/dOL9/SGtLJ0v6nmlEogRfWamOUUZzaNv8sefImjU1p/qN6X7wlWDsJ6oeuC35AGZf1bcUhzHEnMZobRljMIpjG7Nj4RmSqNaB8CWPhmunrt4dwJQVzCwS3IXNOkTHqzUx7sLmHbRDNDrsF3S2Wv/+SOW2T5NEC4Me+G0NGkpNh+zgB0TpUlWI+pcFTcVhLA9OY9W3ipEDH2VUtlqtYKE7MVkzUMsxgnJ8hpZLT3jutycqdFiGfd5rU6bKpk4dvAlHDo96XmDoQjWTrevT2rgslfDkHNnWhKkug1+Nqxg2v3HiSMd6WZctO+0FAESQANxAAABdi1GZKBnK2EUmWqVVX7e+3qOw3NuRlYdtDa1NC2XmPewLAWjJBUD3Rq3JRLPJf4yPQy/MbTY+zrPWXHycnczMkmc+ju2Rn0ZvDR8XOn/o6p8Ha1+NsQI+zh+tuXY371rG6VNJBYMHDzYDHyel+sxVjWtWlGyt07v5rzH3hFbBx7nCaZ0z1mAds/Bxen99WT32SWTIodUD72ZMWP/eKvg4hzmNs9MajCOwJB+n5KhJ8e3HpvjN9f6YdPjblwir4uOs5zTeMosnu1bEx/mYPDKjVVKsZGzN2VPf9V5X08J8nCxOy02zuOWKlY/j8avzorkpa8I3rDz748xfVK+tgo+D5RCsfJyd+jy16f8FPo5/y+3eda/HhOWsHNs16rjPDQvzcdzbcPFxHNuYh49TU/lt+SG/3tKNpzY1mya4VJt3Pg59bs4Dx6RJGy6OibBNcfFxXGKqOgW/Xho2+fCVZfnSSit45+PQfQQPWDlyYlWuzf9XfBx3Njc25JCyqTJ8rWTXwQjVk4d9qM7ZvksyPDsZoJEnxTNPmBqxfdFAqtQmwdNj+t2cVA/8lKlQDjXz4uAnoAsfnveQ//tqjnj07QtH31S4eZr1/Zg7OYUbGf3PLgq4sIjCR7EQvZJ+7snAXql/Gr1wUmMwnYen/Rwl8B/t/Ke6sey3py1OOkQpVMBgipgg4NeHko/DzIqb0oPNlI75GdLKvr9JcnweHNp0KoVaHb2EH9qAlXDvjrCZoCzeRDlkRQQDxuErvpQ86Ifkv0PJw9DsoASLlbxBRtaeLJF7WEyg7smG+tfxW1dU8bTx29nXKXtVUtjKIk9fli1+5A0+sUk/vcfTic3vHDdcFsloRreIF5tFls7MSH4R/DFg7hBHbfZkd6qmUWl/SJ7RMTMy1uklfoNQC6I+Xu8yWQtTXqxWW7xaFQPlGCElMBb7Oywd1snjtAblIPQjkqVD1dGDFTH6m1CvzlzOxa8bKgMKwHwPwdzshyD1QVH1q80Q8ksQIjiPQ8gvwX90+aXw8Xc7Rp18Lhp3dnua7duIK3T5pbE9ckbdSuobmHV46fzHWVM7ku0lBSbKM9E/GCHPxGZpe6geQJgRaa0Bmr82rK/vHTY78+Cx+3X3hJliLf7l8KGGELRrRVTKcx+kPE+bWaTwpD2s79hfC75DYlyBwyj4HXM1w719I0ciVKLYbFXZv2C0gYRIl6xBJ67nnZ52qhfaO3TW2i6nHz+pVJ/TZGUk+JMQWsdEQ3EY7R6n0a6a12ikC7YJleAOFd4ySj/uMduQY5Qt2asnJUpfKxO1Cg3GugMfQXGY6CPPXtF1vTaUDNk1o2S+y5IJjei2KhOWrJMPVOkFLAS0zS74qd7McOVdpNbXd4YrLqOe5TTqL80YWl+cBRSIzq7A9VnQBHGaTApnR7eBno5ZpgO7yncXT/Mk/NJhMaLSvcgL6+JESPdmC+ldHtyLKKM6H7Bkz8GSo3a6TKByZaPilbE6IawrSw3rMF6x1bR2joiNhVMRuUpFlF9VwsJ5ULzbEwkwveAg2ysg8iVDl6VAz7jpTQpTMJal3GWCPSaXp3fAqu+CsamFL4z8ot331V+fe3hB+J455QeMW7ZcSS/wgvyKRaaE9KLrJo4xOIW/DrE6LEKMsTTQ+iuzKDUnawy3oBrrFUhcpo5P/3ws5wfZtmE+Pus9XEozlpRjDQPGxPEEv/lRzm8OeokVLCdjPdCIPTZ7qDPEJT0V5Pnm+YHbVYP3rbr7e4u359Op/RLebS74N3HCv9Iy8DMYYqYW6sZHBGQ7g2+CluqgVdz9Tk9h6mq+RyFXwAgwAzywAUEEmGZsAcZoPR9XvfWKX8/nlrDqrtVaG+mBto9sSrW/GFJIz+fd47Jhh7IHhS7c2buMo2yfupCeT7gu/GZI2LKQ1X+JkgOCM3IL6fl0rxKdP8T1rN/MqCm/25ypHVZIz+du++z3Dp0Hyg62+mhf0WuxopCeD6LyL6ltiKj8SxbqRVT+tSWaGrW0b9bXMSdo0Q8vc1TbYv4GTXZE09OSeQ2Ob0uSzekZfa3jkTp+oKks0dS45os1US1TI5ZkhsxpE/hbS9BkTzT9vmFN/C2PQeIc+Y2LQy/9XgM0lSOaZtlpj89/uFO8NfGqY/ye1QmgyYFomjqmw+Ps9jdDp/kPyP5XO687aCpPNF0b5BIdWFMXvCCllvNxTeWboKkCCZT9+Np/vgjx2+a8p+YeG2E30FSRaPL93fZSFfuk4Fz/I5KRNi0OgqZKRFP5rj55XR2T/XaOGTrg+fDpfUBTZaKpRcTYf59tGSOZtKdF3uW+DRxAUxWi6cTV85F7f3jqt2GLqP7X1j1PgaaqRFOPsu/eOn8KClg12KPE8NDQ1qCpmoBVBsqRaAo4eOxGu7DxYZnbr2SOz7q+GzRVJ5oS3vZ0zllzS7q+i49zXd9x7qDJiWhS7loWOO9KCfGE9a69zjnNeAWaahBNQz1UXb7IXIK2/dGs1k+XHRaDpppE07DJJ64MlEv8ZoluvF904dBA0ORMNO15kt8ye9k/gdMnR18ZcnvgU9BUi2hqZhO/JXfzdXHGO8cnTbZOfwuaahNN43rmTv/Zvl3oElWVps1K9oP2qkM0xR46Xc398HHR6G0nuqW4T8wHTXVJ5I9fD8+YLAqY9PnOmb3S4fNBk5C8a27Hi8sWtxCvC3WrNK32zvIMoSoXAYtQ1ZzdwmV9nNJD1+yp1TFV4nyQB6Gq5mwuqlrsnk3Zx0/LFq7PH3a21oil1KmrbGiSSh2DOH3BlgA3Iu4QkudlsTJ12gSQEAMnRFQANPC4Bd1BIV+NOasmGgydSLjKBL6+UDYYtXPYGaTHDXyNK6BZcBoVfxHkdxvZZqJvntvqoKnlh2UdXNrbjsfDqDxvEMICP2182fjQTmBW6ulrVE7sE6kAXQPjPcUoYIkjtVaJHT8B76dUYVMnsp8I5Rp44lqdoIxGS9jmbc29VmqrZFzmklerYg/kUunj+s9h0scLmvjOGyBcDTjhqulrFZkc86ijkZmcBzHQYgrMpYuX64QJ8sEKIUhA9CWs2Xnmke3r1w/r/l4yrceDCZ6h0n9oTEPisQimIdnCt/UqehCdXYok/3tinZ3BNjcSOBfyUBRJ+FPQgUSCtaPrUscT47pKp12e2SXz8odBph/B4gGsBpxgga5OxJ8WbPHnf8oN36XcQM/QzabckOHLpdyQYFysNFC5wXbCVfmYVS4BS0fvdtJs2eTJY7CkeyAelBum+HIddB9tXLD8XuWGXX8OuXDx94uhq/tduBM4OY9WJtQCyg0pnKgkWCYmGsAyLWqBiT/lhkdCSXLc8FrSmS2HlLu99Bn11JEllRuiOU3Xy1rTGZ6VG/Ja3p3u6RMdPPufPgfv1+hrY2HlBszLsB69H43IUopLuSH9ZeOvO6ZvlKzzfPwi5FOpwVag3JDCCU6CrxmVG9J/Lr1/nZNImr4lzuPE7RdPrUS5IZoToV76vK0lW952eoE89Evb6gFjVtUp86z+cOoahW0oyNGEUdJQwxcO/PTFcGE1ATITBjPEWPAryLtShQBbjQ7XKADOluivMPciUreRBiVO9PVL9Hszs2iyxYhp4GgxURaXkSqJgAXkYuOWFbAXKIQB+uj74th5EY+Vor3zks8MVJXKp+0mwbsRBxSwy0VlSnT/x0PN21Fign3F6ITCpjJBstgo3rETBhDZL1xjlBrQfUE7OtiOX1BFI9CcC19xvXn2c49p96jDUkrezByWBU1FAXaln134lHzbkFXey8bfrXu3OQ+ADeYEDPQoiyRReMyAf9NCwPbDlMOy5bClPWZLDq/asuSxNyNWXQ2cmh18cMHsi80rY0ImwBiyoUkahZ72jCW1Yr8o155upiXANNOe7be9TtK6eaKxLh9uKR9Xa8eDaXtwmjbMQqZF5cczOhmVapULLeTPkcbcsGJQYKPwH8QL5sQed43fXIe+4Yc4VIVf5b2stCfhkzajSCWbPbEhRgRGH7bA6Hel+p2fWm8TbejTz2lK9wPUskpVIflVB5c+4UlmBeTWK4yoGO8lUScAyHEKLvaYmILHYJPDgkLxkFRqUESkb9sV/cIMcyD/yohFhYftAOh/+CEKyA8Anf9aO1P5KeLQQqDA5QZYBglmG+pEoStZ/Byghwsgwf/hPk0LV6PVKQoW9ZLbdYdv27SwdPCeP1/tbuKfS1WvKt0dIx0wfQxxvSgfs7dkXr2IGzLJRK17p4u3XHN4WJnIhzDb+CFKpme5YTCbuiTcsJD59atb0epErSI6GeseGCcK7QTqfFy+7KetYWM+z8z97fXP56knMgqey5z+UhqLQw0Gg60vCrYbHhhshEtoxeYSzpav/65ZK3XYhD9fh3heHiWjfDeHSAXGYRSGJ6tUCF/AljB7kPdBIizWZ5WJP8lVyhi8k6codfFCNZimaAz3BPRdeo73ZFiB2mxElry+Hdvm21KA7lyTx75jEMbDg6uuCi1GxMYQQwKg/azbvP7ulPCVt5e+3REy4go1fcYexEyf8ctFDWc6K4GHlGEtRG4cKmWAxaiWtmNNnw1EzlmPnIbS1WDXQsLX5+/do+PaOUjm3b6a82qkfR/qMXeig6C3dKitvBOiXbGexIHW1HYWYbHbdk1NUhTGoX4hzo5nCEhpFSpP+Ddaz4DA/jDJjVNoaJQ4+GOq43bEAiQ0LHgEmFSn4qZGWpkemEwZJCbadYAnMQreiFEHMr2wUWDUQphTOIYtzBVw/i7R9WOQUFSI9819kvqDeE6J3DIHptWdQNuYgN8KsTGBXS4OKOZyQjFVH6haswUqq6n5R/eW/JQ/LoaSfwntuEr+KfSQt7F6yOncOH4gfxX1bkzfkrP89vR2Obr5/Q43HiC/2Z4L8ovtScjb8sbKrEBCbgZWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrE0GiJFmZCBIlycpMGGkn3h9xPmBGv/IDug/Iv8qgvMHOi+x9dPolD5Q3Xzb71ws55nFnS1n/1TYxA689rUi1fxV8sV+iUmthuoht4DCT8tIso62evxKWO46H9YHxB2BTSjjPJGgIhm3v0ymnRb4iAxzUHxkhLfMI7g/cQJ4YATPy48Zt8zvju22YkoYaKwavhqxAdl7QkKMVFLIBEZKNrefELNtbfa0pe23Fu4x9AWD1wJcIu28Y4oRgWn2FueHPhVU1PSWiMFZIlHYfuL1j3iKfoMz0itfme8iW8UiLGN0t/P2pVUP916gnBab7pR7hAaXjnCjt9GUuPnDlae6dyXGFDTYMM3LIwakeyT1j3yrpdPn8jhPb9gUu3vKu5dqYz18tuJ/r7U50IuSGHDw8fdPI/dwm+t1DCFF0Ib1PGIEovgkJzouVP6Qn1r0XsTvtVFrPfd82WsGuJQTpN06Qjhu5r9tQqsS/uX6pqqDLYBuL7A4q5d7Awwt9KofPePAhMrnUlR7UXUTyucxdRH1LcaCzjxOdLfo93XZsgfF59/BQG69Pkszl5/xzIoJ6MxfimZHQhgVcF+p+rp7qlqI2SnKffsDC0L0BA2G7DxxTS5jCn0MtQAkAbHWYC1Cmb9O69a2b9G3rfMnKlHeq1iu2rKYudmL7sSxhndJYlBenuzgTvbgA+OnmEKzOqD4GFSBc0WtObGCVx8BSgJHGDlXsqlpjbzwuFb7T9cy82Tkz/qV6Ihm4Fw1UoSYzpwQQpjqcMFVFrLSbtoVG32u22BYa9DRYH4FbaEJG7uiJQUP4ofZsfkjS+JxX27H3Qpf657zVta1Rm74OnSBPEuLrNIj1crbUvDF+H7nbg51LkQsTFSnwkkKjjCYCpEFuiX64i+MNUSvlhZoN3SUD3SZKBHA9j8rJ0wDqLURGOary2DYUvrgLXgf5LV13jj5zs/so0fLrpTLWd75AlS39AXsAM0XCLxc15ujn3Ezd3QLwdIHwlEONuVwwZQkQGcUmccDfh0skfcG+ZQ3CVjuHrv+s7el9P7QMdfcPv5+5+0dcLwqflAdL/m1RY3bIruej3DOHz1vDAz4dOPEB3ccSDANbjLjxEw5EewH9x7gqag5d5Zo4hY7LaCvWdJq1ZuMvAZNnnm9/YkvcbarR8PuZRiOu806uBVZx47RKXauyyptDpFWMCl8VMIeXpIghnC/SMJOi/41pX7urdE+fPgfnrDnrSDVMGHY/0zDEdb4NI/Ik3AlcZmTMV9O8ZAI/kXETMmc9BtjEQqUsCo9S/qNjx+1/G7H/r2aznWeOKkmTFMIfgJAUIhqKA5EWnIg0EJFxvQNbXN88K+SvPu18gyb89UVne/TWO6qN8U80nAzTXj/DoAZwYUq8MjoepJXwbKFcq4VqkHpWDBH+DZt80M9po96X2Sfx60bsgJcQETxRBvtFBGZ17zqZugNei0g1cPEkTOAXHmHC3wT5xUOuvE2rs/pRwP5+c69+2DK4A7XzsSU2+gYzB3+4u/ut00k4gUNwNIRNMAyN8ljtw4kehZc0oRzUgnwgLb4+AMsowP8X5JTC4eEj0QsGtHhu0YoqcF6LAeaEAgzqWAPAiMHc0eo3rui9iSe1Sfo2Bw87V5c6ce1cndFj3okN8/Bd/udPC45J0nrXaKd8FlyJqrgdRhFCZTpSNqSdw0A+AMKTDtyposmpGuQn6coUXK/FFAKnthu6cAMm2TUhVXMqauEG7lHYiBF6k2Q8QehNwk+i603S9SLpepPfrSdJvxGhJ8nmm2r7KzXA5xgjf7txxF/1Ag7uCJ54r01Fnz6zK1Llb8XM0SEuUtxu/eQnKW0rpIo3Tu1/rv/p8yYvLYHR4QTN6Y1iL/QEreXFJxFCjmwgfY9I8KNSW88mhPQPnzQyTOuZ/mzSd4gE01E6Me5viVBZK3D0+cnecxtl1OcBJRtOlD6LGBKAnGwXvNYCTIwMAIjOeqfGMPxRzBhGXC+OBW+sx3xELTS5emBIEf5U9B/zp3Q5HzP5000iLn86X/Q/f0rY55JCcDhjSLvAhfJJi9deChzMgz+lyzTx4Ck2iLg8xXJRcfvTjvabWuXPOBqR9ePkTk9Gn2rPgz+lLxLwgNJ8TpSmF6c/pcdQi/tTrMew+tP5+gm+2OrnBPThxA+ZzadEjbcZkiTpzvei+M1XMiJ5mBIkirimBLF6yP14I7OVJyE3A5kNoYFHunqEBh5JZkNo4JFkNoQGHklmQ2jgkWQ2hAYeSWajZ2gMxhr0isguRlfP44GxJuHNyPZmNPL36UgiRBVJI9P3/Bk2sWGzCV22kAebSNlskr37fq+JDz8G7d29Y++WwXnUc34/dJYnKlTM2ihsjs1VLEyCdxSq0CVMVOsUuLgQlOfm0rCl6y4iXsUQb2cfFa1Rq1SRMGLBiwVHPt90onnChS3zz8tzo2TjOvYqva79xdNsntC2m1ahgQLg5Mc2lKqTB6ogVwtW0YHCPzFKHfHdQYYBdzny01bRTEKWOWKo5jaSCS51BA60rUSQNlFSNkyuiVMmhipiKQHQHr8cCeudFr5uh1/vqk4qfJXqhbO6NpKNv9jxZAUMxM4aeG5Qp8Tfqgz5VqgBpZGnBCXGQNktEt4SdvAi3HopdAnL1VVESSZ8QgCrqCrlKgnUgioUiHQahTxB/zsmTKy/h+iqMqsPy3QVUJ6W6uj9n4e4/APnUt2XjmRc9rd6zOnyqta7PPoPJ7H/nZ7YH8BbmHQQmC9MInRzyTCJ0M0lwyRCN5cMkwjdXDIXmj2+yVqnd/6yvTd1J+dNrrqpUC7k2Stl9qCn78JWDynlVUraM4gRXKHXR3YkuhgvD8E1kM2SVlqunS46bLZy7d/EXOXazzKlZHgu197FxqVGl40XpMteVFrVZrwndXfeMuXav4i5it++s4xgBrXm9MiRI81Qrv3MiPqSlkeHyCaW7zj6rwaVqafLLVWu/Smnde5Zg3XMUq79r9e/vvY53VM6J/dig73r+h2zinLtVzmNc9YajCOwZLn2tnX8PzQvGRcyfXrmyYQzMbOsqlz7L5zG22VFQkEWL9f++8C3Ja+HVA9ZsejJmQMXZGUtXK59A6flllvccvCmYivX/tpua+1yJ98EbKk78f79/KcvrKJcO5ZDsJZrP6vfQAxiy1P/S+Xa6WUxLFyu3d+Pq1y7t595yrX3GH37/rQni4M3P6vul19nvYj3cu10cTMeSpBL/bhKkPv6FVe59pG3UuZnDcv0356ntm1wYMcX3su1030ED1h5c2LVyO//q3LtwWxu7H8i/N8lwk+vJmQ2Ef7Fflwi/D8zfScPIvzRPb3eH1V6hqc10CQeLdtjCo+nzXn2kXDBZKEfl2b5LKaPLA4R/svlLgwRbG8i2z3q8bxL6RKxxUX40zlR+dm83pBz7mDcwR/+RPiPa3ckbX+7LWylzZPfJrZ7uMFqRPh1nKYbZBnTmV2EP6SmOPLn1ArBK5wf/9PJJ9+Sog1w4RXzMqwq6sDLmE2Ef6L4041nTSoEb/iwdXsbzVFqv7WMCH86Jzg/+5lRhP/P/tvKB1XcJpnV7o3P4JoVrlqBnAVESMeJEBjTRN4Wwpa3ycRNmn7rcEWce7fOmkuLX1MFaO2xQ3xJahWI6MyczZYFZ5+CLRJlwf2EFgZAXKNOjosHORyscq2ONUrLgV5hkfVtmaoHhRoN5faBRKiMBOCbD/DNpadJFwC+d9inmAYerKpa8FrgKoEFOnnq9/5z/6HHA5ZEXd3s/4eEphfyPbW76MXmaY7RxBQKyt7+IGGrYpcF+u4/xqVQ5fDhG6OI0yjQ+eU1px+zp9afH5h96ev8wJeu1LK/paXYjYgTUvj14pD9fevH9f2fWDxZ0vdMIxIl+MpKdYwymkPbppb4lEznly7NWtmg29KZk05S+yr5AGZf1bcUhzHucBrjsnWkPwJjdiw8QxLVOhC+5NFw7dTVuwOYsoKZRYK7sFmH6Hi1JsZd2LyDdohGh/2CzlZ/dTk7cMqa8ODxk3Ye6VnJawE1rsEPiNKlqhD1LwuaisNYpzmNdcgqRg58lFHZarWChe7EZM1ALccICu9sEyRt+Ew2Q7qw6RSfpn1NmSqbOnXwJhw5POp5gaEL1Uy27oORWSrhyTmyrZ4TMruNvxsesfDt7Dy3mY3qWnbaCwB47kcAcAMBAHQtRmWiZChjF5nw/dfdq+7CqUHbU2VT7tcKOGLRw74QgAtcAHQ/ok80Q/9jfBx6YW6z8XEmSLj4OJGS4ubjVLjV/GmfqknBcw91Hmv7askzK+DjjJNw7W4Ok1gBqSA6OtoMfJxJ5c+Neng3LXj73Y/T/xj6Ltkq+DhJnNaJtQbrmIWPczRp8ymn9GXS5bVfXIzstNPJKvg4fTmNE2kNxhFYko9TJ+2vT8ee9AmcU6PqL88/hE23Kj5OIKfxOlrGeNbJx7m9a/bj3/6qIDowv8mB47W/PrMwH6clp+WaWNxyxcrHmXvlxDenPTFBuQ13LC9bcUCqVfBxsByClY8DHCGRp4b9X+DjlD9+PTxjsihg0uc7Z/ZKh8+3MB/nlISLj7OVmdIWCx9H0r9Xycipr0UzJ70e2npLwkre+Tj0uTkPHJMTEi6OyX5JcfFx4ir0/7n0gJDwBbc2vrnQIrAR73wcuo/gAautnFjlmtfnWpqPE87mxoYcUjZVhq+V7DoYoXrysM9r6k5Jl2R4djJAI0+KZ54wNWL7ooFUqU2Cp8f0uzmpHvgpU6EcaubFwU9Az7vndry4bHEL8bpQt0rTau8sz/p+zJ2cwo2M/mcXBVxYROGjWIheST/3ZGCv1D+NXjipMYg78LSfowT+o53/jGksCxzb6aRDlEIFDKaICQJ+fSj5OMysuCkj2EzpmJ8hrez7myTH58GhTadSpDQVDLQBK+HeHWEzQVm8iXLIiggGjMNXfCl50A/Jf4eSh6HZQQkWK3mDjOyGiCiRe1hMoN6ZDfWv47euqOJp47ezr1P2qqQwahhBnb4sW/zIG3xik356j6cTm985brgs4taBbpEubBZZOjMj+UXwx4C5Qxy12ZPdf6SuifpD8oyOmZGxTi/xG4RaEPXxepfJWpjyYrXa4tWqGCjHCCmBsdjfYemwTh6nNSgHoR+RLB2qjh6siNHfhHp15nIuft1QGVAA5kwI5mY/BKkPiqoP6YCQX4IQwXkcQn4J/qPLL4WPv9sx6uRz0biz29Ns30Zcocsvje2RM+pWUt/ArMNL5z/OmtqRbC8pMFGeif7BCHkmNkvbQ/UAwoxIa906/fFLcs8t4avHtVso7irvYIq1+JfDhxpC0K4VUSnPfZDyjO9gkcKT9rC+Y38t+A6JcQUOo+B3zNUM9/aNHIlQiWKzVWX/gtEGEiJdsgaduC6qvjvnSMI7/z03tz179eOnFpwmKyPBn4TQOiYaisNowzmNNsS8RiNdsE2oBHeo8JZR+nGP2YYco2zJXj0pUfpamahVaDDWHfgIisNE2ur03K+RkQtGSjZVTfMPutmOMbzKhCXr5ANVegELAW2zC36qNzNceRep9fWd4YrLqHGcRv2xA0Pri7OAAtHZFbg+CxI8ukwKZ0e3gZ6OWaYDu8p3F0/zJPzSYTGi0r3IC+viREiPZAvpXR7ciyijOh+wZM/BkqN2ulCrn5aNilfG6oSwriw1rMN4xVbT2jkiNhZOReQqFVF+VQkL50Hxbk+0oAit4CDbKyDyJUOXpUDPSNYLUzCWpdxlgm7tTeWROWDVd8HY1MIXRn7R3h0yBD8nCyVTttXz76a9eYBe4AX5FYsm3tOKrps4xuAUXguxOixCjLE00KpsbxxrDLegGusVSFxiKqdHbNp2Q5Sp9fxR2T9vHmNJOdYwYEwcT/Cb9+f85qCXWMFyMtYDjdhjs4c6Q1zSU5rq0TUuz2jsv/nM4ZdfT5VzofZLeLe54A/hhF9sGfgZDDFTC3XjIwKyncE3QVqEXnH3Oz2Fqav5HoVcASPADPDABgQRYKLYAszpBfLQL22rB4xZVafMs/rDqbritlhRrChpKJNuwhZe/Kg16YiCWsIYRSz4NUY4MLVw4TZ3MGHE6fhwHkmcTBtp0ARyoW/S/Va3Uv23q2x3TX+81Qv93syFWbLF0F4PUhrRrOMCwX5UaHoDMBbNPM5/8TrnaYtvflxQO2BDj6nXynb/OInmcuHdiF087HJR8WjRbXnp3Ot3xcta/PBIFhN80MR4BItmeUOAvFE53wXgFu5TASpqguOEAUT2C9cYpQZ0X9COZmeKK3zrPrJunuRg+Wt93w99T61pbCclb2ayMwuaigJsRy1F7uKQKeKxYdfTM/cG5/EA2IyZXICBHmWRMIYfiYF/00LA9mPcmTF7zJYcNMajXzNHyU+UDMn8kvLx2dWRJyxKY4SWeTODyzJLZ1jGMsjTe4d4rm/Yd8uw/Qf9OoqyAht2+7BkX7jF6htu9iRcymbUxGmAFzZCiLjWlS2uCfde36n7baZ4dfd6jssTvanlP0tHqnWMEztck6a6+A0gqpHnxjTwnSGpUj5UqUVPnLpeaVSv39G+AdMqbT0b8vcsf9QrILSnseuGMsHdgDOZexwvbcQITxVBeJqRaVx46o5/P1izEHsR5Dd7vHv859ryf4JG94t6OOFlXhfqN8MfwfxmxPWi/G1Mvm3pUMmU0Jygjm1WvL3w3ER/KwIQpUGIpKhRHQhGtfdcZIBinUliFoKHkaDpkfhs798xt9ri8dLRRx6t/80/i1q20EYMbmMOJexqUdjQxygP2NzP5MKG1n3gg2wFHGUZCrBJhAf/XZWJxHkkLTp+/7O+Tqe3n0eG7H3bePScurP7UxMdMXwIM9HBLxeFlbZkcvXw2hWDZ235a8ugd7vas2LVTavAjzgViMYagZ+IE783c6wnYhjJciqPe6IYwuUhzTfg0IF3zvv6+o/Lz+1V/k3rVaY5AhPjxgUPYqTb+CHixg1PrDcTcaPbd+0l4z3P7PvJRo8qetc3ZVSZuKkMCSm7Zx8ntzD/Hw== + + + true + + iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOwAAADsABataJCQAAAtpJREFUSEu1lF9ojXEYx59OS5IrF5IkiTVriWgXS5HWlFwQbpRYyr+xkgvFLpQMpRU3SEmjmLWEuZLcKGlpaRe7WNKulnQu1trFWms+39/ved9zzvu+59z5dr6d3/d5n3+/v1aNy2Y7fdgI6/w/xQWzbT6sj4tmW3rNlnvMmqUpdvOS2cfwsYJVcBF2BwXOmK0hZgn/O24qBskOq8DZmES6U5rutgeHCu7BBbgjKIBft4oQc85NeeBwSAlPma10kwIn4bDLBCX4FU74OIAZ3CLHQkFDEfqQ7ZigY95Zi5sStMFl2BVURAm/cWJGXedQIlkZp+uuhZLPYsh1NX7CB3EYQfKT5FhkP1e7qRYkeoqDpp6CgqcVdN5srZsSvICf4zCC+Datgv7dVAsq75EDnbS6ybTp2GYpdMVNCZ7AmgI0sk/x7PQmN+WgJZnRhrkOwDaE7ZPLBCPwQxxG4DNAkd8ui4HTY/jDZQD6RkHgOHwYh/E+0MgcM+1zUzG05jjOuwzA1kuRPy4FHWXdhRNBAXyew791NzgBiXoyybRE/XDSpdAJdUw3SDC7cIfgEemGIPkI/OIygMBvcNClcB9OxWE43tN8f+m6PvaaNeFYc2IIboZL6tJNwhh8pgG+LcToDdst3RB03iVnbvNmN4VNJ8kvhsmz0AT14IX1J3E4mgX3JA+SvYbqLsBPxjw2fik2Qq1/hwQfWlWAzU0fv0L4hVIymoqg8z5ss5mT0Q5VIFym42YrPI6JNwBOB9VJ9VSpNE3ggMsE+6EKpH74vIHpzAtBt3cpkB5FdLsKFjy/2kwVSPcpeWJo6ICb8iDhK7p461L6KkEzLquhzlVAM0lB7CicqnvRvIDelwAVg+9cZqHC1+Iwgu7XwzJNvde+uLkCkt1WBy6lx+Ajl1noUn2Pwwrw76DAHIUm+N/l5ghmoAvT71KbPozjUZdZaHnKcVgL4rbCQWLTd+o/wuwf9N7EUShQvi8AAAAASUVORK5CYII= + + 1e8725f4-37c6-4b42-8707-fa6926b11169 + true + DIFERENCE CURWATURE SHAPED GRAPH + DIFERENCE CURWATURE SHAPED GRAPH + false + + + + + 37 + 05a8c343-ff27-42ad-afcf-fa1ff667cbe7 + 0f64163b-c63e-4c64-8cbb-8773b580d59b + 1cfb2837-6c50-4ee5-aa8f-99081347aba7 + 2b037c5f-58a9-4cb5-8e6d-67c8f9df143d + 3d530c4d-e834-47c8-bcae-1b4fa53e44af + 3d6b44d1-1154-4b09-a0d5-a25ea070c226 + 3ec98c82-8319-4c33-b41b-a024084f3a31 + 407bf4a9-858a-4660-9705-8e8f33050563 + 44da1bc7-88be-456e-b69f-45137693f9fc + 48a0e7d2-c487-494e-9796-eb3b184479ec + 4eec2e88-5e20-4514-909f-8ce5a6c4aeb4 + 566f2ed4-6b95-49f9-ad73-6761a75a717b + 57c8a8a1-8116-4ccc-933d-b8e54b24f260 + 5eca0504-be11-4dfa-b0cc-3a8181406ff3 + 60a7fdec-17c1-4d75-b76a-594839ade29b + 62dd3e82-b9dd-4a0d-8238-0d84ad1ad8c4 + 651fba8e-310a-4fb0-99f4-57c6a81c0def + 6daf543e-8b47-452f-927f-1fb8d01a3f6e + 7847ebb2-91c9-46ab-9994-605a8fcfd224 + 83fbba3d-44b7-4802-923b-8e59a8614a3a + 8ccbf885-f178-4841-9249-66f8ea932254 + 8ee99086-b8f9-43ee-9bd6-fec9ccd7fd67 + a59ab02d-69c2-4571-bb5d-457becd6a4ce + af2d2cb2-cbd1-4763-ab55-47294a5f0eb4 + c8100f49-2687-4e17-8c09-44290a64e5d2 + c8de52bd-b70c-4863-84a1-797c4bdb334b + d17d9c72-dca0-490c-a89c-6d0ff75c8dfa + d6a5a595-fddc-4f1e-93a0-1d97caef0559 + d72e8780-913f-4c19-ade0-67c1bc74babd + dc078884-ac50-4cf1-ae81-92173c776b72 + e18d388f-be39-4181-8c9a-b9b6699fd507 + e458e107-80a1-4187-9513-8822082224d1 + e6adadf4-be79-42f5-b3c1-7fc3b6b0cd49 + ea5bacce-ee91-4be8-a5d8-d159ac821594 + f0683443-95a2-4914-b42d-62d543c955d4 + f25480e3-66b7-415f-b4b4-f9e6199b06e8 + f8b4cc97-54ee-4b3e-a165-111b7070d704 + 81fd98cd-c9a3-405d-866d-edf2fca2467f + cb30ccba-a894-45cb-b1d5-847ad7005125 + daca2ebb-26cb-48f4-8885-277e43200f92 + 20d03587-b988-43e2-924d-d6655441a5e8 + 937bac2b-aa3f-4485-8435-a74b05842dda + 2927bcb1-a8c7-4996-b4cf-1e0b73fe722c + ddb00df8-65f0-4650-a3c7-89c56da7f06b + f12cf189-9dd5-4b8b-822d-2da85bac7a45 + bae8f0e9-2af4-409d-945a-a91a08fdc45a + 3d99a0d8-87f4-42b3-ae8c-13046d610738 + 88db9398-ca86-4220-85b3-d1387046010f + 1af94696-7c3b-4341-b4bb-415b935cb441 + 326b8016-5135-4828-b69a-a21c171e1a06 + 4a525765-a9df-4f3b-8fae-c2be3081d0b4 + a7e4f8f7-1ccd-48f0-863e-6ed19022d27b + bbece122-0a0d-43f9-bd1e-b6e66ae744df + 9c973484-e313-4490-a780-3cac6484f2c3 + e860b9e2-e037-4c18-988a-393d0094d8e4 + a43519fb-325e-4058-bda1-f7e34cc92c6f + 53133e66-86e1-4322-bb85-7afca5c21f4f + 233b0ef6-f843-44d6-99fc-9ecf077d1b78 + aa2a8593-f318-4546-bad9-74c7978a14af + a67255eb-66a4-422d-aed0-4b64cd94d270 + 36be5f7d-3d93-4e60-9b58-2ea01268c3ff + 59e3ea83-51fb-46fa-8bda-938de18b7cf2 + 7e2338e0-fce5-4964-bac7-ea6c242afeb1 + 43f684c6-6920-481c-81ce-8a3096268d23 + df2cb580-23c8-45cb-aac6-97ce3b2e2214 + 16c32cca-03cb-4d8e-bf89-f521eb08129b + a317f3b7-85e8-46ea-bfa9-b8f70ca5c382 + 130433e2-dd09-4dbb-8e9f-946a284f4836 + 17750273-1d4e-4a10-92b1-f4b16af3b73c + 8de15979-110c-49a4-bf71-f92c5c15659e + 9a110ceb-3e62-489e-8e19-61581f5671d4 + eabf9208-959a-42b3-8af1-f5ce33e4d91a + 735da924-e3a7-45ca-9564-36c125627c0a + b2a58353-e9c9-4e65-a900-6efa66489724 + + + + + + 1562 + 3202 + 103 + 404 + + + 1623 + 3404 + + + + + + 20 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 + 17 + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + + + + + Second item for multiplication + d17d9c72-dca0-490c-a89c-6d0ff75c8dfa + true + B + B + true + 00ea1faf-8f43-4db0-a493-cd9e04efce41 + 1 + + + + + + 1564 + 3204 + 47 + 20 + + + 1587.5 + 3214 + + + + + + + + Second item for multiplication + 5eca0504-be11-4dfa-b0cc-3a8181406ff3 + true + B + B + true + 00ea1faf-8f43-4db0-a493-cd9e04efce41 + 1 + + + + + + 1564 + 3224 + 47 + 20 + + + 1587.5 + 3234 + + + + + + + + Second item for multiplication + dc078884-ac50-4cf1-ae81-92173c776b72 + true + B + B + true + 00ea1faf-8f43-4db0-a493-cd9e04efce41 + 1 + + + + + + 1564 + 3244 + 47 + 20 + + + 1587.5 + 3254 + + + + + + + + Second item for multiplication + f8b4cc97-54ee-4b3e-a165-111b7070d704 + true + B + B + true + 00ea1faf-8f43-4db0-a493-cd9e04efce41 + 1 + + + + + + 1564 + 3264 + 47 + 20 + + + 1587.5 + 3274 + + + + + + + + Second item for multiplication + f25480e3-66b7-415f-b4b4-f9e6199b06e8 + true + B + B + true + 00ea1faf-8f43-4db0-a493-cd9e04efce41 + 1 + + + + + + 1564 + 3284 + 47 + 20 + + + 1587.5 + 3294 + + + + + + + + Second item for multiplication + e6adadf4-be79-42f5-b3c1-7fc3b6b0cd49 + true + B + B + true + 00ea1faf-8f43-4db0-a493-cd9e04efce41 + 1 + + + + + + 1564 + 3304 + 47 + 20 + + + 1587.5 + 3314 + + + + + + + + Second item for multiplication + c8de52bd-b70c-4863-84a1-797c4bdb334b + true + B + B + true + 00ea1faf-8f43-4db0-a493-cd9e04efce41 + 1 + + + + + + 1564 + 3324 + 47 + 20 + + + 1587.5 + 3334 + + + + + + + + Second item for multiplication + c8100f49-2687-4e17-8c09-44290a64e5d2 + true + B + B + true + 00ea1faf-8f43-4db0-a493-cd9e04efce41 + 1 + + + + + + 1564 + 3344 + 47 + 20 + + + 1587.5 + 3354 + + + + + + + + Second item for multiplication + af2d2cb2-cbd1-4763-ab55-47294a5f0eb4 + true + B + B + true + 00ea1faf-8f43-4db0-a493-cd9e04efce41 + 1 + + + + + + 1564 + 3364 + 47 + 20 + + + 1587.5 + 3374 + + + + + + + + Second item for multiplication + 62dd3e82-b9dd-4a0d-8238-0d84ad1ad8c4 + true + B + B + true + 00ea1faf-8f43-4db0-a493-cd9e04efce41 + 1 + + + + + + 1564 + 3384 + 47 + 20 + + + 1587.5 + 3394 + + + + + + + + Second item for multiplication + 407bf4a9-858a-4660-9705-8e8f33050563 + true + B + B + true + 00ea1faf-8f43-4db0-a493-cd9e04efce41 + 1 + + + + + + 1564 + 3404 + 47 + 20 + + + 1587.5 + 3414 + + + + + + + + Second item for multiplication + 3ec98c82-8319-4c33-b41b-a024084f3a31 + true + B + B + true + 00ea1faf-8f43-4db0-a493-cd9e04efce41 + 1 + + + + + + 1564 + 3424 + 47 + 20 + + + 1587.5 + 3434 + + + + + + + + Second item for multiplication + 8ccbf885-f178-4841-9249-66f8ea932254 + true + B + B + true + 00ea1faf-8f43-4db0-a493-cd9e04efce41 + 1 + + + + + + 1564 + 3444 + 47 + 20 + + + 1587.5 + 3454 + + + + + + + + Second item for multiplication + a59ab02d-69c2-4571-bb5d-457becd6a4ce + true + B + B + true + 00ea1faf-8f43-4db0-a493-cd9e04efce41 + 1 + + + + + + 1564 + 3464 + 47 + 20 + + + 1587.5 + 3474 + + + + + + + + Second item for multiplication + 44da1bc7-88be-456e-b69f-45137693f9fc + true + B + B + true + 00ea1faf-8f43-4db0-a493-cd9e04efce41 + 1 + + + + + + 1564 + 3484 + 47 + 20 + + + 1587.5 + 3494 + + + + + + + + Second item for multiplication + 2b037c5f-58a9-4cb5-8e6d-67c8f9df143d + true + B + B + true + 00ea1faf-8f43-4db0-a493-cd9e04efce41 + 1 + + + + + + 1564 + 3504 + 47 + 20 + + + 1587.5 + 3514 + + + + + + + + Second item for multiplication + d72e8780-913f-4c19-ade0-67c1bc74babd + true + B + B + true + 00ea1faf-8f43-4db0-a493-cd9e04efce41 + 1 + + + + + + 1564 + 3524 + 47 + 20 + + + 1587.5 + 3534 + + + + + + + + Rotation angle (in degrees) + e458e107-80a1-4187-9513-8822082224d1 + true + Angle + Angle + true + 0 + + + + + + 1564 + 3544 + 47 + 20 + + + 1587.5 + 3554 + + + + + + 1 + + + + + 1 + {0} + + + + + 0 + + + + + + + + + + + Contains a collection of generic curves + 7847ebb2-91c9-46ab-9994-605a8fcfd224 + true + Curve + Curve + true + f654ad66-626e-4a53-b0fb-b97bf8db47c6 + 1 + + + + + + 1564 + 3564 + 47 + 20 + + + 1587.5 + 3574 + + + + + + 1 + + + + + 1 + {0} + + + + + Grasshopper.Kernel.Types.GH_String + false + 256 + + + + + + + + + + + Contains a collection of generic curves + true + e18d388f-be39-4181-8c9a-b9b6699fd507 + true + Curve + Curve + true + accfc6c7-d434-41c2-8fa9-df26450c2afb + 1 + + + + + + 1564 + 3584 + 47 + 20 + + + 1587.5 + 3594 + + + + + + + + 2 + A wire relay object + 8ee99086-b8f9-43ee-9bd6-fec9ccd7fd67 + true + Relay + Relay + false + 0 + + + + + + 1635 + 3204 + 28 + 23 + + + 1649 + 3215.765 + + + + + + + + 2 + A wire relay object + 3d530c4d-e834-47c8-bcae-1b4fa53e44af + true + Relay + Relay + false + 0 + + + + + + 1635 + 3227 + 28 + 24 + + + 1649 + 3239.294 + + + + + + + + 2 + A wire relay object + 651fba8e-310a-4fb0-99f4-57c6a81c0def + true + Relay + Relay + false + 0 + + + + + + 1635 + 3251 + 28 + 23 + + + 1649 + 3262.823 + + + + + + + + 2 + A wire relay object + 05a8c343-ff27-42ad-afcf-fa1ff667cbe7 + true + Relay + Relay + false + 0 + + + + + + 1635 + 3274 + 28 + 24 + + + 1649 + 3286.353 + + + + + + + + 2 + A wire relay object + 3d6b44d1-1154-4b09-a0d5-a25ea070c226 + true + Relay + Relay + false + 0 + + + + + + 1635 + 3298 + 28 + 23 + + + 1649 + 3309.882 + + + + + + + + 2 + A wire relay object + 0f64163b-c63e-4c64-8cbb-8773b580d59b + true + Relay + Relay + false + 0 + + + + + + 1635 + 3321 + 28 + 24 + + + 1649 + 3333.412 + + + + + + + + 2 + A wire relay object + 83fbba3d-44b7-4802-923b-8e59a8614a3a + true + Relay + Relay + false + 0 + + + + + + 1635 + 3345 + 28 + 23 + + + 1649 + 3356.941 + + + + + + + + 2 + A wire relay object + 6daf543e-8b47-452f-927f-1fb8d01a3f6e + true + Relay + Relay + false + 0 + + + + + + 1635 + 3368 + 28 + 24 + + + 1649 + 3380.47 + + + + + + + + 2 + A wire relay object + 4eec2e88-5e20-4514-909f-8ce5a6c4aeb4 + true + Relay + Relay + false + 0 + + + + + + 1635 + 3392 + 28 + 23 + + + 1649 + 3404 + + + + + + + + 2 + A wire relay object + 1cfb2837-6c50-4ee5-aa8f-99081347aba7 + true + Relay + Relay + false + 0 + + + + + + 1635 + 3415 + 28 + 24 + + + 1649 + 3427.529 + + + + + + + + 2 + A wire relay object + 566f2ed4-6b95-49f9-ad73-6761a75a717b + true + Relay + Relay + false + 0 + + + + + + 1635 + 3439 + 28 + 23 + + + 1649 + 3451.059 + + + + + + + + 2 + A wire relay object + 57c8a8a1-8116-4ccc-933d-b8e54b24f260 + true + Relay + Relay + false + 0 + + + + + + 1635 + 3462 + 28 + 24 + + + 1649 + 3474.588 + + + + + + + + 2 + A wire relay object + f0683443-95a2-4914-b42d-62d543c955d4 + true + Relay + Relay + false + 0 + + + + + + 1635 + 3486 + 28 + 23 + + + 1649 + 3498.118 + + + + + + + + 2 + A wire relay object + 48a0e7d2-c487-494e-9796-eb3b184479ec + true + Relay + Relay + false + 0 + + + + + + 1635 + 3509 + 28 + 24 + + + 1649 + 3521.647 + + + + + + + + 2 + A wire relay object + ea5bacce-ee91-4be8-a5d8-d159ac821594 + true + Relay + Relay + false + 0 + + + + + + 1635 + 3533 + 28 + 23 + + + 1649 + 3545.177 + + + + + + + + 2 + A wire relay object + d6a5a595-fddc-4f1e-93a0-1d97caef0559 + true + Relay + Relay + false + 0 + + + + + + 1635 + 3556 + 28 + 24 + + + 1649 + 3568.706 + + + + + + + + 2 + A wire relay object + 60a7fdec-17c1-4d75-b76a-594839ade29b + true + Relay + Relay + false + 0 + + + + + + 1635 + 3580 + 28 + 24 + + + 1649 + 3592.235 + + + + + + + + + + + + + + 33bcf975-a0b2-4b54-99fd-585c893b9e88 + Digit Scroller + + + + + Numeric scroller for single numbers + 00ea1faf-8f43-4db0-a493-cd9e04efce41 + Digit Scroller + Digit Scroller + false + 0 + + + + + 12 + Digit Scroller + 2 + + 0.0625000000 + + + + + + 1149 + 3171 + 250 + 20 + + + 1149.177 + 3171.168 + + + + + + + + + + f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a + DIFERENCE CURWATURE LINEAR GRAPH + + + + + + 7J0JIFTr+8dHZW1DSKWaEpGS9r1mBmMbS6i0NxiMGBpLtKpkV1QiVFRaqCwhO3Uj3TYtSrt2ad91b8vvnHFGZ87MOXGdMaf7u/7/26/mnTnOfJ/3fd73fd7n8xw5Iy8nP08Wx/cH8CNFIpGkgf96eHv4ubI5i/1ZXB+2FwdssgFeBpvBH1nwLfzPmbKYziwu+BZpqFmB32RmBL4sD7w0/tGLhNVhhy0SvnCaXI2Wf5a14bL82azlYLsC0C5j5wZcxbkn9LIly8fNPtCbBTZ3hn5xd6jNyovryfQAW4YAr6ampv7gf8qO5cFy8mU589vYbPYPFSOWC5vD9gW+hQ3Xy5vF9WWzfPiXBf/rYsT05f0eOeAfx+57RsSG3pLrasTyceKyvX2hLw/eIqmLFdOTxf/Xy84Opib6+g/ydjTuCgf+fBCfCfx5Pz77fnwu7y+8f+amgX/GbuL9GXM/Nq7lnTUJVuDftwaDV9gOfuRB8r6Wv9/ftvX+triWt92PP9Rytea3NV+kMf4Y+PqOdQK/mv9Z6Jag1kOCt7fz5++NSOS9OQrr74npLReE/oRewfwU7+/QN+L9RtgNHGq5N+g++bf98z281ubvCP1S3neHVOVdAdKH/1lhJZsVhtRu/kV8Q0B2ga4mYD5IXp5l9fVNTB3kbYEeBg4FH/4wAX+681819PJrHkCd+UMA6GzuQGeE+k8n6GUZeybXlcV75wDgnzu1SaRp6kDPmufl5ckfQUrzzs+Qng10Z4FfJQ++IvRr5G2dvBnMQC8/X/h7FUy4Xn7eQm/uZmJKZbAduUwuNASkoJElLfBW8BXZ5vcF8u4Z+rgi1ceH5enoEUj38/CADwWqjZ+LC4vrwvZxG06e3ewxpo3RNwD/bzjZ0M/D14/LmsZh+flymR7DyTZ+jh5sJwtWoL3XUhZnGge4Wk/+pWf/9DfglWWhq8hQ/XzdvLj8l7tbsp3cmCwPsg030IvbycyZ72VSG3ZqLB41m5Eps5n9vUFhhcCIVfh5m7Iov0fpp7OwdgTN1yKTNPBH1+bXBMQCX5dpfh3UqBOkXxeTWT9936h9tpXzMw/RD+7refbkmo/bBe5KmmcreUMvji+TzWn2ozrQVWRoXlzItfINI2Po5eHlx+V7OPB/RfmqAVSyK3hdspcL2YTL9PFx8/IGfB/Zq/lbdTIz4vUe4L/vi4+kHJ3eaBl6ICNBxc7PGGiSgpq4uUqOIf0qLfbrXHHWrP/4CmjqBDX1O7Y4uX4myzQrKnvt4Z5TLYCmzlCTbC/1fBdFRauSs38rcLyDaUBTF6hp+rUGqz4ZKYy069dDi292bgSapKGmCJpRhHyciem2XQ1bV/uHbwOaZPh36NrrVRnzuvX6u/H+pyimTUCTLNSU/3j5yUqZKqtQxwdVod+jugBNclBThifjwBelWMuCer1nCnnpVKBJHmp6OfjD2WmrZxpvMr52lq3gugxoUoCatFmD4lXmhNMLIpfIkvSylgJNXaEm/x5yZwpi9Rnrbs8+bKrfWAI0dYOadm16eNO7+2XjOPtJ7BDNyVFAU3eoSSMyrMtovVvWB+pfr74xLe4G0NQDanoR5Pp5SXqa6XGZeiM3mVgpoKkn1MQ2P0l2sXpO2bJv/PfnqpTXQJMi1NRFWlVXaZg/I+vTY7MjoV8nA01KUNNxl5GnAujTTffO6uG6RlrhA9CkDDXFfZ//0iyAaZFzcnuj8uR71kBTL6hpmWb83ZO0k4yNWwavyYhd1hloUuFfcEf/69eTp1LDqPOUbHa6TgGaVKGmzQrdz5ByjlgdZyeuiS9rLAOa1KCm4fsGRfRebme8P+A+9f71pL+Apt5Q063M2Cvap2XMs4Z225htOUgaaFKHmhYNVrGsJy03CbOq1Bk91vko0NQHajL1cddc2vMRLfaHlGNyv1J9oKkv1ETK2OTkM8+PXvbJ6tSc0Ze0gKZ+UNPlxJxlL2avMI5ihuraGMqUA00a/Jvf2yOHmapJ2XBp3qgCr+GxQFN/qOn2INveEZdDTY+9s8jRv1QOGmUA1HT6RMJnWo8e9Pyzo2znZpWvB5oGQk1/viyP+fa3rFm6vd6zoSE5/YAmMtREfR52arF3luWm6r6Wi8obwuXMjBYLeJBBoGc24/j4MjlOLBM/doszUzJQ/bTX6Lt56pgtL2Ne3aoX4TbkrNhOS+EvkxSovr5ctqOfb7OHh1w330VJ4eaiBnagiyrtveRI6vwwq6Kzn8JsdQPtYC6Kvl+vXPbVS+u8F511GlhfqmAu6ii7Rt58Vj+T9U/u9FxNsfgAc1EZh30mnLQwo4f0lmbQqyepwFyU8ZqKFEpYk/mmhckc2vN8PZiLurRAVqN42W7DvClqH0fPldaEuajyOZ5X53/0MwsZ1SeAHqx1CuaiAkIrV24aNp6SOqIsTU5zVgjMRbH3rylhjb1slhZDmjRDvyIZ5qLUf4wiXXCVNolU6nM0YSKlBOaibJwtDrwI9KBkHNcOjRzT9QjMRdkP1dO48qTUMlHOkxO65ZItzEVNyXk/aNK1WquU0lWaNaMHH4G5KM1A92Fh96LN42t2VNmnDl4Ac1EnI/6IuxrJtYpcfeLm/jU3FsBcFGOnrHpAX5b1oZOsG5Wf1KfCXNTDtPFvBz8ZQE3l7nR4KVu+AuairDa8G2QWV2xWGGs5R+GM2ieYi0oq+vbg0I40Wr6nzKbE9Hf6MBc15jKLMW2mvElwflqY1qq+u2Auinsj/mCR8iTrtA8n/p474sgjmIuat46TPzwyySqB5piY8+OdLMxFGXlr2eYr2JnHXahr2Gg1SQfmoqhN3zjqc3SNd12LemLAVRssNF7V0cbr8JIHs/MXbTDKrLTf821KbQ0O47UTbuNVuwPHq4h1A3+8ilg38MeriHUDf7yKWDfwx+vKGx69nu80MyoILrffd0b76n9Liv+WFK1YUiBnZdiSItiwc0GGphc144qxxqUTqYqwJcXieV/qF1KHGB91mMwICtwnBVtSDNceq37aUp2ewjq5wPMqtQS2pLgyezybnLHP+FBiVNrBL4fHw5YUi48xpE03PjVcp6tXPllp2mUhZzMQzdkgl+04OJvOuDkbtQ50NiI8Ct/ZiPAofGcjwqPwnY0Ij8J3NiI8Ct/ZyAWqa70qzLWKOOuZsav28QOYs8loOhy7sPALI4ZG/Thp9ZpQmLMR4Yf4zkaEH+I7GxF+iO9sRPghvrMR4Yf4zkaEH+I7m+Q7hya73/9Mj9zuNOi5+4qvMGeDHF5CnbcnWudFThA4dN4uaJ1X/6njoK/cJottc6/WjTyYriLwu7oZsf3ZziyyoR/XnyXYh0HDgmYS1Tt1oY8xyU7gB8lsjq8XmbXMj+lB9mBxXH3dyD4sVzD+6SNjynZ2ZnFagi0i5UB2YfRbFFJFoBWhUEvMiQYYxZn3kib475jjlaS6tEoS6QGNRAqiSduw/b18+Wt6kkE+0Lqvsqs3k8v0XMzmePvxAhuykLai5OjJ++1kQANn3t2I/JI31u8pXpjYn55eOKG+dk7YdUGbi/520MvWvN/WHPLlhbhk7AAX4sTiuwBPm1CXUd03WGyrsbk55evGmK7NzUJBrVbqEwToUw3q84ZKIqVQEfrIAa0BaQL6SEH6dELRR9nKz9MRdF4uLf1CpER7utG/hswYZrYzwcZjzq3aMQiJwK8jQiLey7+SCDmB4iCRDqZEQBfqYQMG2Xx8ge9rxPRltowBkqiAowyNC8jhRoINY+E3dbFh+rrxv3nnlQaru5j5sjxJpJ8HEzIcntT8D4Hvg1sKvLQMhqV623l7sH1brERm+pKXsjlLRZur9Ovr8uH9zzMyC5d/KlHabyBoLgvwc8Lman5ZyFyi7CHC6WHZI2wflj0mSsYeso5eXh4sZosDJHVrtoaXny/CschQnZxYPj7wy4v0NaDDA0O3ZG8vNtpA+hj8rddrqyVWiVti2aY+9L8FLCNjw/ugkGn4r+Ntm5o8yJ0soImwzYdcnjsRkEWq7bIMtmdyXAHDkv2BudCLy+u5zq1QqsFM4VKXz1tMQkZZZK3jHPxDQCk56KLCWv1sEYdaOphqAZ5FQK1ObVdL0wb8PMsX8Mn+TA8/VqvlWvrkflPDjcmm2XMz113Vvj0Gcb7Av6qwYPA2cUjGG/yokgGDH1omSZNQlklnkpiMb5N6m6zfP0C2UXNlmWBHYACrIrKdEUN4iSSNIjHNkMti+oJLJA/ws5BHJTuD5yssZ7JjIBlQl+vbLPZwsi/UfZkcZ2gJpb+6VWsn5Bpf9H0Ld2B+Sys1dgBWRQZ7AY1LRK2ZwgCNDfYIrZmwZhpF3g3ANBD57dK/+t/rbxVuknL+5PHa8pRcwSnGDvy08BTT/DLevcwUUIAMKmAgqpclAH2wZo9EphgFQy9gl8nmQKf4Y0joP8hFG5aB1HkG4vdLHWc2t/k0V1ekobwfVSX0YPUxTZd7qZX4TPkvAUPJG/E/LGQsWJM4DBa0B8tgBpIxmEzzHCVorDczsIz1q3VbV56xmh2HSPts7qH1/HPOO1pxfY7mqCnLjARXBAzeB4VXBNDr4rBMfSqWZWJSJb165h/6g5YRWrPJkNDn1m4MmL8XaQvkdk3AFl3AjwtZovlVvO2gkwu5tCxg1eyNdOo1x3gjBJo4+b3vXzNxIiNgYpw4CzKwJs6CdJHBhvZNnE/qPFgrB84w2Vxh8eWmoSylPRMnYiuN3Fy0cysNOoODGVjOwCHj/3devUTLef92vInFsduuvk6H5+0lyLwqh2kwoEcTZl7l//ycX5HzKtZg++W8OobmmyS3NNNqDyUoK+XV89D2zauIkaZ2p++9H0Fb6XH5FP/E21um4jDS3NKxDKcuIcN1yLQ7Rer29Mf2TrSsK5FSatKlFhKddnkeD3XaBQYQNO3yO6fQtGt1nH7hDOmUYdC8PlPYjeZKAt+mh6Wfhy/b24PtxARvXXjyRevv/SwBW7E8gU85MT3IngJXadWsijwhwrotIbkR7a2UU/E4INgBQM4oGti1EXLyvNWByu4t8Qd+rwZl4IVIzUBHIGBLnlfgvWzmzB+Lc52rN0mVyxsVvept2V2vVw2/XQqlvas1r9sKjQa55tfRL9x8P7zbJZGwzx3609lcH18yGxhOZBcvLsJeIu1TM0Bea3y3AZZx3TbFfVk431XAPlJUIZMALyG7vxTCSyGP3NrppUiAOQ+C5jQQFcq9CpjT4UAlTCSpX4g0wI7l5AUsDtui0kD9jxT7i92NNuy9F219oUhOUCWasEq0X6oUk3MgIUhtMyP2GiXo8bCbm3FQSQ5TpYL9lVAfbOlLWP5T3ZblAwgDntG0QiDkzCQ47TVfSnjag17H25825EE9pgnQgox0AB55PKUgfyqH5k+3N3zcOWJWFKPwT+sTJj9SBgtGNo0DvLksHx8hX4q10FMzBmOrvK0Mh8xquQDsWvx3KtGtbS2p9jqDVxpMtl09eLi1bqt8LfLwHO2WhYOxP9taG2ItqCQFxQISjzckkeqR3a0ekFgxVoSP5R9Ki/CxUiJ8bMK3oKLUWAez/AOHrCiP9W51hA/t9VMLsj+Ty2Y6eog+v1X/UCJ1bgTVNOVNr7L7p9ZWCqo9G/oo2VrYOVh3tAutAKzlHQs5hwqktbYV8KzVFueg8tM5/OzIIlWak5F4gX77g0nayT5b6MP9ElvlGKTIuPuEJccgCSooIiQwPcaTAPIJ8mg+IbGgfm7ooyazooK8ouyl9xmCm2gbJoflIegO+FcSpaEOlewNfoI3Bzn5+fh6eZI5Xr7g2QswO/myAnyhsxiRuiKzYUTcinDGiChVnbheHh62oGfn+6/mnzczEH0SaUm0Pik3y4fFtQdun/9rtYy8/MCR4ATMIEvBpAiWM9sX+u7ATAzuLB4E7UfYkU/OCe1ZCitJOomAHWcbkoJCDRUsmVxXNofBchHoFF2bX7Zlu7oJ0kHNr9t7ecNfFewMKcaFlV3IiZU9eSIKInKy/LsSlbTFZS434ziznWAokTz4Irjdgb3EW9OCoayfztzOm+XEZnoYejn//Cyw9/PlspieLf/uMofL9P7pMJq7qgJaVyW7auaHRYfTtv5xmLHjS+FKwf5hy/JgBgp2VTmSyBNDtN7bi0pezuayyFzwSlAWmsiOiszNEnEjrRr/iN6I7P/t9JAJwAJpSVIluFwgkYKQ7qEJmM/ISXz30JXwmiOnD5w0R+a+4qC5XAyW5tWb+Zp3Q9O8zamYXfmadwRKJpzNyN8eishm5Kdiishm5KdiIg0rlGEILrBEdglksiMOGYbd0WyyrJytx7ZKNzxeZu3x9NH81wK/q+tMP3AaAITzdhOeLNuQszDEiO3jDQ4EJtmHxVuKBI7gJy8A/w/YCPgNIrVAZnei3p+QIgKNQsNF3s6L62sN71UiBtE/XNq1XA05H4JLuxRgEKkZgv8JDqJao4LKZE5KZXc+Bw7MT6wAgcs1m7IHmilLWfvTOd/OMqKHVx4z4CovFAw3g9mITJBlFQ4oyaBYbUrLJsjXjcXLFuVdADQfP3mU6QuaFJwSXdgsZ7I3fxOh36pNEJITQLlj4QB5S1Nrd5nAjjvLE1D+L1EHOeAeNGtpm7JGlVqyRlmQRiK/4IjsNRN2nr1kfshypsmKuWPP4Jg3iqQl2ung6wCFYkCFTGlgIh5CITBMl+IhMm8UTSGtn2lKwO6subc4e3kCHe+XqpHsv/lM+VuRsWm4WvLVl7Wqgt2i5brC3eJn06/U69ojPq4sT9c8Wlv1xga3N7o4qAf0IAz1Ktwr2xQSV+Ul9P2UDhhoK31Xi5QrXm5i1bGcsYbrFumv6Bx54yxiewFeR7iTNb+M984tLA/qRVNFnVKcy60kvfEQThfE0qF3y1CHsgOxlBgW0dmYrqdOT1h7e/qeo97ZbfcnYlHExgNLEaDfCKUEtlIRJzbXyQOzb3h7mh+vNnpLLS/Xpc0zNptPEEUUl2Ip4u3OX0qCEMbvCkYgSbcOACOC3LDAiCAX/MGIjytKNkjZ3mBs2BX7ddcCSg1xJzgwy3yJG1aWeYWrWMCIojSLJd2fK5mGPbY8sfLwoi04ghFIAg8HiciuWBIBXejfDkYEhe3wcJT6bpX8doQtpcufFyQMRtSzsOxBYf0fgRFrrz238h1Hp6Yl7FbUnLD+q8TBCJ47Qc1bB9yJpMAI27ph7l80Aq0KJnGepD+3v0IIMILnWVDVAjyLxMAI5GaAMGAEb/CjSgYMfmiZpEhCWSbtXrm99lXDUsODR3S/Xbg4ulbE9Cw6riNK36HQO8GAjZOXh0dziho4/wGdhsVlOzWvm1q3OkLO7rKWTG9vNseVrxT4dXBcTCAx9nbOlGRwMWFTCabMCJ9QnS/Iq/ROsOYbRwnNOI46IZqJXcooeQ5D1NPP3lAT+Lo9jcDMBx9frp+TL5nKdWp9Du4UWxbwFVj+zVEbR6YPi+ztweSwhpO5TGe2X/ORFTDQPVr242A8h0Nmcp1aF7VBFmPAvG8hgyHf0IblbQUXUPycqOVtELC8rfBu0/JWA/jdZGA7adi8hwKXuT9vTOT3zkqZ/tXXlk1Pnr1huOUf2wTja51FfVfei7/qmsgtGg6LuBRQqBRRCWoGx3lCtSkU0Y/W0od4XaVZt+a9p0ihKAvUjD8VbzRLHcziTj/XtEbQn/KuZgNeTdifwtrw9qfkfEgXB1H+1BTwtiRuG0MTts3jqVWa7NnQ9FFWu7PR3qu+B/IinpxAnK3zriQi6ab5dXFosWQZlhbIPvKroASZCncoOsB/oLNhcnx0IXlEimL/ZP3G2EuVRuVzyI929qtWFnT4vEsKO/zml8UhCdkbS5IgL75HV0bz6CO3rA7sP/k7PXbWuEhS0tx4wY5vDYwfa39gdeIg7Mw7o+jay9DLE5AfGHjg4AM/HNA6J40si4N2K8Jj8GdbaykJcNu4CUyJpYnILyIBwmZFt8k1d+VlADUv4kR+uZMm97dz1miaZeSMv6j6pkYwUVV6Nvg54X7T/PKvvDGyjk9707YBbRRBbRpEZfNcbdambbnSzak/GOoY/i1zM6nU3+hIQtOzfswnyyWa35eSBwnQJEqAIXk8AaBx1QttXBHmsB55qo7TYT3SYngc1m/GPKzfxNdcBU3z3zCnElnUS8w5lQYBWDmVNsv/5TmVVTLD+h3P7WKe73l4/TPfrUV45lTi7IXBnErFAKycSsBa4smpNLC/uHM+c7JF+PIpOnJRr9Va5YzFlFPJkwA1pxKQAPIJqmg+gUA5lcgqfeLPqURaUjI5lXVAZ5XbCNhxkrhyKsOvFlSad95I7JxKfjKMGlpXJc6SAVEzEqclA7L/47BkcAjBWjKoh/DdQ2/Ca46cPnDSHLmHx0HzGl8szW18+Zqro2letj9q+sFvmeZ5FVPtq4t9BLfQMs1HlIKiY51pjkQN8bp4eAE+kuPaHEcnNx/IiXbNyHJtom5JeP8Bvf4rG4yu3a4y0liLscN8o1yW/bHS9q4MABvEMKHEHeS0KPc5r1L9/BJJH3n+nJNiKFB36IPWHdoc8OcPQbEH/JGlbnEM7iPhYBz6hOkRlD5x62NeJf3xYf647ItmiDbnOrf4wg7IdUbaQig1GfytIq2ILJvamtRkaVFpLPwuDenYD03Hi/2fP/u0xdIy+Oj2wSOWfBTMhe5i6SUqwQftZGSYPTA0fTzAHaiOJ/BJXXAj2qwOmenhBTg3JnTS2roYG/LRDsL3Jgylg6+2sh++AWP1RUA//CqKjQbjaopFbYqrdeeF111ZXsCelBso8isV9ln616beRYalWe8X7DC7O1Hw5NgE+qjwyXFLy692dsiu186xWg8mXoIaUUSFbXnHdEVty+rh9xHe/pfXGUQfgl0dMii9Vs4qoWbv0GON/QTPjGUsvUQy8vzXf+XQ9M8HcOi2BhZBKvbSXRmk3TiIpIgpUkUh8Yp+8H+GUNoUH+3VMsidsbu6zjuD/lqs69YJGg6lQ2ZkX2l3V8cjVMrry6aizFSXy+vLbTqhatbCBXzkHK8/OwOGFe3JzJNUFmk9ZkQH3n9rvqbXd8E00ZarCKeJ/mwSS+AYUw2g00KzhwYJZfbI0C+cPejSZ8NtVzzq3txprEPEqJoTih3mzms9E6HdUuEKSkd24Xp5klcGBK5YDayRPL29OGACTevmD+Tzf9DuTjhe+bOtlWo2AYMcjFmSehqKOD4ngQUQjwvNJXzeXmQEDLqFlQGw7y3yW5pRlv2wo+cxIp1LclVVv8Qom3F8WVygpwjHfTuNcBDkexx+XluY74E3/sqjnjpTE7c15JhF4qtlWXU+B/q106OCPAkYVCTtEdU5nYGp2buAONuGN+VtmQFbLBv4K8seuUPKDnxVRMnzJ5v1mjI9SdB2c7FsN7cNtnO4ExhoGRBFy6AOTJQ6O6W9CRKg7ciYtgOGAmFs17ZM1xbbrfiV7T4M6KPGLl/F2J36REqFMzhC0HbzsGw3D8t27S0HAiYZH8cyjgGhjNOmpYkiZB3sNCPk4k9wZdl8CeGVJfQ67rNwLuTo5ESBTepAq2lB29Yk3SERMOqyZeikZH2X0zY+eOXb3cLDfd9ItN4pqEDNcSwFHI7z1yH9SSjrkOzFjCcLgrPNw5UWj9moViRYuUnGjgU+07T1+9h+LWsQH94nwQ0/FJBr3cID+XRBUbcjLHDz6609bwIkA6ET0mVR+Xrg5tUgr001p/s218tq/p5kkCJ0Y0HfX+R3VHjXm6s+65PxzuIdecsj8j5KsPq0DTjj5KPl8deBM04ecZzamxltqYg5xM6X5U32Ya9g8c7xWEwnN7KPHy+cz/ZnQeYSaaBXI/zWfjd1MdlWu15FLaDwi2D0BLyscPSE96o4zBOUh2UeA8Kah58mj2aeAT8hJSgn/tcjZ4OZmwVbe7XxsZH2e0gOFxGP7mwXsIR8QGk7l3Kg5epzsSwXkytpy/GBJaGVAsrhF9q8qWSH9PUijYfc6Pwyr/4X7l4s+3qeMwTxT6H8ZDAhDBht0Hw6gIQyn+p+661+lNzZOI/25m/WAFfB5zF1ZQDWJjcvB1qfadnfksX0AaFacHRAvCev0IEHcLXWTavIJ/Oi3pXwmhrW2EodA8BHOWUBOp4UlXXpDaaAZYnc0behz8nzAsagAKL72pf05DkLelrk640KHLnOVzAbrgv4lUQVZfX5tZvAGf10A6RyA6VKEJX+o3GcJxUqwiZyn/XTrYKlKXlelSFSI9WGv5/MtjNnxMa/9dxH8e6LHI9SQuOxg9e3ivmQOKJOu3iwNiAONB4Hoo1HAiUGIacY3BODhHqrXFj2iIN3V1plOOYdoEWrdJNMYlABYMeAYy3xUjEkBoXm51cuWnYMj8QgknBiEAnfYmtktK46qNPG+UPzrllEOT6jup3nCGYndLdk+viQqc6AHYRSW0Hhu6B1WWCNAUbByZ7g55nQ53/OHy2OolXzCPJZ7Ri3KNSVBZvbcEDklgP0nU+iThrBPJWC7PbOJQNhSf0+zbV84Vrpi44E7NiZfnDaZJNM2ibL+FPViFN03hWFl6LNL/9qjkE65nbOMWCIwAGUsI5KEq5j63ycJ2GbokW9YUV94UqJFArpgySa8z8xH9IiTFQQTwecUnLazUb3ZkDjCriOL+AjyFzelxE9KezcVDDkzcAMo9IRXeaN/fbqviCyaANdoVkO4aWw0BvEIRjQPTAEc8vmz8GD0BxbmzNOlPmCd0DGCTJVAlZdD3kKBquuh4xTwarrIdfasAcdI1cAsAcdIz0r7EHH+i+3hUdsD7fY/kP5S88hFxbDHnS88tnMt6OitI0Oksa8ki4KDYE96FhxwIEzhRYfqBvrj6ZPXXF7LOxBx+NjZlFClV5b75TPXMacUtgf9qDjS5m14VtLzzOS4jU673a8/EMo/wYsfCiyI//5sjzm29+yZun2es+GhuT0w6E04GC0DkX00oDIx6B3aGnAf0gotFxNVGnASJTSgH3oBZWn2ZG/Lg2oiWbK3/U5T6W9lxxJnR9mVXT2U5itbqCdGJ/z5P0K6zlP3i/F8Jyn4xc3hux3zLDYM6xIQ+Fk1d72hKjF/5ynJa+wnj6j+Or/9zlPl6fdjPkycafpNsXTDLpq97cEec5TxUssgwE9mnApX2J6ztN20tTJhgoO9FRl/8ba00tP4vqcJ8ULbl2vGKqYHx4xasehEbJbcRhpZEzD1byQdEhbjM95OmA2NSa770zrPaxuKUvcr+6S6HOeeB4P9TlPwACCpt0hJJRp9zdkaOn79cplX720znvRWaeB9aVKzAyt6U0shrbuxr+cob2WVD0vTu2JZaly3PZLNx59xpOhNV5TkUIJazLftDCZQ3uer4cDQzvxJhZDC1hLPAxtjs2L1M59DpomrXH+likbsV+SDC1PAlSGFpAA8glaaD6BQKHyo+waefNZ/UzWP7nTczXF4gO+ofLTFzo1IBlapCUl91yS+gfifC7JRqPCyk51D4jN0PJD5dpoXZUwPGfGYZ8JJy3M6CG9pRn06kkqIm7kn/CcyP6PA8+p8wiL52x4yHcPQwmvOXL6wEnzgNDKlZuGjaekjihLk9OcFYIHQ1uHpXlMHV9zHTTNiR7ourRAVqN42W7DvClqH0fPldbs0EDXP1xGoAW6bICFgs4zlEBXkUVBZbL2s18HunQJP3xORvwRdzWSaxW5+sTN/WtuLCBupSD1GqzhU3eRP3yGoWlOu9r7jv+EY5Qj8xepR84uFVzRqIBf1RdMBTRiu7iwuCxAJxGprmhZOSP59c+4/Ms4/7wMb9Xz84AVpJtatccpn+N5df5HP7OQUX0C6MFap359w0KmEvmuVopefRzY99SCNcFEZe7YACapu9re01YqAyYKuF4CVyBMXh05sg6UPwZWLGyuigv+raXEsIeH13KWs+hIV42nxp8jGxYbBiVpx6/T65KGyE3neTMRuenNr/+qbydTpE9evTDZ9ED0pc9Vpu9etrNvFwAyTwRl7iIqsWXscZ7M7S1crQUzP9mR5bucxeLw8vtZTn687sE79Rep5fOwG5+HpT+xTjshZ3nnZp5gYZCuP6/rLOzV4Y14b3Le5EGyLRAlm0oeTzbIJegR3g0jlxutccMitjiInoo0HR7FV65hFl+5xpd8OOElZ+9fU8Iae9ksLYY0aYZ+RTI+kiPnUxwkf3MJS/KsS3zJR6BJTujn2SF7PuzEHWkh2Ik7cmqEnbjbOFsceBHoQck4rh0aOabrkdY/z079xyjSBVdpk0ilPkcTJlJKcDi01kezydkemu9HjfeyDHn32kL/ylpjwdwpWxawAndika38PDzaANyM4H+OA34OnC3ZHGDpznZunl6Xs8FcYV83wA6tXoMg1cS4T+EcL4HmVvb4g2Cu/BWwEKeoHC8wx8TgSntXHWpmvGRYYLkB3Iwvb3kGKiZSAC2Lc0vXKhuYrJuSYtntmksjIrULvJCI1C7ey7/yFcj+3V5fAbLToHLBoo5kYsAn61xBrTHRSuX6tSjHFehqYNcSKd+EgeW1qj1u0I5cL++6sKCiWvDpQlAH8RT5mAfBVrzXD6BaBphq1V/u0AMs/o3K2Qd6s+A6aMIcqL4Fi8theeiD7/HRNzFdDELqriwuAuQAf9q7ZFTjLc1BwwKXIDM5gc2mFmll5JK4PYOknXatzoVGgUjWxiaXNwraRIKqI5Pooa7vLFKKMwWb09IP5FulO29/oDa/SPAsrY1UEg5SGGBKAXRxaKIaSUKZqKyO0y+cIZ0yDJrXZwq70VxJ4Pv04AV4vT3YTkzRichoq7R+lsAwYIHlPpyYHmRPgau0al6yH6qnceVJqWWinCcndMslW6zbEtIb0d5aAgF8YkEjIGeUqJkJPBB/80zEOSA/bCDiHJCXMYA4B0Qe5/HbpVDaO+KcsH8z0wr2/uaMaAH5RNon7WVvn4EzxpnlLpIfPacuXUPAPlJU4ZgStaMPCkngk0QboYNCodEBljynNFbCRJL6hUgD7MDncji3SaX6kvUuOtEDLWMdey64MemyYN6YFE1YJdovVcq+sWWbZvBG2r4hf8TdXhvZ3ifIgCq9eYalUsqzNh2nqsPSxX8tEDJrRaL54uDzd3k9BqwRL5Q775HHUwrypwZo/pTIheKm5LwfNOlarVVK6SrNmtGDjwjfW7sLxcl9wCoU5/Ae70Jxf8TH7Vo5Wt8i8dNV66+5Nhm4F4pDZgLhUAOt6T1WDbSD78VSKG6ewtpte+uzDNMmrVk4osJNB9dCcee6W0XP+B5tFlnsafzuj7izOIjkgCmS3HviZQ3yf8RVKI78l9P792P0zErdn5TFPhlyot1dHQ+EmteXUUujAX1ZPIXiYt88oB1S5lDiXs9dt6j38sMEKRTngKkG0Gmh2WMUCWX2IHahOM1A92Fh96LN42t2VNmnDl6Adnc4FYpTfIdVKE7xrZgKxZX137ap6f4Mo8h9Lht2WKlmSqRQHLXpG0d9jq7xrmtRTwy4aoNxKDZGeodVzyrrLYHSecVUKG6XpdNyw+Is4+B+u2qXXU0NFVOhuPPHx15y/FvP/JDU98o91zc8w8F2S95i2U6RSLYTqguDT6G4Po1J24dMu2pcFlSySOWUhiqBCsVVvMGswPiGOMYRS6E45OJP4oXieI4OtUxa2FvcC8X9WKH2XPt+vdXu76OsvC4985B4oTjFt1gKJLzhr0NGk1DWIb8rqLfr3vAZ3W4FGucHjCkfGXGrqxhBvW6qVRigXpRKFf6gntxFX7re6R3mUUnx04uLTQXLIxMO1OsCCoSKD91Wqfq/BfUK139bOWLeHfM0+5SXPx6oCT4gTnKgXq4KlsGiJGMwSYB6WxpU7xu43DLfNPjyvkfGkTNxBfWU6AVayRuLKUc7Obqf7DXzIw4jzRnTcFMlZLgOAfXSRve/8XlEd1oyzcHtHHOYYAW2jgb1eB4PFdQDBhA07Y4hoUy7vyGop74k68ALU5ZV4dvpfT3ciqXRbhknUM9DvgoD1BsrX/XvBvWqI/o+oKVxLcuSC2be3DxCHk9Qr2aqbOSTgp7Wx/O6PjtcY7ISB1DPGbQWKqgHWEs8oN75tLhnV0mTGEkquScSBpkYShLU40mACuoBEkA+YSyaTyAQqJeer0HdwNxtnGI24ttKkwwX8T/sEmlJyYF6Wd2rxAjquZgUVuYc6V71W4B649C6KmFyf+8NnWW7WvqL6foGnQ1l/fVscKJekP0fh+Rfmx5VGMm/Bj347mE84TVHTh84aT577a0NNprLaRHDdaVO3hzMwUHzLDkszWPk+JpPQNOc6KDe0UNyvk+YjSZ7H1gXKuTv+NahoN4/XEaggXpgRao6xSrRoF4ivaDy+1XFql+CehPRTPnbQWO7zx4fcmMIxzpCr3yRNGfJaglAYy9kqjCgsVwZocgXMaCxIl2dsUp9Q+g7j/h1G3b05kREnLp90Fi/LfWOR/fWMLYMp/5pyJiUhAM09giUGRUaA2SWIDSWfkjuz9kLR1pmK1TF0Pt/Fnz+pmShMZ5sqNAYIBvkEiahuQTCzKjIqQ8fgglpOhwmVF9ZrAnVXpYv+WTCS/486Vw010jfIkQ2OtZ89reZ+Ej+jjKgq1niBfOcm08DbqfMy8JBcoo0luRkab7kU9Ak/10ApbeXR38ifx5FPXrfIKssyHMrxn3iByhNBH0IKqBUL93eGa4tgJKG1GfN2/2VaMUrdrwuyghAUGvtApSQvR0HQMkAVA4VuZETXBvAMzvEBSg9WfPy71RbjmXa5vdRIyKquYQClOqlsdQqkO7QwP3vDCghl18SBpR4owCVypFDLN1+lYHQNkBp5OlwhTHuVmaHJy06cOz16xQJA0q8Lo4qRUHLRDWVhDJRERRQCtg22rFrbj5j/8MpW+4vCqV3EKA0sVcVBqBUryzi/OP/E1AKemY9hxt1xPJIPzXuLeYRIxwAJZwPSED0xqBXFQZ6I9erSsyAUtPQbkVZIbOsDy64yyisqwnGAVDqfG/bg/QiZYvCkc/W0n6MfYGDSkC3xlCpQLlNx0htA5SQp/USB5R4PQYVUAKUgvzpNDR/SmRAKXnD0BXDtm+nBvXR9byx9dlNMQBKCb2rMAAlSm+RaVuouYG/BpSmPj65wVjhJiN71PWYp/NkNuEOKCEzIHBgb2JAjVDZG7feqIv49gBKB6caa1/xozPyyxJTXvUyd8YVUCJP/KQzv9sHs2M+w+QuDfrDAweRKJgiqfcmXrYU/0dcgNJHeyd1zpt0ernlscPvhn5sIASgxOvLqEgO0JfFAyjtz/KoGsMqopReGt4vueiAF0EAJQqmGkCnhWaP6SSU2YPYgNJQucxxn17cY2w86f7m7OibTmIGlLapVWEASipqIsNE7QeUhqpe9luduMAy+NV9nbE1BUkSAZTmK4TadZd7a7rfzlrp/d9/bsQBcokC5UTlKJzVCJTGKCZA6VOXP8aF9XehbrHvZNL3z1U+YgKUKmpLghzsFakl49Jrax9LmeJgu6mYtlMhkO1IFPEASqumjPRX1fxkfTx+Id0jZu1IAgFKL1SxjHNKlUDGEQeghFz8SRxQ4jk6VDzHRq1ta5JWAEo34ueFaKg9pOyWoZJHx/knSBxQUsFUoE6Vvw6ZQUJZh7S55uHAlt4r/pqHSAoJVvMQmS4Nq3mIzC6D1TxE5rPBnjKIDErBnjKITAOCPWUQmUUCe8og8tQZ9pRB5HkR7CmDyGM62FMGkZFSoKkr1ITc7wNN3aAm5FIOaOpOEn2cCjT1gJoM/6rxZwbSzXfNq9z2o8gXfBxjT6ip88DwMfu221tFKfpWX8rxfAc0KUJNzx6dK+stlW0UpG9kmhrYeSjQpAQ17V00gaxx+gbj+OWBjDHPBy8HmpShpvJXnauNPp4zi+g+/o6UlfkcoKkX1PRmiwerSYpLiT8wcGNq3c44oEkFalK0G6Y3bedT481l0lmHTscOB5pUoaaeX33OvqLFW6cOm71IcXqjBdCkBjUtbXiZKztvu+m6coeDN7sVzweaepNEL8SE6mGqk1DqYa7oGW+aOCGeEqZbVjB1/tF9ONTDpKCNV8Kc8CM7D05pijgXr+I967gL1hF/Qhe+j6Siaf67QpzfbtQvu7FghuXG+Wbd12g2LRB937hAnFEGWBBnNwMxQJxhDvIZYVwuIzKsT//VoxUuExviDDbAQssWGPz/QpzRD6vTXRMaLA8klPW4MIAtiBpLDuIci2mwbpIxmCQgzvmD52bueHvUIn9Kt7JtSnWZuEKcQb2/b1ReWEnZneOvrBr2zAmHkfZoJJbhSkYSZ5OGO8TJftnfp/LUPGpY2dG4Ype3QRKFOHkeDxXiBAYQNO3SSCjT7m8IccrN1I69u9HVcm/AzdzYPzxKxQxxkrSxIM5qrX85xNmrxxbW+Wtz6Aeu6dVc61uMeLZl+yDOeX0uHLzmXEHZuqzu6N3YqaE4QJxNWlgQJ2At8UCcp1c7nt3obWOya6zCARfHg88lCXHyJECFOAEJIJ9giOYTCARxMoN7rNrA2MDYv+Od3vq3z76IH+JEWlJyEKfvMHFCnPuMCitNfYb9HhCnEVpXJcxOPaFQJ2zl3RSzJOXgkHXDch/gtFNH9n8cduoqelg79Q/D+O7BmPCaI6cPnDRfdrJivLK8qXlE4oxp8uf921tEF9Q8RgtLc+8Wl0xH05zoEOc4n/X+oUU7zbP0XeJ3Sp3tWIjzHy4j0CBO8GmLKSNQIM4bFgWVA3eP+DXEaYJmyt8O4qQw594/kGFmdYTTxeIT6e3WX98w7hCnxxAsiHPsEIJCnPssNb8kHlUxPPTiakn8ll47cIU4tw7fMdQuZx8tvOF6jt7yDB8cIE7nIVgQJyCzBCHOw3etE5Z0mU3faOlv5jp0kWCOkmQhTp5sqBAnIBvkEkzRXAJhZlTk1IcPUYg0HQ4T6tchWBPq7RbJzQgveUSPXs/tLo+x2H9DcbHr6Lc38JH8TURSTrr7QcaeuhLOwdRF5XgUohiMWYhiMF9yczTJfxeIc1Boqp+W81CT4pMp+55mz5zUIRBnriYWxLlAsyMhTvPJedqaE92sUhdutRkVlY44dWwXxIns7ThAnIc1sbDEYM0OhziLIg7bWT1YTCt5rFo778ltQSxb0hDnAky1xmr+B3G2EuJELr8kDHHyRgEquQiMAjFCnMNkQ6dtuUQ1PDyhIS45beETCUOcCzClALo4NFFZkFAmKoJCnAN29f46YF+kZeYSl05OOnMGY90WjhBniT4WxOms/x/ECdmnU0L12FmNn41yT4ZfP/J2aw8cIE6cD0hAPDFXHwtPjNIXN8TpcZKxTs/WxnTriwmGhRN0BMtJ/zOI01JL9Qjz/Rl6zLW8W/2WPLyMg0rOmCpN1RcjxIk8rZc4xMnrMagQJ6AU5E8ZaP6UyBDnX/ZaFhUsF+uSx8xJzxJfGgvfW7shTo0xWBDnqdF4Q5wBl0Kqmc6LGEGDy/Zrsz6p4Q5xIjMgcOATVcZg8YkvRosF4uxxaf9+W927RolRQ7/26voUUXm3nRDnrm/H79xf/8q4aJn9Tr2Lk+/gIBLQVTBESh5NvGwp/o+4IM6ZK+vfW/uup+xdMmq8fwT1PiEgTl5fRsUWgb4sHogzy5/pQHfdZLql760gDRUjwd4sOYiT12lR1QA6LTR7WJJQZg9iQ5yvV1RszWpIMNy33sK7ej9jjJghTvXRWBBnwigxQZxe5Tf7LX3iaJ1uXb9yS3CPPIlAnB9mfTkRGh5kuU752dmAp4X9cAABFUdjsWYNowiUxigmiNNuhekqjtIs82CtxvEG104L5i3gB3F2Ynj3Zn40ppW46meuulQv0rG00XYVo7Bsl0Ag28mJCeJUc8vYvCTUz/xIVeW1J/v2C3pGyUKc3pjGMSWQccQCcSIXfxKHOHmODhVhvDoKd4izr2nwQDtVL7NNI1nLgH2V4JNWJAFxJozCUmDBKP46xIqEsg5pM8Q5oKX3ih/iRFJIMIgTmS4NgziR2WUwiBOZzwaDOJFBKRjEiUwDgkGcyCwSGMSJPHWGQZzI8yIYxIk8poNBnMhIKQziRO73YRAncikHgziRx6kwiLNPjqJ22Isqw7AzU8Mq7pb6wCDOWb3P5Q75Fmicbb54/p68u3NhEOcI3eLYmDsDKaVLpPJmjFI+DIM4d7zpknTlrw9Wxwa+22QX564CgzgdDNRyC90eWe/Uckyxj7KvhUGcMQ7Z1pVjulmXch+s3Orp2BcGcc47LcU5OzOLkTPi8KJliwcEwCDOIY7VismZDZQD1RoG1+t6xMAgTuRqS4jUBJFOkUN/ovfy9LPdz5jH1266tTTkw04cSE1rtEFJmGN8ZA/BKRcR5yp+4Dk+GfMcn9Ryjm+DpvnvSmo+7G5w3YHlZ7LpVh7z0dg/NcVIagYzsEjNLgwxkJpzsr+uCj/+0qj8/ZcuFUrJL4lNaq5iYPFj9oz/X1KzYZnnuyGDF9KP6G6s2HClTyVBSM3hmAbrIhmDSYLUZKikJNT2LzQKn38xYJzu5sO4kppjZj9cuHXeDcN4yxFR6ybpZeMw0m5bYBku14I4OzHcSU3pcrnPb8PYxuWNSonqzLBBEiU1eR4PldQEBhA07c4koUy7vyGpucMz4bOUqrVF/All0tll+/eKmdTUoWGRmm+o/3JS0/LmscKKi2uMdtz5sUHj6UTEw03bR2rmHxu6RJrxh2luty9Z6tXfKnAgNck0LFITsJZ4SM1Dubpf6qfPtS4YMfgpxdu6WpKkJk8CVFITkADyCbZoPoFApOYMc997Dfs9qLm2wZvqj24ZJn5SE2lJyZCaNoWVpIN0cZKaCRaFlX/so/8epKYdWlclzE6d3DmS8X1SNiXM+9r252qNDTjt1JH9H4eduqkJ1k5dx4TvHuwJrzly+sBJ85dOUVPlC10tS3dusa71+vQMB829qVia27S45FlomhOd1JSbEkr5nK5ATRwlPe3U6k7jOpTU/IfLCCxSs8YMhdQ8b15QqXLO7Nek5mw0U/52pObWrj4P7zcoGR6WdfG/NvCWhQRIzQ8zsEjNkhkEJTX77tJaqqCTSY+eyLHqe88/EVdS0/Ez5yh1iT0j9dt8kweuZe3N4gVJzRczsEhNQGYJkppaKsmuR68EUYKnyFUM3TWSTSBSkycbKqkJyAa5hDloLoEwMypy6sMHG0SaDocJdRUFa0JdQOFL7kB4ya85T1/WQ0fNqrjfuHHHhxYp4yP594KQsMVDJhmmds2KN8zyHYfHunE65rpxOl/yuWiS/y6kZo8c6T92J3ygpyocNJD58+HmDiE1KTOwSM2G6R1JapoY7PuUWb/H/Ni5oDJGTa7gc93aR2oiezsOpObEGVjsoeKMDic1deqVJjZdC7aIMkzs73H7gjuhSM2G6VhqVUz/j9RsJamJXH5JmNTkjQJUPFFxhjhJzZAtJgtCmibRomp3DVNdsE2QxOl4UpPXxVGlqGiZqOaRUCYqgpKai7lymxklW803zSKnXUsbiXlbOJKaH8yxSM1k8/9ITcg+gWtlSYu9K82P7K4Y+uSM9m4cSE2cD0hABvGFORaDeMpc3KRm0NZbBiPWllmlHqzZZ5bEFnwY9T8jNd9779iZPy+PkvXu8pwfrwePwEGlZEyVfM3FSGoiT+slTmryegwqqQkoBfnT+Wj+lMikpnyZbWH/BV5Gm5uysx+5+n0SA6lpb41Fan61wpvUPLUq0GP73nCrOKleroMiDh3FndREZkDgACEyrLEgxCHWYiE1XQc79+j18qN5UN0qtU/3QhRxJTX7adldXBVx2TTzzbBbrxhWI3EQCegqGCJdtSJethT/R1yk5ntSgeGV66+MQ/vRV5SdfTqs3V0dDzaR15dR2USgL4uH1JyYvOQbLTXSvOQdqfJAl+9WBCE1eZ0WVQ2g00KzxwISyuxBbFKz8HN0stliBdMdL+1o9Nsne4qZ1LSxwiI1ayzFRGq+Yz8ztOq7knJ0y/pOe68FDpIIqamR5ZgWbn6CuumOvM3quIr+ONB+plZYQBlZQh61I0nN77IpFvoRo00zTPUTjbdNPCsmUlPNtjHs1eBCw3Lzcp+R+1w342C7Jkss2wFDgTC2UxQTqXnFrrMVxeuNcXBSd7kx2p/6EojUPIhpnCACGUcspCZy8SdxUpPn6FA5xW5WuJOaJj6zVZ7cPEcpC+2X4Dp+5EKJk5o1llgKbLPkr0MWklDWIYQmNZEUEozURKZLw0hNZHYZjNRE5rPBSE1kUApGaiLTgGCkJjKLBEZqIk+dYaQm8rwIRmoij+lgpCYyUgojNZH7fRipiVzKwUhN5HEqjNRcHFKdNLVTf+PIj1ImD84FXoGRmtp3UxuYhRMty/UvRt99NWEPjNT0O5sUPSvoreXhoV2d09Jkg2GkZkbVe+3ykPGM/Y2pS1JrTQpgpOYdqSdF7iNuUcMDNq3Y9nr8KBipmZmZMsOuxMN8faaCyc3ij3QYqWlbNII6XPGsZWhFsEaMf/8HMFIz5sf9Xs/OMQwj7l2NO/Ok0BhGaiJXW60nNbNGjdfy+LLCNO/lC+6jOxpnRQyUtpKai9AGJWGO8ZE9BKdcRJxL9YHn+BXTsM7xU6bxHeFiNM1/V1IT+WBcMZGaBcB0oqOMRmo25ACLIyWhbRrWgrB1pKbHU+vUoLyFFklU3VurXg4/1R5Ss53T7UFAAbIyGiDWBD5MSokoKGZE5nFVUhOpIvryIIWlP36IpPv4yyF8UMzht+Qd+g11M932OX1i4beQuQRAMUGD1ShhGeygZAwmMriYNUPwf4VRTCxj/RLF/PDJqadnUBGtpNPyKX8sM30q0ZUraJkgTMs4SMgyHcJaDlr5fCyrxME4Xe2Ee5pM3RmJsZZhOZBLE8laGjQ7dWjiXEL6l02cg39M2v5hd65p6V8X5Ted/fpYjCUOStywShxMdRNDiYOvI5Nkuo4PMNy5dcxVS9UpX4ld4iDXDQu8jnIjyryK9iO+edU/Tu10VuEjkwSqZvzcQw+2EGBe5ZUyxzTYVMkYTBIlDrISSJeGLDM1ijtkpqE495AeriUOdv51U6N/kZzZvgJHzuQRg9qb7wwaTgXTcC9c/8XT7oQ9TVM2O8ykZxdWZyT1fzxGYtMuWOKA5/FQSxwAAwiadpkklGn3NyxxcN9kW5bd2Qn0BINHz9KmnnQWc4mDIYuwShy8WPgvL3FQvSX202S5WqOQ+hia5bMJQ/EscbCz+62Lfnufm6U/LF1+ZLO2Dg4lDjQWYZU4AKwlnhIHS84M19Le706LeaZnH3nL2kWSJQ54EqCWOAAkgHyCI5pPIFCJg+p4oyEfFTpRco6dNt7wfJ2++EscIC0puRIH+xzFWeKgzKyw8nyq4+9R4sAJrasSJsSdOWnczcOh26xji9ykNumsGY5TiBvZ/3EIcS9xwgpxU5z47sGZ8Jojpw+cNC96W35t6SEuNXOojd/IUM/VOGieuxBL820tLpmFpjnRSxxIv1EdZHAqkhZGujoiRDmkL+r9iaPEwT9cRrRcTUSJg3MslBIHH0wLKgeeYf26xIELmil/uxIHxbTRdUrTuLT0PvFep6vltCVQ4uDNfKwSBwXzCVriYH3I7A89B1SbpjxsyLrwqJ8SItOlfSUOvH4k7NO8omO+JaCKMj61tr1gB1jioGE+VokDQGYJljjQfNh3zOE19qYpcw2aws5umk6gEgc82VBLHACyQS7BFc0lEGZGRU59+PD2SNPhMKEGLMCaUB0W8CV3I7zkZsW6KUOiJxju2dr9xKtgZj4+kv9ZWTvbesVdRhpVR8+7fs5WHCQ3mocl+ZB5fMnZaJL/LiUO/HaMs5xyk2qWtIgWfyhk7awOKXEwdT5WiYNH8zqyxEE9dbm8gkq88ZFURQf/ktFGOJY4QPZ2HEocjJ2PBe13m9/hJQ56J92tLB6dbJj5YUr8rsJZtYQqcfBoHpZaJfP+K3HQyhIHyOWXhEsc8EYBKtffbb44SxyULFqgymX2YWyuXxMzYcZ0RGGkDi9xwOviqFKUtExU7iSUiYqgJQ5GrzlnbHOj3jSXm02LaeqzsYNKHNS5YJU4CHL5r8QBZJ+Dd8zWv6h9aRospf4qrqRbVxxKHOB8QALC+zUuWPD+QRdxlziI0pzcmxyVbba3uF9tT/uGmTiUODBau+FZ+Hd/49SiOucbvVnOOKgUhKmSg4sYSxwgT+slXuKA12NQSxwASkH+dCmaPyVyiYPUvIsWwdV6ZkWTt8YoXHy4SgwlDkyXYpU4eOOOd4kD27CQFXWr/GjHiyf11wnWXYR7iQNkBgQO9D5lKRa9r75ULCUOKGaZZcNNjKy3msROTi3298S1xMGfxv10xmRNohcM9c3xYkRE4SAS0FUwRKp2J162FP9HXCUOJq+fO92U5ETP7Nq4wSVaK50QJQ54fRkV6gf6snhKHAwcPqhqwKwM+nb7wwvOPZfRIEiJA16nRVUD6LTQ7OFBQpk9iF3iIHrX4ZVLH1uZxOa9Jx86sclHzCUOGO5YJQ7OscVU4mCcafoIvdJEi0LbuojEcSrZEilxEGimc8EmeLP1xgs9XCkf5LNwwOSN3LFIbA0JedSOLHEQoPam8QbN0Thv7J2+evcz0sRU4iA1VXHqR/n+1KMyvS7367nqOg62+8DGsh0wFAhjOxUxlTiIU322wndOFn173d+qA0wVGglU4mAfpnFWEcg4YilxgFz8SbzEAc/RoQL+cu64lzhYOMnH8tPJM5RyrUeBvV9wDCRe4uAcG0uBGDZ/HeJJQlmHtLnEgUZL7xV/iQMkhQQrcYBMl4aVOEBml8FKHCDz2WAlDpBBKViJA2QaEKzEATKLBFbiAHnqDCtxgDwvgpU4QB7TwUocICOlsBIHyP0+rMQBcikHK3GAPE6FlTgweWGhG7xrMnWrn+7yzYuOnYeVOBhx1q6/555so+JpTgO+bR+iDitxsJB91MpaaZJ1qsMf6WmDqiJgJQ7+uK+W4fgl1KS0NNhittOihbASB5rydnJ6AyJNc65fVWUpk8xgJQ5sSIseWe+eZ5lupXRx/G5HRViJA+S6SahYAVjwQOQg5vYhB8S8HmkRvGtOeuczKgNxKFbAQRtehDmQR9oap6xCnKvVgifyJXOxTuST5/Jdmhea5r8rc5l76qTa9NcfTbJTDjWdsnvRT4zMJW09FnPZab0YmMuLdt66+ZpsqyhLWm+18AeOxGYup6/HIsGGrf//ZS6L3zkkz14ibbLuwP7L0Qn7pAjCXKphGqyTZAwmCebyzV7W+YsVb81yqJ2XXPlb2g9X5lLWaLPsjSZf46SYlVUq35do4zDSXq3DMtzNdcTZU+HOXJ5+6Tr8rft82lG1r5ozG3tnSJS55Hk8VOYSGEDQtOtNQpl2f0Pmci95WNOFwhzrrX/fUv/2YFaQmJnLqBVYzKX9in85c7ltzcl1p5njqXlVlERyifF3PJnLSSm1JRrLOhklpCQN3bVT0R0H5jJ4BRZzCVhLPMylzO3Xjdbvs2kHnsnMfLBw7wJJMpc8CVCZS0ACyCcsQ/MJBGIuafeusKNy7hivnyCfp/tGmSviVnBmLpGWlBxzWbJGnMxlpVlh5YLiNb8Hc8lF66qE2al3y381e2pnG8M4ZbvhMzYOjsNpp47s/3g8kXEt5hMZ1/Ldgw/hNUdOHzhpnid1+Uoq5xZ13eiuJrLyMhwcNK8JxNI8K5CvuS+a5kRnLjeMW9wl3CrROtR/fdylcA3DDmUu/+EyAou5fBeEwlz+ZVpQafs26NfMpR+aKX875nIVe8bEtZ5F9M0v7rEfdX5m+Osbxp257BaAxVxeXU5Q5tL18OFRFmdZFqUpRf5JDzJzcGUuv4/zdtid/J2xeWJ8Q8SnhzdxYC67BGAxl4DMEmQu8xyse1/dqE/Ze2taH9oFxwICMZc82VCZS0A2yCX4o7kEwsyoyKkPHwAQaTocJtRtAVgTqm8AX/LlhJdcc+LIHI3qcOMy9+kUu74Z2/GR/IbyOrtBM/eYlH09XUJJnhaAR60Of8xaHf58yQPQJP9dmMvtOY0nznX3oSUcOhRRMPOBMsZ94sdcOizHYi5J7Z7h2sJcVk9+2LQ6INMksUB2yMfsQYij1nYxl8jejgNzabMciyLUWd7hzKX954jtX0u/maenfc4qYGcKFviWNHNJwlSrzv8/5rKVzCVy+SVh5pI3ClBBQ53l4mQuObfmT89Tfm25feSgT+v6N16RMHNJwpSirmWiCiShTFQEZS6DmrxLr3VpMix9Mzvl4aHLyli3hSNzyV2HxVzS1/3HXEL2mVx43bh/fKr5uvVBDONiKX8cmEucD0hAmpCzDosmnLdO3MzllVmh1z9O0jWPkftiYDr+nWDQ7p8xlzKNJ3NpI08ZJZk7WFBWrMVDJTqmSqPXiZG5RJ7WS5y55PUYVOYSUArypyvQ/CmhmUuLHXEjF8sbJsvFTDMYs+6Z8L21m7nM34DFXEZswJu59Lj6eFCP0FeU8L8vZJkUzD6IO3OJzIDAASfM2YCFE+7aIBbmUttrJzfWea/RsS2HlP6mPh6NK3O5xb/rFOvBG4yS9BnGqz2NHuMgUgSmSP4biJctxf8RF3OpnvO2MNIxhF647vknn+/7ura7q+NBGfL6MiplCPRl8TCXsvPqbvTsfsLqYPLhfR4yxX8RhLmMwFQD6LTQ7LGShDJ7EJu5bJqr1dVZ1808pNSCNW3WNEe0u8OJuRy7AYu5/CCcAowPc2kQSH0bvVSdtmEt3bSL78U6iTCXZtpcqx7y/ahZ8d1d3YOfHMSB2zPYgMlcSsijdiRzqfXn3+7RJ/+kRpEabBo3e70VE3Pp9nzVuJlPelkVnHLfEPlAJREH28lh2u6DhHKHRdlOXUzMZaouqXrN0y+UHQesKbMOxlkQiLmsX48JxBLIOGJhLpGLP4kzlzxHh0ocKrdxTdIK5nJ6oWHj4Cfl9P3jw/oFni+skThz+WE9lgLXWjKlV5FQ1iGEfqw0kkKCMZfIdGkYc4nMLoMxl8h8NhhziQxKwZhLZBoQjLlEZpHAmEvkqTOMuUSeF8GYS+QxHYy5REZK4cwlYr8PYy6RSzkYc4k8ToUxl/Rhq2o31toabzvqEOy+6PR8GHOp5BNW5359skX5O9VR+ztdPwxjLt9bbYk8O2wofV3XjEenEl5cgzGXpff3r/4Qs968bJJW5gJrhfcw5vLw4AnHemp9M8oOj8zTC9VWgjGX5r0UT1rHz7Lav9b02PJnu6/DmEt/9QHyrOMvraJMQq69XdVVHfZY6Ut/XD54fkIQ5Wj/nbIr3qn/BXusNHK11frHSh+SXrLmo2uAWYl6lyPL4/bE40BqrkYblIQ5xkf2EJxyEXEuugee49f5YZ3jF/jxHeEaNM1/V1LT30kqNWvvHsv0R2506roHNaLvGxdS0y0Gi9TUiREDqWk+qmnatcZNptuiE16V9XxdRWxS0zkGix+zifn/JTUNKkcvce6ebbFz3VLqIbc+kwhCak7FNJiOZAwmCVKzPGPxix1XtWi5x8dX7vfQ3di+hS1ipN3dOrR2fJU1I/tO6OSgJYWD8Hg6JqbhSBIyXIeQmleMVUe6pOy1WJeYNlB9yN1qiZKaPI+HSmoCAwiadteSUKbd35DU1Mp8YDJpRqNREWv8ViU1qaliJjV1IrFIzW6R/3JSM3DizkyX852NSu8GFoYdUT6OJ6mpuJv83Ds0kFoy7KbZzOKq4TiQmkMisUhNwFriITXVHUY8c/IztCi9r+L4TuuevCRJTZ4EqKQmIAHkE4LQfAKBSM3pMyb2khuWaXF4TI+snndzj4u4FZxJTaQlJUdqukWLk9SMNC2sPO8a/XuQmuvQuiphduoD7GuTXI8GU/NfKS1PHz57IU47dWT/x4MajMbaqVdE893DesJrjpw+cNK84pTK96Tx8Wb5+Ss1w9cu3YOD5n9GYGleFMHXfAOa5kQnNTu91ja8cv+9SXBY6dej0efpHUpq/sNlBBqpaQosFL5uQiE1T5gUVPr/venXpGYwmil/O1Lz0jkfXbNjzvR9B47kN3xX9f/1DeNOaqpHYJGaX8MJSmpyfBeP/DH5u2GYfpacfwF3LK6kZqDsTdmkT5om265Q+jIuHbfEgdRUicAiNQGZJUhqqt9/qfH3qC8m2VWFPWbFlZgSiNTkyYZKagKyQS5hI5pLIMyMipz68MEGkabDYUJdgDmhMlom1BDCS17senOQ49FH1B3h8r221mTtwEfyD9f3bYl5cMA0/8C3kBr31wk4SE4Lx5J8dEsvD0WT/HchNaMG5N6T/XbfPH+Z26vtl74ndQipWRaORWpuafcM1xZSU8lo3FPWsG0WKXUnXs+5fUowmNE+UhPZ23EgNYvCsdjD/eEdTmo62SQp3Dgx3GTPLfLpH97bBOszSJrU3IKp1prw/0jNVpKayOWXhElN3ihAxRP3h4uT1JQbcy5sS0qdcf4EZWvW89tuEiY1t2BKsaZlogojoUxUBCU1DS82aXudmWe9Y9w5RyWtD506iNRcvxmL1Jy9+T9SE7JPVZZ6Utz9DSbJg+6tMclTEXwq3T8jNXE+IAEZxDWbsRhE983iJjV17TWdbWk+RvF3vMsWLqMIlrT7Z6Tmzd2jjXWMPSkHNe0fzqv64YuDSrMxVaJtFiOpiTytlzipyesxqKQmoBTkT8PR/CmRSc3vuZPTX606Qc9etqnnumtlVDGQmtWxWKRmcizepKbFcvseI7RXWOYkl4yYmXBeMEEBD1ITmQGBA4R4KhYLQsyKFQupuSd1jt3r81csdlqvodeE1ggmErSX1BwcF8f6WBtkltKb5PT4xrBLOIiUjClSWCzxsqX4P+IiNTeOKLbpY+9ukpHjo11W8wen3V0dDzaR15dR2USgL4uH1DyvqppS6HeDuvnrdvexiz8JelnJkZrJmGoAnRaaPSJIKLMHsUnNvJRtlv7BB+ip13f1mBm276uYSU16LBapKSM8l+BDana9F1l5Z/oxi9iYim3q0+8MkwipucJj8BF/dx3jMoUTV+cu/qKBA+1Hi8UCyvQl5FE7ktS8ZbSZ8vykvsX2dyMd9V9H9xUTqRlXuz3mGem1UXnkvVVFFnsacbBdX0zbyRDIdhpiIjWDOhffyjy0mxIf/+MZaXyNYAhKsqTmuxgs49wlUH6wWEhN5OJP4qQmz9GhcopD2rgmaQWpOTqMuavTrt1m4e8D558/2ilB4qSmDKYCDS2Z0pEklHUIoUlNJIUEIzWR6dIwUhOZXQYjNZH5bDBSExmUgpGayDQgGKmJzCKBkZrIU2cYqYk8L4KRmshjOhipiYyUwkhN5H4fRmoil3IwUhN5nAojNW/c4fq8jp9odND9b2pZWed4GKk5xvHsg4L8Y7TtjcMvjpk55hCM1DxundLN8QzdKGvR/v1Pv+RrwEhNt7TBqTX+7tYx8wLnv9/j9BBGamaMuVusqENhxFO1Ag4odkuHkZqjV17hXDmXSikfEd+YsrReE0Zq1hzobp4esIGxNeNLN/3YczYwUnNyj7pJ4W/dzOIPG51+QLUcCSM1kaut1pOa0UUxabuPjTJMNn54sdZpfZyIgdJWUjMKbVAS5hgf2UNwykXEuVQfeI7/PQzrHP9VGN8RRqNpLm8X77/fz90o82UTawL50DuBr9oT2ltZAn9w2UwP4V2ZLIrUffm7Mg7Z2pvFMWGQPaFrtG4nlr/3uNvN3gxKiltud5mFel6YtyVkC+Qb2pA1lVBWCSgE7MlqhA5IAEGbSiqRezKs1V//5pkB9Pi+bs3pe34+LLKTG5PDYYk+rk8xrulupXHOLFjZasjq8if9Bb64rFHzFYS+cEsD3pMtmM0QBkoSJGr5dxDogRPLKiWx/JN2AqRtmXM/f/78oy28JVnQMD7eLCc/DyaX7MZ2dfMAE/BF2maY93ybCutE6qHvi3pusj8mmN0jZwddRDhA1dIiDus0lGJZJ6GUANYBZoAfbdk0DTT2ZPv4gBmETgJm4rsQ0UdRl5a++v5ir2XaPbW9NYfPzxE0TvMVRUSAf7aIwzimmMYBvInkjQPaB26czr8wzgSqJ/greTYBY43AR1kcp0CyjoG+AXka2cubucyPNZw8ivevn+8QPaI2z7l6l3POk57/8NJRvb9t8gWza+xh1xfOrhFoFYfxDpZgGc9BMsYTue2tnwG3YJdfWHDaTwv6uLE5gRxg6QSYDzAXx4sDmg74m4fXcl4j+E8DsMmTGdD8gugSd/qf9/W9Z2id0Dc1zGpjcDGisoCbKI4WelkclpPDtFxBsaQtB34IzGtoU7BCuflUmM1xxXaEtupGTIOVm0y3fQku6uY3f4mgI0RdM/1swT2ElAutIcB1arXQsiqX5wihdeomEso6tU+XlXYniz9Yl8tlPtYev1IQD+ph2Iwi2nBZ/mzWcmG8GQ2xGEoFM/59YDgjewXsmIrs3XxBn55mHCcPP2eWGceWxYG2/+iL18Mjsitd53pTkocebSxRPrcf616Fc3sE23vMBv7w9uL60tkevs2/WNQWCxUrB0ZDUzmgfYKoI+uJwJLWtFxoScvfVoncQ/FP28AcSkieVq3oJ6/Vc1p3rAc9d2j05PqB9k/bf7qH2F3pvDPor8W6bp2g4VA6ZEb2lXburtTBtRWonMgzWrCCS4Kgcr8K46vaw5YwZC9/FpfLdhbtTp+cpX6u+UQyi5GPHjrG3YfU/iGM0ArpI3DQyhRTq6aO3SXwSVxZaMsFvglc7NxJufNDjgWt+Pgv0gxoP6R5cxtyVpXjbwz4bwX/txt82SP4iZYQx2Y0N9bmuGML9NcBcUfkphsWd0S6NKEAEvhtRfZl/ZfbwiO2h1ts/6H8peeQC4txCCDFoKlL0GAGY6esekBflvWhk6wblZ/Up3ZYMKPpM1Yww+GTuIMZ07tNk6UFGNHzxxe6zJAfPJwAwYyGz5jb5c8E2JG9efOmA4IZf6h9zLul52N1IPrvxkdpVCYhghmmmNZp+kQA63RIMKPTeJeq3XvPmhVbv313UnNRCCGCGQc/Ye6HiWAckiSDGRcjH5dOtsw03Fi/0ebLwV10QgUz5DCNV/BR0ltiAgUzFspYzFOYk0lLu/fqafiWkfESDma4fcSynLrELSfWYIZfVVJ+1ZqRhnspfntnqiy4R4hgBm8NgRrMABwhtE6NJf0LghkP08a/HfxkADWVu9PhpWz5CgkHMxq+YAUzJn7pmGDGBkO9vGmvMq0iUgaQPFb17IZ7MIP8l9P792P0zErdn5TFPhlyAocNet0XrA162BdxBTO+DGuc5aNea7jLK4g5fEHhQNyDGUgfgYNWEzG1amj6vwpmbEFzY4QOZiA33bBgBtKltT6YYbXh3SCzuGKzwljLOQpn1D7hEMzYiqYuQYMZnQeGj9m33d4qStG3+lKOJ/Zt4RnMCOpThRHMyFIXypbHOZjxWDV5m3L9BOP1p+7Iv/9xaQIBghkBoCSoS0ObPhJJzBXckTU0NHRAMCNmrT39U0NPSqTX4MpYrV4hhAhm6GBah0QE63RIMKNmvt/ZyuGdGQc9VuQxLh+1J0Qwo04dyziAN5G8cUiSDGZsPTalP5VEsTxk3/WErYfBE0IFM8IwjbdEMsYjZjBjdUoUZ+ecw8bRk1Yvv372j28SDmZMxLScosQtJ9ZgxpbKWyPqDNNN04/89bXguz6dEMEM3hoCNZgBOEJonbqN9C8IZjx7dK6st1S2UZC+kWlqYOehEg5mrOpbhRHMGNIXtU4YrsGMm9c8X7zaoUk7wO3b9P7zoI+4BzM+2jupc96k08stjx1+N/RjAw4bdN++aPQ8uEFn9G1TiYE2BDNsFDLfy6bMoBWqhZ621Lezwz2YgfQROGg1BFOrrx27DpV0MCMOzY0ROpiB3HTDghlIl9b6YMbeRRPIGqdvMI5fHsgY83zwchyCGdvR1CVoMKNPjqJ22Isqw7AzU8Mq7pb6dFgwo9s4rGDG1LHiDmZMs6je3n3hRMbOIQkRw++t+EiAYEaXcVhLw9tjCbAjq6+v74BgxvzPmh9LzxfQY/+4p7dbblQ0IYIZuWOxrBNFBOt0SDBj6KAjMtPG5ZqF7/MdObJTbwYhghnOmMaZSgTjkCQZzDg5eDS7snYgpWC/j+KA4uRuhApmqGAa78UYSW+JCRTMqKue9PLRlQaTsJc3rbtFflOXcDDj1BgsyyVL3HJiDWb8dYxzcctwjmXasohsSmrkcUIEM3hrCNRgBuAIoXVqPOlfEMyY1ftc7pBvgcbZ5ovn78m7O1fCwYxu47GCGbnjOiaYYZztuNH3q7PhsUmb5F+91Wx/vUTkBn3myvr31r7rKXuXjBrvH0G9j8MGvct4rA367XHiCmZcrWBuPTTsnWV86aDXL54yzuMezED6CBy0yh2HpVXUuP+rYEYCmhsjdDADuemGBTOQLq31wYwRusWxMXcGUkqXSOXNGKV8GIdgxg40dQkazFgcUp00tVN/48iPUiYPzgVe6bBgxsSZWMEMNxtxBzNO9aB1S2drGO092lmugLPNnADBDIOZWEtDuZkE2JHduHGjA4IZ6rl7Fp77qGRRMjno+cqtzomECGbU22BZp8CGANbpkGBGcYX7i+KVD40KVvrPne8QmUGIYEYMpnHciGAckiSDGY9pFZXbPb4abpv6Ykm/zrpKhApmUDCNpy4Z4xEzmGEelGeqkyJnuiNcsWds7dD3Eg5mvLHGsly1taQtJ9ZghuGMgSe0jXdRihUuq0aXDyAGZsJbQ6AGMwBHCK1TE0n/gmCG9t3UBmbhRMty/YvRd19N2CPhYIaBLVYwo25mxwQzHl+6tfqlnCtje8IF1pju74fiHsx4TyowvHL9lXFoP/qKsrNPh+GwQdexxdqgk2zFFczov+Be7r5De0yCp/prqVxfjX/NDKSPwAPJmYmlVVbH7hIkHcxIQnNjhA5mIDfdsGAG0qW1PpjhdzYpelbQW8vDQ7s6p6XJBuMQzEhGU5egwYz8ZO3bo9JsDTfcun52qXNftw4LZkz1xApmeHiIO5hh7/igs93mztScqT2cxgTbLCFAMGOsJ9bSsJsnAXZkly5d6oBgRnr8pLWKsb2NonYc8LMrkc4lRDDjkQeWdUo8CGCdDglmTHSZw114hEaJevLnTrnRSVxCBDO2YRrHgwjGIUkymCE3rHGa3AySReSUkZGGvXTvECqYYYRpPA3JGI+YwYzRA2KWuo8eS9khtar6quqLaAkHMz4sxbLcuaWStpxYgxkjT7y+skSql3HYjgpT+2z9U4QIZvDWEKjBDMARQuvUnaR/QTAjnPb1KXtQJ/Njrg5baSNjT0g4mDGWgxXMuO3ZMcGMdbG3XmygP7UuS16qW7LO+zTuwYzJ6+dONyU50TO7Nm5widZKx2GDPpyDtUHvwhFXMGNqyV8TH88PsN6jdGFGpkMdC/dgBtJH4KDVbU8srXI7dpcg6WDGLjQ3RuhgBnLTDQtmIF1a64MZJi8sdIN3TaZu9dNdvnnRsfM4BDN2o6lL0GAGfdiq2o21tsbbjjoEuy86Pb/DghlHg7GCGfRgcQcz+ps8X9Dlpi1jw6Wzh4vj994kQDAjPRhrabg9mAA7sjNnznRAMIO5zGnMnR4+Zse09R8wNxXTCRHMWI9pHQ4RrNMhwYysWwxZZ7NnZjkL7IpvLcjvRIhgxjxM49CJYBySJIMZ647+r70zgYeqe+P4oIRK2qRNk8qrSOsr7WZsg5khW7TaJpSdpF2FKBURKjshhGxZCilSWrVQadOmnVYp9b93zMjcmXvj7c7c+/q/fd7386l7zHXv73nOc57znO85Q9E6dS9ILTtomOjmYUPzcFXMmI5oPFlsjIfPYobjjrEi2yT3ae1ymJNhNXa3I8bFDAlEy33egbXl+FrMMPaLH9+cN0T3kGJx4OKx9+bhopjBzCFgixlAIGTlqbGEHlDMGOjuX7e6do5e6fuh05KEa9MxLmYo+SIVMwi+gilmDCZsuL3mjal++rWD4/923aSJejFDJru5cLeVn1bhtlef3X8k9kWDzPBFmqAP8eVXMcOPPLNx/uxSmvfrx9PsXuZsR72YAY0RKGhFQNTqtWBHS6yLGXFwYQzXxQzopLtTMQMa0rpezPhA37+7etJfWtv6pj05G/H6FgrFjHg4dXFazIB+R7LAihmiIUjFjOj9/C5mnDt9mDFeX5gSuq3KKmHA8204KGYIhyClhm/342BGVl5eLoBihtGgC9efzounBPlffiw63EIMF8WMO/uRrFOJB+sIpJgxfd6YlrkP32v6n3ojpLT90hRcFDOyEY0TjQfjELAsZmwSX+j5XnOfTtHYwZKn958/hKtixi5E43liYzx8FjP6/J1xc5JKMz00itLsR5b8G+NihhWi5eiYW46vxYxJ+ZsWXjUgaCSKq/y8rREUhItiBjOHgC1mAIGQlacmEHpAMWOGVXVDQX4OOeyl0pUZi2YcxbiYsT0EqZhhGiKYYsYp72D50YNk9HPNRku0WC2IRL2Y4Tu52GC48WrttGx3+ZKrZ5xQmKBvCUGaoK8O4VcxQ2344fs6Lnd1/I+qMHa3Pv+KejEDGiNQ0MoUUStyyP9VMSMRLozhupgBnXR3KmZAQ1rXixkn9GP7WZ3X0shakZT0/Gv+KBSKGUfg1D1/2JLaNnuY9vYk2T4vx20s4ew3VEBTopEGlbuK0Rumy5LZVQyiA/hZd4atI+C9RBvGKuCfNkSr9UTgfd08iC7O9k4eSkTg3W3BdksnG6IDw8nWw055c5di404dc4vFfiVaux5dsElP2def93Nz93d2Sxe7KdgRY6OBbnqSDKZHkG7qDwzEFtFcgwFSSJNiPkAnDXi+nXXzdvFJ0cc0849q/kx/FzgXkhyCn+aRHDIv//bQZ5+2we/oFvRD+4PtKe5a3/4wjlHAE9VAgabyimMRwGjpH41J7iih7gx0f3snwBnBn5tBgP/TnTKIDNN+bLdVsLF3A3oX0D6R95er19+qUDat04+9/r5CqtEqk8OO4hrsD3PZslMT2qklaDAPRINZYGMwUU/gjdsn2dzGalrIy1jCv+lsfZnGao8rPO0Tn2O61GHESY30KfIjco0zOM9sEKUyP8hlHPb13/U084EZ5K0HxtPDV+SHzV7jIoFCT6MiGk4VI8Pxml83LezWTK0ftdNowdNUC78r9Q21HqaX6/TU4IrFMU5csReV13S5/SraHUghlxXxskgEggt0SLiaw+xArGE3iQAz7IY1foqabBJILbygf1r7Z6wcx9tIaHoB0wRmwsU9L4PzdWlNT0uHtawFBEbHDTrdi/2TA7X0DWkkYwW5jVPnGG6WU9Kf2KURV1T4x0q64S6tjIVNw2MNz0XDPTKXGTq1dVHiqwUVhA0HAYlV1IGcEurqDwFXX3Gwsr8B6F8MIH1ne3ovljwSOmBw4PLkPszLOjbs/hnR5l0UF2ymk598lK72VPFuX32mq3J9Tqz9+q8PmttU7RUqFdcoejuM1l9x8NX238d8HAIrIsHOBX9pQfS0BCYeVg685zNW3/a1eFjHap34mGDw6sc6zi9nkjBlfZSoz6W2kD6XxwtBAtPczUNS0iI09ZNrV43bcKJK5Q8DUxlgLU/QWlOBDlEGtVZoAdNaLHE7REIKBkPayzZg9v3LkXmq1P/LFcaG4H7q21qeF5Qtcl7BGb/bb8OtEBH1mGCRw5KgTI2HBJQcpgSsmJAMFxMOFTw03/mkRaeoIK/o+JpHnEdY9zawdGI4cE904MKBAonoAn6iU52G6OQMvAYz1fZgeHkQwXjBcOd97gpF7uhM8Srt7NGDzuyudDnD41G4ZyC8VLV2c3ZwMLQErkOHB4hPQi0J55NiJu4MN2Pg8dm/doKG81qwJ1g7AM8DVlgYNvYerHe3BtQCxpMG7ySIHdmTXa4xtrCCUHQYsKOpOsF7p7oEzdLN1t6JyljF4RR92y8bgqtena+Lt183dnbpfJXTGaZpF1Z4Fx6uHMAU0cDNGZhXeti3P1Uf9lPxmqW6Wa7TcbKxt27/UWa3FgcvgsNzp0s0sN7pwJqYtwdzcC3N3tJB3dnm12eBXMUDmKg5dvy712I3S5dfAaPdVVPgXJVoOy7ff08AOeRMOvXg18KNnP5hyHCwXM/pquz6mCjJGngDd7Y+cN47mERcB2TARDfwTqxpN09Hdbiz5XaRrBE1pGFgHrFWTYrHg3Sp/0PPFIH4/x9GyAggdSNGssq53tDw0AKMZ1KR7PBwFPeaQ4cPlDSPrtWWkswNpQSMyOxzIeXyMBQ0H3EQSXOJjpCcCqe5a6m9oj09Vf1Eib7D8ydL33G8at9Fa8GQow10HDuYChSn8nDj3XgNe3cXUHRLIANmDnvrJ7cHZ6Il8B/RFvwNPE0RcTPn6bdFZynxNnskpD7ZbYV9Pi6DcDRymUbcyNnNQ79z9YyHwf5hGtFxN2jsBRIFehRgMGl18H9Og9loFVRMpEVV9jdiOAAGY9gAsZDhxXG7dlOmwZmSfGPYPc9ZOWrHlq6Q2W16inN0HQJ6rQe4fA5SIQywTslw5y56wa2JTFF3dgSSm/a+w7yNza/bMEdgsBzmzjStDZCsdinfNlAXGT8q8QgtasCDcvctMfK/f2AuI/P8qS72n6oTFQS7CMAcjWQeObgBOBmNgF0G6aLjk6idRAHHbnA0BKcwQHas0D6rdCcC6jELZcy/tdcIgE4BLkIxbHhXXca9P9h22dZWe19T9IfqKb69ObNCU2bP4p7Vs67/LkzZnbH+oia1kJKvu/LL31PNmv4wTIEAlQ0ocy8yj8xx5gmmzFxT6T7d03lCJ/MTrRge6xgMJzA5cmdYr2W6hz0wpeedCW7KjAk7VZRM239tjuXeCetUOSPMr/vacEeYzo1oJ9xNeSzZlvGSbUgeUzZWSEiHCwm4GVGhQ19XRlQe6TbEU6GmQ2FATY9AGlAjOyQ/hnvJrc6OYhCMI9V8osguc5rNtqIj+fbYq59kZILUoi1vU0KDT79FQfL94UiSbw9nS54BJ3m15LgP01ScaX7v3+kpX9/KicT3N2QAmYc1g0hf6+DAY8SDW+aZzP6cE/g5MDLbOwEpi71NeyhfZ+9hR3T2sGO4dX28WzEnpvLlRDN6JmnxnciyW6IIz8llGc7mbmAvkqBDt/Ba6FcA1G0I/9MRThoslrqDQxvwMB7MVABUjKcA4sKLlEzFMunehlJrb9Fzizhdknkj7kWf9su/80uot/+pX4K7n0DlfHiVooPA3U/hsAv9XVRuZIdybhyuBroWT/kkt8TTnXfLUVI/m1zTkX+ZxAnGsRwELC9zq8jZivZYBarVEI6k1uVwgRbu2Q8qZrzehdFZh3GdFruV9RhuTgwHZfBn3JW1KSt1nDwYtgw3CJMF/vnT9ESamQaChgVuQbR0Wt9uap5WhqZff9JJ/tCuVbmsXtBE4mFXg1xmL+DQhr24CCeEDJ2pLZgRMzMytuvb8JTizeNZGZblY6hR+heTU1YYenJKwXwrbinaL/NDCqaLw0pxuWOgyiTADFT0E1qXzxPOqnsvGT7X/qUu52KcJLOw5eJgbw0WE524Ryq4jGAkDegGDEfgU9aWDkRHjrt0aVxqrTH7EjyVSI2pJ7jWHpbfgvRY3GgaZ3sX5ZQCIsZVcCocyGtkAhcCE6N4rH+wp6g81j+YK6WQ9Q/oMga7XQimXRDrI6O17N2AWAB6P3Ow5LQXT/uMTRyj/01SSXdbDWGI6XO7uxz2ESJxl6JIgl4gIQDmvBjFWiDh6h03wK+2iKrsJJLQb0SSNWIAkzebbqmUsVM8LDTnu/6RO2JL3vXLn8+pEplbJfJvVVo+tfArUdZWLXR1Ls3fQl0MBZUSEVUKiurWMpLMr2WkLggEXa3v0lIS+zrq/G8ey2NaSGDyD9HCIY+pFCueZsHF0yujX734vJ9G88kIk5ts8WkN54o5zdmT0fV8fxJz64ADWJtRcAQ+ORFcZW6fXhEtHZydbImWrNpM1zarRb9a5aY+ylQ9WW75wZXzXtpyPxv3aj54tavlAcCXZGIB/b7zCqAEcKtoDE9sC86X+pMt3RkdkDPvrcd2Cw9c6mdNOrV20V43ycO+f0zrQvsblID4w/72EPyO01g4ApUIbraN7RatO4jtI8zFbaYz8BTKlbrHtfSdCjnWU7x0xjOdFM6eRnPmOZCyr/9uplOxeMMI05px5IT6wMXnRWZpoCAS4CoIItXF4I+WYv8Zr9YtCGdwRye3QXb1O1uDxuY2pGrmtdba3A6cuOaPXf1P42VsHsuXKbzMVJfL9OVupeLtWgCDq2O7P4NlDN47F3yL9mmKm9D9A/VHGSeshSB+HXfhRvx+NfFDDabTwqoBOC1r9DhOgBk90pQLTcde+6Ieet2hruneyzoIgML0PqKZ+RLuMUQURlL5DjS43XeJq9ycHYkbvdZv2Ey0dnZ0cXYCp99dGz+CpRg/68UXUKP33Gg+q/+yFu7puGGkX21dVLMF6ORhoJoD1HkgwARwPwj3WCJGgI+TQ1iPsNGr03vzfMvvmffM3S730SserOB84eYYjUHgHNwN8BRuqEt4shlnad7s1725S/OdG38XUW+3rL0ulqdO9x032FRpSO2ffhdJIyDnflDOeF7OaQMMzVswiqg8McbS7oyAHZZd/zvLTh96bM+uCEu1JGEj84lulzjP3uhrjmQ7827YzkBKYSZFNV0jgJowMKZVNAYF261GtJ0pjmxHVOvODuoO2234ne3GnC06uWa6l3aEnIWu3j2vt5y2W4JkuyVItvvTOQNgHDKicZRxZJxu7uSUYlkHXLT0cFsLs6gDTf4gC7/MW/BY+G2/jvoonMsKdGJksC4GsYcM0OoR072cpD9LBASgfeyyLBHZD3Npcasfiimt+Gb6Z0A7CgqYIiqg2pGHZBNg8pBub/+S7fBe/m//gu5C6rT9C4pLA03CBN50GdAkwmqC8mxAUy8C76IU0NSb1QTFgIAmUVYTlCIBmvoQeANXQJMYgfd6EdAkzmqCLtMBTRKsJmilFGjqy/5dkPk+0NSP1QRN5YCm/gTey6lAkySr6S8p8pd1ChM1juYUNL6d+/4a0DSA1VQV1XArRzFLPUL9kmmkNKMFaJJiNT34cG3o1UF62hHSBgnht7/UA00DWU2rogyHBBwdTtm3IPLjki0FsUDTIFaTas6W6ieE9eo74mqqxmY3HgGaBrOa7t6fNz333n2N9DG1zXr6ay4CTUNYTZbX9azNGUPV90g8lD0oM04GaBrKatp36cL0pzL3aYdO0sPzd5R8B5qkCbyzLa5dg8MIMLsGde/UnVjyZaS+35z52dcffYrn0VG6u2swB65T4mYZH+ohKLGIUjHEVy4715NOTrqjs6i4UgmFdXw64jr+go7lkVw4zXF67BS0Iwrs2CnTOKRjp97G8vvYqYkDFzi3+ClrRJj5RK5JHcfJK2Bz7JRhHNIhHgvicHB2TlFRkQCOnZp8mrH33SAiJabIaHzYYVHOpUSsjp2ahGgdaTxYRyDHThXeDl5gdXyDnv+Iqc/fut3nrP9ideyUMKJxgGiCvXEIWB47pTq1SuVc42j9cJ2FOvSLepwHLGJ97NSdWMQD3bAxHj6PnRp2USLpcf0Y9Zxs8XmR44UgWaLAj53KRrRcNOaWAz/Et2Onrt4tXqo2uVD7ZBbBM3OTLmdGh9WxU8wcAvbYKSAQsvLUPAJMnvpvOnYKOlXE+NipmjikY6eS4gRz7NRkPYK3EGkYPfSlrKvnTPmrqB87BV0+ROEopctxSEcpFcXx69ipb9MaehvuVNMNmPtg48ravNuoHzsFjREoaJWEqNV+weahWB87lQ8XxnB97BSP6he77ggNaV0/dgpaHEOhgHQCTl3TMcJrQo9LkQvjHN7N3SxG4awadBxl0V6Y7noxo1Do1ykYwDDhBkxMLD3AvzLcwBsQV1kyC+jtxJK9hzv7zCnWL2K1uxOtLZ2IVsBsc62Li4M9eGyVM9AIfL79lmudwI+C++idQD7AgTkSMS8qE9XtwKOBmJOgpfTlRBc2o8ncAuBsa+vA6NiABf6MxzpnoiO4MbtrxZaNLxY1TwuU10ghzHjbu2inH6Js3MUWyA90YyegzJmK9mIL1wJ4CjAyyZRXdAemGqjOlBHcq896IN77IXJ/zHsztlrdD/AcuRUqnEd89WbegwffzLz8u6iq8H7q6AmMWv2IUWanxi88fh2FTXxioEJmvKLqQxDw5FTod1UPOQ5/ZCU9oGYsweAgxlFng1wCE+K0M4SnpW8/9lQV0+UfUBW7ciRVAL/BzcysaWF3Ch8zdVYRjd3A6TPYizmtZe/eOS4wZ9tbwFk2782qoWKq+TMOD6NnzLUlKMqROSdkEvSOG3GTLJ3a+GG6qtNIpvM6jYnp+lg5OzswLDuFye5MzEYbgBuJwSGBXUu0XwWGd4QF1ZtDp/TWi8rUDAj8fLdu9+gCyEko4P24g1D7ZdRPbstjRRmeWJd3LjPKdGtBWd6YdY4dC8jqjjDxORGMMN9k+pFXY4ZEu9E4T/bvw7oxd/mb3cAPcZjBBlYcGYg4wr8R56/2UerXCN4ddQamnI8Nnn5KM+7l+Qixv304aXLxjp0b3FTgryZ+KMTs07AKAX2albcVEGDyNk3SJMWf82+QUu7LHq2JfjeDk31h4mkuziBByp2zicHo/PevBSj7X5+3YQ14HnZA3mlrR+w4GqP9LICupUtSssnnC/U+knwfZqTO21A/E/ZpuUmdTo1d5QQBfb0qAX0bAH1ToGmSFKCvQgVXmtTN7aRDfj0WCKW2a8Hz1TPPuyyIaTtCOSD6d67Q2BbOrzoXMwUPHeJ1YsSvlt+lUNDA+KdoGdh/QfXm8fJOJTDJrOxWCtWvvfvaMGzdGLzzS33/hJbiPFNS1INpY9ZQgxI4kyUN5ge5kyXWdX7s+KiqQHp/rwqsk6UOz+xGogQ+sr2zjb11e3/m/UVkkQyfLWvy9Q4PN7z7yaNKm9NX2Tfg9tWOFn4YQwHRGHVncZH+ELqzHqSs5+TsAQxfltZgZVph6nxgygry50rEafOt7ZzdbJSI0+e7u7p5MP/BO1vVObTIsCSjkOT95sYduRu+nJshxcFfYOSx3oG723Rq4oex/M8iGUsVG2NBeg6z7tKdbHXor2UEp7VuVu4IPejiI+Ngc5U2jSM+gx9d3zqn+k+myn9ojqwcViCXAcxxlQv6y6kwaavoXpbKiuQI2ZZE44tvN88N196h8/jLzVDDeEynvaAAERUsAep4CACGlm5louyhzNkRSKh4fy31dVJw+GtxzUTD7RYKnu6FkKGM+UEeQ1n7dX4IUHYWQYBUw7PsRLOQ8O+inVSCTNR2DnynHyWe6Wo5t3C0wGinqRcqEGinoCquzBJl2sl+iGrVZvt+Osl33obSZv0ciAPaiQhKArt2fPU8JkGfE9m4f/++AGgn+6Kv2o1L02iJEpS5xd+cTHBBO3mfR7LOVDxYRyC00yPZfb0+HzpIjr/tGtKyZMZbXNBOD6uQjANEE+yNQ8CSdvKubTudoVpL9dcNvqNav3U2rmgnNUTjNZ3DOtnFEe30bq5oc1z0Wv3IW2luC103vsSYdoo9h2Q5A8wtx1fa6XxK3VvTjHpq8bDSMWpOcxpxQTsxcwhY2gkIhKw8tYjQA2gnjVHjM8dK9tIsOmsVkvN24yuMaSfixQoE2smlGrZYiirtlGS+efT+2cqUbc8mCJ0c+MwAddoJOjdHgeCRApWDJXjKqrkKpSjRTrKPVHYaCqVopJvIqb2f8SoSddoJGiNQ0ArwIwStiNUCjblY007FcGEM17QTdNLdiXaChrSu007XMm8GhJy6RD0cPkokxqrmJwq000k4df+jnf4R7XS4qK3h6MEj5HxH0b2HUt8rC4x28v6ORDt5f+MH7eQp1nft63NjNHPzRnouHrg1BkXaidhq/eHDDEWdU6uflQQ/G38aBdrJ5TsSHEL8LhDaqZeMcNoTVyotaVCZcx+RO5WY005XvyGpAvgNbmZmWNFOyx69WtBW0KKXkZYsmmptjx/aaSqi6R624mK5j++0k2GrBs1H25W+u+kN5dTrow8wpp2YUQYWVwGijMBopxtiG0ZMUV9DPzRmYiGl/E4wDmgnZrCBFQcINoKjnZ5sFHntVZikEWx6++GP4c2iOKGdpiIqBPRpVt52itAjaKcZNQzq/EXi2j75R/wnbBoRzXfaqewnEu3k8kNwtJPHq14uq5rHqqWWa2RR7LfGok47QQMjCrRT1k8kZsHiJ8q0U+2AI4skd6vSExpmKJoUx2dgTjtJIb5/2Q+skyV+0U59Uz1aj40jkIPvB2/5YCh3EBe0E9BZEYxBxMYYmNNOZefqNU/mVqoVqVq9v3CjLg4ntNPVNiRjebfhoefwk3Ya98JRbVXFFlJo8SHpvwjjoV98IGjaiRnIYWknzZ9o004W+1/G1a8YpZfUb9yyvnpzjmNOOz38gUQ7AaEFZdrJX1NfIWDcNXpI+NxBls90J2JOO4khCZB6qI2daJYQ/l20k9vt8JSiQbP1j3w8/c188rEnAqOdLgohne30ncDvs52aWyfu825bpuNdbKvgWjL8DQ5op7NCSCdlRArh4ICaW7duCYB2sml6NjBb/zA51ML0zo35BeK4oJ08EK1DxYN1BEI7rZ+8fsdQk0TStgoTr3lVG6m4oJ3GIxoHiCbYG4eAJe20bzG5VY9QrR2/THLY9IlxV3BFO90gIBkvHRvj4ZN2cqhRF538Ikr/cGS06xNPEaxpJx9Eyy3D3HJ8pZ3sln4aOkUvSLskeEWTnWLWW1zQTswcApZ2AgIhK08tJfQA2mnJNqd8pd2H6RFkq0PZP9/3wZh2OiuMdLaTg7BgznZyJ3usb01UphydL/2tIffSSdRpJ+jcHAWC56Qw0nlFocL8OtvJ/p6R7sxhPqSiIJFrkfWSIqjTTtAYgYJWDohaaQj/X53tVAYXxnBNO0En3Z1oJ2hI6zrtpOEywTBfwkj3wOW6Rl/6bAUUaKfTcOr+Rzv9I9qp9K1Ilcanizq7+qvcE6LrLhYY7XRxZCUC7UQd2a0vyusi7aRdQZ5iHfyeVDi5sHQU6eA5FGmnT8bWMk5NqVqltJz09399+lOGFCxHnQUVgoVDIkdyjUD8oJ3Mvp25/OyxJzk8/EVuzpFhbZjTTh6IqgB+g5uZGVa0k+sDtYGnZbT0smdY3feKOZOAG9ppPKLpvo/AxHQCp53yvaVHt9SP1Nm+6eAV0o7paRjTTswoA4urAFFGYLSTxT6xj2Gb5DWjxywJKHikMAsHtJMHojhUiDh8pZ3uHS4/NavqEdXfK6uu1JashBPaaTyiQkCfZuVt5YQeQTs17XdgtAi5qYUnj/GNq4s6wHfayWF0JQLtdHYU7AQeddqp6YZyfM1EKa3gz+7Zl4bRpqFOO0EDIwq0kw2oHiyzMG90t1Ko39NOa1Z/nVVUbal24I3ceaWILUcwp52GIL7/61FYJ0v8op3Wyq8v83x/neT30chDROJvJ1zQTkBnRTBGJDbGwJx2MjWZSVW8G6lxVD5bcROtZTVOaCcPRGNRcdFz+Ek79TOr29Frhbza4fOJW3+U9B+KMe3EDORwtFOa8ujuZam/p53OzRgoJeqeqJZtvNLDd+aXCMxpp++jKhFoJyC0oEw7VQS0rHFoMyRnJ79RFJ1yZh3mtFMQkgCm5qPYieYZwr+LdpIymqQ4P+q55r6S3llHzwUrCYx2MhuDRDv5y/Kbdhp2nHqqSuEdLfmc3N4NAdc/44B2MhiDtHasMAYHyMaVK1cEQDutPV0dlrjYnJaecfXLCK+V+KCdCIjWqZPFgXUEQjtd/Hqj7W3haL0UkS9n3J6Z1eCCdsqSRTKOPx6MQ8CSdjqeR35yQ8NDI3iNyIKNFospuKKdLBCNp4qN8fBJO5n5tfZN2K5JP15MFm9xeNyCMe0khWi5xtFYW46vtFM/u0F/ranfoRE1tvySjuLCQ7ignZg5BCztBARCVp56ltADaKcB392r35LD9eMmma6QWvBSD2PayYCIRDu1jBEM7TR2hfApN+nx6id+9PPXurGuHHXaCTo3R4HgoRCRCB4ikV+0E7W4/+KRFiK6aZ8Dt4XmRDxCnXaCxggUtGoZg6TVVcHOErCmnSrgwhiuaSfopLsT7QQNaV2nndY0vsntsySMsq3ULOVOv+KlKNBOlXDq/kc7/SPa6WBTr8PXWz/Sc8a832t0YPUQgdFOZrOQaKc6FX7QTkefejpEf6app/seeZGr8WwFirTToo0PP+h7bFdLsJim4rmL9AgF2slgFhIcojBLILTTtIozE/vKSqsH+k+1eLhe5gfmtBMBURXAb3AzM8OKdprS/8q2v18nkPyr9sSHfLGXww3tlKWCZDp/bEwncNpJIj0zQ2Vmm77fgx0vcox6LcOYdmJGGVhcBYgyAqOdsmq2aU1gvNA8ltPa/86dzHAc0E4ERHGAYCM42qm5j6pdoN47zeI5elcdI8wu4YR2YvZpWIWAPs3K284RegTtZDZVOrfQ7ol+1ASrWONA45t8p51aVJFoJwNVwdFOM8RqTF1e+tLSDgklP+lb3Yg67QQNjCjQTk2qSMxClSrKtJPJ3cUyRyrG60YZRB3NWrr1Jua0Uyzi+3upYp0s8Yt2MmrVq1SYW0OJXcOY2dc+uAIXtJMBojEUsDEG5rTTK/MJdx9fCaXvcvLw7TXx8Qyc0E4ERGPVzcJDz+En7aS3SOze+IyxlKwrEyWfOb5Txph2YgZyWNqpSBVt2inYKzV7kEGCXnHz1AFFfs2OmNNO/mwBeNJOBqpo005FZRuv7aBL6ASsjGjTULohjTntNApJANOns9iJZhXh30U7BZkd16+Y0U//lFvDxhBHqxECo52ezEGinYbM4TftRDygqlUcvJmUGxmtn3V28w8c0E71c5DWjnPn4ADZOHfunABop8o9j1sGLZuin0V59kl1/3MKLminQETr2ODBOgKhnZKvmSiaaG3VjOodWLlMqX89LmineYjGGYIH4xCwpJ22HtKsdB8crh8i8SCn8Wv2FlzRTq9nIxnv7Gysk10c0U52F1/89cInRHv7osWer8Y6GWFMO0UiWs4Dc8vxlXaKr338MX3hKcpRvYxJokOm3MUF7cTMIWBpJyAQsvLU84QeQDstOSfkVL0oi5o9OX2F60pZL4xpp/q5SLSTz1zB0E6nqCn9xHs91N8j+Ub65CPz6ajTTtC5OQoEz425SARP+lx+0U6bRe2rtvWZopsZS5qifG6JBeq0EzRGoKCVD6JWy+b+X9FOF+DCGK5pJ+iku/PZTpCQ1nXaabxVlVRkZqNactWoqbV1kkEo0E7VcOr+Rzv9I9oprfKDfKmfCjXpZZxF3E3tAoHRTi5GSLRTkyE/aCfTxAFpV5IT6ZnirsP793EioUg7fSAUqF+vfau5c6TWhpLq55NQoJ3sjJDgEDUjgdBOJd/2iGf59tEqTuqzJPqR+wvMaScZRFUAv8HNzAwr2sll04aNha6B2ocdkg///Tk3ADe0U5UhkulisTGdwGmnKV7hl90jDSmn3p3WCEuijceYdmJGGVhcBYgyAqOd3r0YHL1imRP5UEyj7KRBg3VxQDvJIIoDBBvB0U6iJ3vnRmdM1DvhHZ5f3qB7DCe0E7NPwyoE9GlW3naR0CNop3tCz4pWT75LCvDauyH0nco0vtNOUiZItJOdseBop4A+iiN8dsVrhCkr+O1cK2eKOu0EDYwo0E5iJkjMwkNjlGmntTbvT821rqbsLc9el9ki54Y57VRgjPT+QcZYJ0v8op0sXr9Y4TwlUzvjr5mBK44/8sQF7WSHaAw1bIyBOe2kOGVQ0bIEG1JUZOMG5d5OyTihnWQQjdVkhIeew0/a6VbKeLGS2mpKplzIacsfL+kY007MQA5LO9UYo007xfTu11f1YpLakTEtgQfHXDyJOe0Ua4xEO9kZo007LWrdSEis2UwJU763WPbqp2TMaaeZSAKYthmxE81LhH8X7ZSZGbvQ6KSD7vZMCe07xZ+0BEY7fTdFop2UTPlNOznZHJy3YOp5cvKkhk3ZcZPW4IB2+miKtHZ80RQHyEZpaakAaCepMUtTNv9VTwuLXimndtxvOy5op0RE62zCg3UEQjv9EHpWoV65Q2/f7vV9pn03jMIF7WSMaBwlPBiHgCXtZE2IGa0zIpqSslTt+qpD5pK4op16IRqv3gTrZBdHtNOG6ALLqOof2vmVF2K/xE/5jjHtlGuCZLlAzC3HV9qJcNtpUk2mHdn/VYbiID9Fe1zQTswcApZ2AgIhK0+9TOgBtJNh0WSSklQ1bWeZz6ggz9ENGNNOHxcj0U6RiwVDO0mHiC68N2qyfoh8VR9CUKYJ6rQTdG6OAsHzejESwXN2Mb9oJwVDs/1jc5NpOW6XqpYIj3ZBnXaCxggUtIpE1Mpj8f8V7XQFLozhmnaCTro70U7QkNZ12ino56PBLy5S1Xc9uHHg/LNCTRRop6uoqdtPgOpusl+outWxSGvf6wf2T0ReqHdSN0+o5nqc013Stul9tfuIizoBTcKspnGqU7JHVQVolqxeoGY0Ii0MaBJhNYVlvzx9sb87OeLo0V0FixoGAU29WE23B20zGrsoXrvk+7mTapHzueG03nDm2j7prFK81CPN7ZvOSKmsSn2GgrmuwZnrPzjtH8Fpk6uNRjvGH9conm8t2xY2XkZgcJqPMxKc1suZH3Ca69P+FvOPuOqG51I/rt5s+QpFOG3OdvMFFIK1VmbflztW7ZmQigKctskZieUxdhYInLZS2kh248sIcr5YdHp6A7UYczhNCVEVwG9wM5HGCk4r1s7KKX4ZSouepbpw9d62ZtzAafVOSKbLdcLF6izf4bR7Ec3rr21coB2dRtts+f79fozhNGaUgaWLgCgjMDjtcpD4XTERa/IBQ5IeWb2AM7nDBk5TQhSnl7MA4bTZLuJ7c/aVq+3zXnWjfo6yOU7gNGafhlUI6NOsvK2G0CPgtOX2GXT9gbP148zOpB4ZW7mL73CakisSnObjIjg47XqWe/mQgGD1FG/zk4ekcjmTeTTgNGhgRAFOG++KhJh8d0EZTqvW6DdKbkmQXm7unkwvz1fDMIfTbrggvX+6C9bJEr/gtEPTzNc/Pa6tF2idlJdQtoLzu5exgtN8EI2xDBtjYA6n5elfTU7bFqedGTt93rnYvqo4gdNmIhqrHy56Dj/htPqkH8uTD7Wpxc5ImZS5NDf5T6bKKKBJzEAOC6e9dUEbTnudV3JVJOsNJTJ3SnXCtoIkzOG0ky5IcJqPC9pw2rTNUhcnbS0h+UkuTCBXqULm/RjAaQZIApgOd2EnmtcJ/y447cwj6TSrrzu1T53y0TO1XrFcYHCajDsSnEZx4zectkV+eWbg9zukXY6X8z8XLNyEAzhNyh1pqb/RDQeETUFBgQDgtO233likvDpPC+nzOf2VZCzn12thBaeVuSFZJwIP1hEInKajbBSyQURZw1+lbLwqXf0MLuA0F0TjUPBgHAKWcNqXG6tKvW40qgfMPPip94ovH3AFpxERjdfiinWyiyM47Z7oGtKty9H6cY/pqUSJQs6zYwQPp111RbJcCuaW4yuc9nzZRLEUS1FyxMOxySqie5P+nGxBAU5j5hCwcBoQCFl56g1CD4DTxokbiSnK7qZk194YyhhE0MEYTpPyQILTCtwFA6eRH7s+Wqyarldc9DHKbplVNupwGnRujgJwJeaBBFw9dOcXnNZ3Uj+S9uE6zTyRrHI7tZj7qMNp0BiBglYF7khaBbn/X8FpN+HCGK7hNOikuxM+BQ1pXYfTDAgrnujHLKGl0gdeUYmxkkKBdroFp+5/tNM/op1OPUra/DFou27J7AmZy/QlPgiMdrrhi0Q7hfryg3aqGPF8i7iICS1u3Z0F68TlJ6FIO8lkNxfutvLTKtz26rP7j8S+KNBOV32R4JCTvgKhncqlJV2OlvSi+n+c/mO4pO9QzGmnFERVAL/BzcwMK9ppkvDlH8tbC8n5j+eVKJxYX4Mb2skb0XQO2JhO4LRTlqubZ9RNMWr2h/C+9z/o0jCmnZhRBhZXAaKMwGinH6XhTxctv6ufX+z7ctOpPtE4oJ1SEMUJ9RUg7fSGsdpri0ke2d/rKymlz9eNOKGdvBEVAvo0K2+rJfQI2ildblbOgAltGscDducp7pQfyHfaKcUPiXYy9hMc7RSvNdUq4I0PJYYccqS6VksRddoJGhhRoJ0S/RCPovJDmXba+lpv6+1TqpSUV0sLjzrNwP4ork2I72/nh3WyxC/aSefj61miJ5brnlii5qSRKn4PF7STMaIx1LAxBua00xbHwRbVl5q009LMVEYuH/AFJ7STEqKxZHDRc/hJO92f0bh9VmGcbr4OvbowapgPxrQTM5DD0U4mAX5o006M64q1GcLrqAm9ex8Rcc8Wxpx2cmELwJN2MvZDm3a6Yb5sYdnqC9onDIYYWok9UcScdpqDJECqrB870awj/LtoJ93BUuX64Sb0pK2UnHUvYmoFRjtF70SinVR28pt2WmIoeUY9ajg5KHunPON9ThwOaKdDO5HWjv124gDZyMrKEgDtNMpHtk7W25Qa42kW3VYeUYEL2skN0Tor8GAdgdBOMY43+3ywdtRLkJ1oc9xRuxQXtJMuonFU8GAcApa0054FzbsSZ1tp+e+urDnXNjISV7STHKLxJLExHj5pp3FNCc0elYbkA3OVqsvET77HmHZq9UOy3DNcTFP4Rjs5LHXSf2BqrJn8cOqk+g0TXuKCdmLmELC0ExAIWXnqbUIPoJ08ZWTFGSfe0AO1/W41b+orgzHtNMIfiXZ6y53S8oV2si89/2Pnq7W0kr2Dtr1KHfUEddoJOjdHgeCR9kcieIT9+UU7XSQqlR4791p9f8ibOMobhfGo007QGIGCVm93Iml1R7CjJda00x24MIZr2gk66e5EO0FDWtdpp2tnalIuzfJWyxgd1WfDe5lWFGinu3Dq/kc7/SPaye6IXNxVz9X6QUvWL/0Qb/1YYLSTfCgS7fQshB+0U/8zdw+8DiygR+vHpwUd2RSEIu3kO7nYYLjxau20bHf5kqtnnFCgneRCkeAQyVCB0E4xF3rv8Hy9iB4V2av5uJOcJ+a0U2sIkiqA3+BmZoYV7TRiuN7CqP3G2oeXv71iGHDaATe0Uw2i6UqwMZ3AaaclwqFVAw4J0w+989sSot1MxZh2YkYZWFwFiDICo532BAzsR9kgr+sfEalLj7/wBQe0EzPYwIoDBBvB0U4XBrz+LFFRSMovSvWZ8dfWTJzQTjWICgF9mpW31RN6BO2UNuN+sZSCGjWcNMErWapfKt9pp9ZQJNopKVRwtBPp4O4HhRH7SQf6tjKmTZ5YjjrtBA2MKNBOn0ORmIWG7qVQv6edHlNvuvRNuUgLjfu8VWzZuzmY006XEd+/KBTrZIlftNOp0ySCzO5H6ruWNAyPOZ19ARe0UxKiMfZjYwzMaSd7VWrcgb/faAdUzPnydnb8apzQTlsQjbUaFz2Hn7STlThtyzKFe9Sg6WV3SzUXbsOYdmIGclja6W43s9Tf006ni48ITUuW0Du+bSzph1ipNua0UzlbAJ60U1Io2rSTyauF5wLu2+iUHli7WG1saRHmtFMgkgCpLqHsRPMe4d9FO03feN3p+sU4tdLJ4S9j1zwcJzDaqekAEu3kf4DftJPSY+ux8bG9dOKOb2/9uVpbAwe00+sDSGvHdQdwgGykpKQIgHY6uFepSWuWodo++b2epAUhp3BBO51FtE4WHqwjENqpz2HaWKXomTo+znJfrfcu3YAL2ikS0Tj+eDAOAUvaqb58acrPnbb0+I1Bz7ecG/8KV7STB6LxLLAxHj5pp4bomGMWqm/UYk/cDJMM13bDmHaiIlpOFXPL8ZV2+t5aZj9OI0gzWrL/ZOPBRedwQTsxcwhY2gkIhKw89T6hB9BOV5P766Z67aCGpH3tpxx80QBj2skhDIl2UgsTDO3kNkHuhEmSt258UMls8YnbnqJOO0Hn5igQPHZhSASPcRi/aKe5cy9u3trrpVbIsb9c24Tuu6JOO0FjBApaqSFqpRT2f0U7PYALY7imnaCT7k60EzSkdZ12miNZNzug2U4nPF3jXAOJNgUF2ukhnLr/0U7/iHZaFWU4JODocMq+BZEfl2wpiBUY7bQhHol2mhPPD9pJNezhZ33SFNqugOMFy8SOG6FIO93ZGjQ2tyFVM6+11uZ24MQ1KNBOnvFIcIhVvEBopya/1WI+B76o5ziUbrpSZj8Bc9qJjqgK4De4mZlhRTtpTLxal7l5JiXXOXGP2/Z1a3BDO8kjmm4QNqYTOO00f84KoqXsQp2QtSsXJcxgHMCYdmJGGVhcBYgyAqOdJk24OXLZICHtErJMfvkY8lcc0E50RHHmxAuQdrI8nH65aOwC6jEf3QlfGmuIOKGd5BEVAvo0K297ROgRtJNqzpbqJ4T16jviaqrGZjce4TvtRE9Aop1audMkvtFONXvTfJeucaIdCG0tWLZfRwp12gkaGFGgnXQTkJgFlQSUaSd/832kgcpraIezQ0c/CvkqhDntJIf4/pIJWCdL/KKdPk8pJ24epUFNaDRufvrgqQ8uaKfWeCRjPMNH+iNw2kn/x4onlD0DNNP0KdtOmB/ZiBPaqQbRWCWYTzP4TTud3ZttJDdMjRYvKm3k/nqYPca0EzOQw9JOUxLQpp0WKxhHiwQUax5vLG/wclvqizntJM0WgCft1NrNTPT3tFPU8/o+puaplLAPuU6TSbf+wpx2ehiPRDud7Ug0Gwj/Ltrp7v1503Pv3ddIH1PbrKe/5qLAaCeNRCTaqT6B37RT7prLsifLDquHfy+cuiSseQMOaCe1RKS1Y6VEHCAbcXFxAqCdqPJidZ80lukFyQ3u9eZQeDEuaCcZROv0woN1BEI7lddIvtO8oqEduWrFg4Sixx64oJ2aEpCMU4/NTANHtJNXIz3qXsNNjT2quSuXhw6k4op2qkI0Xi7m00Qc0U6+t3Iq6bL1Osnz/XQMtpnGY0w7xSJaLhBzy/GVdiIXry87p/xUe691iGdTxLxMXNBOzBwClnYCAiErT31M6AG0k+V1PWtzxlD1PRIPZQ/KjMP6bKeyRCTaKTRRMLTTqh+ZRcsX3iDtaBjzJP3k9mmo007QuTkKBM/JRCSCJyWRX7ST+sVP2hpNcbQdZk31J0b+1Rt12gkaI1DQKhRRK2/B5qFY005P4MIYrmkn6KS7E+0EDWldp532Xbow/anMfdqhk/Tw/B0l31GgnZ7CqUu0HZfvvyeAHHImnXrwayFn1bS3IcPBcj2nujDLQnBdeDCJuM7ejUF0A+/EEpD3HviWNieZxRM1o28FPpvqJi3H40G4X/r3Ee781QMhfjl6h966ZtW5J4/8w14bAfRLu3cV7eOyN7TXgstsCu8qWJI/w73kSyV2GvUXa6YkGekP/PDtgi9uJacOrUSQXGkoOxV6jnvJP5p8Pb0zwJu2bdCLaq/nhSNxK/nFqUiSp09lS96Ie8lHZVkdCdA9Tdp7T9xg84Gy0biVXIyGJHkjlS35C9xLvl5H4bKBzz5938uStmofxbNwK/l3OyTJ6+3Ykr/EveQ68m50SfGRpKzw/rarfZ6l4FbywO1Ikm/azpb8Fe4l3+Agd8xztYJmicTpG+Yrv47CreSJQUiShwaxJX+Ne8lvt6y9LpanTvcdN9hUaUjtJNxK3hSNJPnDaLbkb+Akn5FLJ89RNKeUZHrTdjVl1kIKIoDYbs4ORCbN6c69xtgbRmgVTS9gKmbdTguyVu5Zt2oHtphbB9Y4OQN/A+Y+rI0KXVt/dFFblLdnf5lGcsn4S8fLmpqRnphHCYejvYtKewOT6CwzIB0/S+aB/xPBreumFXzA/63m5y6ZJfdKM+yZUZz1SkYSivj/a2/bLxapRygnRB9q2IkGC/2hL7oACgWBCjWRgH9AFWppV4irpsqWqIvo31h1Th9irT3RQf+aDGI8yjxVXKMdke8sJa15qkqSdPtyqSYnGQDjKOzraFdcy/JYQhF51WOIQGvT4gouNqSbQo1YzABXSpkKcfY73gote7+y2WipiVbiI7f16TF+JZwr26ybca9ssxv4oZHBYiSNoM4k/A80YqJgLOob0Ol3XtR6vaFI73orOWLjsykl1ZU/OfsieDNuhViX+aGPlCmSPi4m7OrAW7jAP7FtmEwGUUQzj9z0jSFryxn4+1Lt3T1gt57BlexH0xiW7mvd2rd+tbNK7dHdAbhb14K78sDh7xJKx1HzlEhzSmyWXYB9Km5cuVNjF3X0AgmKpYCO5YCOD6E6uoDnJizhCuvdxJXFyZbuDKYAPN/3hN7EjwfPntHezVgw6t5wUc6v5OsFvhLXi7Zf/V18hwa9P4zvdoBURFCqCCC+l0GlGnWCKRVsfOfJcdOZa26gg9h7MBzdwb2FVJ4auZavezqtQp4cEtOboSJm7jOISYAD767p5eLG6KgXMyvNZpM5Vy8ETb5J5bN0AncYcOnkn8fUidU137G6ElfX7DXtI0ny3FVKgorKHaHMcWdEqPZW7La4xqhRK6eZUjNF99n/aJTghJBYlFw7n931fkvUZrRnau2kOBFMSRjdzst81EUK0sY5k9Kua466djpOCv7JuIGBzq3dyDhijQClT/LqvKAdygy7lZMRO3IyW95y8D4p4IYrqY3srnkwytngFnXuHx2yx98UzQIQzNuIlaJxuWZju2DdWvYergHxF1A0eEJ3+uVVj8poATrhMsYpRvnKTphuNsjKY6khxaujgmMooAarozYRYMbQsMZPUZNNAqmFF/RPa/+M5VxLkPgVnrhXveFmqNK/Nm87ERkdN5DgDnW9SZPJitO61DOV5GfKnKPJaMUyypc53iCdhHtM7v2Vv9q6gXgQVwKy1vFa1KaATra8on/HDi/2aiM7OknogD2Va/WqD/Oyjg27Z0S0eRfFBZvp5Ccfpas9VbzLbheCae+rz/Rnrp4j1n79143Nbar2CpWKaxS9HUbrrzj4avvzMB/3d+Fj8C+tgA7hZm9p5cC7G7Q239+ta1ihE1WlkjH7gTtnBJcwZX2USOKyhhCJqxcIQUIGdKj80woDYE0CaM2pJB6JpgM46q+o6KSREFoaDVN96/tXvzi9vSK7eol8TsiC0YjMrRH5txpBwxAKGgE+jaARcXkFywE7HAkpqg5ph4nAePorAPAOqDfDhkzRnEA9qOsrlmWcw3nEn2j7bbgDKus62gHVII/lKy0kcGIC0eFGLlMlVkBthguo0g17NAbNuaIe9/fj0syqdZwHSgqRea+/D2zHcnhISZBob+Io07EoHq7yHc8FeiMGMH+2YWaoTBLJEcS8XBzsreEPIAjKTo7wlt5HDb6l5v100p19kHfoist21RYd/BrEFsSiCoJMcgVYiQEHN5bq7/+R6u3JisCV/4v1C93BJNTZwQF4fjBqAJ3ClgE8BXszHe+dn9dNVeyJaYmaRw8FHkn5mq4igL1AcKYoAwkbGtQUH/6RKfqaA1I4ujg7MZw8BG6QIabtpZKN6zf/egqe6pvdW7+e5hVITiONOSRUPXcp7Dtwz+E7N6JtCbHiCsLUAsASJZ0t8bEnh6Ljt/eHjvPxJSeOP3OgfutuFYxCEeEl1P8/9WT/v3Ri5jWrb4q6R4V+VMTX7niBI/93aYb6/+ee7P8iD0IbUosG6RVOebGV/HPma4z8v3FQJcT/v/Rk/y+7edLbzFiKdPLv1Js3nwpRcOT/GtKVEP9v6cn+T5sw9Jjlh/NaQbfy7o60eFyDkf87KEP9/2tP9n9hqsswy0+a5JO2ypmbrj0k4Mj/q6ZB/b+1J/v/B5eDUflL8tSy3tcs/vlObjJG/p+oC/X/bz3Z/6UNX/q/lStUL9UtdZ+SaLsPR/5PoEP9/3tP9n+NrTteBPzw1IwrqrO5PYxhg5H/+6+C+n9bT/b/uDipeZ/ER5MyRAfXjBywqRZH/v/dHur/P3qy/4u+LM8lTzmrcVjXTE9tw9bVGPm/7jao///syf5v92rT34ueDaYXnF29Y3fDkEM48v9+O6D+D8rWY/3/Tsx0TQVNR7WUccaPl1T+9MDI/5fsg/q/0D9S/V/i/wduhgW9ILzTKN39YFORXvxLHPm/bDDU/4V7sv8vn1r4lShrqxa6Opfmb6EuhpH/p0RB/V+kJ/u/gZTCTIpqukYANWFgTKtoDI783ykG6v+9/pEl2jc8C9wGg34xc+4MW0cG3MmnK3OovSm+z9W3TVQsnTNwfg2PZ+ex/sW8jLbqIFcUa91R//8f + + + true + + iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOwAAADsABataJCQAAAJhJREFUSEvdk4EKgCAMRPfF9gn9WX9Wq5MtEmdKbQQ9GClud4cY/Q6WbwgQ13LnKh5mAsKEle8MeCLm1C9pb2I2QHxNtKC2RLNVeiYjTWyDIxkEZPuKykDTj6QboTZwTA8KA+/0oDRwTg9OgwhxUBh4Xo2SDaLSg5waBrJ3J//uL66mG4zxNGX9BMzezmuDR4UQKg5CxQ2IduVGkrvn0vkHAAAAAElFTkSuQmCC + + 1ef12e12-a315-4adc-8a69-1049182100f2 + true + DIFERENCE CURWATURE LINEAR GRAPH + DIFERENCE CURWATURE LINEAR GRAPH + false + + + + + 20 + 02fb770c-ba15-4f83-acf9-af1ba24e79cf + 3a4d3006-5e80-4a31-a2c2-77bf1567014b + 3ac17cbc-7b40-4166-9558-9be4e21d91a4 + 40ec6168-79d7-4abc-9d6e-d41627216763 + 4bd05acf-e732-4c02-8528-9002b488a087 + 4e45cde8-7f27-431d-b06c-7f9c5ed9e84a + 5f77937c-77e2-465e-8b74-0cd1dca8659f + 657928da-9388-4d25-ac8c-5461f78115ff + 9bbc0f84-6983-4117-821c-ceb85636c1d3 + a6f5321e-1fc7-4d0b-a809-2c998b9ba647 + b9b3f377-4fa1-41de-a46e-8c5b7fdb8176 + bcc4995d-3075-4627-86d3-17c54f203760 + c2fa32ad-abc6-48b3-98de-eddebf34447c + c6051a24-e2be-4566-a3f9-7c05b6c560d3 + d1f9d08d-efb2-4192-a859-fc8b5bd7b96e + d3b1c4de-65d2-4988-bd21-0fa96869795b + dacca8b2-18e3-46ff-a12a-1c3dcbed30d4 + df5ac2ce-c295-431f-846d-10a3ddd11fe8 + eef837d9-6ad7-45c0-86d4-37d5df250d0a + ff97abec-08b3-4858-8f83-c4185f48b077 + 9096d595-00e9-44ef-bf8b-df7cba4ba2ea + 7979dd58-784d-428c-ab41-1f9a01cb3b5b + e9837f44-fe89-4576-a1ba-d864d9176564 + 98a7b290-1680-4c8f-91d6-4080e52ada8f + ad15254d-f361-46c9-90d6-b5db1b60e3d2 + 45329fda-4528-406d-a823-54e35ac6ff74 + 9492d9b1-8423-4285-a424-c395dc7f8b36 + 88ea5216-22ee-43b9-bf4a-bf732fa4678f + 693656d3-ab20-45a4-a99a-8ca5a8f9ac36 + f9b9305d-1e20-4067-946a-b44d88604308 + 3c10a1a1-09f5-411d-ae06-13d21b0f7cd7 + b4c2ea06-2f42-44c4-9b4a-584b407a7f6a + 9d9970f3-5ab6-40b5-b0f2-d257ffef222d + 80bcd5c0-5458-4110-bc35-aad5d5e50148 + 054cb35f-8548-43e7-8129-2bbf3a113dd2 + d134b7cd-fb62-4a2b-a901-fec5a2d783e9 + 357ceb68-e651-4e13-b8c4-6a838be2149a + e294df03-baaa-4b12-b92f-e97f42ff34ec + 34281050-3848-44ac-894c-a3119ffa069f + 17704c02-f561-4245-bc67-2eaf7cd1e000 + + + + + + 1693 + 3229 + 110 + 404 + + + 1789 + 3431 + + + + + + 20 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 2e3ab970-8545-46bb-836c-1c11e5610bce + d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 + 0 + + + + + Vector {y} component + eef837d9-6ad7-45c0-86d4-37d5df250d0a + true + Y component + Y component + true + 0 + + + + + + 1695 + 3231 + 82 + 20 + + + 1736 + 3241 + + + + + + 1 + + + + + 1 + {0} + + + + + 8 + + + + + + + + + + + Second item for multiplication + a6f5321e-1fc7-4d0b-a809-2c998b9ba647 + true + B + B + true + 0 + + + + + + 1695 + 3251 + 82 + 20 + + + 1736 + 3261 + + + + + + + + Vector {y} component + 02fb770c-ba15-4f83-acf9-af1ba24e79cf + true + Y component + Y component + true + 0 + + + + + + 1695 + 3271 + 82 + 20 + + + 1736 + 3281 + + + + + + 1 + + + + + 1 + {0} + + + + + 7 + + + + + + + + + + + Second item for multiplication + 4e45cde8-7f27-431d-b06c-7f9c5ed9e84a + true + B + B + true + 0 + + + + + + 1695 + 3291 + 82 + 20 + + + 1736 + 3301 + + + + + + + + Vector {y} component + dacca8b2-18e3-46ff-a12a-1c3dcbed30d4 + true + Y component + Y component + true + 0 + + + + + + 1695 + 3311 + 82 + 20 + + + 1736 + 3321 + + + + + + 1 + + + + + 1 + {0} + + + + + 6 + + + + + + + + + + + Second item for multiplication + bcc4995d-3075-4627-86d3-17c54f203760 + true + B + B + true + 0 + + + + + + 1695 + 3331 + 82 + 20 + + + 1736 + 3341 + + + + + + + + Vector {y} component + b9b3f377-4fa1-41de-a46e-8c5b7fdb8176 + true + Y component + Y component + true + 0 + + + + + + 1695 + 3351 + 82 + 20 + + + 1736 + 3361 + + + + + + 1 + + + + + 1 + {0} + + + + + 5 + + + + + + + + + + + Second item for multiplication + 3ac17cbc-7b40-4166-9558-9be4e21d91a4 + true + B + B + true + 0 + + + + + + 1695 + 3371 + 82 + 20 + + + 1736 + 3381 + + + + + + + + Vector {y} component + 657928da-9388-4d25-ac8c-5461f78115ff + true + Y component + Y component + true + 0 + + + + + + 1695 + 3391 + 82 + 20 + + + 1736 + 3401 + + + + + + 1 + + + + + 1 + {0} + + + + + 4 + + + + + + + + + + + Second item for multiplication + c2fa32ad-abc6-48b3-98de-eddebf34447c + true + B + B + true + 0 + + + + + + 1695 + 3411 + 82 + 20 + + + 1736 + 3421 + + + + + + + + Vector {y} component + ff97abec-08b3-4858-8f83-c4185f48b077 + true + Y component + Y component + true + 0 + + + + + + 1695 + 3431 + 82 + 20 + + + 1736 + 3441 + + + + + + 1 + + + + + 1 + {0} + + + + + 3 + + + + + + + + + + + Second item for multiplication + 4bd05acf-e732-4c02-8528-9002b488a087 + true + B + B + true + 0 + + + + + + 1695 + 3451 + 82 + 20 + + + 1736 + 3461 + + + + + + + + Vector {y} component + c6051a24-e2be-4566-a3f9-7c05b6c560d3 + true + Y component + Y component + true + 0 + + + + + + 1695 + 3471 + 82 + 20 + + + 1736 + 3481 + + + + + + 1 + + + + + 1 + {0} + + + + + 2 + + + + + + + + + + + Second item for multiplication + df5ac2ce-c295-431f-846d-10a3ddd11fe8 + true + B + B + true + 0 + + + + + + 1695 + 3491 + 82 + 20 + + + 1736 + 3501 + + + + + + + + Vector {y} component + d3b1c4de-65d2-4988-bd21-0fa96869795b + true + Y component + Y component + true + 0 + + + + + + 1695 + 3511 + 82 + 20 + + + 1736 + 3521 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Second item for multiplication + 5f77937c-77e2-465e-8b74-0cd1dca8659f + true + B + B + true + 0 + + + + + + 1695 + 3531 + 82 + 20 + + + 1736 + 3541 + + + + + + + + Vector {y} component + 3a4d3006-5e80-4a31-a2c2-77bf1567014b + true + Y component + Y component + true + 0 + + + + + + 1695 + 3551 + 82 + 20 + + + 1736 + 3561 + + + + + + 1 + + + + + 1 + {0} + + + + + 0 + + + + + + + + + + + Second item for multiplication + 40ec6168-79d7-4abc-9d6e-d41627216763 + true + B + B + true + 0 + + + + + + 1695 + 3571 + 82 + 20 + + + 1736 + 3581 + + + + + + + + Number of segments + d1f9d08d-efb2-4192-a859-fc8b5bd7b96e + true + Count + Count + true + b8207e8f-d1d2-4ad2-b43b-73db4643f17e + 1 + + + + + + 1695 + 3591 + 82 + 20 + + + 1736 + 3601 + + + + + + 1 + + + + + 1 + {0} + + + + + 10 + + + + + + + + + + + Contains a collection of generic curves + true + 9bbc0f84-6983-4117-821c-ceb85636c1d3 + true + Curve + Curve + true + accfc6c7-d434-41c2-8fa9-df26450c2afb + 1 + + + + + + 1695 + 3611 + 82 + 20 + + + 1736 + 3621 + + + + + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + accfc6c7-d434-41c2-8fa9-df26450c2afb + Relay + + false + 650d961c-ef6f-4573-ade0-97f698f6a536 + 1 + + + + + + 1466 + 3613 + 40 + 16 + + + 1486 + 3621 + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + b8207e8f-d1d2-4ad2-b43b-73db4643f17e + Relay + + false + 7e1bc525-0327-427c-afd4-d8b6c2743acb + 1 + + + + + + 1444 + 3576 + 40 + 16 + + + 1464 + 3584 + + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + 9698bc3a-1ed1-4414-86f0-6444e8ead760 + Panel + + false + 0 + 0 + 0.0003860762109180463019 + + + + + + -199 + 3409 + 160 + 84 + + 0 + 0 + 0 + + -198.463 + 3409.569 + + + + + + 2 + + 255;255;255;255 + + true + true + true + false + false + true + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + b0414c5e-b2a5-4397-9a26-3d16457e079d + Relay + + false + 7876afcf-7775-45c8-8a25-88d8b7e1f9c2 + 1 + + + + + + -239 + 3169 + 40 + 16 + + + -219 + 3177 + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 64dc2fad-67da-43a0-afa8-968d779d76bb + Relay + + false + b887e715-85b8-4d63-bcef-54f50d862634 + 1 + + + + + + -241 + 3271 + 40 + 16 + + + -221 + 3279 + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + ce270eae-dd35-42f1-a1e4-d2f99e5bc96c + Relay + + false + 5abe47df-fbe4-4b97-bd03-0ec1b1f6b2d8 + 1 + + + + + + -243 + 3321 + 40 + 16 + + + -223 + 3329 + + + + + + + + + + 758d91a0-4aec-47f8-9671-16739a8a2c5d + Format + + + + + Format some data using placeholders and formatting tags + true + b431a847-2dd3-434f-9b59-8a6329452c37 + Format + Format + + + + + + -185 + 3133 + 130 + 64 + + + -93 + 3165 + + + + + + 3 + 3ede854e-c753-40eb-84cb-b48008f14fd4 + 7fa15783-70da-485c-98c0-a099e6988c3e + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 3ede854e-c753-40eb-84cb-b48008f14fd4 + + + + + Text format + 189af6c2-3871-43ab-b4a2-828404c5bac2 + Format + Format + false + 0 + + + + + + -183 + 3135 + 78 + 20 + + + -144 + 3145 + + + + + + 1 + + + + + 1 + {0} + + + + + false + {0:R} + + + + + + + + + + + Formatting culture + d97e0a39-4089-4172-9db8-c08197b8e7b4 + Culture + Culture + false + 0 + + + + + + -183 + 3155 + 78 + 20 + + + -144 + 3165 + + + + + + 1 + + + + + 1 + {0} + + + + + 127 + + + + + + + + + + + Data to insert at {0} placeholders + bfcdd9ea-5052-41e9-a97a-cd0fe30a0d83 + false + Data 0 + 0 + true + b0414c5e-b2a5-4397-9a26-3d16457e079d + 1 + + + + + + -183 + 3175 + 78 + 20 + + + -144 + 3185 + + + + + + + + Formatted text + ba156c5f-31a5-4478-a04c-85f4b5333b7c + Text + Text + false + 0 + + + + + + -81 + 3135 + 24 + 60 + + + -69 + 3165 + + + + + + + + + + + + + + 758d91a0-4aec-47f8-9671-16739a8a2c5d + Format + + + + + Format some data using placeholders and formatting tags + true + 1e3ae344-cd92-406e-aebd-972deee07f0e + Format + Format + + + + + + -185 + 3217 + 130 + 64 + + + -93 + 3249 + + + + + + 3 + 3ede854e-c753-40eb-84cb-b48008f14fd4 + 7fa15783-70da-485c-98c0-a099e6988c3e + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 3ede854e-c753-40eb-84cb-b48008f14fd4 + + + + + Text format + c1c6a58e-c0c7-493c-8c2d-21b09a647d80 + Format + Format + false + 0 + + + + + + -183 + 3219 + 78 + 20 + + + -144 + 3229 + + + + + + 1 + + + + + 1 + {0} + + + + + false + {0:R} + + + + + + + + + + + Formatting culture + 118c54c9-0071-4749-be06-f6920b3500fe + Culture + Culture + false + 0 + + + + + + -183 + 3239 + 78 + 20 + + + -144 + 3249 + + + + + + 1 + + + + + 1 + {0} + + + + + 127 + + + + + + + + + + + Data to insert at {0} placeholders + 896cb082-cf84-4e6b-8922-6cda5c56786c + false + Data 0 + 0 + true + 64dc2fad-67da-43a0-afa8-968d779d76bb + 1 + + + + + + -183 + 3259 + 78 + 20 + + + -144 + 3269 + + + + + + + + Formatted text + 35a11262-770e-4498-9d6e-28b546897ca0 + Text + Text + false + 0 + + + + + + -81 + 3219 + 24 + 60 + + + -69 + 3249 + + + + + + + + + + + + + + 758d91a0-4aec-47f8-9671-16739a8a2c5d + Format + + + + + Format some data using placeholders and formatting tags + true + f2c03e9a-5b86-4789-997b-bb044bca2f3e + Format + Format + + + + + + -184 + 3300 + 130 + 64 + + + -92 + 3332 + + + + + + 3 + 3ede854e-c753-40eb-84cb-b48008f14fd4 + 7fa15783-70da-485c-98c0-a099e6988c3e + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 3ede854e-c753-40eb-84cb-b48008f14fd4 + + + + + Text format + bc32af76-1e3f-4774-bfb7-f91555ff91fb + Format + Format + false + 0 + + + + + + -182 + 3302 + 78 + 20 + + + -143 + 3312 + + + + + + 1 + + + + + 1 + {0} + + + + + false + {0:R} + + + + + + + + + + + Formatting culture + f7c98017-af59-4278-ba02-63d1dad43791 + Culture + Culture + false + 0 + + + + + + -182 + 3322 + 78 + 20 + + + -143 + 3332 + + + + + + 1 + + + + + 1 + {0} + + + + + 127 + + + + + + + + + + + Data to insert at {0} placeholders + e773dc71-70c2-4170-b0f0-7457a89e3cb5 + false + Data 0 + 0 + true + ce270eae-dd35-42f1-a1e4-d2f99e5bc96c + 1 + + + + + + -182 + 3342 + 78 + 20 + + + -143 + 3352 + + + + + + + + Formatted text + dd0736c2-159a-42d1-af5f-93e121faa9f7 + Text + Text + false + 0 + + + + + + -80 + 3302 + 24 + 60 + + + -68 + 3332 + + + + + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 63179a12-0556-4bc1-9bf4-ef312b611dad + Relay + + false + c923a52e-eef5-4213-b91c-a99d00b79828 + 1 + + + + + + 203 + 3341 + 40 + 16 + + + 223 + 3349 + + + + + + + + + + 290f418a-65ee-406a-a9d0-35699815b512 + Scale NU + + + + + Scale an object with non-uniform factors. + true + d25a347e-f2e0-4e4a-8983-14d071fa7194 + Scale NU + Scale NU + + + + + + 403 + 3098 + 226 + 121 + + + 565 + 3159 + + + + + + Base geometry + 6c42c611-31df-46b6-a8ee-c7c7171400e4 + Geometry + Geometry + true + 9f5a4e05-ce5c-4e86-a807-564e2bdd48c7 + 1 + + + + + + 405 + 3100 + 148 + 20 + + + 487 + 3110 + + + + + + + + Base plane + f2be336e-646a-4422-ad9e-e4e57dab9a98 + Plane + Plane + false + 0 + + + + + + 405 + 3120 + 148 + 37 + + + 487 + 3138.5 + + + + + + 1 + + + + + 1 + {0} + + + + + + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 1 + 0 + + + + + + + + + + + + Scaling factor in {x} direction + 98448143-b352-4739-bfc1-429bc2747dd2 + 1/X + Scale X + Scale X + false + 7876afcf-7775-45c8-8a25-88d8b7e1f9c2 + 1 + + + + + + 405 + 3157 + 148 + 20 + + + 487 + 3167 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Scaling factor in {y} direction + 0a1bb1d6-8dd1-4ff5-9746-b9d1ed378ab9 + 1/X + Scale Y + Scale Y + false + 5abe47df-fbe4-4b97-bd03-0ec1b1f6b2d8 + 1 + + + + + + 405 + 3177 + 148 + 20 + + + 487 + 3187 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Scaling factor in {z} direction + 56b223c4-49a9-4561-a1a4-af9c5fd7182a + Scale Z + Scale Z + false + 0 + + + + + + 405 + 3197 + 148 + 20 + + + 487 + 3207 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Scaled geometry + 9868f335-6dc4-451f-8094-d3711f42121a + Geometry + Geometry + false + 0 + + + + + + 577 + 3100 + 50 + 58 + + + 602 + 3129.25 + + + + + + + + Transformation data + d3a424e3-115d-4433-a6ad-a72744f7056e + Transform + Transform + false + 0 + + + + + + 577 + 3158 + 50 + 59 + + + 602 + 3187.75 + + + + + + + + + + + + 310f9597-267e-4471-a7d7-048725557528 + 08bdcae0-d034-48dd-a145-24a9fcf3d3ff + GraphMapper+ + + + + + External Graph mapper +You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode. + true + e6c0b86a-3030-446a-831b-92169490ee8b + GraphMapper+ + GraphMapper+ + + + + + true + + + + + + 902 + 2886 + 114 + 104 + + + 963 + 2938 + + + + + + External curve as a graph + 37bb3370-d544-4693-9286-1de205aa26be + Curve + Curve + false + 0517f2f3-0517-41f2-956d-3caa6df4c5ab + 1 + + + + + + 904 + 2888 + 47 + 20 + + + 927.5 + 2898 + + + + + + + + Optional Rectangle boundary. If omitted the curve's would be landed + 64776ecc-bbe9-4ec5-a5d4-07eb396f92b6 + Boundary + Boundary + true + 3bfc7a24-36db-4b47-8c33-65ba8b072928 + 1 + + + + + + 904 + 2908 + 47 + 20 + + + 927.5 + 2918 + + + + + + + + 1 + List of input numbers + 68fa507c-c522-4467-80f3-fdcf8a652e23 + Numbers + Numbers + false + 8e13165d-ec24-43b2-ab6d-2081a50fd148 + 1 + + + + + + 904 + 2928 + 47 + 20 + + + 927.5 + 2938 + + + + + + 1 + + + + + 9 + {0} + + + + + 0.1 + + + + + 0.2 + + + + + 0.3 + + + + + 0.4 + + + + + 0.5 + + + + + 0.6 + + + + + 0.7 + + + + + 0.8 + + + + + 0.9 + + + + + + + + + + + (Optional) Input Domain +if omitted, it would be 0-1 in "Normalize" mode by default + or be the interval of the input list in case of selecting "AutoDomain" mode + 6653a230-3ac7-44b2-a9f5-1fe99c263419 + Input + Input + true + 213585e8-4f3a-4f2c-9e91-8385c0f5293e + 1 + + + + + + 904 + 2948 + 47 + 20 + + + 927.5 + 2958 + + + + + + + + (Optional) Output Domain + if omitted, it would be 0-1 in "Normalize" mode by default + or be the interval of the input list in case of selecting "AutoDomain" mode + f8e14406-9226-4342-a696-98d00dc96a74 + Output + Output + true + 213585e8-4f3a-4f2c-9e91-8385c0f5293e + 1 + + + + + + 904 + 2968 + 47 + 20 + + + 927.5 + 2978 + + + + + + + + 1 + Output Numbers + b0d8da91-bdcc-44b1-93f8-f3dc5e923e83 + Number + Number + false + 0 + + + + + + 975 + 2888 + 39 + 100 + + + 994.5 + 2938 + + + + + + + + + + + + 11bbd48b-bb0a-4f1b-8167-fa297590390d + End Points + + + + + Extract the end points of a curve. + true + 6e0d144c-1a3d-40c0-9029-376abdea13ca + End Points + End Points + + + + + + 346 + 2785 + 84 + 44 + + + 390 + 2807 + + + + + + Curve to evaluate + 9b920e58-086f-48e0-a7d3-9489d707f19a + Curve + Curve + false + 0517f2f3-0517-41f2-956d-3caa6df4c5ab + 1 + + + + + + 348 + 2787 + 30 + 40 + + + 363 + 2807 + + + + + + + + Curve start point + 8b6f6b53-ff10-4744-b784-aacd1ff32a2b + Start + Start + false + 0 + + + + + + 402 + 2787 + 26 + 20 + + + 415 + 2797 + + + + + + + + Curve end point + 2eca5a00-e598-4c14-ac50-2590832a1ec9 + End + End + false + 0 + + + + + + 402 + 2807 + 26 + 20 + + + 415 + 2817 + + + + + + + + + + + + 575660b1-8c79-4b8d-9222-7ab4a6ddb359 + Rectangle 2Pt + + + + + Create a rectangle from a base plane and two points + true + edc8e274-6c3a-472a-bf0f-4e3da7df79d1 + Rectangle 2Pt + Rectangle 2Pt + + + + + + 481 + 2794 + 198 + 101 + + + 617 + 2845 + + + + + + Rectangle base plane + 53e04fb8-ff9e-4b0e-a27f-df57d3dc5efa + Plane + Plane + false + 0 + + + + + + 483 + 2796 + 122 + 37 + + + 544 + 2814.5 + + + + + + 1 + + + + + 1 + {0} + + + + + + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 1 + 0 + + + + + + + + + + + + First corner point. + 0c1cf429-1c6b-4c8d-9622-d10850298528 + Point A + Point A + false + 8b6f6b53-ff10-4744-b784-aacd1ff32a2b + 1 + + + + + + 483 + 2833 + 122 + 20 + + + 544 + 2843 + + + + + + 1 + + + + + 1 + {0} + + + + + + + 0 + 0 + 0 + + + + + + + + + + + + Second corner point. + d351db95-b5de-4672-a58c-f4c75d5d5420 + Point B + Point B + false + 2eca5a00-e598-4c14-ac50-2590832a1ec9 + 1 + + + + + + 483 + 2853 + 122 + 20 + + + 544 + 2863 + + + + + + 1 + + + + + 1 + {0} + + + + + + + 10 + 5 + 0 + + + + + + + + + + + + Rectangle corner fillet radius + da9761e7-1237-4b20-81d5-09d6e9f1afdc + Radius + Radius + false + 0 + + + + + + 483 + 2873 + 122 + 20 + + + 544 + 2883 + + + + + + 1 + + + + + 1 + {0} + + + + + 0 + + + + + + + + + + + Rectangle defined by P, A and B + 3bfc7a24-36db-4b47-8c33-65ba8b072928 + Rectangle + Rectangle + false + 0 + + + + + + 629 + 2796 + 48 + 48 + + + 653 + 2820.25 + + + + + + + + Length of rectangle curve + cd1c3d89-ae86-4bf4-a2f2-dcc79f52e1ba + Length + Length + false + 0 + + + + + + 629 + 2844 + 48 + 49 + + + 653 + 2868.75 + + + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + e3c2f7fa-3c6d-4eda-a7bf-aa70f955e050 + Relay + + false + 7abea44d-07c7-4298-8d09-060192324a84 + 1 + + + + + + 893 + 3414 + 40 + 16 + + + 913 + 3422 + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 9d55f829-b54c-4866-9ced-6f44b43868eb + Relay + + false + 9d63dde1-2e33-4f8a-a3cb-303f50d0a8d3 + 1 + + + + + + 995 + 3406 + 40 + 16 + + + 1015 + 3414 + + + + + + + + + + f44b92b0-3b5b-493a-86f4-fd7408c3daf3 + Bounds + + + + + Create a numeric domain which encompasses a list of numbers. + true + 2ba1bf59-61a7-488d-a5b3-a5ed82a48731 + Bounds + Bounds + + + + + + 732 + 3031 + 110 + 28 + + + 790 + 3045 + + + + + + 1 + Numbers to include in Bounds + d467ba15-dacc-49e4-a358-5f8b21727a8e + Numbers + Numbers + false + 8e13165d-ec24-43b2-ab6d-2081a50fd148 + 1 + + + + + + 734 + 3033 + 44 + 24 + + + 756 + 3045 + + + + + + + + Numeric Domain between the lowest and highest numbers in {N} + 213585e8-4f3a-4f2c-9e91-8385c0f5293e + Domain + Domain + false + 0 + + + + + + 802 + 3033 + 38 + 24 + + + 821 + 3045 + + + + + + + + + + + + ce46b74e-00c9-43c4-805a-193b69ea4a11 + Multiplication + + + + + Mathematical multiplication + true + 3a2cde3d-d6da-4bca-8862-90ed8bdd89e1 + Multiplication + Multiplication + + + + + + 550 + 2932 + 65 + 44 + + + 570 + 2954 + + + + + + 2 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + First item for multiplication + afaeef1a-7362-4d75-84da-28445edb71ce + A + + true + e3c2f7fa-3c6d-4eda-a7bf-aa70f955e050 + 1 + + + + + + 552 + 2934 + 6 + 20 + + + 555 + 2944 + + + + + + + + Second item for multiplication + 5e47cf8a-2eec-4f4d-83d9-a82abf38af83 + B + + true + ac864993-ecc7-4645-ae0f-6a08f6579f35 + 1 + + + + + + 552 + 2954 + 6 + 20 + + + 555 + 2964 + + + + + + 1 + + + + + 1 + {0} + + + + + Grasshopper.Kernel.Types.GH_Integer + 65536 + + + + + + + + + + + Result of multiplication + 401b9053-c46d-4e8b-b861-4b450f5eb386 + Result + Result + false + 0 + + + + + + 582 + 2934 + 31 + 40 + + + 597.5 + 2954 + + + + + + + + + + + + + + 9c85271f-89fa-4e9f-9f4a-d75802120ccc + Division + + + + + Mathematical division + true + 14ae5d36-3b7d-4915-90c0-7ff8f5596059 + Division + Division + + + + + + 1071 + 2996 + 40 + 44 + + + 1091 + 3018 + + + + + + Item to divide (dividend) + 3b11c51c-7806-40a5-98b2-da1587f628a9 + A + + false + b0d8da91-bdcc-44b1-93f8-f3dc5e923e83 + 1 + + + + + + 1073 + 2998 + 6 + 20 + + + 1076 + 3008 + + + + + + + + Item to divide with (divisor) + e38fefc5-a2a7-43cd-9c0a-3d3bcfa80041 + B + + false + ac864993-ecc7-4645-ae0f-6a08f6579f35 + 1 + + + + + + 1073 + 3018 + 6 + 20 + + + 1076 + 3028 + + + + + + 1 + + + + + 1 + {0} + + + + + Grasshopper.Kernel.Types.GH_Integer + 65536 + + + + + + + + + + + The result of the Division + 9d63dde1-2e33-4f8a-a3cb-303f50d0a8d3 + Result + + false + 0 + + + + + + 1103 + 2998 + 6 + 40 + + + 1106 + 3018 + + + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 8e13165d-ec24-43b2-ab6d-2081a50fd148 + Relay + + false + 401b9053-c46d-4e8b-b861-4b450f5eb386 + 1 + + + + + + 652 + 2946 + 40 + 16 + + + 672 + 2954 + + + + + + + + + + cae9fe53-6d63-44ed-9d6d-13180fbf6f89 + 1c9de8a1-315f-4c56-af06-8f69fee80a7a + Curve Graph Mapper + + + + + Remap values with a custom graph using input curves. + true + 79911ab3-0bb2-423f-9b09-cc7daf554fae + true + Curve Graph Mapper + Curve Graph Mapper + + + + + + 863 + 2524 + 181 + 224 + + + 958 + 2636 + + + + + + 1 + One or multiple graph curves to graph map values with + 0bb544c8-bab7-4688-bbcb-3a8261f6d9df + true + Curves + Curves + false + 0517f2f3-0517-41f2-956d-3caa6df4c5ab + 1 + + + + + + 865 + 2526 + 81 + 27 + + + 905.5 + 2539.75 + + + + + + + + Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary + 8f7ff6d9-d1ad-47c3-b95d-c907375d9086 + true + Rectangle + Rectangle + false + 3bfc7a24-36db-4b47-8c33-65ba8b072928 + 1 + + + + + + 865 + 2553 + 81 + 28 + + + 905.5 + 2567.25 + + + + + + + + 1 + Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis + 0a194642-2ace-40a2-9371-1fdb31c6e9bd + true + Values + Values + false + 8e13165d-ec24-43b2-ab6d-2081a50fd148 + 1 + + + + + + 865 + 2581 + 81 + 27 + + + 905.5 + 2594.75 + + + + + + + + Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used) + 1152e18b-29f2-4516-95b9-d00168a6ab5a + true + X Axis + X Axis + true + 213585e8-4f3a-4f2c-9e91-8385c0f5293e + 1 + + + + + + 865 + 2608 + 81 + 28 + + + 905.5 + 2622.25 + + + + + + + + Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used) + 22bd9999-24b4-4c89-b7c3-8cfceb7bfd7a + true + Y Axis + Y Axis + true + 213585e8-4f3a-4f2c-9e91-8385c0f5293e + 1 + + + + + + 865 + 2636 + 81 + 27 + + + 905.5 + 2649.75 + + + + + + + + Flip the graphs X Axis from the bottom of the graph to the top of the graph + e894ba31-d10e-430a-ae57-3b907326c13b + true + Flip + Flip + false + 0 + + + + + + 865 + 2663 + 81 + 28 + + + 905.5 + 2677.25 + + + + + + 1 + + + + + 1 + {0} + + + + + false + + + + + + + + + + + Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle + 5dd47338-a69e-403c-b0e6-28ce8cb72d72 + true + Snap + Snap + false + 0 + + + + + + 865 + 2691 + 81 + 27 + + + 905.5 + 2704.75 + + + + + + 1 + + + + + 1 + {0} + + + + + true + + + + + + + + + + + Size of the graph labels + aea304b8-4d9b-4ff0-baf1-1ab501b12c7a + true + Text Size + Text Size + false + 0 + + + + + + 865 + 2718 + 81 + 28 + + + 905.5 + 2732.25 + + + + + + 1 + + + + + 1 + {0} + + + + + 0.0625 + + + + + + + + + + + 1 + Resulting graph mapped values, mapped on the Y Axis + c49f47cc-5dc4-4e0c-b8c8-2572f883a609 + true + Mapped + Mapped + false + 0 + + + + + + 970 + 2526 + 72 + 20 + + + 1006 + 2536 + + + + + + + + 1 + The graph curves inside the boundary of the graph + af88c05c-c65a-452e-afb8-03ead7ccdd13 + true + Graph Curves + Graph Curves + false + 0 + + + + + + 970 + 2546 + 72 + 20 + + + 1006 + 2556 + + + + + + + + 1 + The points on the graph curves where the X Axis input values intersected + true + d53018cc-57d9-4a8a-8ec1-f657ce6bf8c7 + true + Graph Points + Graph Points + false + 0 + + + + + + 970 + 2566 + 72 + 20 + + + 1006 + 2576 + + + + + + + + 1 + The lines from the X Axis input values to the graph curves + true + 28ed54b6-fb95-4400-9b96-be39d08e61f2 + true + Value Lines + Value Lines + false + 0 + + + + + + 970 + 2586 + 72 + 20 + + + 1006 + 2596 + + + + + + + + 1 + The points plotted on the X Axis which represent the input values + true + 3859e8eb-a8d8-489c-9af3-07cbef237797 + true + Value Points + Value Points + false + 0 + + + + + + 970 + 2606 + 72 + 20 + + + 1006 + 2616 + + + + + + + + 1 + The lines from the graph curves to the Y Axis graph mapped values + true + 15f46ee6-4d3b-4829-92f3-0234381521fc + true + Mapped Lines + Mapped Lines + false + 0 + + + + + + 970 + 2626 + 72 + 20 + + + 1006 + 2636 + + + + + + + + 1 + The points mapped on the Y Axis which represent the graph mapped values + true + eae5032a-27c6-492d-a9ad-a32197a98c69 + true + Mapped Points + Mapped Points + false + 0 + + + + + + 970 + 2646 + 72 + 20 + + + 1006 + 2656 + + + + + + + + The graph boundary background as a surface + 385cfc7d-69b8-4bf8-a8e8-235ff6dcb3a3 + true + Boundary + Boundary + false + 0 + + + + + + 970 + 2666 + 72 + 20 + + + 1006 + 2676 + + + + + + + + 1 + The graph labels as curve outlines + e5350df2-11ec-4670-a160-59d360906919 + true + Labels + Labels + false + 0 + + + + + + 970 + 2686 + 72 + 20 + + + 1006 + 2696 + + + + + + + + 1 + True for input values outside of the X Axis domain bounds +False for input values inside of the X Axis domain bounds + 7632ccf4-a432-45cd-8527-b7823f3b8396 + true + Out Of Bounds + Out Of Bounds + false + 0 + + + + + + 970 + 2706 + 72 + 20 + + + 1006 + 2716 + + + + + + + + 1 + True for input values on the X Axis which intersect a graph curve +False for input values on the X Axis which do not intersect a graph curve + 70491f98-3972-4ff2-a978-dec7aa20383c + true + Intersected + Intersected + false + 0 + + + + + + 970 + 2726 + 72 + 20 + + + 1006 + 2736 + + + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 0517f2f3-0517-41f2-956d-3caa6df4c5ab + Relay + + false + 2272069e-441f-44d2-9cee-25e8d582e273 + 1 + + + + + + 390 + 2654 + 40 + 16 + + + 410 + 2662 + + + + + + + + + + 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 + Scale + + + + + Scale an object uniformly in all directions. + true + 014f3a82-3e2e-4c4a-b79b-fb754973b0be + Scale + Scale + + + + + + 136 + 2607 + 201 + 64 + + + 273 + 2639 + + + + + + Base geometry + 088ca25e-6ea7-48f3-ace4-0c8e930bf8c0 + Geometry + Geometry + true + 244a5752-77fd-4f13-8350-52f02184bb09 + 1 + + + + + + 138 + 2609 + 123 + 20 + + + 199.5 + 2619 + + + + + + + + Center of scaling + 9e7f199c-7b01-4add-9318-865c5543c1ca + Center + Center + false + 0 + + + + + + 138 + 2629 + 123 + 20 + + + 199.5 + 2639 + + + + + + 1 + + + + + 1 + {0} + + + + + + + 0 + 0 + 0 + + + + + + + + + + + + Scaling factor + 43d3790a-ac7f-4569-a53a-79ba4fab9fc3 + Factor + Factor + false + ac864993-ecc7-4645-ae0f-6a08f6579f35 + 1 + + + + + + 138 + 2649 + 123 + 20 + + + 199.5 + 2659 + + + + + + 1 + + + + + 1 + {0} + + + + + 65536 + + + + + + + + + + + Scaled geometry + 2272069e-441f-44d2-9cee-25e8d582e273 + Geometry + Geometry + false + 0 + + + + + + 285 + 2609 + 50 + 30 + + + 310 + 2624 + + + + + + + + Transformation data + 6ff09d7b-d063-494c-aed8-d823c8e1aee5 + Transform + Transform + false + 0 + + + + + + 285 + 2639 + 50 + 30 + + + 310 + 2654 + + + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 244a5752-77fd-4f13-8350-52f02184bb09 + Relay + + false + ffc7114c-425e-4e46-9780-4f5439b2a045 + 1 + + + + + + 47 + 2621 + 40 + 16 + + + 67 + 2629 + + + + + + + + + + 9c85271f-89fa-4e9f-9f4a-d75802120ccc + Division + + + + + Mathematical division + true + 790c5d89-8027-4b3f-9974-0aa9c9725140 + Division + Division + + + + + + 1447 + 3499 + 85 + 44 + + + 1487 + 3521 + + + + + + Item to divide (dividend) + c76f374e-534e-4e89-b239-d9dc8de969fb + A + A + false + b8207e8f-d1d2-4ad2-b43b-73db4643f17e + 1 + + + + + + 1449 + 3501 + 26 + 20 + + + 1462 + 3511 + + + + + + + + Item to divide with (divisor) + 897bf1c5-c5a3-40ee-991e-0ef5fe2738c1 + B + B + false + 0 + + + + + + 1449 + 3521 + 26 + 20 + + + 1462 + 3531 + + + + + + 1 + + + + + 1 + {0} + + + + + Grasshopper.Kernel.Types.GH_String + false + 1 + + + + + + + + + + + The result of the Division + f654ad66-626e-4a53-b0fb-b97bf8db47c6 + Result + Result + false + 0 + + + + + + 1499 + 3501 + 31 + 40 + + + 1514.5 + 3521 + + + + + + + + + + + + 78fed580-851b-46fe-af2f-6519a9d378e0 + Power + + + + + Raise a value to a power. + true + 2a8521de-e5f6-49cb-bbe3-75b663e3287e + Power + Power + + + + + + -559 + 2069 + 85 + 44 + + + -519 + 2091 + + + + + + The item to be raised + 29d4dc65-97fd-47bd-928a-25c3e40e4289 + A + A + false + 0 + + + + + + -557 + 2071 + 26 + 20 + + + -544 + 2081 + + + + + + 1 + + + + + 1 + {0} + + + + + Grasshopper.Kernel.Types.GH_String + false + 2 + + + + + + + + + + + The exponent + 9080713f-2153-4baa-8370-7871a215faff + B + B + false + 1144e4e4-28c8-484b-b1e7-db119f50edf8 + 1 + + + + + + -557 + 2091 + 26 + 20 + + + -544 + 2101 + + + + + + + + A raised to the B power + ac864993-ecc7-4645-ae0f-6a08f6579f35 + Result + Result + false + 0 + + + + + + -507 + 2071 + 31 + 40 + + + -491.5 + 2091 + + + + + + + + + + + + 33bcf975-a0b2-4b54-99fd-585c893b9e88 + Digit Scroller + + + + + Numeric scroller for single numbers + 1144e4e4-28c8-484b-b1e7-db119f50edf8 + Digit Scroller + + false + 0 + + + + + 12 + + 11 + + 16.0 + + + + + + -663 + 2029 + 250 + 20 + + + -662.1945 + 2029.497 + + + + + + + + + + fb6aba99-fead-4e42-b5d8-c6de5ff90ea6 + DotNET VB Script (LEGACY) + + + + + A VB.NET scriptable component + true + 6725d6c9-efab-49aa-9d02-2daa52073dc7 + DotNET VB Script (LEGACY) + Turtle + 0 + Dim i As Integer + Dim dir As New On3dVector(1, 0, 0) + Dim pos As New On3dVector(0, 0, 0) + Dim axis As New On3dVector(0, 0, 1) + Dim pnts As New List(Of On3dVector) + + pnts.Add(pos) + + For i = 0 To Forward.Count() - 1 + Dim P As New On3dVector + dir.Rotate(Left(i), axis) + P = dir * Forward(i) + pnts(i) + pnts.Add(P) + + Next + + Points = pnts + + + + + + 1128 + 5105 + 104 + 44 + + + 1183 + 5127 + + + + + + 1 + 1 + 2 + Script Variable Forward + Script Variable Left + 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 + 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 + true + true + Forward + Left + true + true + + + + + 2 + Print, Reflect and Error streams + Output parameter Points + 3ede854e-c753-40eb-84cb-b48008f14fd4 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + true + true + Output + Points + false + false + + + + + 1 + false + Script Variable Forward + 996d5ff5-14c1-4c31-b303-f95d048ef52d + Forward + Forward + true + 1 + true + 5bb9f473-b63f-45e9-b4cc-e2754dd53763 + 1 + 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 + + + + + + 1130 + 5107 + 41 + 20 + + + 1150.5 + 5117 + + + + + + + + 1 + false + Script Variable Left + d2c0c4fb-9cf6-41fa-b702-09c17addb9e2 + Left + Left + true + 1 + true + 7eca8f17-b48d-4b73-ada0-90a22d3fe212 + 1 + 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 + + + + + + 1130 + 5127 + 41 + 20 + + + 1150.5 + 5137 + + + + + + + + Print, Reflect and Error streams + 04cee30c-e625-489e-9e48-8001a66c4b60 + Output + Output + false + 0 + + + + + + 1195 + 5107 + 35 + 20 + + + 1212.5 + 5117 + + + + + + + + Output parameter Points + a249c8f7-8389-41ef-9421-d4c3316c347e + Points + Points + false + 0 + + + + + + 1195 + 5127 + 35 + 20 + + + 1212.5 + 5137 + + + + + + + + + + + + e64c5fb1-845c-4ab1-8911-5f338516ba67 + Series + + + + + Create a series of numbers. + true + 40d5b1ce-cd1e-4185-b05f-eb342b59a010 + Series + Series + + + + + + 561 + 5266 + 89 + 64 + + + 605 + 5298 + + + + + + First number in the series + 2b666a1d-1cca-44a3-a105-682eb0e2206c + Start + Start + false + d644c106-358a-4d53-8003-e44a23932f16 + 1 + + + + + + 563 + 5268 + 30 + 20 + + + 578 + 5278 + + + + + + 1 + + + + + 1 + {0} + + + + + 0 + + + + + + + + + + + Step size for each successive number + 85a9b54a-9b4d-46b5-aa17-b491a16746a3 + Step + Step + false + d644c106-358a-4d53-8003-e44a23932f16 + 1 + + + + + + 563 + 5288 + 30 + 20 + + + 578 + 5298 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Number of values in the series + ac84610d-c601-4c95-a440-2d941cb8b3cc + Count + Count + false + 4c725ef7-1aec-4903-a426-fcecb964fe28 + 1 + + + + + + 563 + 5308 + 30 + 20 + + + 578 + 5318 + + + + + + 1 + + + + + 1 + {0} + + + + + 500 + + + + + + + + + + + 1 + Series of numbers + d2dee351-7ad7-4195-88b0-b83aeaa59ee9 + Series + Series + false + 0 + + + + + + 617 + 5268 + 31 + 60 + + + 632.5 + 5298 + + + + + + + + + + + + dd8134c0-109b-4012-92be-51d843edfff7 + Duplicate Data + + + + + Duplicate data a predefined number of times. + true + f446bebf-5581-4727-80df-0479210e1c8b + Duplicate Data + Duplicate Data + + + + + + 552 + 5109 + 102 + 64 + + + 615 + 5141 + + + + + + 1 + Data to duplicate + df3c469b-15dd-4113-9695-cfe00ba73739 + Data + Data + false + 46557eca-0fa8-4257-9968-cd3caf6e4133 + 1 + + + + + + 554 + 5111 + 49 + 20 + + + 578.5 + 5121 + + + + + + + + Number of duplicates + b029cd2f-bf2b-4ae1-ba0f-ef7e2e1f9cc2 + Number + Number + false + 4c725ef7-1aec-4903-a426-fcecb964fe28 + 1 + + + + + + 554 + 5131 + 49 + 20 + + + 578.5 + 5141 + + + + + + 1 + + + + + 1 + {0} + + + + + 500 + + + + + + + + + + + Retain list order + 5ee2542c-8564-4e98-b47e-a98477318db4 + Order + Order + false + 0 + + + + + + 554 + 5151 + 49 + 20 + + + 578.5 + 5161 + + + + + + 1 + + + + + 1 + {0} + + + + + true + + + + + + + + + + + 1 + Duplicated data + 7a247abb-61c5-46ae-9afb-f19cc07f8a56 + Data + Data + false + 0 + + + + + + 627 + 5111 + 25 + 60 + + + 639.5 + 5141 + + + + + + + + + + + + 33bcf975-a0b2-4b54-99fd-585c893b9e88 + Digit Scroller + + + + + Numeric scroller for single numbers + 53dfe8d4-944d-46bf-8495-cdb43c7556b1 + Digit Scroller + . + false + 0 + + + + + 12 + . + 11 + + 1024.0 + + + + + + 27 + 5260 + 250 + 20 + + + 27.61891 + 5260.25 + + + + + + + + + + 33bcf975-a0b2-4b54-99fd-585c893b9e88 + Digit Scroller + + + + + Numeric scroller for single numbers + c2429a84-5049-49fc-9a38-42778a26f71d + Digit Scroller + Π―R + false + 0 + + + + + 12 + Π―R + 1 + + 0.12228574351 + + + + + + 32 + 5161 + 250 + 20 + + + 32.31831 + 5161.933 + + + + + + + + + + 33bcf975-a0b2-4b54-99fd-585c893b9e88 + Digit Scroller + + + + + Numeric scroller for single numbers + bfe92d3e-548e-4939-be0c-6a54fc045c4e + Digit Scroller + Β° + false + 0 + + + + + 12 + Β° + 2 + + 0.0003860762 + + + + + + 30 + 5205 + 250 + 20 + + + 30.23642 + 5205.192 + + + + + + + + + + a4cd2751-414d-42ec-8916-476ebf62d7fe + Radians + + + + + Convert an angle specified in degrees to radians + true + 2276773a-904f-4273-aa34-9d5c0f9aced4 + Radians + Radians + + + + + + 406 + 5167 + 108 + 28 + + + 461 + 5181 + + + + + + Angle in degrees + 541b6184-b2d9-4841-abf0-775b3d5c9532 + Degrees + Degrees + false + 778435a9-4a09-40c9-a8d3-b6ca4d0b2811 + 1 + + + + + + 408 + 5169 + 41 + 24 + + + 428.5 + 5181 + + + + + + + + Angle in radians + d644c106-358a-4d53-8003-e44a23932f16 + Radians + Radians + false + 0 + + + + + + 473 + 5169 + 39 + 24 + + + 492.5 + 5181 + + + + + + + + + + + + fbac3e32-f100-4292-8692-77240a42fd1a + Point + + + + + Contains a collection of three-dimensional points + true + ddf12dcc-4532-4f5f-9017-ca2181ae4120 + Point + Point + false + a249c8f7-8389-41ef-9421-d4c3316c347e + 1 + + + + + + 1057 + 5256 + 50 + 24 + + + 1082.998 + 5268.367 + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 4c725ef7-1aec-4903-a426-fcecb964fe28 + Relay + + false + 9b585c51-4d8d-4d1a-abf6-db393bf44760 + 1 + + + + + + 417 + 5229 + 40 + 16 + + + 437 + 5237 + + + + + + + + + + be52336f-a2e1-43b1-b5f5-178ba489508a + Circle Fit + + + + + Fit a circle to a collection of points. + true + ff0d8658-7c8a-4efc-9ff7-d21a2f4d80b9 + Circle Fit + Circle Fit + + + + + + 534 + 5527 + 104 + 64 + + + 579 + 5559 + + + + + + 1 + Points to fit + a482c1db-c849-4af7-9253-38455522194a + Points + Points + false + ddf12dcc-4532-4f5f-9017-ca2181ae4120 + 1 + + + + + + 536 + 5529 + 31 + 60 + + + 551.5 + 5559 + + + + + + + + Resulting circle + b4ec1d74-9d97-4ab2-9c19-ca7a15e3e6d2 + Circle + Circle + false + 0 + + + + + + 591 + 5529 + 45 + 20 + + + 613.5 + 5539 + + + + + + + + Circle radius + 823410ef-5164-49ce-aaf0-4fd337d12394 + Radius + Radius + false + 0 + + + + + + 591 + 5549 + 45 + 20 + + + 613.5 + 5559 + + + + + + + + Maximum distance between circle and points + 721bd50f-6894-48cd-8640-471beedf3b88 + Deviation + Deviation + false + 0 + + + + + + 591 + 5569 + 45 + 20 + + + 613.5 + 5579 + + + + + + + + + + + + 9df5e896-552d-4c8c-b9ca-4fc147ffa022 + Expression + + + + + Evaluate an expression + cos((4*atan(1))/N) + true + 97df6443-4cee-4503-a278-5775d3d97c17 + Expression + Expression + + + + + + 469 + 5463 + 215 + 28 + + + 567 + 5477 + + + + + + 1 + ba80fd98-91a1-4958-b6a7-a94e40e52bdb + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + Expression variable + ac53965d-9c57-49ef-a4e1-15cf2c013e39 + Variable N + N + true + 4c725ef7-1aec-4903-a426-fcecb964fe28 + 1 + + + + + + 471 + 5465 + 11 + 24 + + + 476.5 + 5477 + + + + + + + + Result of expression + 8a13a8ee-43ae-490c-9a67-94c0a5edb3de + Result + Result + false + 0 + + + + + + 651 + 5465 + 31 + 24 + + + 666.5 + 5477 + + + + + + + + + + + + + + 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 + Scale + + + + + Scale an object uniformly in all directions. + true + 0fb4bac9-595d-4516-9de2-921f847556b0 + Scale + Scale + + + + + + 708 + 5634 + 126 + 64 + + + 770 + 5666 + + + + + + Base geometry + 269c46c8-fb57-4272-8066-350e30875f30 + Geometry + Geometry + true + b4ec1d74-9d97-4ab2-9c19-ca7a15e3e6d2 + 1 + + + + + + 710 + 5636 + 48 + 20 + + + 734 + 5646 + + + + + + + + Center of scaling + f959d9b2-b769-41c1-a28e-850ee2a2a776 + Center + Center + false + 3554d94d-6df9-4e70-a491-7d5078530e78 + 1 + + + + + + 710 + 5656 + 48 + 20 + + + 734 + 5666 + + + + + + 1 + + + + + 1 + {0} + + + + + + + 0 + 0 + 0 + + + + + + + + + + + + Scaling factor + f2bf6058-f07e-4ee4-aaf8-c12678761178 + Factor + Factor + false + 8a13a8ee-43ae-490c-9a67-94c0a5edb3de + 1 + + + + + + 710 + 5676 + 48 + 20 + + + 734 + 5686 + + + + + + 1 + + + + + 1 + {0} + + + + + 0.5 + + + + + + + + + + + Scaled geometry + ec397e86-bb0d-45eb-be56-aed938deaf9d + Geometry + Geometry + false + 0 + + + + + + 782 + 5636 + 50 + 30 + + + 807 + 5651 + + + + + + + + Transformation data + 4161ae35-ffb9-4065-975d-03f05b73c621 + Transform + Transform + false + 0 + + + + + + 782 + 5666 + 50 + 30 + + + 807 + 5681 + + + + + + + + + + + + 2e205f24-9279-47b2-b414-d06dcd0b21a7 + Area + + + + + Solve area properties for breps, meshes and planar closed curves. + true + cd77b622-9a86-4cac-9598-e29eb480069a + Area + Area + + + + + + 522 + 5644 + 118 + 44 + + + 584 + 5666 + + + + + + Brep, mesh or planar closed curve for area computation + 51ccef21-cf74-4b38-acac-13099eba9e08 + Geometry + Geometry + false + b4ec1d74-9d97-4ab2-9c19-ca7a15e3e6d2 + 1 + + + + + + 524 + 5646 + 48 + 40 + + + 548 + 5666 + + + + + + + + Area of geometry + 2e0e9257-78e7-4846-ae26-603cf7b7191f + Area + Area + false + 0 + + + + + + 596 + 5646 + 42 + 20 + + + 617 + 5656 + + + + + + + + Area centroid of geometry + 3554d94d-6df9-4e70-a491-7d5078530e78 + Centroid + Centroid + false + 0 + + + + + + 596 + 5666 + 42 + 20 + + + 617 + 5676 + + + + + + + + + + + + ce46b74e-00c9-43c4-805a-193b69ea4a11 + Multiplication + + + + + Mathematical multiplication + true + e0da04d7-7efb-44af-880c-05873d34cb64 + Multiplication + Multiplication + + + + + + 833 + 5546 + 70 + 44 + + + 858 + 5568 + + + + + + 2 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + First item for multiplication + 00864368-5c1c-4f5f-99fe-d6e5c94e6ebf + A + A + true + 8a13a8ee-43ae-490c-9a67-94c0a5edb3de + 1 + + + + + + 835 + 5548 + 11 + 20 + + + 840.5 + 5558 + + + + + + + + Second item for multiplication + 42f713fe-412d-4667-86ff-c867d8d99fe1 + B + B + true + 823410ef-5164-49ce-aaf0-4fd337d12394 + 1 + + + + + + 835 + 5568 + 11 + 20 + + + 840.5 + 5578 + + + + + + + + Result of multiplication + d279ab5e-07f6-49ba-9dd7-e164e8d7e621 + Result + Result + false + 0 + + + + + + 870 + 5548 + 31 + 40 + + + 885.5 + 5568 + + + + + + + + + + + + + + 9df5e896-552d-4c8c-b9ca-4fc147ffa022 + Expression + + + + + Evaluate an expression + .5*L*(1/SIN(Ο€/N)) + true + d089d8e3-7cf2-484e-bc5c-7ae0430080bb + Expression + Expression + + + + + + 796 + 5398 + 207 + 44 + + + 890 + 5420 + + + + + + 2 + ba80fd98-91a1-4958-b6a7-a94e40e52bdb + ba80fd98-91a1-4958-b6a7-a94e40e52bdb + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + Expression variable + f0766318-0199-4d9f-ae92-ebd30f99e69e + Variable L + L + true + c2429a84-5049-49fc-9a38-42778a26f71d + 1 + + + + + + 798 + 5400 + 11 + 20 + + + 803.5 + 5410 + + + + + + + + Expression variable + fda47015-0c34-4726-8afc-bc4c082daa74 + Variable N + N + true + 4c725ef7-1aec-4903-a426-fcecb964fe28 + 1 + + + + + + 798 + 5420 + 11 + 20 + + + 803.5 + 5430 + + + + + + + + Result of expression + 31cc3c48-9804-4a57-8cb1-d42fea2c8488 + Result + Result + false + 0 + + + + + + 970 + 5400 + 31 + 40 + + + 985.5 + 5420 + + + + + + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + 14c9fb5a-3cf2-4f86-aa99-97cab6eec72b + Panel + + false + 0 + 31cc3c48-9804-4a57-8cb1-d42fea2c8488 + 1 + Double click to edit panel content… + + + + + + 1060 + 5392 + 160 + 100 + + 0 + 0 + 0 + + 1060.971 + 5392.169 + + + + + + + 255;255;255;255 + + true + true + true + false + false + true + + + + + + + + + 9df5e896-552d-4c8c-b9ca-4fc147ffa022 + Expression + + + + + Evaluate an expression + R/(.5*(1/SIN(Ο€/N))) + true + 72dcab9e-b4c9-4e1f-805d-7d9edf73b6b3 + Expression + Expression + + + + + + 452 + 5029 + 224 + 44 + + + 554 + 5051 + + + + + + 2 + ba80fd98-91a1-4958-b6a7-a94e40e52bdb + ba80fd98-91a1-4958-b6a7-a94e40e52bdb + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + Expression variable + 4208bc57-258a-4aaa-acbb-6ff9d4f4e246 + Variable R + R + true + afcc5191-a0bd-476c-9768-591ad0f7378c + 1 + + + + + + 454 + 5031 + 11 + 20 + + + 459.5 + 5041 + + + + + + + + Expression variable + eb739245-110e-46d1-9a32-a5e452ca05bd + Variable N + N + true + 4c725ef7-1aec-4903-a426-fcecb964fe28 + 1 + + + + + + 454 + 5051 + 11 + 20 + + + 459.5 + 5061 + + + + + + + + Result of expression + 46557eca-0fa8-4257-9968-cd3caf6e4133 + Result + Result + false + 0 + + + + + + 643 + 5031 + 31 + 40 + + + 658.5 + 5051 + + + + + + + + + + + + + + 9c85271f-89fa-4e9f-9f4a-d75802120ccc + Division + + + + + Mathematical division + true + 88abfddb-dc25-4a47-b1b4-50a31d0d4a16 + Division + Division + + + + + + 223 + 5326 + 90 + 44 + + + 268 + 5348 + + + + + + Item to divide (dividend) + 999497b8-4949-42d0-82ee-bb6922eaa656 + A + A + false + 0 + + + + + + 225 + 5328 + 31 + 20 + + + 240.5 + 5338 + + + + + + 1 + + + + + 1 + {0} + + + + + Grasshopper.Kernel.Types.GH_String + false + 360 + + + + + + + + + + + Item to divide with (divisor) + 2027e357-80d3-4640-b420-0441660b8610 + B + B + false + 53dfe8d4-944d-46bf-8495-cdb43c7556b1 + 1 + + + + + + 225 + 5348 + 31 + 20 + + + 240.5 + 5358 + + + + + + + + The result of the Division + 07a66282-69e2-4d09-a2fc-d9349dd70354 + Result + Result + false + 0 + + + + + + 280 + 5328 + 31 + 40 + + + 295.5 + 5348 + + + + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + e15bd0e5-52c7-4abc-b78c-67d41b71e40a + Panel + + false + 0 + 823410ef-5164-49ce-aaf0-4fd337d12394 + 1 + Double click to edit panel content… + + + + + + 787 + 4979 + 160 + 20 + + 0 + 0 + 0 + + 787.0285 + 4979.544 + + + + + + + 255;255;255;255 + + false + false + true + false + false + true + + + + + + + + + 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4 + Reverse List + + + + + Reverse the order of a list. + true + 3e455af5-11a5-4594-aa1e-1337627e9e91 + Reverse List + Reverse List + + + + + + 636 + 5204 + 66 + 28 + + + 669 + 5218 + + + + + + 1 + Base list + 586d2783-4e94-43a8-943c-6fdfd3322a72 + List + List + false + d2dee351-7ad7-4195-88b0-b83aeaa59ee9 + 1 + + + + + + 638 + 5206 + 19 + 24 + + + 647.5 + 5218 + + + + + + + + 1 + Reversed list + 7c44bb6d-fef3-43c3-a0d7-3be44f7b0065 + List + List + false + 0 + + + + + + 681 + 5206 + 19 + 24 + + + 690.5 + 5218 + + + + + + + + + + + + a3371040-e552-4bc8-b0ff-10a840258e88 + Negative + + + + + Compute the negative of a value. + true + 8bf27de0-4004-4ff7-b736-5cb42643e79f + Negative + Negative + + + + + + 665 + 5284 + 88 + 28 + + + 708 + 5298 + + + + + + Input value + b7de0a45-9da5-47cd-8e32-3a10c8e4a2c6 + Value + Value + false + d2dee351-7ad7-4195-88b0-b83aeaa59ee9 + 1 + + + + + + 667 + 5286 + 29 + 24 + + + 681.5 + 5298 + + + + + + + + Output value + dc80f669-d3b5-461a-bbfc-9b9c97908674 + Result + Result + false + 0 + + + + + + 720 + 5286 + 31 + 24 + + + 735.5 + 5298 + + + + + + + + + + + + 3cadddef-1e2b-4c09-9390-0e8f78f7609f + Merge + + + + + Merge a bunch of data streams + true + aaecc85c-5804-4f33-b45d-79f7f9c6f1ac + Merge + Merge + + + + + + 796 + 5167 + 122 + 84 + + + 857 + 5209 + + + + + + 4 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + 2 + Data stream 1 + 1a063d31-b99f-4b3b-a626-650425924c2b + 1 + false + Data 1 + D1 + true + 7c44bb6d-fef3-43c3-a0d7-3be44f7b0065 + 1 + + + + + + 798 + 5169 + 47 + 20 + + + 829.5 + 5179 + + + + + + + + 2 + Data stream 2 + 8b6a68fc-650b-43b3-b24c-6d7280ddacda + 1 + false + Data 2 + D2 + true + 0 + + + + + + 798 + 5189 + 47 + 20 + + + 829.5 + 5199 + + + + + + 1 + + + + + 1 + {0} + + + + + Grasshopper.Kernel.Types.GH_String + false + 0 + + + + + + + + + + + 2 + Data stream 3 + 0da47d86-2eea-46ac-9cc6-efef4ba603aa + 1 + false + Data 3 + D3 + true + dc80f669-d3b5-461a-bbfc-9b9c97908674 + 1 + + + + + + 798 + 5209 + 47 + 20 + + + 829.5 + 5219 + + + + + + + + 2 + Data stream 4 + 1e2778df-a9ca-4306-96b5-4c9c4125ec24 + false + Data 4 + D4 + true + 0 + + + + + + 798 + 5229 + 47 + 20 + + + 829.5 + 5239 + + + + + + + + 2 + Result of merge + 277e686f-fcb5-4411-b782-b0d4e125e2c1 + 1 + Result + Result + false + 0 + + + + + + 869 + 5169 + 47 + 80 + + + 884.5 + 5209 + + + + + + + + + + + + + + 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4 + Reverse List + + + + + Reverse the order of a list. + true + 60e0663b-6476-4b01-bd63-0c0198ccc786 + Reverse List + Reverse List + + + + + + 674 + 5092 + 66 + 28 + + + 707 + 5106 + + + + + + 1 + Base list + 2dbaef14-36fe-4e6b-a6fc-d6ece26ab7f3 + List + List + false + 7a247abb-61c5-46ae-9afb-f19cc07f8a56 + 1 + + + + + + 676 + 5094 + 19 + 24 + + + 685.5 + 5106 + + + + + + + + 1 + Reversed list + 332a85d2-acae-400d-b270-26b2f3125210 + List + List + false + 0 + + + + + + 719 + 5094 + 19 + 24 + + + 728.5 + 5106 + + + + + + + + + + + + 3cadddef-1e2b-4c09-9390-0e8f78f7609f + Merge + + + + + Merge a bunch of data streams + true + 23c55c34-6817-421b-8b50-44e1f6ed219e + Merge + Merge + + + + + + 879 + 5025 + 122 + 84 + + + 940 + 5067 + + + + + + 4 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + 2 + Data stream 1 + 8b9f8878-3208-4942-ac54-df3ab345b55b + 1 + false + Data 1 + D1 + true + 332a85d2-acae-400d-b270-26b2f3125210 + 1 + + + + + + 881 + 5027 + 47 + 20 + + + 912.5 + 5037 + + + + + + + + 2 + Data stream 2 + 19058d50-e13c-474a-95c0-830c3a9db49b + 1 + false + Data 2 + D2 + true + 0 + + + + + + 881 + 5047 + 47 + 20 + + + 912.5 + 5057 + + + + + + + + 2 + Data stream 3 + a500a7bf-9d14-419c-b493-2feba5d238de + 1 + false + Data 3 + D3 + true + 7a247abb-61c5-46ae-9afb-f19cc07f8a56 + 1 + + + + + + 881 + 5067 + 47 + 20 + + + 912.5 + 5077 + + + + + + + + 2 + Data stream 4 + c4fef57a-4dca-44a4-84c6-20aadccc963c + false + Data 4 + D4 + true + 0 + + + + + + 881 + 5087 + 47 + 20 + + + 912.5 + 5097 + + + + + + + + 2 + Result of merge + 5bb9f473-b63f-45e9-b4cc-e2754dd53763 + 1 + Result + Result + false + 0 + + + + + + 952 + 5027 + 47 + 80 + + + 967.5 + 5067 + + + + + + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + 282f65b3-c82c-4daa-95bc-75a538e5c507 + Panel + + false + 0 + 277e686f-fcb5-4411-b782-b0d4e125e2c1 + 1 + Double click to edit panel content… + + + + + + 1328 + 4998 + 160 + 479 + + 0 + 0 + 0 + + 1328.951 + 4998.402 + + + + + + + 255;255;255;255 + + true + true + true + false + false + true + + + + + + + + + 59daf374-bc21-4a5e-8282-5504fb7ae9ae + List Item + + + + + 0 + Retrieve a specific item from a list. + true + 2d148978-bc67-490f-aac8-90ad0eee5b78 + List Item + List Item + + + + + + 954 + 5545 + 77 + 64 + + + 1011 + 5577 + + + + + + 3 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 2e3ab970-8545-46bb-836c-1c11e5610bce + cb95db89-6165-43b6-9c41-5702bc5bf137 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + 1 + Base list + 043107fb-534e-4338-b36d-df84e0cf9cca + List + List + false + ddf12dcc-4532-4f5f-9017-ca2181ae4120 + 1 + + + + + + 956 + 5547 + 43 + 20 + + + 977.5 + 5557 + + + + + + + + Item index + 350a0836-dcc8-4f52-8157-c6cd516a99d4 + Index + Index + false + 0 + + + + + + 956 + 5567 + 43 + 20 + + + 977.5 + 5577 + + + + + + 1 + + + + + 1 + {0} + + + + + -1 + + + + + + + + + + + Wrap index to list bounds + d7dc3b8b-6076-4e6c-b5b6-1ab79a6eb7b8 + Wrap + Wrap + false + 0 + + + + + + 956 + 5587 + 43 + 20 + + + 977.5 + 5597 + + + + + + 1 + + + + + 1 + {0} + + + + + true + + + + + + + + + + + Item at {i'} + f0a2926d-0090-4148-a401-3d572f930ace + false + Item + i + false + 0 + + + + + + 1023 + 5547 + 6 + 60 + + + 1026 + 5577 + + + + + + + + + + + + + + 9abae6b7-fa1d-448c-9209-4a8155345841 + Deconstruct + + + + + Deconstruct a point into its component parts. + true + b86a52bf-2406-4de9-86d2-b4d485bc251e + Deconstruct + Deconstruct + + + + + + 1067 + 5551 + 120 + 64 + + + 1108 + 5583 + + + + + + Input point + 548b57c4-3a3c-4a6f-8af8-bf61e4e59001 + Point + Point + false + f0a2926d-0090-4148-a401-3d572f930ace + 1 + + + + + + 1069 + 5553 + 27 + 60 + + + 1082.5 + 5583 + + + + + + + + Point {x} component + 44bc53b6-00e2-489b-a5dc-407425442819 + X component + X component + false + 0 + + + + + + 1120 + 5553 + 65 + 20 + + + 1152.5 + 5563 + + + + + + + + Point {y} component + 2f6a5a53-3d55-41a3-aff0-e99afa30befd + Y component + Y component + false + 0 + + + + + + 1120 + 5573 + 65 + 20 + + + 1152.5 + 5583 + + + + + + + + Point {z} component + 7190c040-cf1d-4a5e-8023-43bb486fb5ff + Z component + Z component + false + 0 + + + + + + 1120 + 5593 + 65 + 20 + + + 1152.5 + 5603 + + + + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + f154e627-b8c9-4f9e-b1ba-a80649ec7c08 + Panel + + false + 0 + 68c4ecd4-8214-404d-ae51-7077c9a01211 + 1 + Double click to edit panel content… + + + + + + 95 + 4973 + 116 + 20 + + 0 + 0 + 0 + + 95.03748 + 4973.852 + + + + + + + 255;255;255;255 + + false + false + true + false + false + true + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + 5933667b-3af6-464f-b517-0cc7a179cde2 + Panel + + false + 0 + f2e126e1-a59b-4fae-8f48-32341df4b306 + 1 + Double click to edit panel content… + + + + + + 95 + 5055 + 118 + 20 + + 0 + 0 + 0 + + 95.86689 + 5055.486 + + + + + + + 255;255;255;255 + + false + false + true + false + false + true + + + + + + + + + 9c85271f-89fa-4e9f-9f4a-d75802120ccc + Division + + + + + Mathematical division + true + 85f48747-2124-46a4-98df-e9d256731d7a + Division + Division + + + + + + 1319 + 5551 + 70 + 44 + + + 1344 + 5573 + + + + + + Item to divide (dividend) + 2432be2c-9d9f-4aac-803b-2fcde25fb454 + A + A + false + 44bc53b6-00e2-489b-a5dc-407425442819 + 1 + + + + + + 1321 + 5553 + 11 + 20 + + + 1326.5 + 5563 + + + + + + + + Item to divide with (divisor) + 65c55d0e-0edc-48e9-8eae-b467e344896f + B + B + false + 2f6a5a53-3d55-41a3-aff0-e99afa30befd + 1 + + + + + + 1321 + 5573 + 11 + 20 + + + 1326.5 + 5583 + + + + + + + + The result of the Division + 1bd4238d-59e3-4478-af43-8dbfe4dda340 + Result + Result + false + 0 + + + + + + 1356 + 5553 + 31 + 40 + + + 1371.5 + 5573 + + + + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + 007da1ee-8d7e-41b8-aae6-e1f819a393a3 + Panel + + false + 0 + d2feb401-36df-4805-af94-8e108f24e9dd + 1 + Double click to edit panel content… + + + + + + 94 + 5015 + 116 + 20 + + 0 + 0 + 0 + + 94.83049 + 5015.627 + + + + + + + 255;255;255;255 + + false + false + true + false + false + true + + + + + + + + + c552a431-af5b-46a9-a8a4-0fcbc27ef596 + Group + + + + + 1 + + 255;255;255;255 + + A group of Grasshopper objects + f154e627-b8c9-4f9e-b1ba-a80649ec7c08 + 5933667b-3af6-464f-b517-0cc7a179cde2 + 007da1ee-8d7e-41b8-aae6-e1f819a393a3 + 3 + 3d90ee0a-71c1-442e-a7e7-660c8099a19d + Group + + + + + + + + + + + 9c85271f-89fa-4e9f-9f4a-d75802120ccc + Division + + + + + Mathematical division + true + 2bb0b080-8bdc-42a3-8107-71e06cc4368c + Division + Division + + + + + + 336 + 5272 + 49 + 44 + + + 365 + 5294 + + + + + + Item to divide (dividend) + 16c182e4-0901-4869-a917-a38957b02052 + A + + false + 53dfe8d4-944d-46bf-8495-cdb43c7556b1 + 1 + + + + + + 338 + 5274 + 15 + 20 + + + 345.5 + 5284 + + + + + + + + Item to divide with (divisor) + 7858c11b-02d6-4b55-b212-bd137673d36b + B + + false + 0 + + + + + + 338 + 5294 + 15 + 20 + + + 345.5 + 5304 + + + + + + 1 + + + + + 1 + {0} + + + + + Grasshopper.Kernel.Types.GH_Integer + 2 + + + + + + + + + + + The result of the Division + 9b585c51-4d8d-4d1a-abf6-db393bf44760 + Result + + false + 0 + + + + + + 377 + 5274 + 6 + 40 + + + 380 + 5294 + + + + + + + + + + + + 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 + Interpolate + + + + + Create an interpolated curve through a set of points. + 5452b66d-1aec-4c7d-9c3e-d3512215367d + Interpolate + Interpolate + + + + + + 951 + 4868 + 225 + 84 + + + 1124 + 4910 + + + + + + 1 + Interpolation points + e9187188-4b3d-4dcd-89de-83e57a651893 + Vertices + Vertices + false + 065f686a-4028-4e05-b353-3c9ef8ca5da0 + 1 + + + + + + 953 + 4870 + 159 + 20 + + + 1032.5 + 4880 + + + + + + + + Curve degree + 036ab95a-1c40-4f62-81f0-cb6d46d98e73 + Degree + Degree + false + 0 + + + + + + 953 + 4890 + 159 + 20 + + + 1032.5 + 4900 + + + + + + 1 + + + + + 1 + {0} + + + + + 3 + + + + + + + + + + + Periodic curve + 02139147-d05f-45b9-af8b-12fbeb61998b + Periodic + Periodic + false + 0 + + + + + + 953 + 4910 + 159 + 20 + + + 1032.5 + 4920 + + + + + + 1 + + + + + 1 + {0} + + + + + false + + + + + + + + + + + Knot spacing (0=uniform, 1=chord, 2=sqrtchord) + 17783bc4-4d55-418a-9ec5-a284d3ac4e64 + KnotStyle + KnotStyle + false + 0 + + + + + + 953 + 4930 + 159 + 20 + + + 1032.5 + 4940 + + + + + + 1 + + + + + 1 + {0} + + + + + 2 + + + + + + + + + + + Resulting nurbs curve + ee4ecbe2-4fbf-4854-bfd4-5d67e8d925cb + Curve + Curve + false + 0 + + + + + + 1136 + 4870 + 38 + 26 + + + 1155 + 4883.333 + + + + + + + + Curve length + 926602c6-92cf-4952-979f-f93dfb6a8664 + Length + Length + false + 0 + + + + + + 1136 + 4896 + 38 + 27 + + + 1155 + 4910 + + + + + + + + Curve domain + f0d328d9-b8a7-4455-a914-0a12376e0d53 + Domain + Domain + false + 0 + + + + + + 1136 + 4923 + 38 + 27 + + + 1155 + 4936.667 + + + + + + + + + + + + f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a + DIFERENCE CURWATURE SHAPED GRAPH + + + + + + 7H0HXBNZ13dQpEpRUVAUgwVRuh2VlRaKhKKgYieQANGQxCQo2BYVe0NFRWzYsYIde8O2lsXe67qKbcVeVuW7dzITMhXyECDP9z7uTxfmZCZ3/ufcU+499xwjf0lccpJArCgFf/RYLFYd8NdcKkpOEIqHjRLI5EKJGJIiwGVIhn8M4Uew+4IEPL5ABj9SByWbYKRgf3jZGFzqH3j/WeSQVeHT7irCt8iS1xhGyASjhILRkG4C6AaRieApfAv0cqhAnhiVKhVAcm30i81QWphElsQTQUorcHX16tWl2F2RApEgTiHgYzShUFhq5S+IF4qFCvAWETKJVCBTCAVy7LHwr74/T4F8jxH4ZdfjpJnzp901MvUXyONkQqkCfXk4RJZ+GC9JgP32pnZ0UKCr65M9S1+unAH+fbIkD/z7eMmOx0t2Iz8gv+5eD/+dPxf5N+Px/EWqTxZlhcGfF6bDJyyGtzxZvk718+PMhY8zF6k+9njJJtXTlB9TPuTlkl3w+tKJuK/G7kWHhFI34Ye3oux7Z2YjH57N9HP2ZtUD0X/RK4x3IT+jb4R8o9oANqnGho4TG3bZZxCq8h3RL0XeHUUVeQKKD3YvGUklwijayi/CGIHyBX0ajn0ovAhnXV0Dg6KN+wAJg1NBjk0T+McMu+onSVZOoNrYFADCNhwIIyo/tdDLBlE8WYIA+aQdnGpfS0sH1QOSNVAiScJm0KSmMT3r9APijPsqY3iF9DXGfeKkXF6qJFmh/lmTQJkkWUr6cN3AIB+uMFbGk6FTQA+dWXVwH4VXDJWfS0XGjN5u6SOXC5JiRakBySKR+lTwiUiOjxfI4oXyRGd2P6XG8Org6g7/c2b7JYsUyTKBl1iQrJDxRM7siORYkTAuRJAaJRkhEHuJwdMssEf3K9M38MmG6FMMfJIViRIZdtksVBiXyBOI2BGyVImsVjAf0zKri1c0HebRj5tnME/4q9hkDG7GmpQN05Dme+qVKYvwWMg+FUz9AAdNlddwYMHrBsrrEKNaKH76gX3LdJ/Huj6nBuVtCshdZ3H+xIRPi3GjqoPwythPIlbwhGKlHnVEn2LgK5GhqhVjjIGfRCRJlmEaDv6fSlfZ+bAT4HPZknh2oIwnlydKpED3sSXKt6oV7I9ID/i7sM/LcQM+JoTNdHvl+v1F8mJA0kNJpTF3rj+83yoks/eOYVkX/jABpFooSTb2l3Oxu6l/3h95r23zQxoCUm2U9MS+G++Y6yzuljVbPN4ILBwBSR8l7TjjM+q7rU3Q0WeP5nW1tH8ASHVQ0ofrTwrWNCjm5jx7PiQ9essLQDJASasOdbC6/rNu4GG9WgUT7LK+A5IhSpLmcVdusejGSWs01ye49YTRgGSEkiZ9PsQyP6Ifnn+oq97lfYHrAMkYJU0/earv0b/MuFvTn8zv+uKrEyCZoCTxXpeXp19s52x+tCXG03H/N0AyRUm1D464Xsfzl3fOmwWPdroNuA5IdVHSzAmtf7y5ERuwyCzizccI24GAZIaSUj41sneSZoWsnTDLcNnXGf0ByRwl/XjSqtvFN5167fOMdBm5OuYjIFmgpJ8HfFYMXLTWP9u49PLa2+lGgGSJkpo3X3F+TsfHQfNXni3cGfh9ISDVQ0lLQ15xj23pyl2w16npyoG9nQGpPkp6s7Zu0/wHluE7Y3rz79u2KASkBijJ3vi4k3vIO5+CqB/H5tdp1BWQrFBSk8HSFfW7vA1epL/fdKR58BJAaoiSHrz8uHFOeqOg7cdHPLXcumwTIDVCScVtOKf/zejpd3CZj1vc+M+PAckaJf0+J8vo7NufAdOdr+b9sX5iIiDZoKT4hpHf9KaOC5imt08mtg+ZDkiNUVJ4VsGklNphPmuGJdR/ZZT+LyA1QUlnkjt0fD8hLfTQg/W3rxulTgQkW5R0qfPC0QtOFPXKr7/xIPv0xHaA1BQlZU25tu/7iiSfbe/szfnibChRzbDpUCicWt86i5PxntP+BNfrFSDZoaQeV5pfW7jyqM/6cVsnJY0YuxmQmmPv9SB3wMYpncInxj+/x2JlxgISGyWtFCZl7l7ryllfJ/vWoV/99hoF+w/DaRB7qJmDxXIFTxwnCEwWqpTZZNmfdW4frRV0dG/onEfHePoUasMoTBg3Qv0yy8RHoZAJY5MVSg2Pqm5MRelpTUX9Vo0qqkNUwZIfwTf9cnu+6OKz74pCTUVJdzfLMzBM4uTddO40Y9LLwWoqakvepe2T3jwM2RlrGfPGrKelmoqa2Dfs09kNKQGbJDOCpvumnlBTUU9f71/1LjDYd4ZT23msIPZTNRW1K+/4r6A9A7hz7GaVnF9yzEJNRfWNanrGrn+pz9KTHXOMo35+VFNRUT0aJ01t9Sp8Vpjex8lmId/VVNT4QIVk+HqPwIO1rqY/rHv0g5qKWuYUZhfw79CwHfJlyza2m7hDTUV9z0rx3xzMCtzZaJbX88l936upqIXTOR2LbMcGrOm2lvOscFdLNRVV8nu9en9ODQ1aFtR8d5RL289qKsoktPPnyytaBOX1utVzaKtrF9VUVFHE+3yX56GcTS3X2Jl5yF3VVNRMp7WpthHcwIzUbNudV/ocUFNR+5YWGtoayrgb+t+wM7xeOEBNRbXdfefsu0+vQmavfucW2d86U01F1fLauWDM/gnhi79092o/vfSamoo68TrifROLdiFLnVesMNkYsE1NRX3K6xdgkucdsr+lW72EPj23qamou8PYwgPX+wQtt7/a58awg6vUVNTM4T5fZ19YFbwj9UODnKehKWoqivVXQpeIPSW+Ga3evR0yu8dNNRXFihzw/Ni1tb12Xm28v86sO/XVVFSfzl5ZDSKdfHYPntHLcd6bdDUVNa3xaNvsXRdCZo3lWRe+Hs5WU1H9kof5dShMDdll6JVv9VHWUk1FcS/ZnF5RUC9g5bHf4xvual+qpqI+eizkeL4rCdrll3Pg2pBWSWoqqs4/M5J9BswMmt7bZ9BFSZC3mora+iF8Q5evrfz3mOx4f3ziQpmaimr5+Y/X3vbHA5cbbGVPidZvAEj2KMmz3SGum1+XgB1ngjv7jNg5D5BaoKQRAR59DXat8p1oNmX2hPvnoAvQEht8VPrgLcv1A5bGft5gfXBMT0BqhZIO279dHDPNxmfqmcxbXtsPHwWk1igpzTFjc0u7+b4H2x6IWjLwsQ0gOaCkCdw9A88k5QbsS+qybG7/5taA1AYludxlL+V/9eLM6rLCult/OfwuR2yE/a+YLxvVtlf2RkuHF4U9ZwJSW5S0qF5pWGf+uNAVr1p8uCsP7Q1I7VDSWpf8hbdcZ3jPYUdNjSicdweQnFCS3VqvP84nJQbsXrv99gpWJz9AckZJm/R6tzrLjfSbeiV7mGEP03OA5IKSTi+wNPjt3cPQDetWPAq7ePgwILliU2/qmtN1zd722tDb1TK6VwtbQHJDSf827rRuaPto78Orv/zFPecsASR3lPTl69ONF5uWBE39TXw5o8WVsYDkgZL+cD7Z6HztuaFHZ3yyf2VUfxkgtUdJ66d0cV456LbvTjuF5R9216CB7YCSno3ZN+n+RXmvrVzr4LP8Mb6A1BElLe8mfdT5TmrAbpHRvnnPdroBUidMs11zaDH05ODAufV2ng/5vCAAkDqjJHmtZOuwZpa9Fuz4uGP4h309SEavC4vG6E3Z+Dzax+Fc0MQXZ2abWIw314LRgwaB0ugd2TD7t9yfeb32HOsRdfagvD7uuwzCkpNiBTK81TNEH0Vlz9zQT8rZPHacRCRSBn/QusWLJDyFUJzAlkqEYgVbjDxYTvn6RFNHNSTS+2PXw5HxKJdGkFDQIBLY4TgBC+XKxsdLG4+/3TVs/58TEkOdiqaYKsmk4I8Apyp29QUf5COX4ERnpbXjsCI6nGKxgnxZrGM+dSKEoyTIc6DKYVk6c8bObH/KPAJGWnKFQKzw5yl4zFGnga8MAJLIUmMY+UP6ETxFIvbqtce6j9cPVgiSWKyy1SkDJcLwM1jsymJleKPiUJtOHA4LNmwW/zzPneN8ape7rP4QHPbGfsmyUTwYyOIlAjoHBjQS0Z0ziidK5ikEbEWigB2HPQCKBA/5VcDmKcCPcqkgThgvFPDZUp4MfKdCIHM1CBLy+QKxCi9KaSF6PzQjJglMGamCrGY7cgCAgNXfAavTfAmsZjsD6m+nTJHRDxOKpclILGyIgkwFTT0/5PUVErYAxYjyBce9fdHudeaa4NmDTNv3XfNxIl4bIM8gvRx6ubzJQPQBKzkZvAFCUm90MpQQJ0NRWw4rrScOIb1yEGodgckCG2gRpbTwJUlA8MpFbUFKyzyvkB4h267fOGCd1UyGFwvVc8liUUYqD71f/eeLiutmB0yrnebao9+03VpAD0gQA3o5XqfqKtGTJCtQATNggK9hBKJrVdCBiTZWMZ4SLttBC+8t9ojw3mPxuEnA9QGReCFDnkMWMuVlEkxUOLAqjsMjZ1SKegAccog4RLtyWEU98TjolYODtWqqs0cB5SeRMSHBf2JkwPWbxV0d/FvXde+KXmmuT6oEEfeeTIgAucEhUqviiMQJZXEiRtk43/9madCG46GbeaJ/Cq2eeOsIIiVeTIhEeJ1CbR2MailtnevzWPsfsq8hmQOu3XLL3WyFe6+6/sJRQr6AjShSsrkzpAG2LXobZtvABAGKamQyT8QWCcQJikS2XJAAd4XkFTJuxPidfogk9HHUCsJaBFSQe3cA6xMqE5fhBKieGpk4C5WJ4yOjoXzJniuSp91+VjcofdqRzXODC3/proErAfhYQnxKfCjE7hFQ0dJulAaOzl+ur/RaoTeEyQUlREUp9WIcGivCVpg8u9htzLSNBIjg61BAhFwuDyJijKUFiIo8mSACIlTDDjG8iQ05osYpTGPScco6UioSKlRcgvpyhFA8giaC+aOD/sqxzYMPzvn+vNHImQPw7AqB95HZpbysbU0J+ZHRlYkfJV1qhB+GsRKJSMBTKUAWybXBFIuBT1ycQC5XfzylroEKD25oKUNMas6suMczyL35wGdNhzp/c/i9juBjS8ShIbMGu65t3kQ4o+pkMJUVM3JF1AnJ09EQlhZRPHECYCzq+iCSy68AUnuaCnJXhszymRx6c/qiA70e45AyQh9KxqqMUhVoIZqFFi2gWUhekIZotSyLOGB0IagwXMRggLDrij2VDJg6rSogQyY/LWRg8qNuUh0WjZu0auzi6/8Uj/DL3db256U/21+nMM94/8iYAd82tAtEQGgEMmGc0m+qmHdEtO6GoTypVChOwJCCr6NFZ+JJB/0GxvcPhs5dlTncMTyocyUtJYzo2MaAOTMplo4GZjtzOg00wphjQMecWMepLbP1j3jviW5ls/n87Ua417XwF8RJAG6y5DgF20cWR3Zj69CwqXsfAXgFwSjlqk0sTy5gS0U8scCZLePxhcmAe2I++JsgUsXjcD1HzObJ4iq2akPcYmIcN4lhxA9UNGoAtvAYByB+gcq9ZQH39pifRu5tU/DdbBBO+iljKOjmlg2M8r0f7E17aftuYMD+4e0zOOGF93DvXZvqXZGL5YkmMUSrpGiy4GIDBCoHOA1SIlA5bRGgNFqKsPVVyRAiKkrclLEnJVBr/9TLveueEnCgec+GbeTLmuH1KfK0CPg0sj5Vo2lbnx5zQnGJptKnUhcOi8XRcGmij3I+VQgT/z2HThyZdd9/ZuaN9hNGm37BOy/KJ5GdF/R6VWAR48+EBVFGyluUYPuoKxRH8BcqG55Y3haFhxIUo4LTDfQ/5vltf7tC8bLk8yO8wkceSVb4ystVAQnbjwmSNF9Mo2NRIUmjuy0Yn9qs26+A+X07zWItG7AEL/jhYP6EjwLeSTRZmdemwbWBnyQJwA8mHpx88OaUiilp4mY/3VDIc7CMVlFPBeiUjOEAunwA3SMidCzgx+QLNVLNpsHwU0onjvLllj2v9+vU9r7hm63PtL8ZySOsePaD95HlRnm5PG1M3IGupDaWwnUFiE2xD8UeU3Q7BBuNtHHdcORjDOi84o9oXHdgw/A93qPudLj6KJugagTyZBF5xQG7rvV55YwC8JUKgAIXBAB0XhnRzauRR4VOwrDNfvuOhIuePx30FvdGpr2TwbvAFBxpIrUzW8H4oZW/UA6sXCrc0RIooN5KdcECCejzJsBvoEScmD5DOz4S7DgiCXvjSIlMEa6en0QhscT0lwpKrOppBIbFtAGqbhRgWCM/+Jfg2g5vw0kaP+qUGZapHizmC1Kwx8H/o6w0pmPlq35hXH23b36L1l4IWB0ePBAHlT4XsI6sHPVpGGbvJxPA3UkeWwQ+zo4VKEYLBGK2YrQEjfYqpiqJGU7kIZHYhlzVwHPNiEc9V3eS5wpmgLtAI/VoCb+cDd5DplC+J+VbtW28/Iney9WcOYMnbflltssGL5ORyN3Ue0M4Ynn6krj5pAXvVQrBiqAywzlAXxYJNNqGNEfAEoCQhx6qp3t+67jb5anvpsv9eH3yPWfjN0k44F5qoNRI5cFEdIm1ABOQGgaYMvgamhWlUCmXSClRSkxKDepzf4/ftqPOtaaMnNayotNE+ybFBZWRfGBS2MQJJXVFoEH1kAmdHjq3jMf96WkdOGmDneHLlmPxi4lGCBiR/tyKR92+eF2EAgliynjwK58dm6o+YZ3ZCnRhD8biys0l1/EVUlbEnEvqcZOX9jBKBTHOAUrLaA3A+B5VuO0NOGC0ugqUVlSji9uieg7jTEkwHed20yQA79gheons2CkvV7OiOgYA+rr6FAyxKWYgG0QTuas12k6yQQDC5MKRL5Qp19faUgL1e6I1L5f7njNraVCD3W0jTPEqyx+7mayyykjlARZz9PAH24ODA9Kf5A4wL+myQQuARTMCBiSqRjaXlIvr8DMdWHR/SnoSN5wwZ5UygEF4qZzX1KnxV3hnjqUWcA4YBn2bbr/Hsn6wWCGQAWZwUqQy4KqqPauWSzTegecijyU78Oj18thKzPTVAlsLcpjYmphT03uGZUl0JT21bBSjD0x8/r5Vcdjs+1+7NF7cb3GNGUWWK6qP8qmW/fJdkemFGkVTFo1R7Ne81ojMHZa++1eL3nYfbxSEX9lVZQMqJa3iiRX79VS34vIG4wQy+AB2PE+Z2COSiBPYQoUcs4joF6F0OTuOJwZOPlueLJWKYLZhrAQQhViGVLIY3goNqhg5YCscAz6CXHRl+yVCvYosiA8KG1KWpgiXfRWSBLh0pYoewGdgBJEk4QsqGEAQDzswwkZeECd8oKIrCzBhbzNguL4fhYXOh2H3pqpIabQ99CE52c2CO+nFji2pB6+v0OImDXEyVVI1ZQCEYjbTLel5AyfZcjPJRDPlEbTAySM7Hq74IpihgIGPUkJmbhAxt/++3Zz5+gF/HJ05KaZy+rySigKicmwTEypAbnRIYWuS6NExOJ4dJUsWOCOzGM8toVxdLzi6u7qzJ7A9XN2p/SvDLYKcTcscgtO3HbZa7djxK375NEz1IPLyqRqtKljHZmRdUa5O5IPoaWRlmylTXYFJgFwrSyZn8J8W3J9YO8P2SK+tmZeO9OG9wm+dVm/KK9waQLRMEBVTWG6IltFoX8kBn/WhETDuntc6WbWx9Ft5y7jw1qoi/LK/IfpgEjQqQlWAgygbWnCAstFoo6mN0kqVWXBN0OGnLMms3ekANzf/xP3AtmlztZFYrgWE2IwIgTmN+m11WTR+G8ennVOp1zWf3Ad2m66sfNsBv9aHxBZSiQhYdLLPZkSDcydsPUMM82Cx+/mowVMkyiTJCYllK+WarLcSD4DSjpa8MqlGrKhfDByhnG1oWmwu0U0qAvhGbCW5SUaYeqzYxoFV2bDKyTSKeXe5cdTmlIC5+skng/fenIVfvekHi7uALySv3qgo5blQRMVYSRcKORmzjS5XOwvIrvc2jVyousrpyxckyATU/uXFHHMHo9ELObPOrMz8+9eHdnhnyR+5kewsode1PTvh+5dsZXr/nK017SypJFMDRwkOWSjhYylblIzYumCH6+FuBZy9w/9KOxDz4m+8rGIPIMuqilIVzIhgZAarZphBSodVZ0XtcljhGiKWKID54sXBE5aO7l4gZAWRRZIz28MrLlEi4zuz23vJR8oUyC/U3up0O5Pp41YO9J963uNxYkbpabxdg18QqUilyKVQI1UFs/K3MDErZosuzBz4KM0OZik3yiGzxMmyWDnDDMr4YpXe47eSXpOf2IpfTLa7U5lQubKhgzuqyG0AO4qI7DjmwenbeptmXiqqyRm8ra55nd2PDLsUOq/PuVBr9919ajbsBQAc24oCcIsCAKhaNPJEMVOGpDxRAjB6h2ly5zAHzvql9QZ8NX1YQjBlyI0Upkx5vSoAKN7CAMDmMVswR9OMReNo/mcnzukQ1MqJc2LNEK2eOCceZ9fGifN8mhPnA5s4c1Jf52E8MKfjgcY53UYMLNBqTjexRosWlwaJqlQLjHi0nYkR47ZjjLCgYwQ7oeXe6XNm+C48uZW79Nv+sfjX7SMQ8VKpGUEIK+g8gwY+7NFCmYAtg09CywpR4k7MAKIYCAl3PXa5mBPzyCqbMw8wPzbiFNyyBwygKLfA8h6BYW5Jh7lx5JJRG5KH++e9+Srowt6Ejx0t0Jg1FPwjE/JEFd+haFIW7YZLBeJALjsJfUbFQlpinSHGYZF3AAgf0GA5sGQ9ugNQRMqDAC5WxDpSaMvkijZTFr6Csx8uqfCF8fHJcgE7LpEnFgtElC9+26XTk5P3srwP5Q69NMYh4Bx+vclf+QTyehNG0LaRyweQPIKQpFF5nfkwL2Z9jXiddYBylahKin358qVUk6iZjWcMXOtKFvFk7ERhQqII/KVWC+eH/fxz+omJoRt//FxkO+3XSXwAF4k+hBzAqShVwR1vRu6UrNMB7pSWsko1Caabc5KEcrkQ+IJxODZhKoSSOZJ1W1fe2Lo6ZHfdia/s0p8dwjNH+USK/I0ySlUwJ2cdE3MidIE5kD+ahNddfJLgVyI8AcMBcbZMII5LVW4AebElUt5IuF/kgfxW9gnqGdU7+66smaMtd96M339Kd3RPxB/pj1J7PvlIP45aFcxjMTIvf21NR9tlm3qPcJt6+uVw0KuMg/JEoThVDFwnwD7ALrEEnmrzAD+JJKMRIvzVHZKSeCnKC9RLW6E3l998/sV3zjb7L0tlpQmENLNEqrQN9HJVcC5mLRPnLGucc/AmPkvDdZL6ZeskjIpwJZfTO8DewL9g9953V0euq4NXhLQ+UxlF2xxxd0V9COinniW5VW6IIkT91HosGj+1sf7YyBMHP4YfNcr726HzWGfcW5n7JcsVkiQ2WvUd76ZCTOlOA7XxEQFJl6OZB/AZyGZ2gkCSJFDIUtlS5QPlFsHiOFEyXxAs7iMQo6cH6J1XYiVMprGS+ECgm8Mq31KJTBEgFCkEqoLXFZ4NbTmsoo0A+yyqXPkMuFe2kXa3hjKGCsSwUUgweCrk0RvV+j3vzAuHwKl5oi31G3RYgBdL7KlksVRRqjnZBZ5IPgaR86bSIxFOHJZ0o0b5qA2j1FwY5OiZjK4ITDPP7K6PGr0L3r/ed0j7loTo5z+awgSsiDpCG6e3GbEq2lCtOhfrO2GIhlzwQ9DZuZ9zv9RIgHp82EVfd9/SOohtI1pVIywwwD4K/19X3e3B38HCKkzWp1NjOhpuEwv0Vlu47d6SKdwuaV7V4fbajU3kj2bVD1o6Z/XfJi8PL9WBcNuyJZPzIm2hAzFDfn5+NYTbxcs5R+/FNA9Y9PfjAoHC6aVOhNtF9kzccbfXAe5US7h948saS97TN36TjFat+H38/QidCLcz2IxrIc11gDmsmgy3i2c+t1jLfua34/vZl6OGt5+pU+F2RHPGcNuupoM2HQq3s4I9T99s0cl3R1+LcPdjQ0fUcLhtacdosZrVNOeqNNyefbH16043jP3Wvmtf18jCPF8nwm3Eh6ANt4EiRP3UBqz/D8JtYguJGg63c9oyhdvejtUTbg/gm7r1GOIVPLnZ3QGtG+/YpfVwW8vVRJGC2G2ZQshHjlUVbu8r8pwsuvw0cJOog4Tb7p+hWg+3iTpCC1gBOWLAKqfN/6lw24pOjelouE3sbFNt4XbiHqZw++yuqg63TaZvvJYxoL9fZvjCXy3G6a3WgXA7eg+T82K0RwdihgcPHlRDuN0+y3F9195twucltK99rtPrAzoRbhfsZuJO4m4d4E61hNs3s7i2O/JWBWe+upv6JMreVCfCbRtG5gBtUvPMYdVkuG0SvLPFtf4mPplpLR7k3/zVS6fC7ZRdTMxzrBnm6Wa4fbfrWstfBx38JrrP2dnKotmWGg63b+1k4tz0nTXNuSoNty2cWtp7tooOmTXz4PweqfJNOhFuIz4EbbgNFCHqpzZk/X8QbhN7L9ZwuB2zjynczt9bPeG2r5PfkuF9UnvNXRZz9ejDxm+0Hm4TU8G1EEJG7GMKIVn7qircfr7gfgOFIqrXrpvT/7XY+9t9rYfbRB2hBayAHDFgFbP3/1S43YhOjfn8GiV/rZgQvCuh+a8IWcwsQlyrarNEUVoUfg1dWcpm/jIeUGN9wEtI2ISnVPCINLErrAFXEjdCwFfdxDhSiggc/wENDkm4ewBBmuRLVWEGFq50I6krpgYC9soTU1C/l40IqaoKonGk9GqFwPnl1nj+yHyhX85Ax7BUVoeOjODoVA8iWJjREiJqRTU1z8IkHXeN1FizSF6SVAS9EICaXKhIxaKzQNpatQW/vf2ruFNd/4X1Zb8av8z8gxE9Q3/lYynWOFCCtv0TpMSnGxNEQOh0wGNEZFyDknDmkXE8EVI/n76McGurqfEtzs8L2dRrRlD/wtaWzIKNPJDCkUculyfYxN7SWhDsDFcmrpW46ALXhCyVVbBm0ViF5G+HOuzMiQpZ+jN68IzuK6fjHUZ/YYJQwY6Mk8HDchp0120ZlpyEnKeTo7cialAuRMrmM51vJHKKUSgIw6vQqS+6CWuEPQVexGy4AfIFqqNrsCKJAXCO44UpZV9RB3YtUBWFNkWELzle7SNoLXYMsnjsG1lKzlW052YrDuuYE5C5MX5kmRvYqxWn0wEnLJKxoWO2X5sLbp6TH3JzAla/U3g2xreqMOsjSOJJ2cqzovKK981to7wP5aqyjyCPLRaMhpcQIVAeGq6QtSO2emcYIYndeHJFcYXpC/MArpeozH4EjFLmalRYzhzhNgxRZHA41M0S98uSAgdeCNw04dHaGVknH2ixoj+x630lVV0MgCcHwlOXStWlAFUXMU8jG26mHA/TQXKTFp3EZwOlgTs/h9zl+7gZ4c84K+8nn3FGr5eHT8TBqy8tL1zkrhu1KqL3tyMNtIAPixEfID41YQqMkCo9o5RA9GAR/2hWac4siidLECiYmPZ5SO/t+/tYhezvzxkyd94HfDFNA+X9ZKah17XtVkGuxMxl4oqljnJFo2U5C0ThSQV8VPlSMiakd0mv85/ucDNFIX23t1uMP/1jEIrcT2YMel3bjLF0RdUJXI8jdY6OcOOwHOdpVpjDVoUBrIUaJxKWh8f38XqmYedOcef8/JTA6XblHT4C8FM+gBwBYISqQCR/LhMiXedidr0xi8au5y8I+Tioe7fgqR9/KoxO3sGXSUe/seJdeHqoirvjDTh7dKIwLpEtEMdJkqQ8uRx2CmGLwAyCfj5q/isW8LP+SugSsafEN6PVu7dDZve4STVeskwqr2tQ0p09By3pTmrT4w3r9cyubCW0pqirAY29ULlKCwv0KkdC+eKil3tN7PtGha9SjM4PbzfqMF746BwbFaGajT+sdm0JMXT3pehmw26HYKiRxuqBxQXKsi+4MsQiyWiBXNkjAO6Fw5/LfEr22DDqlt9Ee16jVWdgexMEMBsqwOBmBAAMncxN6CazzhTaIEqTlgpt/IcdfGgXgIEY5s5iKrSROAvD3FbnMSfWq9cS5mb631fsDQv0WfJ51e/Wo1P/qmzrbJg5vJIOc3eAuftKDPOmdJiH7Qu4dI5V6Jc2sHF34cte9fChfSjcb5SKhHFIlUmy8aJD2jYU+GDAJVCAO0XsJNxTKmSbpjUebZu960LIrLE868LXw9lMwyLvoOHpFVUbcD1pBYBzNuVOGUyvXH7KTFWVFfNWMRtugjSQw/ESfpMhcjmYj8nAAP7ZuXpHjf0P/GMdaubUoAij69HQTZWt10gyYqS8Tv9g5XiQ4cKPMAXLzQKEMqDnhcBNRlaI8Pyi5I+rYbpgwt5FAdkLGv7ddtQQfIN5PR/y7PAhzQ49wuxo9vb4vSUOC4KXj0gcsX3kpjWVLSMK2JkG2enuQxV9wH2GFafUQNIrByS7SNiqla8RSknLHMctePgifOOc1zPfHhXji1Pp+ZJR8i0XpT+cTzY6X3tu6NEZn+xfGdVfpgWUgFgzoJSx/BQqgypZYvItbJRJCtAZrQBARI1Yo20DYfdrRGJg20BSj6cgFwQpVJ82o9On2QWPBkx7+jX4QMGeAztGPOYSqoTzxAIRuWEgnRp19GFL4R1q6QlssUQhULacUAhS0JaM1G4u95LN6RUF9QJWHvs9vuGu9qUUQyFhy6JCFVmT7QO5CC+qF8onCKfPjkQHE5um3MnDkjZEX+fTrvAb9ZULZFFg+NjXtvaXJMeKBDByjBuBtIPgCxXou4NZB1cHnqRtIPBRtT5MXEx04LBKYgAfPf1YadP8TEJ5sgShmCuIxwmFqfJyH5jsqX7dWHk9SiJVv0pc6XXgJL2JOWWBgBghk0hhrWTlqAyxUSkzTOElbOPYFG7SBov5sKqyan4bw4twyULtEmK/ROh+tNJIwhRSIU/kBzuEqFhjEKkAQWKS6nf9/jKetExzKEXVjk5Udcbd+uixkOP5riRol1/OgWtDWiVpyd0iyr8WXNyiWCYXNyIWUw/NdR5zYs9ZLWFObDmtBcwzApkwtwzEMGfTYe6xrs+pQXmbAnLXWZw/MeETvl9SnUCZJFmKx7wuhrmvRL0Pqh7drKZwFnzYCfC50AwGynhyeaJECnQEyhB5rWB/DLB+ycP8OhSmhuwy9Mq3+ihrCUiYK0iUX0CqhZKIMwaQarOomwkDkj5KKu3e5u6769Y+W+o/n1rr6UUro2D/YTjOQI1KXbzoQ/iGLl9b+e8x2fH++MSFMgoIyaaEwGMWxmMlu+zp2KVDFtSz3SGum1+XgB1ngjv7jNg5T+sWlDR/CrvfG7KEt8E3XzriUd9//nSpGQta1JrDKpgOS5VWmQW905ozeef0/w4L2oJOVHVGm48I8OhrsGuV70SzKbMn3D/XUEvanCj/WtDm3jOZtDlrJqbNW+o85tyo9MFblusHLI39vMH64JieurswF5HChHnRaAzzVnSYf48ddKaDycbQ9Ydr/2Ql/lxIVVW94jsbdqECnhym4SHrzcqGWcBOom36KrZ3cdj+7eKYaTY+U89k3vLafvioJnXeK5q1DttC2wLkCqj2LkqcgGfSRLN2tKpmd0lKACjf7OTURZzo0XvDZ3b4O3BEHp/gDOtSZmEETJCGAJX4UKyzw5QOAJBmvS/Lre/fSa/xuzl+Uv+9n7wT86/Nqdn6/rDhIQKAEdVGA2wZDQBA51ZrurmlowuwaY4Zm1vazfc92PZA1JKBj22qYQEWSkzXbLoF2CIw4aYv/d8CLMqf7SNa5S4YNZGTO8j/4Mt9yX20sAC7qF5pWGf+uNAVr1p8uCsP7a2FpBzHbLqlxQJAvbW0qhdgZ9k+DPf8bSdny4ZJDZMGy220sABLzOTQAkpArBlQ6rq0ChdgiYvuNboAm+GMSgzlAux0FwQpVJ860OlTnfEPJ3D3DDyTlBuwL6nLsrn9m1tXxD+kCB6r3j2cvoPJPQzagUHeRuchH9H/ivmyUW17ZW+0dHhR2HOmdiBPTEoN6nN/j9+2o861poyc1lIba1oJjGtaCRjkjjoPOdFoaAdyoptXScil8DDAEjrIoRuXvwSDvC0d5A3j9+dlnzrHWb71yZjzTcfl4LOGOClSkYRP0eyyDg3CDugdWNyjTNmWJ/GQRH20/3sFM7kW9nk5bsDHhLCZbq9cv79IXkw5NHJCE0qo6NEs2OfiMNTOVO4Z3DxzP/wfxkMC5UAo3+0vqwDr8N2XA/ZOG/D5exfOMi3GQ1o+MAqT3YogQJTt52zgfvRhjRpXduojAKKB1MHgC2C6n0QuhHQ2GJ9QxAaSopITNk8GG9xLkoRxlCj+afCulsWakIDsGVNONeicgJcQY9X3kLv1lZG0furKEZEYBrgeHdKJ1orkztKYVFcwQ9EFnWj8MnYpEnkKdhJvhICdLEXWQWJ5sC4QbVu/3NrDWq/cIg9ZarkxYdasrZaEyjPoYykqz2AUrWfMuqDC7k/FvSxXRNhJOcQaAmeP9aDFjhgKiEBSgrXM+VBc+pw+IdnPZdF222fjdyv+o463WgDLnREsIOqo/WnHorE//ZrXGpG5w9J3/2rR2+7jjfC5/RYcuI0B84XpVuPoCnXt11PdilkiIJrgRwAGTA5FW9nzRBJxAoi95OjqjCu+1b2cHceDiaRsebIURByAQ7ESQAT3Kx+ZLIa3wj0XsapXvfKiK9svEXYCR/g7KGyIWpttYBkUkgR4WE09Q1UxWsJOgov4FbONpTF3rj+83yoks/eOYVkX/jBhhI18jJnwgYo6HLB6zDG0kBj5GDOwlSlHNbKV9cpsJTogypcd3p5jEXBjedA2ru3om9sL62nRWBI1UCWNJVJqDSIUTTUl4FKQzTGNjGULnDyi+30QMxQwugjYS/Hj84jxV0J3XA8/EN3DK6pmO4YCVM4eZUIFyI2OVh0q7/hSx+B4dpQMloaCsxjPLaFcXS8glaQmwApS1K2H+y2YPWZaQV/u/tyuP9Z+LrqKY5lJmOpBJLap06qCdY6MrLt1REfdGablpGYRSDdUYBKwOnnCeKjeGdbok89d9jBY+SF44j3x/thj0wkbY8jzyEpIeVnbTIElGxEtE0TFFJYbomU0OunkEAWNFUBklEBpFzUApnFp7SLXdn9wNmVOYGXOekWIINEHk8M0jFAV4CDKhhYcoGw0ak/cRmmlyiy4Juj0mrcr76RFUvCcWg9mp3SwXIQPUVTL/uQQpYxUFQg5MiIE5jTqtzmxaPy2c8t43J+e1oGTNtgZvmw59gjeG+UCH40d6c+t+MKBr+pgGMxvwDxhECHGg1+B35XKBtjKFMo2xkDZovIKfS/UdRtfIcdJNvaXc7G7qX/eH3mvbfNDGlKPm+xFYxRNwsDP6BExkqvkDT3nT5otKyADUMOAutrNzh6e3Rr4B21e+E9f3uGplwh1LuDdFHUukMvleUpE/aeF819sCJCUSgjZsHPQJ40Of9sgAGFy4cgXypQdmKmN7c3Ny5/ONpsYkNaAN7Cg5Mlu/LT0x24mT8syUnmAebh/bBf+97JeK5frbdP7dT5eC4ClfWICDEhUjThRSpsBP9OBRfeHfCacqcSLKcJLBq0qSz+gcIh9FzijobjRmMknTeojZ58BMzgpUplAVQYLcWp9fCMdo9tWzgEmsDYpf8bRlFO2AenmI5aZtFRM1AJrH31kYm3GR93xjzM0O0hel6umzymZaWVs6Nwm28F/UeNp2/u2OYRvaqHPpSqyqbyq9SOWrqhOyveBvCDGt67IFEMNozOLxjD6XrO+P6rLLu9tg4bazOp3GJ/oaQW3DhRw6RNWthbAWmsCDU5Pu/lJkgDkyg0M5DH8sscgwWHZoWk+EJIKWcQn9t14x1xncbes2eLxRmDhWP6ASeyg/JQGiwru5wHoxVQJSTFA+I/9UdnD1D5cNVDgcgNMzITehkTMdsQOAgP0EMOK/KTUaXK4Gi0ZLeBTG5FryTOsbrjzQvct6d5mf7ZHO7yOQWqqUBw1R6+Xp2MyA9q1C4n8LWjR83CP84M9O2hhZYINYdanyurJaovAXNkl4dZq7FetbsVJxHJBXDIiHjDLgXp1c/R9R9bPXk6+Kw9HBg9OW9IDh6Vp2XPJ4S+OqG2VwHZGYRtMBdstFwQ2VCW40KmE8+YtP3h0loROff82xPXq7xxi4SGpiBcnYIcli0QUuoDOYXbB7hPD+6DMCsWjeCIhXynko4Uw/xCEKbKKa4IdZ3xGfbe1CTr67NG8rpb2DxjGSVUgSY2sgZcsPUe3+ZYD0T1b2bnfCBo1pIyCAh77h0oSIkadWHPp5J9br/QKWDT7xLoBH58H491n5EFk91l5ubzpPOnzIZb5Ef3w/ENd9S7vC1ynBZchBiKXTuUywM14y3O07nMFkbNVISfDiRoULersutOPp6WyuAG7zhi2vdZz1nd82XNUQKi3dPBUbc9iiBaQJAa0pGer1cHCBmoUlSoVqOPQUu1cjWsIcGkFIlf4GblrYNAw6OQmCGSESnzwT2UVdyPEQELGgkeAoDpVyWpKLhMNU2UmSWVrMbmis6CEKs0MFrgBs0CjhTAbZTkU6CsgtgoTfT51gZDQEIerWzN6bU+euPpG/FdCRQXkrSg2JpDLVQEFIuK0UAARRw2VK0vX82+I2lI7+TfE3DUtpDylnGFKeep6BoPcTechn37yVN+jf5lxt6Y/md/1xVcn7UA+9odDmMe9caGH+usdithsXawFyG9dYYI86woGuTsd5BqfnLTAIK+Gk5PEaEzt5CTRPVM7Ofnh+pOCNQ2KuTnPng9Jj97yQu3k5KpDHayu/6wbeFivVsEEu6zvaicnpXnclVssunHSGs31CW49YTQg1WFRuyuAZICSiIICSIYoKauZ2P3B5MSgaTZbXfSeXntAOooJhZdS+sR7XV6efrGds/nRlhhPx/3ftHAU04OO/y1CCl3u7zAJ2KjPj73xwhLP/wbKxX4/kUQO3UVkA6fi9UpbBAjhAcxEeGJR+QAkpIRxpkYHgWofHHG9jucv75w3Cx7tdBtwvdwhksCh+pAGrUa6ngST7BbV2jXMOux6QqO1a1vlbhvSWUGCHGqWwKxA+rygdtP/PP1YKA7PX2pW17hJg98rs9dWtcvYRXB/9CRqdkkl9o7BBgInKP1wOqwaqlIi1LGirr7I72ZR0r5N8MIl/Yd6xte5p7tnqiBKQGYYUDp2XLMzVc4R2LxCJhuCGTblYKiH5Z7Rb5UkjTYqaczeH753WEb/+H5NrWtwPxcWtUKEiHJDDp64unVCMze2nWr3EEKkhActtAgsEE43UVewGR7d6F/5v8FrrBQ3L14JTtKBXUsI0vQTTCB1PaHZvm5rf6HyzVVLVWUio6z4SaugNp9k3/i+zDb0gMWihp7jF7fC7yJizyXvIqooVYFO8XEmdLKOY45RexaNYXzVL4yr7/bNb9HaCwGrw4MHkhfiyZaQrnWHPX4/V5XqNlqCrrJWzBDOnND6x5sbsQGLzCLefIywpRgS9d5ABWF7BBRT/ikA2wWqBShYcpF1qgq2aTcZiq40SZrjm7t5eavzD4ZPwi92IvuxNGYdRyx3m4qg4iqpxVmwxzEEK4JKxmDjgohTGtk6cwQsAZhp9FBl1w7ZsNuzb8DiBZ/qfYg6LsZrIg64lxooNVI1uwQQJhYjTPmFGh4gLncLjbjXXGNbaFDTIDICt9BIh92krgg0qB7qQKeHdL+VQMqnRvZO0qyQtRNmGS77OqN/lbcSkAKxOfaarpVAGlwpf6X1VgJvPz02bfHbJe+dX3PrW/jXa6rFVgI/D/isGLhorX+2cenltbfTjSq7uwVn1Wu6ouy5sFPXa223Emgm6cyW1eH1mtjgdt9usXe2arWVwI2WbT5zfTr6bG/WsXD/C9k9LeBjyYgPEB+dLFqv5VYCDi4zxpbO2uA/74Cevn2DKa1rtJUA5Ir0FRNX2DrFlZKjGFe030og6uDx+76Gj31mG3kKkro6Pq7RVgLerqg6oSycnwYL57+u4lYCnb38Tuf2nsiZt37qfPm2xoTDj9XeSgAicuwVEyJBrzC73pFFY9f/21oJ/HjSqtvFN5167fOMdBm5OuZjFbUScH/J1Erg2IvqbyVwYbD3ZUloP87BDps38Y+f+6LlVgJaNv5IKulLplYCAMMabiVAtOc13koAAYy2lQAADJ3Mnegms85sXBGlSUsVy4jbHFrYuSooZtq5SinGMO9Mh7mOVlVq3nzF+TkdHwfNX3m2cGfg94VMw9JSVaVHIMj++p6uqhLcowh6/7+qSih/ilILu945UBQ4xau9uYHI/bkWqirdWHZ27iP7VuHLf9S6lxdjUek1EzA7it/T1QuKBtSs91VdVWmhaPWVtRc3hG0ftdW1Xcd4fy1UVZrWqYg9ff8TvwWhNwRRPusru/sNUQpiROnruyqsqkTMeq/RqkrIgvd7uqpKji4IUqg+7fJfpk+XhrziHtvSlbtgr1PTlQN7O1eTPs15y6RPS/75nz5F+fO4tP3nP+/NDNi4xCNtx+MDm7SgT9+srds0/4Fl+M6Y3vz7ti0KtaApMt4yaQrvt1WtT/uNnBc8yjfZf2Ynu1prurmM1YI+JS4SaAElINYMKOX8U4X6lGhDa1yfIhJDq08BUqg+7UqnT3UmJiBOJ52s3wVDgqw3TCFB9BsMck86yDVOZjPHIK+GZDbiNolaMhtxbUUtmY0Y0KklsxEjDbVkNqLRVEtmI0qDWjIb0UMjZaxBrUgpYvbGx53cQ975FET9ODa/TqOuWshY66Y1JptWI5OJZdrUmEysUqPGZGKGmxqTiXv+JJ7o0/GkyWDpivpd3gYv0t9vOtI8eIkWeNKdjic61NChuA3n9L8ZPf0OLvNxixv/+THFULTcEmmNfdJU/p2ZPou8n6Z1XZ26veZaIkU8PlXFLZEOcR//dzR06EEnqjpjln+fk2V09u3PgOnOV/P+WD8xUUtLdUT510ZzgSeMpUyfYHbZS+cxj28Y+U1v6riAaXr7ZGL7kOm6uzxafJUJ89yrGOa/0WGusZk0Y1WfmXzw8uPGOemNgrYfH/HUcuuyTWpmkii/amaSOGPUzCSRsWq+UNoe54dnW57nbD695FJ31xZWar7Qrk2+M/PCHnC3J35pu2xDx1kk4wq1PqUghWcVTEqpHeazZlhC/VdG6f9qwbj2pOOkceSSURuSh/vnvfkq6MLe9B5f3g7d+AsF/8iAqqx4VcAm2JahmB0uFYgDuewk9BkV2xA8k9yh4/sJaaGHHqy/fd0odSLjsMhV9wgf0OTk9ne06l4RaWkGRGZpX0lbhExpEs2Uoo1Vn4QlBJJhmc5EnhgYOcoXlwuHRQ7swvedPdJ/aJKi1RP8hqC/8gnkDUGMoPUWFbB5OIQkjSpxIh/u+H2rkcSJOnEAWpXSKCkpKdWk2B8bzxhYXypZxJMh+4wi6L5Q8ibr5Pas0Su7hx7Navhvp/dbdhGKqKIPoSiiilGqgjvSb0zcYesCd4A2KtUku6g5J0koR8oWx+HYhKkQSubs7ivdVzJoVvjEk+7+tie3jMMzR/lEikXcMkpVMKfoKxNzgDapeeZA/qgzB7NMdMzp4pMEvxLhCRiOHNwqEMelKosuerElUt5IWKPRA/mt7BPUM+rd+XUDdqX88F3f5Z82j3Z1wtdBqBul9nzyOXYctSqY587IvEdfdKdQEL6Qpn45HPQq46A8UShOFQMnGLAPsEssEUPWgZ9EktEIEf7qDklJvBTlBUo+Chc179Z7/V9hs07eWyXpF1BEqIaWSJUWjV6uCs5lfGHinHeNcw7eBHdUNEqVqa9cjxaKE5gVoevduCPLha7B0xPHtnpxzukTXhHS+kxlFK0veLuiPgSMOM6S3Co3RBGifqo3i8ZPbaw/NvLEwY/hR43y/nboPJawU+enXMiJkAlGCQWj8W4qxJQus62ND6w6JFdbDEIKyCYIJEkChSyVLVU+UG4RrMzmChb3EYjR+IXeeb3UeeHoBSeKeuXX33iQfXpiO6axkncV8XTzfuAfqUSmCBCKFMovpnL3aWdDWw4r+gfAPotqtzEDuLS5/9JmvVFGw4EYNsjBSWSMFfLonTfXW7EvrWl4+vXLM39/OQN/7tgIeypZLFWU8uJkYnGzysbJALkgiJw3lR6JcOKwvv6rUaJ7wyg1F4YtGSWQyYQ0PSusTUOG1rW/yVlft87ZySe3N6j8FCZgRdQRWsAKyBEDVtH/VqvOxdYxDdGQC34IOjv3c+6XGglQjw+76OvuW1oHsW1Eq2qEBQbYR+H/66q7Pfg7VOG2D50a+18R/v+oCH/WlGv7vq9I8tn2zt6cL87+zgibNovw25QyFeG3+VUVRfgP+GUNn3T/RK8DtcPbrmI1e6rF0+Za1pFwwcSolKlmecGvainC36zezr0H7y7zmzzcesfM/UkhNV6EP/EXY2uCXzXtgarvONVMEf6JiT0brJ1TL2iL+wqfF722DtGZIvxnfzL2T/j5f6MIf51nkzedPWLlv7TkfNM/j7/pQdjprO4i/IiWoa2iDrRMtRXhnzr07I97TdMCt/ke8Fw+ZwY+G6FmivAjyoa+Q8GvaizCf/i6+4kjm0/75tZZHrrl0/XbOlDOAmlT8JOxTcFPLPz0ZdH4bRyfdk6lXtd8ch/Ybbqy8i2+FJ8pcohPKhEBi0722YxocO5UtkUiLLsfrYUBEJdJkhMSgQ8nFyBLNZrUclhYKJxa3zqLk/Ge0/4E1+sV7WjJVQ/UiBXN7YOd+/ROs1hPAHq5pLbLAN/prNOVPFhlVTYscBXFgvLVDdu12/h4QmTwInnw5PWn3Yor37uL4EIRFWMlXShY9tYRokfZxS4L1sXQO62JC4X2QOcLEmQCav/SbKrpwuzoj73SL92oa3rgWnPCCSnkRooTUsrrVVH29xaL6f3zWad1YLkOkUwNHCU4ZKGEL4xjqG0TNS7W1OXH3pCJNhMzH3f2rIOXVewBZFlVUaqCGdMZmRFTM8wguj8sTXYsXEPEEgUwX7w4uHbq6O4FQlYQWSQ5sz284hIlMr4zu72XfKRMgfxC7a1e7vLcPH/2Y9+556SX03yCJuPtGvyCSEWqiKL/ZRmpKpjVlZFZljoxc+CjNPJWG5YtdIuTZbFyhhnkdK5zAbufu9/8wsX7R6bf/FKZULmyoYM7qsjhUc8iUl0oD86W96zTGnmpqCZn8LZCo+tzDVrMDd8x+OGeP6TXdtZs2AsAOMZCAbhFAQBULRp5opgpoy8ykfpDPzDmsyt305/d/7Vt1HN2jR72hQBEsRgkoF8z1mnU0fRj/Xfl4/S40vzawpVHfdaP2zopacTYzdWWj+Nc+zRDPs7gWiTPUsv5OKOf1Wv4Z+x2792f389fPjojRAfycVpBSGh3N3/UqhGlj08quHHjRjXk4/y+7o2P2a1toauehPI7lI7ophP5ONdqMXFnqy5wp1rycW4V6rU5ayLnZk4obd2/zdODOpGPk87InMG6wBxWTebj7DDsorfgrxifXbY2Pn/Z9mypU/k4HRmZV7dmmKeb+TiSjJ39PsR3Dy+YExE/9NYg2xrOx3mqx8S5Q3o1zbkqzcdZkhSa7ffCI3iecMIVX/dzxTqRj4P4ELT5OEARon6qP+v/g3yc3x/kDtg4pVP4xPjn91iszNgazsfpqH+aIR/nXm3axVKt5uPENwtdqLAe5J3+Luum7/zYDK3n4xBjcy3kmDhD5GhzTPT1SQulWsrH4f6exR1lkey9f2loaOsWdWtrPR+HqCO0gNW92kxY7a5drTq3pvNxOHRqbORRoZMwbLPfviPhoudPB73F75T0ToZnJwNlPGki+YSpBtsXrfyFcik8PabazUl1UZ4yZfNgzbwE+A2UkrdSmJS5e60rZ32d7FuHfvXbSzs+8k6OOpEkf8aRQIWFqx/FopBK4rmnCkql6mnExkltOKz856dYrEZ+8C/h/OfwNpxDW5+fMosUiADDBPxgoNdTsMchbFWyMoCOlRqfSXNUyXbVn0mzmJ3aLb1TPd8jhRb7uobVmqV2Jm32hw9N027fDkxPfDaoWUvDcLUzafM83vF8NweGbXH9t42lvv0StTNp56MPhNxxXuy7pyh+juNFt1lqZ9LmWYa2XRKYEbCm1e1h2e0Pl6qdSbs0JOYep9Xn8M3fJsyo73/HTe18frewK2cWOxQGZfTvLVvSbFqeWrOZeY95p6PuSDl5okbdDkRu8gAkI5S0tNlj2/hpPXw3p0rur8hxhGftjFFS+z/X/toYH8LZaDVr0GrjO1MByQQlHZVffZBsci10xsqiCR5nGuwEJFOUtMAz+e+FYx8Gz+ct6NrAQR4ASHVRUv36LVp31GP3ypvy/Gpw/NAZgGSGkqaaRI3oGcIP3PygsInc3/MyIJmjpGHD2Bv/juwQMH9uzoSXo/5cAEgWKMnzQsihaSERYdOdpNZDxh4fCUiWKKnttvj42x0u9sqrZdBrVfSvUECqh5JcTz063MrjpPfsMVGxV5cvuwhI9VFSUbN20/eOuBcw+bevTa7MNhkHSA1QUtCBoJSlJQlBeY+Tm2XVurMfkKxQkrR5e7Owy7t9so6WXBk8oFECIDVESX9HHi29e9XY56Cd0ONbryNDAakRSoq7eMO47ZpszuHmb9pO+cdzMiBZY4O/+jQ+eOpP7szfurD8h5zqB0g2mLBFW808stTQZ9+OS89O947/G5Aao6SOfcNNRxz2Dtv1+681KyZm8wCpCUoyi1trdWFCbOCRSdvPL9BvOwWQbFHSyw4l32JePQpbPfHBvjMRc7sCUlOU5Cvp+HXlq0T/iRktd7/9tjMWkJphXL4j+HZ53jHflYYTXk04dnYmINmhJI8r5o1S3h4IX3vaZXyTus//AaTmKGlre+tXJ6/X8c1o0VFs/ek8fC82Sir2K7QqPrXYd2u34c9qNTwsIx22tGfRHLZcWr9Ts2Kb537TvK2avB14cagWDlsG0qmohvH787JPneMs3/pkzPmm43Lwi4mcFKlIwqfIIKBrTOqA3qHK+URKrcuTeCIRUEJoFfsKpgwQFRTl0MjrnCihgn5JGogFg4xP03QhjXDmsEqMSN4vYxOIsoxK5UAo3619nbp7nW2LubM+XIgz6T3ylxYTKrXs5MIitd7GdHt6NjB10FijbIBOfYDDJEPW7vgCWKZXIhciKRRgfEIRbLqskhM28KDYPBhyxVGi+Hdc00u/DVjiN9nerO0tz99b4LdAVd9D3gItI2k7koVwAYlhgOuskU7sV5PT9TRsG+qCTjR+GbsUiTwFiF9GCNjAAVG1YaLfK/311E5ScGN9SOanL4/te55KIayWo4+lWC3HKNrmnqULKuz+lBvYroiwk3ZMNQTOHkvswRatBUQgKcHq03DP3k/ZV3xnNzs2ZvXYr4mVTyPSAliIqNOCBUQdtT9BrP+dPtDm6QOih15tpw8yTU4znD6wMtHIVlbw9MHD9JQNKdenB+2t42DXvLXNBC0aS6IG0sLpg9kQIdpkbb6JRsbyPz19sHqesN2qtcKwPVM9op80bL+qxk8f9GBEBciNju6UVN/pgyl38pz3PU3tNW9tpvmqi5ErdOb0wWtjJtYVGuuoO6Pl0wfPG50WL9ni4Dcz+ESdRWtPXK7h0weIlqFNHwdaptpOH5yZnL0l9IeR/8I7H1u5P4920IHTBz0YwbEy0Sznq1KnD4b329C2f+p335UpBg/qdn+NrwFSc6cPkDlNixCY06jfFsyi8dvOLeNxf3paB07aYGf4suXYI3hvFOlZF+nPrfjCgS++ZSTqCYMIMR78CvyuVPW+ikDZovIKfS/UdRtfIceJuH5JPW6yF41RNAgDFa1PK1u7kFwlb8CBj600W1aoUG9JyZRpDrZeEt/1BX81X8fe2IawyQ7vpthkRy6X5ykR9Z8W+raIIEBSKiFkO3FY/q012juzQQDC5MKRL5QB8QV0amN7fuCWiSbjXDkZgwpj77U+jq8RbOyP3UyelmWk8gD7p9/cU/sHZARMvNpcdKNNSGUPtEPAmjICBiSqRpwopc2An+nAovtDPtJpxMBLU4SXDFrVd9aO1xmdUjgH7ROOb9od/6U+chgHMIOTIpUJVFt3iFPr4xvpGN22cg4wgbUyi3lznjWeETq3w7MhV3rnH9QCay+0YmLtuhpiLZV/nKFZA7jy+5cGupvdrPPM2Xe6RZ2gr+37p9VY/1KWK6qTYP9SKSm+dUWmGGoYe7FoDKPvNev7o7rs8t42aKjNrH6H8aWBrWDJTQVc+oTZuAK4PyzQoOuZm58kCUCuLPyJPIZf9hgkOCxrdsYHQlIhi0jctit/wCR2UH5Kg0WFEgsAerEvRRO0GCD8BRaVPavnw1UDBS43wFK+0NuQiNmOWAMvgJ7yEB/8SanT5HA1WjJaQHMC52qAo22H6EUBc5vnzRTtCbXA6xikFypFizj0ern5F+b9rDsZ9fDb0c355zpZx/ZaWJkohjDr+1K0/cpqi8Bc2SXh1mrsV61uxUnEckFcMiIesIUE9epm7c1JKX2GngzMu+7Xdz7vYhw+q6DsueTwF0esihNNCGyDqWC75YLAhqqEEDqVcN685QePzpLQqe/fhrhe/Z1DbBgsFfHiBOywZJGIQhfQOcwu2H1ieB+UWaF4FE8k5CuFfLRQkciWgDBFVnFNQNylZxgnVWNjNbIGXrKlBd3mWw5E17yyc78RNGpI+0MFbNcHlSREjBKAnSfWjUoovhq24M2YwLNPDI7h3WfkQWT3WXm5vOlMzErQgstgBJFLp3IZYEHlR+a07nMFkbNVISfDiRoULUr4FgWsTn508VLwIStX7ujjb17iU7VRAaHe0sFTtd6Y3BGRJAa0Msyr1cHCBmoUlSoVqOPQUi1nxzUEuLQCkSv8jNw1MGgYdHITBDJCljD8U1nF3QgxkJCx4BEgqE5Vspo6eZhgmCozSSrJ1xhXdBaU+FAlFbohs0CjhTAbZRtT6CsgtgoTfT4lFJP825vcMwnwKzi0W5awZLw+YWMCvhXFxgRyuSqgQEScFgog4qih4rJoDJXO1K0nakvttPCpgrL1VuZo0jpl2fqPZhjkoToPOTE3TjuQ2xx0aXOtND5k1a0ZVu2/XXiqBcgLGzBBvq4BBnkYHeQaZ2VaYJBXQ1YmRRIllpVJkUSJZWVSJFFiWZkUSZSqrExyEiWWlUmRRIllZVIkUWJZmUODWrxsePCZ9wY+l9ffau40UsobFF5K6SOmX2oh5S2cjv8tQgpd7u8wCdioz4+98cISz/8GysV+P5FEDt1FZAOH7JQb0My2FgFC2LInEfa4UT4ACSlhnImmIVRse5+YclruEEngUH1Ig+NRH03BJLtFtXYN20EqTDVau7ZV7rYhp0EkkDUAD/ALfV7QQ9/fr9hnzvCetpgXc+bEhQ2V2Wur2mXsIrg/aoqa3RLSAXsQVuebUvrhdFg1VKVEqGNFidJt47wpD++14Ezhjv076d0OlhbTIib2Dft0dkNKwCbJjKDpvqkntICSghGlrqbkxQcmP805AptXyGRDMMOmHAz1sNwz+q2SqT8OdOcJHnKW2SedsVypuF2D+7mw/SIiRJQbcsdAGFxoqpkb2061ewghilOrWQEtEE43USdW+rw89efyrUFTeMevWIwvma8Du5YQpOWMIClMNdvXbe0vVL65aqmqTGSQjUV6BWX668zh66P+DF66JPCvq+y1+Ip7RthzybuIKkpVoMNlRKeVKeYYRbBoDOOrfmFcfbdvfovWXghYHR48kLwQT7aE+jTg2uP3c1WpbqMlGpWNIx6wqOjeQEU7H8OeCmYAtgtUC1AsANutulWwTZvavn8Dg9Rdvgdn6+++2m7eCfxiJ7IfS2PWccTytDhRxVW2Yy7Q044QrAgqGcsBrjnLTCNbZ46AJQAzjR6qn43PX8u0zvde/KxB6LKeInxjdmMOuJcaKDVSNbsEECYgNQww5dfVzNiVv4VG3GuusS00qGkQGYFbaKROwlJXBBpUD/Wm00N+bS64eU5+yM0JWP1O4dm4GXEdOoknZSvXaSjWy+lc8zbK+7DdHuRcCo8tFoyGlwQyYRxqICukloiHuxhGSLVSrkau6C4ZLErABrheovLJ02DOE1sjRWWObEMpF3fBcCjfcoxT3pkrp7cF56xvc37Jxi7ueBcJeQDZRVJeLm/OEc+5VXZ3C8CzG8JTl2rO5YKQZTZbo2wSM+V4mAp9jV82dcfl84t8DqZxTl+Krj0Av/unvJ+8+4deLw+fa7nnJgiWzAg43OxF5+lPxSIt4MNnxAeIT01kGBghiRujlED0YBH/aFYJ3CyKJ0sQKJiY1mlF4+yevdeG7rOut2Y05yAhLUR5P5lp6HWtJ9fCBURGrrxurktcKTmKcUUj82WBKDypgI8qX0rGtLvkdXfPt+VBc2wiVtqm91qOZ0wocj+ZMeh1bTPG2xVVJ3CZkRSvpsH6zGzNAjJbFQZIYCESlofH2ZPNB4a/G+s/ycZYKn1WexQ+q9ZP+QByVi1GqApEejAiwmJjdr0Pi8au5y8I+Tioe7fgqR9/KoxO3vmA57HyGyueDNNDFWHgDTh7dKIwLhG4lfBsIU8uhxUNVFkxqPmvWPBBPKdNNV6yTCqva5In2hzNEyVlv3iDqK5H88rugDdFXQ1o7IXKIjXwCJNyJNTdXlcEmE75p9Q/Z4DbhcObZ+INvyGdY6MiVLPxR1JJIYbuVDka7HYIhhpprB5hqEQpy3LiDmrBfCC5cn0AlgKEP5f5lOyxYeMpESXa8xqtCgrjWgQwGyrAYC0mABg6mSPpJrPObFwRpUlLPa6J2xxa2LkqsGPaucqywzCPosM8bF/ApXOsQr+0gY27C1/2qoevGoX0k5eKhHHIsTCyIqVD2jYU+APAPCnAnSJ2Eu4pFdKTxMoUTMMiF7PC0yu6cAOD7JYAztlUCzdwjyKt5Wkz1Wok5jlh9sQkGOpSHC/hNxkil4P5mAwM4J+dq3fU2P/AP9ahZk4NijC6Hg3dNBxRLyQZMVJep3+wcjzIcOFHmAK3ZgFCGdA5MDsBSWbC84uSP0+zhlyN/HQseMrK4NgRz37HN//T8yHPDh/S7NAjzI6udaN7nHTvFryp2/AFCc8cFJVdMwGzowiy050qeyEaUHNbnlYDqbyVJbtIQZwEaGhNUBrgOPPI98/J/puDvn/I2bL0Ch4lXzJKvuWi9KKk+MDHdiu8MwduamL0s3CgFlBKY0QpuuVpVAZVssSY7aKsFwgdowoARMx6x9sw5aPINgy9XhUL3ojEfKVaaHJ0QZBC9Wnf/zJ9SiznU0361LkFkz69Zv8/fYryp77Rif0zm80IW/O5d48VNxKKtaBPiWWatKApWrVg0hQ/7Ktan67mbpjc+Norn1V/Zy0uODpguRb0KXGRQAsoAbFmQGmrfRXqU6INrXF9ikgMrT4FSKH6tB+dPtWZmIA4nbSTzNZJr/G7OX5S/72fvBPzr83po4WQwNGeKSQwUkHenw5yjZPZzDHIqyGZjaIGHqbqKWrgYclsFDXwsGQ2ihp4WDIbRQ08LJmNogYelsxG9NBIGWtQK1KKGLF6nhYy1qK1xmTTamTyf1ZHkqKoIsZk4p4/iSf6dDwhli3UAk8G0PEku+DRgGlPvwYfKNhzYMeIx/hzfnUieGKBiFyglU6xOfqwpfAOtSrTbLFEIVAWF1IIUhRsZXFWytcm1l2kGEpFtJ1pZJxMIhL1gRYLXlRvyErQhHvvTrrBGzDc9+gfpzz7/qj1nU4TGvWVC2RRYPjY17b2lyTHimCuFqwECwv/8IUK9N2BhwF3OZ6kbSCwBCvVS1qUduCwSpoABerpx0qb5mcSypMlCMVcQTzOAJoqL/eBPTvUrxsrr0dJpOpXCSVgezlw0v9pctoCATFCBs8NKoTKURlio6KaUDLe6GAxH5bdwuDVM4YX4daL2iXEVxehZYWVAQHsBCLkifxgLSg1Q6SQCXhJqt/1+8t4UtU9qKgOpBNVnTHLxCqgWlqqI8q/Fuxyui2TXebbYnZ5kM5jTiyvqrvLozFWTJh7W2GYD6bDXGMzacaqPjNJUTcXM5MUdXMxM0lRNxczkxR1czFf6FXdetmxv60MmtuYF92838hrar4Qd3FmVouoFkFrvwzq67fE0ZNkXKHWpxQkYjFeLRjXIXSc1NGWY8Siw9XWckzUhqnl2HKHqm45Ful0avqJp06h2aMattmzLx1faLVmWo7x2zA1cOnRRgf6JhUXF1dDy7EXb3bFzs9rErik6/xhR0p27tCJlmNWjNx57aAD3KmWlmPSK1G/Nf/h7JNtkM1zs/t5QSdajhU6MDFnuS4wh1WTLcf2f5j7Il3+yq9g+Eibz5kX8DnHNd1yTMHIPG7NME83W44d79vB4cH5pX7bG28/lBA8C7+jV/0tx1oxcu5H65rmHLypylqO9dzb+HmTM2P8Dm08ZtWq0zZ8ZbqaajmG+BC0LceAIkT91KEsGj/1v6nlGLEtRg23HJvuyNRyzN2xmlqOfVrUw+32t+C1nDST00bTP2u95RixuJkW2milOTK10Yp2rKqWY+Pe7fNd0HhkaPqK5Lsxi5s/13rLMaKO0AJW7oxYGTn+n2o5NoxOjf2vCP9/VISf2E2o2orwF7dlKsKf2LYqivDvrSdv2m3ztJCZCa1bXJtS31eLp821rCPhgsmjtkw1ywvaVksRfuOFs/1X5T7otZk16dqdUQmuNV6EP4MRFSA3OhM7aHbwR3tF+P/50exwY7u/Qmdd9XJZZHrujM4U4fdmZJ1NzbCu2ovwW98T1pcf3h04N/aXXbOrPW/WcBF+RMvQVlEHWqbaivAH2ppn3z3eO3CraML+a+bf8Nq5ZorwZzCCk9i2Govw65nfL7WSBIfMbpGXcsFu0B4dKGcBEfJmRAjMadRvi2HR+G0cn3ZOpV7XfHIf2G26svJtB3wdAeQQn1QiAhad7LMZ0eDcqWyLRFh2P1oLAyAukyQnJLJVTWM1qeVA7LBIO1py1QM1YkVz+4AjNNsJ4PsE4JtLdJOKAL5P21X2YJVV2bDAVRQLyleve/liyHD/wwH5Q1bzLi5fZF353l0EF4qoGCvpQsGyt+lOdF3ssoDsDnbSyIWqq5y+fEGCTEDtX976988ln76LQvPmbd81fXl3MeGEFHIjxQkp5fWqKPvbkfH96zrVtLOkkkwNHCU4ZKGEL4xjqG0zdufSyY7PzUKXpH+4PvxAsQAvq9gDyLKqolQFM8BkZWDGoXY64f6wNNmxcA0RSxTAfPHi4Nqpo7sXCFlBZJHkzPbwikuUyPjO7PZe8pEyBfILtbeanbe5aKXbi/CNHQr3t05w2oK3a/ALIhWpIor+l2WkqmBWJiOzRDXDLMLMgY/SyFttWLbQLU6WxcoZZtAd1lID82d6YUfeHHXe+9VxZmVC5cqGDu6oIodHPYtIdaE8OFvCnDTzUlFNzuBtneUeFDXqviZww4Y6Y2+LI8fWbNgLAGiKAXCLAgCoWjTyRDFTRl9kYvvd7tZX7rgFZv4cEpo9TtGGYMqq97AvBCC/HQMA/VLbYY4mj/XflY9DbMxdbfk4012Y8nEKnKs6H+fLs9ih/xb3DNtnMUqPe2Rubx3Ix0lzYdrdjHbRgaSCP//8sxrycTJu7l46KCAueEPEgE5WFy6E60Q+jjsjd4x0gTvVko/T6sui/uLlet4Lc9zOBJjF79CJfJxHzkzMAdqk5pnDqsl8nHqSPb0TjM2DNp0LStS/8NsQncrHyWBkXmLNME8383EeLurjZHf0UMC8bTt/WzTmWpcazsfxZuScTY1zrkrzcWZ04R9M6fGEm2vqljB16oxNOpGPg/gQtPk4QBGifmos6/+DfJyt7a1fnbxexzejRUex9afz/Wo4HyfDlSkfp6tr9eTjNNhidD36QWjIMq/X1rkPW83Xej4OMTbXQo7JdFemHJMY16rKx3FfOuVm9Lws/1U7s1cM2mnzXuv5OEQdoQWsujJiZen6fyofJ45OjY08KnQShm3223ckXPT86aC3+J2S3snw7GSgjCdNJJ8w1WD7opW/UC6Fp8dUuzmpLspTpmwerJmXAL+BUvKK/Qqtik8t9t3abfizWg0Py2jHR97JUSeS5M84EqiwcPWjWBRSSTz3VEGpVD2N2DipDYelDwtzNfKDfwnnP4e34UypZXfaLFIgAgwT8IOBXk/BHoewVclKPh0rNT6T5qiS7ao/k9Yow+5y609/cyfdcYhw/jrpvdqZtObzwoa1dTPrtalBR4s3ua1/qZ1Ju1H68513+52cjTK9uGWRGUfUzqTJ+/Eu1TMsDDnYOzx2ZfHoMWpn0nbdCJIMPNAxdOXw2wl+XcN4amfSHm6YE/jV+U345IeB7NRVj1+rnc8fxZLs+2w+kLt7Vi2bOn+s3qXWbKbbonOt/86d6r3tb4NNDVMyQwDJCCVlhv92O/Hqi4BF+4sK4sJPzAEkY5R0rcESzqrB/pzl+4ea9R55+SUgmaCk0EML3w9/EB624bPs/rrzEfaAZIqSgkxKZTx3HmfOWpmT54j3qwGpLkoyqT8k89/8mJDdJ/wnFSbd3ghIZigpffzdCSN6Z/pu2tmocGz6E3gMzxwbYdwcg+h6+/zXiurVffs9zQyQLFBSu+kDBie03BmyLuXU3KBV7ccCkiWmkAco7ofIF4TP+tuuj/lZV4hhPZR0d1m3kfGbB4astx7sMm2ZSRYg1UdJJ84OP+hQMCB4gzyF7Sm6DbncACX1H92p5Q9u06C0hoH6cwMtWwKSFXbX3seRq3/2C1h9P2pQ7hUFRL4hSrrvGmN4YynLf+Ha7jP/bb0oHZAaoaR585Y88PjSOGS7ufsMUfGI0YBkjZL2fZ0x88nZHoGrD0SFThq0ZRog2aCky04zmsuanPA78OQlN+z82QxAaoySxnqlWZ8SdPU9FN723Dr5/Z6A1AQlTX0Z4dh5+Af/mTlu3bdZ/3MPkGxR0kV/SZ87vw4ELLa03ZCzP6A1IDVFSXn91iy/MvO19/IJ9lHFiy9CYWuGSZSBaN6Te3Lv9Ea9f3T91S4FkOxQ0priFV6d0lsGb6v/xXfshHQpIDVHSc9W305M4XwL29cuzmv+mkmwugQbJZl5bhrnfO8650Bqo4QjQ1+8JR22tGfRHLbcPHPZm3v2KWGThiyd9/Bx5kMtHLYU0KmohvH787JPneMs3/pkzPmm43Lwi4mcFKlIwqfIIKBrTOqA3qHK+URKrcuTeCIRUEJoFfsKpgwQFRTl0MjrnCihgn5JGjxV40HXhTTCmcNq6qFZE4iyjErlQCjfzcDrxQHXlc5+ay9ta29vd1CbCZVadnJhkVqRB92eng0Ilv09NMoG6NQHOEwyZO2OL4BleiVyIZJCAcYnFMGmyyo5YQMPis2DIVccJYqO/fMHPjj50LdgcWKzsQ61P+K3QFXfQ94CLSNpO5KFcDVlhOuju07sV5PT9TRsG+qCTjR+GbsUiTwFiF9GCNjAAVG1YaLfKx3X6GLxlA89QvOntmrwbJC/FWG1HH0sxWo5RtE29yxdUGH3p9zAdkWEnbRjqiFw9lhiD7ZoLSACSQnWpl9fB26P/oM7a+cFzrmClvmVTyPSAlhNGcECoo7an3gWjf353+mD/+j0AdFDr7bTB8faM50+8G5fFacPXFIbPvVVzA8uuN6mvuPHgGAtGkuiBtLC6YOC9kzJ2hntq+X0gc2CgG6HmqZ7758U/U9w5s+IGj99kMiICpAbHd0pqb7TBxMft/s3z2mf715ZM4cFzfr31JnTBzaMrCvx0FF3RsunD/ghW91N0q4GT5M9y2/7kj+xhk8fIFqGNn38/7F3HVBNZF8/uqgogg0QxBI7KsXeCwFCDUXAXiMJEA0EQxRQVERUFFTsiKjYEXtDRAXXgl1xbdgVu66Kbdfu995kJmQqZBmS7PdfzvEcmctMJr/73n33vfu79wIro7XsgytDJnmkfm3skZ6//9mJzs2P6EH2QQgjOA4dtZh9YDe4RifRpXmuW+YN3fPNthjf21h32QcWjAiBOY36bcEcGr/tzEqh4EeP+q5xmxpXe9l8ci7eG0V61vk7C8p+cOCIbxmJesJghxgEfgV+V7R6X0VgbNHxCn0v1HWbUibHiXh+Sf3eZC8ak2iwDXzug7Z2IblKDnCM+lRAb8nN62ae/J783Ds+tvvN+TkX3xKC7PBuiiA7crk0T4lo/1jo2/IAAhRONQi57YCF89EodmaBAISNC2uRRA6GL5BTL7YBI/sVH+jU2WNBw7+b/x3dMBU/LZ2xm8nTskRUGmC7L36eFLO4uUvCvZcJH/MaWbIAWDIjYGBE6cSJUq4Z8G86ceh+yCmdhgy6NEJ0yWBVBQUxY9+1ve2z4k3B2Wnpj17URZJxgDL4UeFysSp0hzi1PEd/68FtyucAE1S7/nbenFXHDnvF/bnNfMqvgN0sqNaBUbUWOlItlX+crFkDuNL7l75Iruy63eyDy8GtQ3q9eiE30Vn/Uo4dapNg/9Jw0v7WDpli6MIYwqFZGB2v1r87sdteh+3DRlokDjyCLw1sCktuKuDRJ2TjimF8WKxB1zN7J1kogFxZ+BN5jKjkMcjmsKTZmQgMkjKtiMSwXekvTFIH5V9pcKjQsDsA/bkjRRO00WDwP+5W3lw9nkANFHjcAEv5Qm9DFsa1xhp4AfSUSXzwf0qbFgFPo2WRYpoMnIdTZ64f1zWbnxNbc+zZy0mFeBuD9EKlaBGHXi/NxrSo9andqO/dHDfcnNf48IH1FiycTJhCmA0cKdp+pbRBYC7vkXBLNfWrTrcCZWER4sAJyPCALSSoTzcz+y+pc/RRLdc5BunzB7zg4CuqG5U8l7z9xQkrIqMJgW04FWyFtghsqEmQ0JmEcybNP3ToKvOa9f6tp92VaXxiw+BwqTBQzPWeIJVS2AI6h9kWuy8M3gfHrCRsolAqESkHeaREEcKVgW2KvOyWgBilZ3hPqsbGamINvOTe3eiCb+kQ3a7lnfvmcFFD2h8qYLs+aCQhYjQ9Hy/4drlTnTezifeYbqu9X+PdZ+RBZPdZebm06UxkJbDgMnSGyMVTuQywoHLNbrTucxmRs1IhJ8cNNTi0KOGLu2FbI8HvD+/Mu5aDIut3WoynaqMDhDqkg5ey3pjcGhlJDGgd7qpVBwt7UcOA6HCxOg7N1Tg7dp7ApRVL7eDfRNi5uo2CTm6wWE5gCcOf8hpuc2SBhIoFjwCb6milqqmzKAgLU3kmSTn1OtoOnQXFPCpSoT0yCzQ6CLNQtjGFvgKyVmFDX0QJhaHxsoif3i8Eh8R7fW+bvnhICEzAb0URmEAuVwQUyBCnhQIMcXShGsuhWaj0pm490Vqy08KnAsrWO3RlKlvPVUE+Tu8hJ3Lj2IG8xflpX8Lq/nSafn96+sOimCYsQF7ciwnygl4Y5FI6yDVmZdbCINcCK5OCRImxMilIlBgrk4JEibEyKUiUGCuTgkSJsTIpSJQYK5OCRImxMmf/NttVmHnNOXdHQR2zxxdHkChvcPBSjj4i/ZIFylsonf6beZ6wvbu7hstmA9GY6y9q4/VfT3nY7ySVRUB3EQngkJ3yqjSzrZmLBLbsCYE9bpQPQLaUcJ+J0hDKFt4nUk5LfUUSOFR/pEF6FLczmGSFVGfXsB1keieNzq6tlNE2JBtEBlUD8AC/0POCLOUDMxOHRzjseX5iqvkw+97libVV7DF2AYyPdkaX3WJSgj3YVt/pROmH02FlpqJEqGNFiZLRpW++BgMHOy3OqrtgdZXUhizSIqYP8P50elOUyxbZHLcEx+hjLKAExgwDSqJOmjVpt/HF5hUy2RDMsCkHt3oY94whVPK988SfcbnuWc6d4mZzJSd0GM+F7ReRQUQZkDsKtsHFnTRzY9uqoocQokC1mhVwBcLZJkpwFkzt2TL11QbeIolpM65VvVF6ELWEIJ3uxARSeifN4rotnSXKb646qioZMkhgkd5ARTZ4OnCl0R1BQuDgy/N/X3ERH0XEnkuOIqokFYFOFCM6vp0wxyiMQ7MwvhroLTCw/+K0dP15l7U+7kPJB/HkldCABtym+HiuiuoWKdOobBwxwaKssYGydj4Ghml4FwDbeaoDKA6AzaBLBYRpL/aY6ZNrN8h7+bUndXsZtCSU7kPisTTLOk5YmhUnmrjydswFdjoAguVLNcbSgWtu00Wjtc4EAUsMZho9VA7Vl4YOdTsl2CC4NDHHbt0AvCXig3upgVITadklgDAZMMJ0p7Nmi13pITRirFlnITRoaZAxAkNopE7C4XYINKgdktHZIafW5+17zLgvSHdZ+07Rw7IR8Rw6VBjOVZ7TUJyX07nmrZX3YdEeJC9FyA0TR8JLYrkkEF0gy2SWiMldDG9IdVKuJi5rlAwMm/aeANeLVD55LEB9l4dGhsoECUMpD3fB61CXCehjtsTgR0+n2XWC97n1HYb/llWQB5BdJOXl0uYcMc+tvNEt2E0ZwlOTas5lgC0Lx1MjNomx8n2YCn21Hfhr27MXjXlLCsYNaDlg3Sp89E95Pzn6h14vDZ96Deob9nl8QbAx5/uwWrP7tmcBn0IPJnzA8NEFw8AQIW5MVALRm0P80awSuHGAUB4sVjApTepwcnvPwl8O2QYffmRUbUOozqa8n6w09Drr5FqglQRGrYzWK60U52Fa0Wj5qoUYvHCxCDW+lIpRLDXLm2Q61/3I94drr6ePscIrxgu5n6wY9DrbinGwQ80JPGYk7Vdj7fmcPz0025BZqTBANhZSSWl4mIQEXRy/7DxvG0d48jV/QTSeVeukfACZVYsJKgKRXR5MiCg8sHU9nEOzru9a5PlxWK+e7rM+/lAYHr/1Aa9j5SeWnQzTW7XDwC/g3MgQSWAIcCthbqEwIgJWNFCxYtDlv2ybD2KeNtX7ksek8romPFF3lCdKYr84gF3dLvfyRsAboq4GXOwlyiI1MIVJ+SaUX3yq65RYD3d3182WD28Nu22BD+RWo3NsVAItL/4IlRRi2J6Ko8Fti2CokcXq7Y2OKGVZTlyiFuQDRSjPB2ApQPj/Ep+SO9l7CnVpG8J6rtOqoHBfiwBmQQUYrMUEAEMn83i6yaw3gSviaGKpxzUxzMFC5MrGnSlyVVOFuZwOc+8DLhfPcE44xQ617CV56VEHXzUK6ScfLpUEImlhZENKh7SVF/AHwPKkAHdKuaG4p5TJThIrUzC9FrmYFV5e1oMbsMkWeAM4k6gObmCM4qNXvrHqNBLznLD1pIY7tKU4XcJPqoZcdhdhY2CI6PT8SnnVnXPe1PcyblevAJNXopEb+SDmhTRGDJXX6R+sfB/kdeGfMG3cGrlI5MDmQHYCQmbC64tSP0dONrtw/IOfyyb5ojUWFpPxlNRKPPLs4JFmRyXC7OiaZd4/2aOH19yGzWa5He0aU94zE1hGAKqzPRV7YTCQNvTOVwOptJOlxv7iQBmw0Jqg1H77hnSjnuaO23Jneva6lNkXj5IjGSXHUlF6NUC+aUOQreOOAk/RhSV/hLOAEhjWDCid98pHx6BqLDGyXZT1AqFjVAaAiKx3/BqmfBR5DUOvV8SBNzJiPlMdNFnbIkih9jTiX2ZPieV8tGVPBYz21PM/e4rqp8OB6i9yOl7gZaYOWTensGFTFuwpsUwTG/ZUwGhPBRVtT1PqPY7fumeR2wG5ZdWxGZXasGBPiYcEbNhTT0Z76lmB9pS4hurengoY7aknZk8VdPZUb/YExOnEDpmtSyXLd/Ocwp2zPjmE7Lo6z4+FLUGaJ9OWIEYF+QQ6yDUms5lgkGuBzEZRAw8z9RQ18DAyG0UNPIzMRlEDDyOzUdTAw8hsFDXwMDIb0UMjMdagVaQcYsTqeSww1iaypmQjLSr5n9WRpCiqiCmZGPMn6cSATifEsoUs6CSSTiep2Q+GzH782T0ne3/O7nEP8ZuqKr7CMLGUXKCVzrBZ87jh8A61KtPcMJlCrCwupBBHKbjK4qzUbB1C3UWKVymLtTPyD5TLpFI/uGLBi+oNWQmW0OZa41jrO91dExLezvActIY2t9lwQIRYHgBeH/vYls6yCWOkkKsFK8HCwj8iiQL97sDDgFGOothNBJVgpXpJh9Kt+JzBfGBAezhxYmc71fASyoMlYQJxEG4BNFJe9oM9O9SvV1deD5CFq18llID1aMV3G8TPr4WA6CuHeYMKifKtqmFvRTWh5MJI9zARLLuFwVupOrwIQy9qlxBfXYqWFVZuCGAnEIlQ6gRrQaktRAq5WBiq+t1gkFwYrroHHapRdENVb5ZlYhVQlo7qiOOfhXX5M59pXS7kY+tytN5jTiyvqr/Ho0m9mTCX9sYwn0SHucbLpDFHe8skRd1cbJmkqJuLLZMUdXOxZZKibi7mCxWmr+jzcfZexx1J9QxChdW6q/lCnYvldYyMtjgfKt45LtvqRmXS4gqtPnVrSEIxXhYW18l0mtTTlmPEosNaazn2oD9Ty7Ha/Su65diHVSYfu53Z55PUefi3zLih6/Sg5Vhhf6YGLrv660HfpAcPHmih5djKJV4jTixI4aW5vpqQ8yTqm160HEtg1M5ofdCOVlqOHfxaL/Zt0A6vfTVfXu/ftw2evqqrlmPdGZVTWx+Uw9Fly7FrfflH9x2ozEudOe/XzmC3fXrVcuy5L5PyjvrqT6Egnbcc+54beqnZ1Vlem/f4dki/GBSn45ZjKYyaC9e55uBNFdZybOeIZit+v/CX+97RjZ7t/7DLQC9ajiE+BG3LMWAIUT81hkPjp/6bWo4R22LouOXYdz+mlmMb/LTTcqzD0rN+spo+/Jz47J7zr4bdYr3lGLG4GQtttD76MbXROu9XUS3Hhq7MMu6/qZ7PbEObkWYb121iveUY0UawgNUGRqxi/P6nWo5NoTNj/xXh/0dF+IndhLRWhH94AFMR/jv+FVGEP39hm/uOVUNdDvw57vPagAX4duvlyzZn2UbCA5OAAKaa5TYBWinCP3BO2zPmG+u6zekvqlE3sXctnRfhN2BEBYwbvdk7aJb4w14R/rpG8zL6u3vwt4VmWo7bEII/ttdlEf59/kyqS9KN6rRehL9TQEN+8DBfr7jqqz/WPTLGScdF+BErQ1tFHVgZrRXhX5gqsIp5nOqWM7Tql2V1ruILZummCL8BIzjA2GivCL/prGZfag9Y6T3P9/KnTvLn+HI6uivCj8xpWoTAnEb9tqkcGr+Nz2vb7lefq7yMe423/LH6LaGOAJLEFy6TghWd7LMZ0uDcpSREIim5H62FARCXyyYEh3BVTWM1qeVA7LBI+7bkqgdqwrJy+4AjxBkI8C0C+GYQ3aQCgO/gAeVNrDIteS1wFcWC8qt/Wb+mXi1JL/elL0IOXS0YgGf0/qPeXQQXimgYy+lCwbK3nwfQdbFLAWO3YIBGLlRN5fQViYPlYmr/8kxcz2PvCp84rUswy721vtiVkCGF3EiRIaW8XhFlfzMYv3/sAF07S6qRqYGjBF9ZIhNJAhlq2/TNcJ8xx9vfY4mpwit265JE/FjFHkAeqypJRShjMKMy2utGGUT3h6NJxMLOM0ymAMuXMBCenVq37wO2rGBnEWrD7dAnMEQmF9lwO/aJGC9XIL9Qe6v+M64V5p9pzl845NmL4ptnZPh1DX6AvyJaStH/skRUEcoyZFTWgwB9mDnwURp5q2YlB91hE+RjIhhmUNxdIzP7MT5O8YfSF/u+79qyPFvl8m4d2qOGHKZ6FpDqQnXgbz02QDMvFbXkDN7WMfM5IsPqRbwDSTOzerl9nqnbbS8AIBkDoJACAGhaNPJEsaWMvsiEc97j2rMO+Tgn7r05dE+j/g10muwLAWjBBMDA1wGYozmN8+/i4xAbc2uNj/N9EBMfx2ZQRfNxuFsjJ+/PK3Rc/+T3P98WTjmuB3ycj4OYopvnB+kBqeDUqVNa4OPcGlUpu+uAkc7bbyv21gx+E6UXfJwNjNqJ0QftaIWPk+fDGd3Kx9gtsUnsrqYrRgzVCz5OAKNybPRBORxd8nH6X05+cvSUk2dseqfEg7t2GOoVH8eAUXl3Bura2dUjPo59TauntbblC2Y8etJ07uEePXXMx9k3kElzSTrXXIXycWw2ia473VjtujRz/qrkEXvT9IKPg/gQtHwcYAhRPzWW8/+Aj/N07c2QKP4X7wNtA/ssXBcXo2M+jsEQJj7OtsHa4ePEXkqbuuRUumtS1JIh0gMdt7DOxyHuzVngmHwfzMQxuTq4ovg48094riyaMNwla0Nw65+/Hc1gnY9DtBEsYLWNEav4wf9TfJzpdGZsfJ6kncQ70+lAro/02eNh+Da+Rv0nwNxJV7kwPIScYapB+KKFsyQiHGaPqaI50bbKLFOuENbMC4afQDnyjHtsibG5c42fE20enDvyBf37kSM56kLS+KvuD0yYj3oqFsWoJOY9lXFUqp5GbJzUms8JcQOj0twJ/iPkf45tzXcLdss39hdLgcLEIndg16OwxyFqVaoyjk6VGuekWavGdsXnpC0e/zXyt0YDvVcmre47fdqpfmo5aae7LDp8v5orb3tXs7fdem15o5aTVitojonh2fO8OT3tk190ahGrlpPm0vPX739+3e61qu6B+Xen94tQy0l7UP/c6NB9bXmZv7ew/rxiyR61nLSWsl7vKs+YxktfmC0JzHv0Ui0/v8XOpwZX/jrrOm927veCqz3XqzWbMUu94jP92iiP2Yc8f2bmfukIRIao6FDNicXZfc7w9/V7ZC2IjO4MRNVR0atppvaLG3V1SJj993Tep60bgKgGKvo24/N3t65LnBYftH168G+3QCAyQkV1TzYunp61WZBocM2134CbO4CoJio6m7q42rdOIrf54mpHXqd3/g2IjFHRF487HoOmZXrsrrZ7y9lT+84BkQkqSk5/XnhSfs1tXYLowZ/G2+8DUS1UVF2yYXVc7nefNfv2Ptl75S58jdqo6E0Dl03zj8Z5pI+8U/XRChv4WXVQUetnhttq5WZ6LO4UL16efC8EiOqiopP+JjeKO5912FJH+nxowYpQIKqHikYlbZzL6WPreDjv7bx7ftY3gMgUFcldz9/b7j3TcbdnrWV+X+rVBiIzVHTm/LE0xdmW7slFee1erUkfA0TmqKhKaK+84uRdrhkWjXMm5vYKAqL6qGi49ZyVI5et9Fm7/FZY/ZMfTwORBSr6tHx9/8/vP/ms3uZm6zes4XMgskRFrg8GHfO8luE+6363U5967OsFRA1Q0eZi++m752xwnb7q54r2bQLhXVaoaEG2kWHHbZe8ZzwZ233k8NMmQNQQFb2THHz7qtdZftzcTh03/pjjCkSNUNEjK5PGt64VO85q13Rvv1d1jwJRY+x7dZjR89OJON4++3iztoODlwFRE1TUrf3dQVaRFt4LJ/d6devureVAxEVFjk9CY+Urz/vMnLa17aHbTS6Qki2bcmiSLdOKO943m/eAtzCwScfnSz/YUJgNTZMtZ9CZKLOggztTT57hp20rmnSuYUw6/jCRHxUulYkoGAR0jUlboXeoOJ9IqfWIUKFUCowQWsW+jJQBooGifDXyOScqKKNfEgv2glEj6bqQ+sI+biM1awJRwqhUvgg1Hz95aY2NOT28d1y6FJq67mUWi4RKlp1cWKQ2fCRdTM8CbJbdRmrEBujiBxwmOXJ2JxLDMr2yCAlCoQDvJ5HCpsuqccIFHhRXCLdcgZQobuX12LjKSu6d07laTsrNmNv4EKjqc8gh0BIR2ztZCBeXEa7PI/QiXk2m62nYNtQWnWiiEnUpQoQKsH8ZJ+YCB0TVhok+Vpo/U3Dmd+t1vJ1PHdPfOTovJ5yWo4+lOC3HJGxrr7YtOtidKQPYdshgJ0VMNQSuKUbswQ6txUQgKcGqvLC2ze0qVb1W+HCyr18QVik/jYgFsLiMYIGhjq4/8Rya9ee/7IN/lH1A9NC1ln1wYhRT9oHzqIrIPrjwpNjidvVmXqu/9u7WqOY5ExYXS6IFYiH74PAoJrL2klFayT4obHgx+nlnqevKttJBx16HHtN59oGUERUwbvQ0UqK97INlGxf+9fHTUJclj1KPyr5F4s9VdJl90JBRdR9H6qk7w3L2wdBU8wipaxXBnOZDayRue9Zdx9kHiJWhpY8DK6O17IOWjQV1kiIEDkcm3v5Vc6ChVA+yD6SM4DiP0mL2gXmkfYcpd+64Luy8/7zRQoMjepJ90JARITCnUb9tJofGbzuzUij40aO+a9ymxtVeNp+ci/dGkZ51/s6Csh8cOOJbRqKeMNghBoFfgd8Vrd5XERhbdLxC3wt13aaUyXEinl9SvzfZi8YkGmwDUyajrV1IrpID0IDF5AroLVnkOE16bfxW75lVTq8cmfPeghBkh3dTBNmRy6V5SkT7x0LflmQIUDjVIOS243NCJmsUO7NAAMLGhbVIIgfDF8ipF9vMU/ys6VOmOM383fPy+tu3puCnpTN2M3lalohKA+zIJf8736o4ea7q0XjPqPZtTVkAzIERMDCidOJEKdcM+DedOHQ/5JROQwZdGiG6ZLCqEWaKUQlP7Rx3rrUq/H756du6SDIOUAY/KlwuVoXuEKeW5+hvPbhN+Rxggmr93bZwRvTO8dx73aVt2CwvBxZUWzyJSbWnJ+mPf5ysWQO40vuXfqjmvyTNyNk13sG+2YqaB3x01r+UY4faJNi/NJy0v7VDphi6MM7i0CyMjlfr353Yba/D9mEjLRIHHsGXBjaFJTcV8OgTsnHFMD4s1qDrmb2TLBRAriz8iTxGVPIYZHNY0uxMBAZJmVZEYtiu9BcmqYPyrzQ4VOCKAejPHSmaoI0Gg/+5qLy5ejyBGijwuAGW8oXehiyMa4018ALoKZP44P+UNi0CnkbLIsU0GThnj2+M4Z5J8lh5WbymneeoJ3gbg/RCpWgRh14vzcZU+/7TQPx1qPMC3rveRQ/55eVfwI2cBYTZwJGi7VdKGwTm8h4Jt1RTv+p0K1AWFiEOnIAMD9hCgvp007Pei+NmThs81tQW8e0ShtfDswpKnkve/uKEFZHRhMA2nAq2QlsENtQkzKYzCedMmn/o0FXmNev9W0+7K9P4xIbB4VJhoJjrPUEqpbAFdA6zLXZfGLwPjllJ2EShVCJSDvJIiSKEKwPbFHnZLQExSs/wnlSNjdXEGnjJDiK64Fs6RDewvHPfHC5qSPtDBWzXB40kRIyaVOWzyuHP9UN4yyr9OvqtseQp3n1GHkR2n5WXS5vORFYCCy5Dd4hcPJXLAAsq1xbRus9lRM5KhZwcN9Tg0KLuczjjUdGTazNcF93x/8T7lfMVT9VGBwh1SAcvZb0xuTUykhjQOhqoVQcLe1HDgOhwsToOzdU4O3aewKUVS+3g30TYubqNgk5usFhOYAnDn/IabnNkgYSKBY8Am+popaoptUxcmMozScqp19F26Cwo5lGRCu2RWaDRQZiFso0p9BWQtQob+iJKKNqkG4RulM10X5GV7T8tas1OQmACfiuKwARyuSKgQIY4LRRgiKMLVQKHZqHSm7r1RGvJTgufCihb7xzIVLa+hQryOXoPOZEbxw7kb6VLVlc3HOK0r+jr6Nb2wz6yAPnHECbIr4ZgkM+lg1xjVmYtDHItsDIpSJQYK5OCRImxMilIlBgrk4JEibEyKUiUGCuTgkSp6ppEJlFirEy7B/36zBtf6LJr2KxYy/5ePBLlDQ5eytFHpF+yQHlLpNN/M88Ttnd313DZbCAac/1Fbbz+6ykP+52ksgjoLiIBHLJTXpVmtjVzkcCWPSGwx43yAciWEu4zURpC2cL7RMppqa9IAofqjzRIj2ohBJOskOrsGraD3DBao7NrK2W0DckGkUHVADzAL/S8oGn7Gp0ddcLEO85tZ5O9h7cuKU+srWKPsQtgfFSILrvFpAR7sK1+MJrSD6fDykxFiVDHipoDsm53VjvPzS5zT096596z+jQWaRHTB3h/Or0pymWLbI5bgmP0MRZQAmOGAaWQ0Zo1abfxxeYVMtkQzLApB7d6GPeMPlQyMPns6gutF7huvzfe3erFw7c6jOfC9ovIIKIMyB2F7RdHa+bGtlVFDyFEgWo1K+AKhLNNlOCs6ia48b7XUe+Ua7Hz+Gu6z9aDqCUE6fxoJpA2jNYsrtvSWaL85qqjqpIhgwQW6Q3U0RWSh9ntQ92z/zpsmnTx4lR8FBF7LjmKqJJUBDoxjOgEjMYcoyQOzcL4aqC3wMD+i9PS9edd1vq4DyUfxJNXQgMacJvi47kqqlukTKOyccQEi7LGBsra+RgYptFjAGznqQ6gOAA2wzEVEKZN7Oqx6fw4kWDtJd+rPZy5q/GHnUg8lmZZxwlLs+JEE1fejrnATg+GYPlSjbF04Jq3H6PRWmeCgCUGM40eqsGpTXvP8xnoHPdg9P7k5t3wrNfqfHAvNVBqIi27BBAmQ0aYHgg1W+xKD6ERY806C6FBS4OMERhCI3USDrdDoEHt0Dw6O+TU+rx9jxn3Bekua98pelg2Ip5DhwrDucpzGorzcjrXvLXyPizag+SlCLlh4kh4SSyXBKILZJnMEjG5i+ENqU7K1cRljZLBYTMR4HqRyiePBaiPnqiRoTJBwlDKw13wOtSFhj5POR+84i/H9SbnpEs39KmLd5GQB5BdJOXl0uYcMc+tvNEtAE8hhKcm1ZzLAFuWXRM1YpMYK9+HqdCX3cOPsza3eei8eeU+g3Hb6l7CR/+U95Ojf+j10vDZO+qde3H3y26xguiRsxeL/2YBnwRGfMDw0QXDwBAhbkxUAtGbQ/zRrBK4cYBQHixWMCnNtbokwmvSdV7e/XD7LhcWFuCVpryfrDT0OuvkWqCV7oxaqa1XWinOw7Si0fJVCzF44WIRanypt2NN8yq3GFedt2b09TuLllfFx3+reiH3kxWDXmdbMQ52qDmBx4yk/WqsPZ+TNlGzDZmVCgNkYyGVlIbH0/zRsoN/1hEkmLyq3qpbd3xqWzUn5QPIrFpMUBGIjGZEpMVEbF2fz6FZ13ct8vw4rFdP91kffygMj9/6gNex8hPLTobprdph4BdwbmSIJDAEuJUwt1AYEQErGqhYMejyX7bNBzFPm+p9yWNSeV0TnugElCdKYr84gF3d6AnljYA3RF0NuNhLlEVqYAqT8k0ov7jVnJstDmxcK0j4Ff45q+Z6PNe9Gp1joxJoefFHqKQQw/ZUHA1uWwRDjSxWb290RCnLcuIStSAfKEJ5PgBLAcL/l/iU3MneUygRJa7nOq0KCve1CGAWVIDBWkwAMHQyL6CbzHoTuCKOJpZ6XBPDHCxEru4omCJXhxUY5sl0mHsfcLl4hnPCKXaoZS/JS486+KpRSD/5cKkkEEkLIxtSOqStvIA/AJYnBbhTyg3FPaVMdpJYmYLptcjFrPDysh7cwNJL0QDOJKqDGyRGEZ1vrDqNxDwnbD2p4Q5tKU6X8JOqIZfdRdgYGCI6Pb9SXnXnnDf1vYzb1SvA5JVo5EY+iHkhjRFD5XX6ByvfB3ld+CdMG7dGLhI5sDmQnYCQmfD6otTPJmGNzTVWP3XZv7mg+nQ7aVecfirxyLODR5odlQiz46T7309qzjdwzN0713B3m/yk8p6ZwLguVGd7KvbCYFhDNjpfDaTSTpYa+4sDZcBCa4JSh40OcbOmLXffPnbX0jThzDF4lBzJKDmWitJfJr2aO32+7rzi++pL1aZYRbGA0gZGlGKi89ExqBpLjGwXZb1A6BiVASAi6x2/hikfRV7D0OsVceCNjJjPVAdN1rYIUqg9Xfgvs6fEcj5asqe+UUz29HPkf/YU1c/co+5rii8OcN+1xsrF7NO1lmzYU0KZJhYshVsUk6XgRlW0PY2XrH/du8M016WPLM3M3Dr0YMGeEg8JWEAJDGsGlAoiK9CeEtdQndtTZMTQ2lOAFGpPF9HZU73ZExCnEztkti6VLN/Ncwp3zvrkELLr6jw/FrYEgkimLYGNCvLFdJBrTGYzwSDXApmNogYeZuopauBhZDaKGngYmY2iBh5GZqOogYeR2Shq4GFkNqKHRmKsQatIOcSI1fNYYKwtYU3JRlpU8j+rI0lRVBFTMjHmT9KJAZ1OiGULWdDJUjqdpGY/GDL78Wf3nOz9ObvHPcTn+VXxFYaJpeQCrXSGzZrHDYd3qFWZ5obJFGJlcSGFOErBVRZnpfzaxLqLFK9SFmtn5B8ol0mlfnDFghfVG7ISLOGbM/XOt3jg6bxk4R/f25+1oWVSGw6IEMsDwOtjH9vSWTZhjBRytWAlWFj4RyRRoN8deBgwylEUu4mgEqxUL9GA+rbicwzGAwPaw4kTO9uphpdQHiwJE4iDcAugkfKyH+zZoX69uvJ6gCxc/SreChv4teLvqDw+vxYCoq8c5g0qJMq3qoa9FdWEkgsj3cNEsOwWBm+l6vAiDL2oXUJ8dSlaVli5IYCdQCRCqROsBaW2ECnkYmGo6neDQXJhuOoedKguoxuqerMsE6uAsnRURxz/LKzLGeOZ1uWE8di6vFzvMSeWV9Xf49E0CRPmMRIM8xQ6zDVeJo052lsmKermYsskRd1cbJmkqJuLLZMUdXMxX8hwUd7L1KV7Hee++3Sx0+ObDdR8obZjE7N+z3/jkf3Yr39YwdsWpMUVWn3q0DmhGC8Li+sKOk3qacsxYtFhrbUcS57C1HLsaExFtxxLaXXNcOjmmW57uvqPm/+4ySo9aDmWMIWpgcvoKXrQN+nmzZtaaDnmE+l3o6n0vU/876vmTJLNMtKLlmPdGbVTWx+0o5WWY0srZw++PPWiZ+73LpdC/G+N04uWY89jmJQDrInulcPRZcux0ErFaf6iHK+8F4smhSw+OEOvWo6lMCovXDfK08+WY1fuFrl9/+bmkyW99del9ZPX6LjlmBuj5rg61xy8qcJajvEC040C2ilcE371bGdqOdBJL1qOIT4EbcsxYAhRPzWVQ+On/ptajhHbYui45di2qUwtxwKmaqflGLeO3/i/ow7yd37luPgJRq1gveUYsbgZC220NkxlaqMVM7WiWo7l/bzfwvVlS5cVxZuHF7gNWMl6yzGijWABqwBGrGym/k+1HFtJZ8b+K8L/j4rwE7sJaa0If9VYpiL8SdMqogj/eOtfB7+bBXjNbXfj5IugLXgSWfmyzVm2kfDApHIsU83yO9O0UoS/6EeboCwbU6+9xjOme9Xa1FrnRfj3TWNCBYwbvdk7aJb4w14R/mGP1lhy+oZ4ZA3ds6dZFZt2elOEX8Sout66UZ3Wi/CHpUQ0qDavpsPCYbcPru58KEXHRfgRK0NbRR1YGa0V4bfPX9P6wR+DHRctmbZx0cSsqnpQhB8xNrTgJE3TYhH+NzVMhy+UFDrkRvbJ3TzlynY9KGcBERIxIgTmNOq3pXFo/DY+r227X32u8jLuNd7yx+q3nfB1BJAkvnCZFKzoZJ/NkAbnLiUhEknJ/WgtDIC4XDYhOISrahqrSS0HYodF2rclVz1QE5aV2wccoUI4PYsAvhlEN6kA4BsfW97EKtOS1wJXUSwov/rvnT5XbXfqkdOisRe9OlTbiu+y+I96dxFcKKJhLKcLBcveXo2l62KXAmNOsRq5UDWV01ckDpaLqf1LM9tbD57y0x1nG236PedZ4jpChhRyI0WGlPJ6RZT93cb4/VNide0sqUamBo4SfGWJTCQJZKhtszzziSAn9rNXmtizqMn7gU3xYxV7AHmsqiQVoYx4RmWE60YZRPeHo0nEws4zTKYAy5cwEJ6dWrfvA7asYGcRasPt0CcwRCYX2XA79okYL1cgv1B7q9W3Z930mDjXIX5Uu9kGk9z749c1+AH+imgpRf/LElFFKGs4o7Lc9GLmwEdp5K2alRx0h02Qj4lgmEETfjZpN3LWWu9Dlaq//P1Gjwfl2SqXd+vQHjXkMNWzgFQXqgN/wMFYzbxU1JIzeFtHJAaTNrba5H7E7GaTpmmxA3W77QUApGMAFFIAAE2LRp4otpTRF5loFrZiWrB5FYfE9nVPiARtH+s02RcCMJYJgEzvWMzRXMX5d/FxiI25tcbHuT6diY8TNr2i+Tg3X+WP2X7Lzy39daP95rsm1dUDPs4f05mim7nT9YBUkJeXpwU+zrhmR1KXTg4U5LzkcNq9Ss/XCz5OJqN2lumDdrTCx4lrmFDvps9p570ukjV7BQcN9YKPE8eonDB9UA5Hl3wczuO/Q258Hum1+tWdSpJawxfoFR9nKKPyXHSjPP3k4wxs3z1u5iGFa1aecdSPXnYvdczH6cioucY611yF8nHMQjv3Hp+f47Bm8MS+l8S9hXrBx0F8CFo+DjCEqJ+6mvP/gI/Trf3dQVaRFt4LJ/d6devureU65uMMjWPi49jFaYePc8l8xz3njbvdE/JykuYMkp9nnY9D3JuzwDEZGMfEMXGMqyg+ztDD1+vbbJrrvrrhzRvdHnw6wzofh2gjWMDKjhGrBnH/U3ycNXRmbHyepJ3EO9PpQK6P9NnjYfja9Eb9J8DcSVe5MDyEnGGqQfiihbMkIhxmj6miOdG2yixTrhDWzAuGn0A58hyfhMbKV573mTlta9tDt5tcoH0/ciRHXUgaf9X9gQnzUU/FohiVxLynMo5K1dOIjZNa8zkOsDCXuRP8hx+VQ8e25pv2VuQb+4ulQGFikTuw61HY4xC1KlWZTqdKjXPSrFVju+Jz0oYH1un9LOgkf+GDD+fWd1wvVMtJ43674nvvY13XNZYdMt2/zT+glpNmbDQ98vpPBW/N8LFdTeIbKNRy0nYcN7vzM63QbfG6XY2nHhvsp5aTZjnqUPfxvdNcZ/eMOSSRNstTy0njDQ5/fnct32Nekd3+qd1OBqvn59uEb46dEOO8pHG3KmMXTeSrNZsZZPLq9baOLz1WDBqcfXPR5OtAZIiKDHd+P7+vksQzxzK20ebcwd+AqDoqqjpkwN9Oa3P5+56eShgbsDMMiGqgojZ3vVc/mRPpszH95/dhb9qdAiIjVNSozdcP79+NcYlf5TDK2OTtayCqiYruFb3fGPF3IH+5v9HI3fc6wuICxqhI8OTZ8C0b4r23ndu4rPL5kNtAZIKKZvuYtL/tms/LWWoQtvJjlStAVAsVTap6cllc56MuaQsvcPcP29sWiGqjom4v8qPH+gd6b9rz/GubHvYeQFQHFVWqxd92t8F21+mu9QuvFm3JB6K6qKil25Ci2i5zfVLDWnt459S5CUT1UNHtrtF5nQZGOs0a7Zdo03zVWSAyRUVPDqbOPLnA2H3666bH362ush+IzFDR7kv7ZzVI6MxfsexVXO+qz+FXNkdF/c9kPo9XNPXYH7Xh1ckYgS0Q1UdFj7pO7OVww4u/x2q2afU2+6cBkQUqenUpwG3Mb/0dc9a0/ulwXgYHmyUqqhnz/kVK/2lec4+2HXs+a9ZGIGqAinYtqzs+4tJmz/hRBms/xJlDkRUqahJyp2df447eazssm3ns2kn4WQ1RkWv8wVZ7b7l5zbcy21u9yjoDIGqEiix2Br/Zemy9Z+auz2camPVKAaLGqMjp0ZyojfHbnDZa2PY5UKffbiBqgoo2KczrfFo+3yNZsaJZvcoZ8DW4qGjLnpd3fvIHC9bNS7Tuu67nCVKyZVMOTbKlyNTCuP2l+16LRo/YcmGgfQiF2dA02XItnYkyCzq4M/XkGX7atqJJ5xrG4IPT1fhR4VKZiIJBQNeYtBV6h4rziZRajwgVSqXACKFV7MtIGSAaKMpXI59zooIy+iWxYC/YM56uC6mvDZ9jEq9ZE4gSRqXyRSi/20hHgV99UWXehvuO9Vr3afmKRUIly04uLFLbNZ4upmcBNsvN4jViA3TxAw6THDm7E4lhmV5ZhAShUID3k0hh02XVOOECD4orhFuuQEoUAx99cth10tA7JX/Ec4c7333xIVDV55BDoCUitneyEC4TRri+ztCLeDWZrqdh21BbdKKJStSlCBEqwP5lnJgLHBBVGyb6WKl/m/XHvpvle+4ouDZ4cdGxvoTTcvSxFKflmIRt7dW2RQe7M2UA2w4Z7KSIqYbANcWIPdihtZgIJHXNodoxi6pu+puXdTGVM3jg0+Ty04hYAMuEESww1NH1Zx3nv+wDNrMPiB661rIPHsQzZR+ka7ZWljH7oPieYuzKX+/dDlll1K0WMSyExcWSaIFYyD64E89E1j6t2WL5T7MP3IveL+y/6obzvnmTWx6fJFquWxoGzD5gRAWMGz2NlGgv+2BW/OPM/hZ7vGIHfOy3J/T9Mb3JPkhiVF2UblSn9eyD1j5fPkxJs3TJ6bTSquDtmhE6zj5ArAwtffw0hZdSUdkH63+ENvu4eYfTvEYmaQ3vxeDPA3WUfcAITnq8FrMPOjb4Mu9Mtw2uh6ZbmFb1HvdTT7IPkhgRAnMa9dvWc2j8tjMrhYIfPeq7xm1qXO1l88m5eG8U6Vnn7ywo+8GBI75lJOoJgx1iEPgV+F3R6n0VgbFFxyv0vVDXbUqZHCfi+SX1e5O9aEyiwTbw8SK0tQvJVXKAFcoXVUBvyReB1r92dFnmNsPjzy4Lanw9Swiyw7spguzI5dI8JaL9Y6FvywMIUDjVIOS243POL9IodmaBAISNC2uRRA6GL5BTL7YPHG9e3/fxhiBDIJxRNT7kDX5aOmM3k6dliag0wA4cv57S6Uqi18xKB9u/OdpAygJg2YyAgRGlEydKuWbAv+nEofshp3QaMujSCNElg1U9verUVEH8cZ+9M64unlNTllcXScYByuBHhcvFqtAd4tTyHP2tB7cpnwNMUO2g+Lv1GgY946c5H+s34+nzz2z0MGJUbYyOVEvlHydr1gCu9P6lL6e1Smnd+Zb7nBEKv53zQmN11r+UY4faJNi/NJy0v7VDphi6MG7g0CyMjlfr353Yba/D9mEjLRIHHsGXBjaFJTcV8OgTsnHFMD4s1qDrmb2TLBRAriz8iTxGVPIYZHNY0uxMBAZJmVZEYtiu9BcmqYPyrzQ4VJg/G4D+3JGiCdpoMPjls8ubq8cTqIECjxtgKV/obcjCuNZYAy+AnjKJD/5PadMi4Gm0LFJMk4FjFWF/dHeHw45LauT9GG0wUIK3MUgvVIoWcej10mxMouDmx+8TO/LWPXp3d/nWvsNYOJmYC2E2cKRo+5XSBoG5vEfCLdXUrzrdCpSFRYgDJyDDA7aQoD7dTD/+m/GbgjkuWw4dmlcQP6oLnlVQ8lzy9hcnrIiMJgS24VSwFdoisKEmYSOdSThn0vxDh64yr1nv33raXZnGJzYMDpcKA8Vc7wlSKYUtoHOYbbH7wuB9cMxKwiYKpRKRcpBHShQhXBnYpsjLbgmIUXqG96RqbKwm1sBLbjybLviWDtB9P6u8c98cLmpI+0MFbNcHjSREjJpr7Hh6Q8rPzoKldz+fetC+Lw/vPiMPIrvPysulTWciK4EFl6EBRC6eymWABZWrzqZ1n8uInJUKOTluqMGhRQnfkBlW7Rs83OOTOCZpbcysVpF4qjY6QKhDOngp643JrZGRxIDWvVladbCwFzUMiA4Xq+PQXI2zY+cJXFqx1A7+TYSdq9so6OQGi+UEljD8Ka/hNkcWSKhY8AiwqY5WqppSy8SFqTyTpJx6HW2HzoJiHhWp0B6ZBRodhFko25hCXwFZq7ChL6JetJ5kvY/dft0l2Whj4xMPniQSAhPwW1EEJpDLFQEFMsRpoQBDHF2oNnFoFiq9qVtPtJbstPCpgLL16bOYytYnqyDfrPeQE7lx7EAurjxyX72vxa5xBgX57bMq72EB8qg5TJCHzMEgz6CDXGNWZi0Mci2wMilIlBgrk4JEibEyKUiUGCuTgkSJsTIpSJQYK5OCRImxMilIlBgrc3HauWspghGuOyZ99pL6j69DorzBwUs5+oj0SxYob1vo9N/M84Tt3d01XDYbiMZcf1Ebr/96ysN+J6ksArqLSACH7JRXpZltzVwksGVPCOxxo3wAsqWE+0yUhlC28D6RclrqK5LAofojDdKjkmeCSVZIdXYN20H6ztTo7NpKGW1DskFkUDUAD/ALPS9oUJ3iqX6Ojl5bbx8M80n/q7A8sbaKPcYugPHRmeiyW0xKsAfb6rCZlH44HVZmKkqEOlaUKJ0wkE6/b7fIJ/PH1tpBHYsaskiLmD7A+9PpTVEuW2Rz3BIco4+xgJIvI0odZ2rWpN3GF5tXyGRDMMOmHNzqYdwz+lBJYuiRtks9nARxdyaIY8Li7XQYz4XtF5FBRBmQOwq2wVEzNXNj26qihxCiQLWaFXAFwtkmSnBqxZ/p2Tf2l9Om9Hv1V9b3MNKDqCUEScQIku9MzeK6LZ0lym+uOqoqGTJIYJHeQNkEr+3jW9jPdUOdQat2teUb4KOI2HPJUUSVpCLQ6c2IjvVMzDHK5NAsjK8GegsM7L84LV1/3mWtj/tQ8kE8eSU0oAG3KT6eq6K6Rco0KhtHTLAoa2ygrJ2PgWGygy78eaoDKA6s8kg+gCp/mPau8ET/Si5Sl71RfypGZSXUwx92IvFYmmUdJyz1CJlg4srbMRfY6bYQLF+qMZYOXHPzWRqtdSYIWGIw0+ihivKs7BbzfA0/r/XmNrXbTB6Ft0R8cC81UGoiLbsEEKbKjDC90XCxKz2ERow16yyEBi0NMkZgCI3USTjcDoEGtUNb6eyQU+vz9j1m3Beku6x9p+hh2Yh4Dh0qDOcqz2kozsvpXPPWyvuwaA+SlyLkhokj4SWxXBKILpBlMkvE5C6GN6Q6KVcTlzVKBoZNQjLA9SKVTx4LK6sla2SoTJAwlPJwF7wO5bf8+qJHwmbLCNdlC+063N/9k9CxEXkA2UVSXi5tzhHz3Mob3QLwxEN4alLNuQywZQlP1ohNYqx8H6ZCX+PSxk/PSNzgseRSmGFuYrvx+Oif8n5y9A+9Xho+s3/ZPduY8dN58c3Hy7xvDdzEAj7DGfEBw0cXDANDhLgxUQlEbw7xR7NK4MYBQnmwWMGktNsN34xp+zDNa8lm+wNOr5tn4JWmvJ+sNPQ66+RaoJXOjFrh6pVWivMwrWi0fNVCDF64WIQaX0rFLJz+4EaL4FGCrUuXj8iY32ACXjFeyP1kxaDX2VaMgx1qTuAxI2m/GmvP5wQla7Yhs1JhgGwspJLS8Hge9Liby+s8x5n5joX2E/5wwLNqnZQPILNqMUFFIOLGiEjbZGxd38ahWdd3LfL8OKxXT/dZH38oDI/f+oDXsfITy06G6a3aYeAXcG5kiCQwBLiVMLdQGBEBKxqoWDHo8l+2zQcxT5vqfcljUnldE57oApQnSmK/OIBd3ekF5Y2AN0RdDbjYS5RFamAKk/JNqLtFPWxpOeGnsUvqtMeLN+4yPYIffHSOjUqg5cUfoZJCDNtTcTS4bREMNbJYvb3REaUsy4lL1IJ8oAjl+QAsBQj/X+JTcid7T6EeSoT1XKdVQeG+FgHMggowWIsJAIZO5u10k1lvAlfE0cRSj2timIOFyNWsBUyRq4kqzHfQYe59wOXiGc4Jp9ihlr0kLz3q4KtGIf3kw6WSQCQtjGxI6ZC28gL+AFieFOBOKTcU95Qy2UliZQqm1yIXs8LLy3pwAzbZ5pCqmUR1cANjFC8X5hurTiMxzwlbT2q4Q1uK0yX8pGrIZXcRNgaGiE7Pr5RX3TnnTX0v43b1CjB5JRq5kQ9iXkhjxFB5nf7ByvdBXhf+CdPGrZGLRA5sDmQnIGQmvL4o9ROwyDljWaWVnvEHTpyeHGSFHzaVeOTZwSPNjkqE2bF6/hPLw2fb+uQMu9p4iMHo8nZt4oDZUReqsz0Ve2EwkP5cmK8GUmknS439xYEyYKE1Qamo9dhPuVbbneevXJz1suClMR4lRzJKjqWi9Nl4191isa/L+lNzToZuLh7HAkpgWDOgdH1hPjoGVWOJke2irBcIHaMyAERkvePXMOWjyGsYer0iDryREfOZ6qDJ2hZBCrWnO/9l9pRYzkdL9tRhIZM9Nf3PnmL6idk4aIf7hz2eS++Mmvy9bcxjFuwpsUwTC5aiN6OlsK5wexo6vnla89y+jsuuh4cV9rHdwYI9JR4SsICSKSNKnIq0p8Q1VOf2FBkxtPbUVGVPd9HZU73ZExCnEztkti6VLN/Ncwp3zvrkELLr6jw/FrYEuclMW4IdqjOV3XSQa0xmM8Eg1wKZjaIGHmbqKWrgYWQ2ihp4GJmNogYeRmajqIGHkdkoauBhZDaih0ZirEGrSH2STKiexwJjbQ9rSjbSopL/WR1JiqKKmJKJMX+STgzodEIsW8iCTvbS6WTZ80+rbAckCQ6e9fnd9Vd6M3y5jpI8VLximGJO5iUli8JgTSj0ATXIOa11XHz8vHgB1s0mt+/pN6WZjU+bMvmVxNKNVQWywHFikeomuq9ArjhSIisrPb0VnxOXCGxdVyeac86gRAr/0gCFi8K/RFwWgn+Z8iM2Z+3Cwe5Zm7d4Ozxpd5st/5Gx2nUJFtyJQrlEOEZKzRnqH97l7PJFOQ5Zq52Mujw7k8OM/kD0UVwfsqPkU6qjRKypWc6VKhZob2oi6iiRs+BaIdojOkpM/qRpiaNUMtApUbs2zrLZhwkc5z1TWt25vvuv94yo0TlNVMd95Q2IdEAhOepAAUl4BwQS1Ibso7MhqdkPhsx+/Nk9J3t/zu5xD/G5wlV8hWFiKbnIM535sOZxw+EdapXquWEyhVhZoEwhjlJwlQWeqUcnoXYrxauUxWMy8g+Uy6RSP+j1woslaePF/Qhj1Nve7LLl3kCHXQvXOfaYvG8v3Rg1HBAhlgeA18c+tqWzbAKcGYFSWE0aFg8TSRTodwe7FBgpLYrdRNAjVu6bpEcweJPnAT32cOLEznaq4SWUB0vCBOIg3KAwUl72g31/1K9XV14PkIWrXyWUkfZoxb+xYF5+LQREXznMPVZIlG9VDXsrqkVZLox0DxPB0n2q0V4dXoThW7VLyH5fipYmVxp/2E1IIpQ6wXpyKtVU9VfIxcJQ1e8Gg+TC8BIDohyq++mGqt649sRKwiwd9xPHPwu+/Z/zmHz7O/Mw85Cl95gTlxP9DbGcZ0wOOqxKDjpAh7nGrrYxR3uuNkXtbczVpqi9jbnaFLW3MVebovY2tp8yjx3XsUt/a7es1HUN6zduUFVtPzXpy8vMovUzBIcedL58ZrP7FpKDDq0+5UAiFvRmwUHPptOknrYtJBYu11rbwgeLmdoWRi2u6LaFopYWnWeceuuzrWO1gDtdfhPrQdvCO4uZmkCdXqwHvdcuX76shbaFrYeuzBLF1/NKMx38vqFF6my9aFu4j1E76fqgHa20Laz58Umf3+4f58/8I/H+wRUG+EbPumpbmMSonCh9UA5Hl20L48427fxjBMc796TdujppG/H1EXXdtlDEqDxf3ShPP9sWyq5cWFtcUMspt774k28Li9Y6blvYm1Fz1jrXHLypwtoWPr6ReO7Dgode+z2Spk+dOPaqXrQtRHwI2raFwBCifupBDo2f+m9qW0hsraPjtoVhS5jaFjou0U7bwnZmAqd2Ht/4GYmBFl3Sufh+3Gy0LSQWSGShFd/YJUyt+AYuqai2hQf2r3sQeHOR8+FT3YsNG8sMyj+FCVgRbQQLWDkyYmW35H+qbWEOnRn7r5HHP2rkQexIprVGHo2XMjXyuEe2nSw08nj18OiZ91+7e2YF9Us6+251EYsVK1i2kfDApMFSpr4HVZdqpZEH3+ONz9c/Fzgceb3tZm7dFvj68bpo5PF+CRMq97RrDRn3DpolD7LXyCPtc9LZeecqeSdNj/lyqMGwSXrTyOMso+qydKM6rTfymHyqbgfjb5cEcY1GhhvNjjHRcSMPxMrQdmIAVkZrjTymJ9e6svPAdPdNBs/b1rjAu6MHjTwQY0MLDjA22mvkwRnb/82XOVuc1/TNckueXD9LD0riQITOMiIE5jTqtx3i0PhtfF7bdr/6XOVl3Gu85Y/Vbzvha5EgicDhMilY0ck+myENzl1KQiSSkvvRejoAcblsQnAIV9V4WpN6MMQurbRvS66coiYsKz8YOELFcHoWAXwziG5SAcA3bWl5kzNNS14LMoiUWFB+9V5HgmxXxd13yl0XWdhR9ju+2Og/6v9HcKGIhrGcLhQsnf3nUrpOmClg7BZq5kLVVE5fkThYLqb2L32fdUgo+vM3ftq34qG97d6cJGRZIjdSZFkqr1dE6fATjN9/11JdO0uqkamBowRfWSITSQIZ6mMdtr2wNbd9gs8Mt/Xvo6NHWOLHKvYA8lhVSSpCGWmMykjQjTKI7g9Hk4iFnWeYTAGWL2EgPDu1bt8HbFnBziLUhtuhT2CITC6y4XbsEzFerkB+ofZW7yb1DX48Zj9/+5DECR7bax7Cr2vwA/wV0VKKHroloopQloJRWaP1YubAR2nkrZqVHHSHTZCPiWCYQS+y3j0bEbPIY3q/9TtfJu45Up6tcnm3Du1RQw7TxQtIteU68Adc1tBLRS05g7dVzPV0PWa9zWfu2Sn8zQ/9Z+p22wsAyMYAKKQAAJoWjTxRbCmjL1Szbef3dZea7uanNgx5U9DqTT3CUqbdggEQgDgmADKDlmKO5mHOv4uP4/RoTtTG+G1OGy1s+xyo02+31vg4b5Yx8XFmLatoPs7mn14v3UyqeC7ysOv4rvaHQD3g47xcxhTdvL5MD0gF2dnZWuDjFA38Ih+6otB7VdSAZ2lfvGrpBR/nGKN2duiDdrTCx+lU7JTk++aw58alxwpD/9obrRd8nFRG5czSB+VwdMnH2eB/cesO7xj3hY3WpTiErnuoV3wcOaPyRupGefrJx3mdfUhWZWQbh7iiY6+3df2VrmM+jgej5rrqXHMVysfhJsninowTOK6q0zRvpIdlil7wcRAfgpaPAwwh6qce4fw/4ONsUpjX+bR8vkeyYkWzepUzNuqYjyNfzsTHcVmuHT5O/3s1fl/S7y4/Y3x+v4F9BINY5+MQ9+YscEzCljNxTIYuryg+zide42nmg856zVv6dkng97RM1vk4RBvBAlYujFh1XP4/xcfJpTNj4/Mk7STemU4Hcn2kzx4Pe4uPlPSfAHMnXeXC8BByhqkG4YsWzpKIcJg9pormRNsqs0y5Qlh3Mxh+AuXI27Ln5Z2f/MGCdfMSrfuu63mC9v3IkRx1IWn8VfcHJsxHPRWLYlT+w/xo1dOI2e2t+RwLWNzP3An+I+R/jm3Nv1F/Qb6xv1gKFCYWuQO7HoU9DlGrUpV5dKrUOCfNWjW2Kz4nbTO/s5Wp3VWnpeFTAg9Uck5Ty0m7npK1O+YPOX/ffseoIlFCkVpO2rXa86RzLV87H34nlvdNO9FHLSfNq8Mj//S2S/grDsRvH1qU3UgtJy0hevW0ITO4Xkmn7UZ1+tj7m1pOWqMXJ5dJ8q34eYeq357+cluBWo2PrkuXcgTN97pvOTJ4XsF7V0e1hlXzcodO4p519d4+eXnwpEO3PgKRIfbAoPXdm29Z57qrYdP3cTV+uw9E1TGRbGVOw8YzHBamXqvLO9JECkQ1sJe3HFkQ+iTMa3P7gC2K2bdrA5ERKtrh/6fLp9+jvRM2jvrW9+uwRCCqiYoGjZTN/5wVyVsnFHTfKNsHi2EYo6K1q1rcmbZ+oPOMZe1aezWoGwJEJqjojldy5IE+RwQzR1+/V7vLgr5AVAsV1d97+mqs7023xGHb7nU8mlEPiGqjIlnN1CPH+3TnbWgT3PzT7obmQFQHFb0L61N71YShLuv3vvGoW/vmViCqi4o4KdZehQFVXTYeP5HoM2jWCCCqh4q2VloyObzaR5/dVq3cdmY9aQFEpqio55o6Jxe0TfKedyfo4tcpXo+AyAx7jYf9uJGvGzvvS6gWeLvPoV1AZI6KfgVZv205NoM3a1aMx+uRUjcgqo+Kjgg5y9ed6+I216/JU+8esZ+ByAIVjZsWM27nwQmes3cljXjw5FpPILJERV2evN4Z65HnNXforI5rjz1/AUQNUFHieIX38Bl1BDOHTti2KC7FB4isUNHvVV9eqhZrKtjT+ZthjezxhUDUEBWZjvZo1qlHpsvhHw/kTSXOS4CoESqamjc1e1my1GPx8ROWZx+chcg3xvQlabih+YYb7od/O/WL98ATDoAmqOiCm+9x6ce/vROajbeUBSQsByIuKno040XU1JfVeatOn89tlnjLhZRs2ZRDk2yZdnGlkW3cdI+tt74Nv/TL+D2F2dA02fIonYkyCzq4M/XkGX7atqJJ5xrG4Ldl1fhR4VKZiIJBQNfcuBV6h4rzibRriAgVSqXACKGdMMpIGSAaKMpXI59zooKyVsgAe8HvKfk0nYx9bficghTNGsmUMCqVL0Lt/7ddPPKHsK7XzBTuKO6BG31ZJFSy7OTCQtefU+hiehZgs/w4RSM2QBc/4DDJkbM7kRiW+pZFSBAKBXg/iRQ2bleNEy7woLhCuOUKpERRmPbiGH/LJ6cU6T1ZlVsNV+BDoKrPIYdAS0Rs72QhXAWMcB1O0Yt4NZmup2HrYVt0oolK1KUIESrA/mWcmAscEFUrN4ZuXAdN/QZ9u+18pPOAdt0e3+ETTsvRx1KclmMStrVX2xYd7M6UAWw7ZLCTIqYaAtcUI/Zgh9ZiIpDUPYsHNuZs67raO+l+rfs9m77klZ9GxAJYBYxggaGOrj+/c/7LPmAz+4DooWst+2DTCqbsg6AVFZF98OGv0VEfrl7zXnjtiuuh5nWfs7hYEi0QC9kH61YwkbXnr9BK9oHcqaZ74lNv/oLb1YIW+85prvPsg0mMqIBxo6eREu1lH/xcO2HR2H4mTlkmd/c/XLmghd5kH/gxqq6vblSn9eyDKwMaDjGMmOh2ONm+7dZz8+N1nH2AWBla+jiwMlrLPpi/3Mlg1ZDZjrncYdIuy1bjCyboJvtgEiM4QSu0mH3Qu/FE78Rre1zmGgyp9mZg1HA9yT7wY0QIzGnUbzvGofHbzqwUCn70qO8at6lxtZfNJ+O1boj0vfR3FpT94MAR33YW9YTBDjEI/Ar8rmj13qzA2KLjFfpeqOs2pUyOE/H8kvq9yV40JtFgG3hnM9oeiuQqOQANpG2ugP60davZnJOE7XJcf3rN0pwqvnUIQXZ4N0WQHblcmqdEtH8s9H4qhACFUw1Cbjs+58RmjWJnFghA2LiwFknkYPgCOfVi637ySN8XG3bxVnV6nnfWOe0Yflo6YzeTp2WJqDTA9v7eqn5oQC+fhYa7zhp3zStvzXsI2C5GwMCI0okTpVwz4N904tD9kFM6DRl0aYToksGq8p7e9hk+8IRrirvNosYxRR/rIsk4QBnkkstVeY7+1oPblM8BJqh23/efa9485bmk5vaNvTapxQUWVJvAqFqFjlRL5R8na9ZEsvQeyIpmj8YObWbpusbQb1Mzh5w8nfVA5tihNgn2QA4n7W/tkCmGLozHOTQLo+PV+ncndtvrsH3YSIvEgUfwpYFNYclNBTz6hGxcMYwPizXonGjvJAsFkCsLfyKPEZU8BtkcljRMFIFBUqYVkRi2K/2FSeqg/CsNDhUC0gDozx0pCoyPBoO/e1p5c/V4AjVQ4HEDLOULvQ1ZGNcaawII0FMm8cH/KW1aBDyNlkWKaTJw3D1u8NuFRvGWWUYpPnR6i2+zXBXpp0zRZhK9XpqN+Sv6yIXQ77OclvRpP6b19xUfWDiZ8IUwGzhSlL1OaYPAXN4j4ZZq6ledbgXKwiLEgROQ4QHb0FCfbgb17tGtielXn1VrVk4xys/Ft6IzKnkuefuLE1ZERhMC23Aq2AptEdhQk3CCziScM2n+oUNXmdes92897a5Mwx9zG/uJw6XCQDHXe4JUSmEL6BxmW+y+MHgfHLOSsIlCqUSkHOSREkUIVwa2KfKyWwJilJ7hPamao6uJNWmiupIu+JYO0M1eWd65bw4XNaSFqgK2/IRGEiJGnVJiZHH28cfKgoOfbwbNEk/siHefkQeR3Wfl5dKmM5GVwEbrVIhcPJXLgBRUXknrPpcROSsVcnLcUINDixK+ZXVd082Tq3guzzwY0Gdo5gg8VRsdINQhHbyU7VkM0cpmRGvDSq06WNiLGgZEh4vVcWiuxtmx8wQurVhqB/8mws7VbRR0coPFcgJLGP6U13CbIwskVCx4BNhURytVTall4sJUnklSTr2OtkNnQTGPilRoj8wCjQ7CLJStkKGvgKxV2NAXUULxNnfW0jCvN24H3j140bD25SaEwAT8VhSBCeRyRUCRzQgFGOLoQnWSQ7NQ6U3deqK1ZKcNWAWUrQ9ayVS2fqAK8nz9h5zAjWMH8s7vxqRNPljXY9Wafh/P1hKX99QIQt53NRPkdqsxyE/RQa4xK7MWBrkWWJkUJEqMlUlBosRYmRQkSoyVSUGixFiZFCRKFSuTTKLEWJkUJEqMlSn1PV1QvUYDp7UeYbMafBZ8JFHe4OCl3oQS6JcsUN5O0+m/mecJ27u7a7hsNhCNuf6iNl7/9ZSH/U5SWQR0F5EADtkpr0oz25q5SGDLnhDY40b5AGRLCfeZKA2hbOF9IuW01FckgUP1RxqkRw1MBZOskOrsGraUNU/V6OzaShltQ7JBZFA1AA/wCz0v6GtQ1eNrZC2csw+P6X4srHhoeWJtFXuMXQDjo6nosltMSrAH2+rOqZR+OB1WZipKhDpWlCgN+zgp71IlOS/nUVornwOHKrNIi5g+wPvT6U1RLltkc9wSHKOPsYCSOSNKn1eQDx+Y/DQbX2xeIZMNwQybcnCrh3HP6EMlwT9a98tNa82Pu9RlpZFni1o6jOfCFq7IIKIMyB0F2+C+qZq5sW1V0UMIUaBazQq4AuFsE3Wyprd9t29/7PHIbrV1TSXBxAV6ELWEILVlBMk8VbO4bktnifKbq46qSoYMElikN1AT6/UfN+SPxV5bOx5I/M63xTezM8SeS44iqiQVgU5lRnTeqGK6Zzg0C+Orgd4CA/svTkvXn3dZ6+M+lHwQT14JDWjAbYqP56qobpEyjcrGERMsyhobKGv3dGCYPkLYzlMdQHEAbKc1W+rKFqbNTRx25frNpy577QZEWCyxqYk/7ETisTTLOk5YmhUnmrjydt0GdroYguVLNcbSgWt+R7O1zgQBSwxmGj1U98fuG13NNN999clRj3b8lZ+Mt0R8cC81UGoiLbsEEKbTjDDtS9VssSs9hEaMNesshAYtDTJGYAiN1I083A6BBrVDZ+nskFPr8/Y9ZtwXpLusfafoYdmIeA4dKgznKs9pKM7L6Vzz1sr7sGgPkpci5IaJI+ElsVwSiC6QZTJLxOQuhjekOilXE5c1SgaGTexGgOtFKp88FqDusFEjQ2WChKGUh7vgdSi/5aRL9uYuhesd5o2vtCpn+87xeBcJeQDZRVJeLm3OEfPcyhvdAvDEQHhqUs25DLBlCdmoEZvEWPk+TIW++FN8hQWL1wpyAyeKXZol/IaP/invJ0f/0Oul4dPDa3zRj7RPXgf73DmXcuzVOxbwCWDEBwwfXTAMDBHixkQlEL05xB/NKoEbBwjlwWIFk9K+Ri/22Znt4rXQ77NxWspzPJW8qvJ+stLQ66yTa4FWbBi1YqFXWinOw7Si0fJVCzF44WIRanypS5KkRA/uGurhOGNd1cHGnTmH8YrxQu4nKwa9znqPaDvUnMBjRtJ+Ndaezxm5UbMNmZUKA2RjIZWUhseXT12NB/NMPBN+frJtbN+5KZ5V66R8AJlViwkqAhEHRkSabcTW9XMcmnV91yLPj8N69XSf9fGHwvD4LXzkCP3EspNheqt2GPgFnBsZIgkMAW4lzC0URkTAigYqVgy6/Jdt80HM06Z6X/KYVF7XhCe6AeWJktgvDmBXd3RDeSPgDVFXAy72EmWRGpjCpHwT6u3tky9V7N7UdM30532+s2ID/jS2Gp1joxJoefFHqKQQw/ZUHA1uWwRDjSxWb290RCnLcuIStSAfKEJ5PgBLAcL/l/iU3MneUygRJa7nOq0KCve1CGAWVIDBWkwAMHQyn6ebzHoTuCKOJpZ6XBPDHCxErqZuYIpchakwv0CHufcBl4tnOCecYoda9pK89MDTu02QfvLhUkkgkhZGNqR0SFt5AX8ALE8KcKeUG4p7SpnsJLEyBdNrkYtZ4eVlPbgBm2wTSNVMojq4gTGKok35xqrTSMxzwtaTGu7QluJ0CT+pGnLZXYSNgSGi0/Mr5VV3znlT38u4Xb0CTF6JRm7kg5gX0hgxVF6nf7DyfZDXhX/CtHFr5CKRA5sD2QkImQmvL0r9jOtaP7/K5aeC5AG3LZ/uT5uO008lHnl28EizoxJhdrSusfYtp8l4r9V3+wXmXSo+Xt4zEzA7akB1tqdiLwwG0r825auBVNrJUmN/caAMWGhNUApYb2Pa1ecv7wVLrqd3irjsjEfJkYySY6kozXln8+7aqkTPOFvbjGHbJpU3uxSiBIY1A0oXN+WjY1A1lhjZLsp6gdAxKgNARNY7fg1TPoq8hqHXK+LAGxkxn6kOmqxtEaRQe3rxX2ZPieV8tGRPu29isqc1/7OnmH4GuJwYO7Nxd5cDLhNrXxo1RM6CPSWWaWLBUnRmtBTcCrenPY1W2SbfmOKZGjIso9dqgzAW7CnxkIAFlGoyovR5YwXaU+IaqnN7iowYWntaU2VPL9HZU73ZExCnEztkti6VLN/Ncwp3zvrkELLr6jw/FrYEWRuZtgSbVGcqBXSQa0xmM8Eg1wKZjaIGHmbqKWrgYWQ2ihp4GJmNogYeRmajqIGHkdkoauBhZDaih0ZirEGrSDnEiNXzWGCsXWZNyUZaVPI/qyNJUVQRUzIx5k/SiQGdTohlC1nQyR90OknNfjBk9uPP7jnZ+3N2j3uIz/Or4isME0vJBVrpDJs1jxsO71CrMs0NkynEyuJCCnGUgqsszkr5tYl1FylepSzWzsg/UC6TSv3gigUvqjdkJVjC+DbLvB+2OO6dtGjeoiMP3j2js4SGAyLE8gDw+tjHtnSWTRgjhVwtWAkWFv4RSRTodwceBoxyFMVuIqgEK9VLOpRuBXY864AB7eHEiZ3tVMNLKA+WhAnEQbgF0Eh52Q/27FC/Xl15PUAWrn4Vb4WrerbiTzy/Lr8WAqKvHOYNKiTKt6qGvRXVhJILI93DRLDsFgZvperwIgy9qF1CfHUpWlZYuSGAnUAkQqkTrAWlthAp5GJhqOp3g0FyYbjqHnSoXqEbqnqzLBOrgLJ0VEcc/yysy4/XMa3LV9dh6/JVvcecWF5Vf49HFzES++NUxP5rdJhrvEwac7S3TFLUzcWWSYq6udgySVE3F1smKermYr7QMpcvDXrF8Jz2HeINWzx8H0/NF+rn6uBePDTRJedqUf3UNcHrSYsrtPqUA4lYjJeFxfU6nSb1tOUYseiw1lqOFWYwtRwLz6jolmP7WycfKYjxdlvsd1ohG5TE1YOWY1czmBq4HM3Qg75JZ86c0ULLsRd/OtWoteFPj5wz/VMOTOlorRctx7YxaidFH7SjlZZj35/sdbc/YeKyu1ZxP3FKDp7KqKuWY/GMygnXB+VwdNlybN25azF+a/p7rah8ZVnI3wkd9Krl2HBG5bnpRnn62XJs2ovEpKpD7vNn/BzyrPmqfI6OW451ZtQcV+eagzdVWMuxoyddW1hZVXLPSx+/songzx560XIM8SFoW44BQ4j6qTc4NH7qv6nlGLEtho5bjgVtYWo51nOLdlqOGdibP567+TgvznzLgfXbnuL5wGy0HCMWN2OhjdaYLUxttLy3VFTLsZe1BybWeiTz2HzLpGjhlj2zWW85RrQRLGDVkxGrVlv+p1qOFdKZsf+K8P+jIvzEbkJaK8JvnslUhP862XayUIQ/vK97u7OtL3lmHWgn25XnvofFbHOWbSQ8MKmbyVSz/CfZRlZEEf4jnxvm1uC19Mys1bXtioNZ+CKzuijC/3ILEyrXtWsNGfcOmiX+sFeEf8L9Sa9HSG0Eay7PGNah+SB84Q1dFuE/xqi6HbpRndaL8Hda+abeoBpzXBbnCYODEnpa6LgIP2JlaKuoAyujtSL8iZur3TKvVEuw5nryg+rZfcz0oAg/Ymxowbm+RYtF+KfLNjxcUrmRa+zBnRv61Y44pQflLCBCxxgRAnMa9dtucmj8Nj6vbbtffa7yMu413vLH6red8HUEkCS+cJkUrOhkn82QBucuJSESScn9aC0MgLhcNiE4hKtqGqtJLQdih0XatyVXPVATlpXbBxyh53B6FgF8M4huUgHAd0lmeROrTEteC1xFsaD86gXvgjoHe2T47D91pkXk6cv4RnX/qHcXwYUiGsZyulCw7O3jTLoudimw8VemRi5UTeX0FYmD5WJq/zKiQZeeVYPuO+Scu39w3KZq+KOUqs7IjRQZUsrrFVH29zDj98/I1LWzpBqZGjhK8JUlMpEkkKG2jeGxkZE2YZ+915te/vPs5BZ38WMVewB5rKokFaGMJYzKiNWNMojuD0eTiIWdZ5hMAZYvYSA8O7Vu3wdsWcHOItSG26FPYIhMLrLhduwTMV6uQH6h9lYrv8qpXXXiZredit9uyZ8cccKva/AD/BXRUor+lyWiilCWlFFZg/Vi5sBHaeStmpUcdIdNkI+JYJhBiUYZP7M/VPY80KW2zSrH483Ks1Uu79ahPWrIYapnAakuVAf+gDOZmnmpqCVn8LYu2L16Vjfb0ycpcGj4MdMm1XW77QUA7MIAKKQAAJoWjTxRbCmjLzJxIe9Qp6a3znhkz6j6rdmn3BWEpUy7yb4QgElMAGSOzMQczVucfxcfh9iYW2t8nKdbmfg4U7dWNB/nnsGFiw0W9HDZnPF2U/t9E4P0gI9TtJUpunlxqx6QCnbt2qUFPk6tv1rcfFurp9fmLwkugUFjn+oFHyeHUTub9EE7WuHjREx+a7/hxFqftE1dhvX+27CtXvBxFjEqZ6o+KIejSz5Ozu3V2aPt3jjMrmdUu/j5rji94uOMZVTeQN0oTz/5OH8a+HyLNarrPDPN/Pu5jdU/6piP48ioOTuda65C+TivPYaFnIw665FoerAo5WOfTnrBx0F8CFo+DjCEqJ96m/P/gI9zwc33uPTj394JzcZbygISluuYjzN2GxMfp+827fBxWq3I97eZNoq/7Hq7xyf2/JbFOh+HuDdngWMStI2JY+K3raL4OP2NWr0e8qanR65lQo8D1XkfWefjEG0EC1j1ZcSq7bb/KT7OHTozNj5P0k7inel0INdH+uzxsLf4SEn/CTB30lUuDA8hZ5hqEL5o4SyJCIfZY6poTrStMsuUK4Q184LhJ1COvEczXkRNfVmdt+r0+dxmibdcaN+PHMlRF5LGX3V/YMJ81FOxKEYlMe+pjKNS9TRi46TWfE5NWJjL3An+w4/KoWNb82fW2JBv7C+WAoWJRe7Arkdhj0PUqlTlXTpVapyTZq0a2xWfk5Z1xbrpj2tTXdbaLTv/6e3ScWo5aWv6nrCpn/yb4yFhs22PGnpaqOWkTZ0Yx+1Wtaf7HMeOO3IEAVK1nLSXz4wOtl3yzXXvK5HH5I+titVy0oavaVWba7nFc+6P34q8L/wpUctJc/15aoVkUrFPUmHdTC/TR2PV8vNvdlsmX/iymiBxqN+2NKcJqWrNZjIfzVnrvWsPb+egqPatInyOAJEhKuoTmjFj6vuXruti/jjZsrZBChBVR0VLJ6afDGhq4pgnT7P5PtxnExDVQEUu9TdvsU//5pIyK/HytntLfYDICBU1Ulh0fndDzku4+5vZPs+uMJG9JirqXv9KpXp/yAV76vUNN3uabApExqio/zyX4pHhJ/jZg5Z/3fyrfwIQmWDfq/EfK9zc73lvOVu5helL805AVAsVRd2z3sifWp+X/XDJt6cL958Aotqo6I+VU34ZH0hwSTAWBtQb0n4WENVBRbULe08WJ1f2ydsfNEFR88QjIKqLit6+fWryfIOh08IuxebvVjf5AUT1UJG3R0j6tK0R3muvhT5fcOXwRSAyRUUOrfg+Tzss5+0cMaKrQVDATSAyQ0Wv6jxZ0KnuAveMv694Xf2r/i8gMkdFdQumv0x68bvPokF34yWHPX8DovqoaMnmnicP9mgrWGu2vfJI40prgMgCFdnFJ60fc/yX29y32Y7df/yxEYgsUdGQfq87Kpp1clmadOfHvCNmUMsNUNEMP5OOdfeYumUOW259pYbiCxBZoSK3xfLTp5+ucZ312nD2nYZnzwBRQ1QU0KKWieyDB+/AjYOHzTkWEMNGqGi5SX7f7rM6u2Z/WnBIGtwgGIgaoyL39J5/Ls/t7LOwONdv4sgdC4GoCSoqqlprqmmIOy9VUXlY68Ohk4CIi4ou/DFqaf8qj7228g657l2+RURKtmzKoUm2bCG+/myr3QXv2BFHrgzJez2XhWTLe3Qmyizo4M7Uk2f4aduKJp1rGJOOP0zkR4VLZSIKBgFdY9JW6B0qzidSaj0iVCiVAiOEVrEvI2WAaKAoX418zokKyuiXxIK9YMx2ui6kvrAD7HbNmkCUMCqVL0L53VZFvxkprzTWYVno4phWky1qlydKVLFOLixSG7WdLqZnATbLou0asQG6+AGHSY6c3YnEsEyvLEKCUCjA+0mksOmyapxwgQfFFcItVyB1js/G8KPnBW8cV039Xdi897hb+BCo6nPIIdASEds7WQiXLyNcvbfrRbyaTNfTsG2oLTrRRCXqUoQIFWD/Mk7MBQ6Iqg0Tfaz0bNWbE8YL2rnvedXCvMEAey7htBx9LMVpOSZhW3u1bdHB7kwZwLZDBjspYqohcE0xYg92aC0mAkndevXBvvr1ph1wPjJ4+SaDrUPXlZ9GxAJYvoxggaGOrj/3OTTrz3/ZB/8o+4DooWst+6DZDqbsgyLN1soyZh9USph+PWbfWt6+VYKcQdYbd7O4WBItEAvZB413MJG1a+zQSvbB0eX1Wo54b86fMXBznwE/k6J0nn3w13YmVIp0syaWIVKiveyDgiz++Kshcz0P3/m+8tWCm7v0JvvgIqPqcvTVnWE5+2DzoKCPB6dH83dOfbI4YXkyoR+S1rMPECtDSx8HVub/2LsOuCaW5x8VFcWCYK+xowJi70oSOqEoiL1ECBANCSZgL1ge9t472EGf2BVQ9KlgV54VuyL2hoq9/Xcvd4G72zsSOZL8/T0/H9+TW+5y+c7szOzO7HcMdvqgE082ZP/kDuJJ2XujWtU/S86qG+f0AWZsGMHJ/NuApw8WlX/DDxaGeO6tUH7sRe+KZiZy+uACK0JJ2rjtPo8hbju9SiL+0aGK6+TNtUs+rz82hRyNYj3r/JzEum8cCMktI/FIGKwQg8GPIO4anbevIjC2uL7C2AsP3cbrdg6Bsn+Jfm96FE2M6LEMLH0Ib+1CC5UcgQTOJBdCb8nTT7vXsW5203FmkeKXGkmqtKMk2eHdiCQ7djm/SIlq/zjo21ICAhSOUkJ+M2feu2S9cmdVMYAIvbAJkqmA+oJxtLN1EHU9V/F9pMehhXVe+HbtMZc8LZ2Im+nTMncoP8B8x2RIJw9OFcaXq7GimvDdIg4Au5vMBhjQKKMEURqfAX+nFY/pD/1IpzmLLC0wWbJY1Ss+l2qn/2rgtEC1PvJTndpPrLDDOEAYzqPCVVJt6g4LagVCP5veTQoWAFNEKxhu2Wp431rO8z+tmx0x5JE3B6Ldzyra9UYSLSo+nq9fA7j8+5e+H3BqZPSobOftLZvOK+5r19Jo/Ut59rhNgv1Lw2nrW3tsiuGO8QGPwTEKr1S5M6LdHse/+w2sOivgMJkauCKk3IyAW5+wGlcK88NSPbqeNRcpwwDkGuJP7DFBuY/BFoe5zc6CgJLo5BGpabv8X5gmDuRv6bGpkL4TgP5UiGiCNhgo/96dBT2rJxDnAQVuN0AqXxhtKBV8G6KBF0BPc4gP/ktj09RwN1o5UspwAqfv14aLvlSLEywo+j2114Wbt8k2BuuFimgRh1/P18Zc++vRq637HLcdvF1mUu1R8RzsTJyDMJsJEW2/ljfBYC7olnDDPOLX7m4FKhVqaWAkph6whQRD17lG1/yKtmvvtTVNei/z3tA25KqC3OfSl7+kwcI40YTB1h8FW4YdBhtuEjKZTMLZcvXft2ir9Ip+98bT/vJEZ2rD4HC5JFDK946UyxG2gClgtiPuU8D7oM7KFCMkclmQRslHyiJC+UqwTFHpbgmoWXqW90Q1Ns4zrEeUPHgnU/ItBqDbusBzvzJ0alj7wwjYrg8aSYgYEoD2N1x7leq6UBBfwXKfd7na9cnhM/YgevisuZzfdKZWJXAQMvSHyE1FhQyQUNltJ2P4rCNyNbTIqUiqBlULnbeOfzvswRq+d3TRUUPtc3wnkku1cQVBp3TIo5w3JrfBNIkFLf5OgwZYxIua+48Ol+bFoX6emh17TxDSSuX28HfU9q5ug2CQGyJVUaqE4Z+CGu7KmIOEggWPAIvq0RpRI6VMdUwFmSQFlOtge3wWZAtQRYXNsVmg10ZYVU0bUxgrYL6KUP0gJBQXq5YrN/GWSrBwWoZTz1PFf1ISE/BbIRIT2OXCgKI1KxR8raN6yGNwVCbDW0+1lty08CkE2vrMBDba+ksJBORZJg85tTaOG8gldX951Rk20XWbW4mqNVo4XuUA8qTdbJDH7yYgf8QEud5VmeUJyA1QlYkooiSqMhFFlERVJqKIkqjKRBRRElWZiCJKoioTUURJVGUiiiiJqszMVXW+tdzd1Gtjv5CzM/d52dNK3qDyIrWPWn7JQcnbYyb51/M8YXdnV2mXLWZBQ649syTL31qz2S+SK9UwXMQSOPSgvATDbKvnIoMte0JhjxvNA7AlJVxn4mUIuqX3qSWn+b4iDRzUL+lxPOoSTC9loPauYTvIhTv02ruuocm2YadBlFA0AA/wA3Nd0NfTao/eW6u6bb7vMPaRR+qAguTaCncbOx3mR3fgbjebdsAeLKt30hP+bFhV0pZE5MUKiVJYstvzV9v/Fh20drVu3z2uLodlEZN6en84tXmUS5xyhtt04ehjHKC0kBWliB36NWm39SXmFTbZMMyIKQeXekTtGXOqxP/yiRVOb4e6LR8YHN375e2xRsznwvaLFxjzuUfBMjhJz3xuU232EEIUmIezAnogkm1CZy09/Zzu/lVKPKmJ07wLneJ+mkDWEoK0mRWkhTv0y+s2dJJpvrl2qypXZbDEIrOBetT9a9Nhj5p6JVi7/ft97doochaReC49i6gdKQx0JrCiM3QHERg94TE4xhcB3mKz5l9ESzacc4n1ce9L34ine0IzBnDrkvO52lK3kUq9aOOoByx0zQ3o2vkYGKZwGMKfQ21A8QBsTgmFkKZdeiI7IrrtFNe1K/tWE1++dpe82YnlYxncOmkwPytONXEF7ZgL7LQcguWL0rEYEJr3TtDL15XDwJKCmcYMVc/UFRUOre3tcjhiuxv/tA3ZyZVyBveigcozZOCQAMLkxAqTQ4J+zi7/FBo112y0FBq0NJiOwBQarZNwuD0GDW6HnjLZIVHjc807TLknjnGJfRvRoVot6j50mCScr9mnQeyXM4XmjTX3Edke7FyKhK+QjoSXpCpZIO4gdTJL1MNdLG+I2inPM6xrlgzy/CYCXC+gYvIogLoiUS9DVQ5LQ2k2d8HrIL9l7Trr+i+y++Qe7XdMeX3wrdXkEAl7AD1E0lzOb85Rz7kVNLsF4ImH8JRBzbmtYMmyNFGvapKymvdhI/qaXWxGwPpnEzz39HjewuXBmCLk7J/mfnr2D7+eHz7h3cb8u7b1AadZ1h6r9tV9EMYBPpNZ8QHqY4wKA3OscGOEBojOPOof/ZjAy/pLVCHSCDahdTw2qvGt4yW84i5Fqtb0nPiKLDTN/XSh4dc5L64FUunLKhUXk5JK9hFCKnq5r/KYwQuXBuHGFymYtjO3PXIutlB4wCJpy/2jQyVkwXhh99MFg1/nWjCO9rg5gduMtPVqVHNn3uxE/RZkNbQYYAsLuSw/PE4n3/u61Om5y+EvqcOtmvxsTq6qFWkeQK+qJQYKAxEFKyK+iYRff8Zj8Os7F3rm9OvU0T0650eE+fGb78ky1nyi7sUwnbUrDLID548MlQWGgrASni2UqNWQ0UBbFYO7f90WH9Rz2qj3peuk5ro+daKJeJ0orfrFEazqXh8saAa8Jh5qQGcv05DUwCNMmjdBfnHn2w9vDw166Tj/dfXrxaskklupl2QKbLQDBnb+WCkpxNABVaPBb4phqJfF6uyNa5SGlpN0UAvWA6k1+wOQChD+Ozem5I/1Ho9uoELx50ZlBYXrWgywqijAIBcTAAyfzM+ZJrPJJK6o2sRRj2tqmoODzNX2g2yZq9VazF8wYe59wOXCad4JUVTfap1kzz0qkFmjsH7y4XJZIHYsjG5ImZCu4QXiAeCeIsCdcn4Y6Sk62UkqMwXba9HJrMjjum7cgEV2Z1gyOxu1cQNzFJbJaWW1u5FE5ET4k9Lu0JaSZAk/qSR22T2I0IE+QafmFjlSyinpdRWvss2s04nxIgzjFj6YeaHpiLnmOvODNe+DvS78FbaFWy0XmQrYHFidgBUzkeWFlE/gV8eYGhXbecWKuz9M8905gySfIgL67BDQZkcRyuzoM7Voqx1zzT0PVIwMcB8w81VB90zA7GgPxemAql7oDUYbJKflASm/naXaftJAJbDQ+qB0aNHa3XXf/XKcP6XBuIuiGHIFYhEhHSVhvijVe/AyuWzpL6LDtfc/HvrE6R4HKFmyovQ9KQ3XQa0usVa7aPgCYWCkA0DUqneyD9M8iu7D8OuFseGNacxn1EaTjR2GFG5PX/4/s6dUOh8D2dPgJDZ72jHpP3uKy2fTiAYLWtnwxTPPdm6olL0cyoE9pdI0cWAphiSxWQrvpMK2p89WOsvmjp8uXthyyshqqfEzOLCn1E0CDlDqyIpSo8K0p1QfanR7imkMoz0FSOH29BWTPTWZNQF1OnFTzNamSLW3c0ThTvs/OIbuvDKnBwdLgqxEtiXBFe2eymsmyPUuZitHQG6AYjYEBx5h6hEceEQxG4IDjyhmQ3DgEcVsCA48opgNwYFHFLNRIzRaxRq0ikgVo7LncVCx9oYzIVsYUMi/xyOJIFUkhEzN+dNkYsYkEyptIQcyyWaSycqD9/tMy/rsnnRwX9KuYQ/I5/yK+0oUUjmdoJXJsNkI+OHwjjws03yFMkKqIReKkI6K4GvIWZFfm8q7iHgVXaydhV+gSimX94AeC17M25CVYgk9MxztzEtOFs7bPjrzmEN3ayZLaN5TLVX5g9cnPrahkzJyiBzWakEmWEj8EySLwL87iDBgliMzajNFJARVL21TuhEwkfuBAe0g4kVNE5X2kqhCZAqxNJjkAC00l3vAnh15r5fSXPdXhue9SqGA9WjkfPzS/rTyGIi+KnhuMEKmeauSxFuhJpRKMtJdEQRptwh4i5SCF2HqJc8lLFaX47TCmgUB7AQik8hFkAsqjyOKUEklYdqfzXqpJOHae3BVfcukqibjlqksoBxt1VH1nwO/bHWAzS8XPUD45XcmjzmVXtV0t0d/shb2v9YW9r9nwlxvN1mWZzg3ieDNJdwkgjeXcJMI3lzCTSJ4c4lYKNn+zM2zjXLcpv/VeIKIX35hnlho49I6zdVrhC6JgWV8zReEZtOcK7T66OUKhYyXA+eawyRJE205RiUdNljLsRKH2VqOrT1U2C3HPH4+s36QHiBYu2a2fV27dZEm0HKs6GG2Bi6vD5lA36Rjx44ZoOWY67Zqx5Z/thJuPxmf1nW4K6WZi5Fajt08xCadNFOQjkFajk0It9+5L+eay3aHcQmpPxODTKLl2G5W4aw1BeHwjNlyrNLcFSe//7PfJWXjoTOXW34fZFItx2ayCm+EcYRnmi3HOkxLvWb+0lUwL/26bY766lEjtxwbwio5b6NLDt5UaC3HxrTqPDM7o5f3xnnjntR5FFLSJFqOYTEEY8sxYAjxOPUDjyFO/f/UcozaFsPILccWH2ZrORZ62DAtx9q0/rJOeDzIe8m8Zds2vL5Ezmlz0XKMSm7GQRut+YfZ2miNO1xYLcdSKzcUN8iJdtkYVrT4P8W2byr4FKZgRbURHGAVyoqV/+H/qZZjH5nM2H8k/L9Fwk/tJmQwEn6nFDYSfrOUwiDh333s1Ohp/u0cJ513vT9xcuoSDk+bc2wj4YaJYwobZ7ltikFI+G/Z2vlPGuXumFhr6NqfM8eRmRWNQcJflRUVoDcms3bQ7+APdyT8tSIPr+3vusFrhmp5E8/Jl0eaDAl/9mE20d02rCMjRGdwEv5H5bPqTRrbVzj7WIk163f36GpkEn7MyjCyqAMrYzAS/p8v1f3H+X1xXZJpW+1Y+vUjJkDCX5UVHLMUA5LwF3Opu/zVQBef2IXdYiosUCSaAJ0FRAib04wIgTmNx22feAxxm7OgabNfXa4Itt6tHXdp7Rvy1q8FdogvXCkHHp0es5kz4NwmN0Uiy70f58IAiKuUkSGhfG3TWH24HKgdFhnfls56kGdQ19o+EAhVPgLwzQT4bqWGSekA32P0MEnPg1UVc18LXMWxQH71Gburni9//rUw+px5QpHnpV4XvHcXJYSiGsYChlCQ9tbqCFMXu+VAd3/qF0KV0UzfIGmISoqOL39uSS3iaSPw3NBRHbPqk8NZygkp7EbECSnN9cKg/X2ewvb9rxk9WNJqph6BEnxlmTJIFsjCbZPhxz+2Ka2I12GPaSdsDjbvT9ZV4gF0XdWOFIYwjrEKY4dxhEENf3j6ZCzsPRXKCOC+JIFw79TGoQtYsoKVRZgtv0WXwFClKsiW37KLergqAvsBHa1Kli0b9LZ9ae/lE30e1jmV4Uf2a/AD/CJGyxH9L3OHCkNYK1mFFW0SMwc+Sq9otVLuRrciUjVEzTKDDqROdyz+5qJrwsv1NY8/+FiuIEvlgi4dHHBDDo96ptN4oVo49/ykZ5SKW3KWaGuJtMqbMw6xwiOJh3y7t+9yy7jLXgDA3RQcgAwEANC06BWJEq6MmWRCfPVywqWxy733xRfPOvXoUoBRD/tCALayARA/O4UIND/z/n/V41AbcxusHqfiUbZ6nO1HCrseZ/HFa6lnrezc9zq4DvNxH1bHBOpxLI+yZTe/HzGBooKtW7caoB5n3TLLVX7de7glX13ttflBl+MmUY/z9AibdK6YgnQMUo/jM3Z0y4RRd9z39P808+i7TvtMoh7nKKtwtpuCcHjGrMe5eSyxzgpektuMtKOZkT5xASZVj7OcVXhTjSM806zHcfo471PK6gDHA0N6u6TdnrnEyPU44ayS6290yRVqPY7ftFeZsl4rHJc2rJ480LLvT5Oox8FiCMZ6HGAI8Tj1C+8PqMfJLFF+QsVQd8HKiKL9Gh8KG2PkepzlR9nqceRHDVOP06xfdkDHSQni1f2TrMdVKzqa83oc6tqcgxqTxUfZakyijhZWPc6M2PTbB28sEcy/tHHA4U8LjnFej0O1ERxgJWfFqvfR/6l6nK9MZmz4EVkzmXe86ECKj/xJVr835ExJ90h4dtJVJQkPpZ8w1SN90cBJpg6Hp8e02ZzRdppTpnwJ5MwLgZ+A1LzzlwYt6V48y2ubINl1z7K4IMb3o2dy8g7S9K+UHzBhPnmPYiG0knruSUet1D6N2jipsTOvPSTmqiyCfynnP4c2dvZqezCtrJ9UDgQmDXIHdn0U8ThMrBpRfmMSZau93sKOzfq4pSREec3MTrhOsfJAfCqlXENUrUfzv7bOo4B+BWpSoPh2JP4ovIclrIcaplDCbpbBfL16j2yw27kow36G4xy+f7TviXk32d4Y4ZdI43pQZkdVSOXxTggRNU1HoRUtn1oINU3+VzfXfrheLkqO/6kYwusRwmFNE8cdNPgAocEQIdhBg9aa1rIphlBBu8DVFZF1CF9Qe0P9soO5CXskijXHjf1cpfFr4d4XB+4+XVKJ3HS8BIOiENe5DiOjbHGg+CgnA+nJj1qm0ja89QSqei8p3P7BECLPOzRCP6tsPJzW4r77Aucj851LTM8gb9fhD6Nv1xEDhYER35INI6oyFf0NjLD8Fl7KAnDKV4smd1uSsPqWU9yK1xPKeG39Tp6L8GGItoKay4WBz/1ybPg4lkvFDf93JsPf5EeVqjv4xZz3CbO/SWuHkA2/BdZvkamelmkdUstLKlFHqjT1rJoEjMa6Q3Zb3Yx77Q1dzpwNC3XZu2HHjTW8NiLGt6J77jyD+pj1igDHY0IEua0lMOsx1jSzrmcNRikh7NkCAUB+31l1/Y9MX3TWe5P6sPt6dTMnamMENb0oSnM1P/tONXpc2HcI1XIBgpL1YBMMKkb7jixOoXaylCn4YiRGhydNifk2zsljRuLT3UsbhO62wspawHd3HgWWbtogGAufe9u1MGo6L70ZjhMsm6LhdN8Wwwmfmj/wqUSbmmYtcgTlTqa7bWjb9maRhPrHi4llQ4ix2Kdrag5qESBOKDFP9vNpafKqHE/9aYpOdJ+3fFepJlLTlL9oqFz0jsviinRvcErsJ4q+tHJQyc4Wp5nfjL4LmndUD410LAOQPoSavPehHCz0isn42pgsBA0Hmge93d0xx8faOW/al1PTJptnbbohmiMAjF8GD9HorMpNMcD02sur5kTRF22vM3TT1FLnN50S3xHEj3Hrf27xPyGUtLNhK6hibHE0LFETFfpQgAY+UX/yGHzo0qcf1tj1nC1OPOPzj+uvmHrkauxc80TfymPaXqmceyJFwZdqH1CabuqKC+yEzVroNDNLR69PK1P2jcfm7vaWvT3q1WB6TXrReO6YHvvWUVVTNb0ZkTyd/CqpBebpXP4jKil2QW/3/VvivB0fNbtF5emkjhuCp9M6FyswIVQyyRA5ehpceTLZ+/sYZ6+5C+wvNij5ajtZGgH4rfzfoumkukoO+iIOhtJEElDaAINytEqqHjSdOmPEa15ixYAPbh7RU+L/VXQXtmfA6LdIOqlmiAOMgE6zYBRVOVUfks6KuSSduQYAidKWByuqjb/R3jvx4oRQr2bpfxmVoHOwHa4rSILO3vYYSrhB/cVkUCtnznGy6nhRFNvm4ZGEUyOdEN4UvaVYQZNvQMDJK60ZItH+4OkJGh0QurJf84FwyzFQKYf7bFB/gXhCpAqsCwPm8tCF1ZmtzKxL3Un2mrtu8VAbH7e2Bii102bqqAks4OF3Fk+F2zPQ4+GigOjpL4oiQoOL4Xcofs/YHq98tthcryMzPtR9YW616jcofguK+mCAuuMqKupF/mTUp7VJ509PzBQt9Lom9RdsemoE1KGuf86mol70T0b9WfbTpJymaxwX942rbv7jRF8joX6/XhoF9WJ/Muoveqo2bwy2E+5I9ww6v/hSuJFQ7+xFRd3sT0b9Y7lO9UWfrzmt+L72YsnxNUYZCXX+aCrqxf9k1D+X3XknW+rrsuHkjNSwLdnDjIR6zAIq6iX+ZNRnvLV9e3XNLM/JdnZb+20f42wk1OdvpqJe8k9Gncq7biTUDyZRUTf/LdQ1VScGR94qd48f7w6NXiV9q9Zm48CWvR0Px356KD5tq0S8O2KVhF0uFLvelho5lmJC/edfuzda25sJ9/evunJzuBeKvZiMeunCR11n6uVPn7O2nK+Z7RbdVfHv/HqXUBzQv0O9XNqr7cd/19RzS/DI6DawwZXzOm6wsEnEN4wqkdJ/pESi9tneO1X/rHN82rILnezrVeRIIsGV/L4UiR7nMq3IAZWirud0DiQSdZUqEYs/UiIvylRYOaTrWre51SS96wQMv8KRRGb3rjgzZUVJwYFdFx6ndQ9+xIFE+JWovqLMHymRjJgVXXKm7RHumG1tFiYp2Z4jifzbbEYdVfVjoqTM52Lvs6fmcyCR3l2oEin7R0rEfOGR5yuX7BHOfPvhQqusG9U5ksiHZRu6f373wWftdje7Hv1qPuVAIqFDqRIp90dKpHLUsJZtutu47V+5vmaV2tVLcCSRFxf93YYU6y5MWtf4p+M55QEOJNJ2JlUi5f9IiSx1+VK90ziBaG+yoN+i/nsFHElk2MRxwxISIz2n7Zw94P6jqx05kEjOWqpELP9IiVCbUHAkkd8s/2aTSN89VIlUYJJI94f3fErKL7iuS0wpOnF/XTLlY2m/UFlwBB/Wj5HFAs/aMZVy1/AJDobl9xK5PLdQCy/pQ+K6vJbC4e6UULdpVbfbFcm6cpfpFRDg6noUq5kz79RFvP6RVo4dbgtGLxS0bq8sVk4YoYTHBYPRCmR9ZXL37TPCvPZe/Me8a3J1cuEZunZPB/0ZeceG98OjmXDtYT/3/lHLOhcwPQ2PrRyEWB11RKSno8Bo6MVUvZiSNBJUYlqBxGV7ZLmFHYcHijZXTrBo/nLsNdoxymDdgClgQhp+86qs3xxoiQkcocQ0UI9z5RawtxZbu7Wmnzp92mLZ1W395IMdGje/QM5JYJ25DAX/qAts8NsYB34aK1JBjyVoZgRk+GOq8h37vZF3i9vjvA71KnLIN77K09+0FAU9wWqXxxTQzmjA+g0wIXAHY2XCDmagW73nlZIfO24OEkt6VZw7rXAcTAOrNBYHs7FCQcn5dHAwxdcsta7+y0M0r83lv0f9W70uNw6mWHzYqB4Dj7smXBX1XCA5H8iBg6kJsWKc5zkV9KPiy9fBzOgX4jEsQOWRULzn4pQnCw8a0cGcq8D2zYGW/IkOxvXVjeKr71bxmj1IpDyxqGRT4zmYcazw+xsHfiM4mKrJdo2v/Ar2XJcxo2LLL+eyjOdgtKYA6WDAhMAdjLUJO5hpxaa5SuKvOqXsSK9QKevCgMJxMLM7sjmYMh0N4GD2NapVNnNfG8c5LUc7FNsQdp0bBxPffXGFow/Lu84wi5nb8xkvkQMHM7Uj2zzv35FjB/P6V7dO0/p+E+zyuHDyU2LwayM6mNas3xxoyZ/oYEpLom0fuEz3TnRQDCnfKs6IDiarAxv8hzr8rziYBucmflFY/RRNujcp5kHmuDrGczBaU4B0MGBC4A6mIpODiVkwJ/Klx2fXpcMrq1fOtCVb9xIusE1ChO4HdtppbuCrlWFSfhDQAH6kGpIbhcslgdJQpTwIqAdGdhCM/R5GfBQhCVHrdHDnV6fGt95erSLYZvUkumjW+YolxMrAYdIg7U2oV6cX/Guu63ouqqkzz8ELLBJ3IqkOAMQOnogDPBAi6IMRB3jgX+oBHu+/7nb1O/nCcerZvVHmb32uUA/wTOkVO/FmeH+35UdjVjxePrsrMV6Uhz6no/MBH+oHIw74MFot2CceFyM6VXywbJi4eRenlI9LGrxqtm54QaTF+dQ5CuRq6YWfd6MZM3hcMlxs0O0Y4kUtFJFy+SA1+A6KEO2XLZH7M+Zyxzp07DEecdCISVZWLrmzLTBSHhGpQp8zOuSzK/vCnrmu0VEzLy/xuRLLKrKSIs2T6EQIxEBhCC3dk01oYDIawwOZiUUagwpvmaid95hsiDnK5GzqwbeEcalMoZaqsP4q4CNIBhMpq3G9/V7wzqU4L/l7kOeV8lVbUmVV0isyAp4K04JPOV8KP9WB7qUc8j0wVvz1jEhBn5lu07sL+p1XujkWMJ6FQp3vwSbUbHfagTG2U3XlcGUH/jsCmCgkeIJdoY1KV60pnjIobHPvq0HrWBXdDFo6Ou8AdpVzLgt73C4dFSBcumNzTMVxl17pD3Dpm/5qZ7u23w3h7toRlmdqX5luIJfOn8Dm0vnj/nPp6BOW1TeNWXBgslN0naOuqV33dzU5l86bwGZIBo//33PpUYKsJVPG8MXrTxadf2zTHbEJuvSj49iEBibj/4pLL/Eyoo5je1vRJLsxM5fvX3fFYC5d7D+1/7bVZi4rhnzcXCV5TDcOXHrUWDah3h/DuUs/0en2gGWSzcKd4cPu93x90c6kXDpmlxhdOlBx3KVX/gNc+p444cwE77viHaGfmqza3HqWgVy6eQabSze//p9LR/fk+PrLWdRH6rNJcjnl1NK9C0zOpX++zmZItl7/33Pp/Udtnlih5niXbZeKH53TX1zBBF16b1ahmRtWaMZ06WNn9F2blNrCc/oLnxdNeRb9DebSf/OMC5tQD15jE2roNc5d+vq6YdFBN2cKljhmRbWPHb3DpFw6ZpcYXTpQcdylV/kDXLp46eLl9fzruW341K+naJlNBwO5dMfKaSwu/WiltP9cOkpa0eqyDzOmWHtv6PZk/uXwQd1MzqW3h3JlNCSWlQ2aRTQJl36zZezQC9aTheu/mE3zcr7R0ARd+tNKbEIDk/F/xaUHjvygsC1RVDx1SUazjLD5Vw3m0n/zkCSbUJezCjW8UhrXLn3/rcnXJH2GCo+cSe3Q83vRrybl0jG7xOjSgYrjLr3qH+DSW2erKlhYxDklZycMO1jjelEDufTvXdlc+riu/7l0pLSytx4+PPT+Sc/lPTzHpY5va2VyLj2nK5shOdf1f8+lX5utdnI+WsJlwVkP1Yq7Zz+YoEvfyCq0cYYVmjFdepWGxxMSDt5wi5YM6fVRvvqGwVz6b56yZxOqP6tQbbty7tJtr9aOsrnd3nX69DdTPHutq2ZSLh2zS4wuHag47tKr/QEuvenQWfv/SXvtcTCrR3dF+psGBnLpZeRsLn32sP9cOlJa5Rsqd47Obiye1+JgpeDKl1aZnEs3k7MZktvD/vdcuuWklp3N9zcUTpPeHV62m299E3Tpe4exCW22YYVmTJfe7uiSSXWfKX123ZV93vVXv+oGc+m/SdPCJtQgVqF2Hsa5S3992vpcg/ueTosXXPrucMb2uUm5dMwuMbp0oOK4S6/+B7j0MV+ex2dumCJOvt/639Nb3OMM5NJfz2Rz6Ttm/ufS0QHYisG3vy7YJFxkXdmp2EkVu38whkt/PpPNkFyb+b/n0u0zfOv9/DrVbWM/24HfnJ53N0GXfoxVaDsMKzRjuvTht+Mm/ORlekW3U2w5uKRrPYO59N/k+WIT6kpWoUbP5Nylezev9G+1PYGOOxesF3YYu3ePSbl0zC4xunSg4rhLr/EHuPRuro7u2X1nuSRdyayycl3IBgO59Lvr2Fz62nX/uXSktA4kn3iX1bGt419Dbfp3Gn3rkMm59Jvr2AxJ2rr/PZcuaXHh+WSJk3DWuHELBMcasZ8SNY5L380qtLWGFZoxXfqqlmPubHy3zTvJQ1D7SmDSDIO59N8kimQT6kxWoY5Yx7lLn9pkqfeDBse9Zy+cs/Dw/bdPTMqlY3aJ0aUDFcddes0/wKVvXFqnuXqN0CUxsIyv+YLQbAO59KZ72Vz68z3/uXSktKTy2v5b0ve7pbj+0+JNrcQ5JufSG+1lMyRWe//3XHqEvHsbm17/OO2ZaV/ih13/fibo0n/uYRMamIz/Ky7935QX1oefxLjPOnz99ZneD8sazKX/JtMwm1CvsQr12B7OXbpnhqOdecnJwnnbR2cec+hubVIuHbNLjC4dqDju0msxufQWG3uk9kuIc9m6sfzZYxM+LCXzSLmqlJHhZI9uo50OSlUQmWCphEgpB98IXmoAfoT/RzY7EvBD4HNhzx1XlUStDlWGh8MWPNibqou6OxHq0zhx4o5hqX2cpiyobJbc5PZAMES4ud2tJkQtvZQs3t9a7l4j7acbGCJmzx5Fxyzxo4ai9YtKT1wa+7UZGCqGDz09/eW9+fsQt6nJ6bZtz+fIwZAZPrS+wYBOztFvnWJfvh829tvJOmCoOD70eKzP9OSWTTzmd3xovbFj3RgwVAIfWlBtcqe4fcU8d6k9Svp3O34EDJXEh/r/U6PFzXt2HjEbUio/kg1oDobM8aHjQ28O37vvm/DwZ8sn5xyH/QuGSuFDk6p3vtT52FfRrmZFFQ9inPuDodL4UOKl5ovHp/Z1mXZfGVVz3QyIhgU+dLDS8wVPJAcc51uVPzev4Q1zMFQGH+qYrtotOKQSLQv4bJE45PRpMFQWH7o39MS7226jHDcWX3z3r3UNx4ChcviQ6OQd22J/W3hviN0yq/1xqypgqDw+tGXuti+Pq333iT298KIkZsUBMGSJD7msLJrW6JC7V+L33Zv+jh0Jv3IFfOjU1tlv1shPOe6Vtznffm3Pl2DICh86+4/30mfDrvhM69dwyyNR855gyBofcp9To1qSSz/XxTlt7t39+PgSGKqID513npZwvWhj8cy38uTajY80BkOV8KEXFR7Na2U1z33rp8teVz5W+QWGKuNDrn8d3jPpqatgcevidfbc/QxFWQUfWlhTdv9TjzHOs/oGHJQ39L0IhqriQ+vmPRqRVGOv465p1X+WirfwA0PV8KE6l26NiCrj6T2nf5c7o/tfnAyGquNDSzo9HtKx8kfx7gGzOsVXu3IGDNXAhy49XOc48Ei8x9wQ0evTWTvgA2viQ6/iY6r/GFXcKWnekQ4VHE5PAUO18KHND7qP3Pu3t3D/leKT+U5doPbWxofGnx0sXXWvt3CKsEnl5bJt78BQHXzo/eNfm6t1jhNsLdPx3MtlqbFgiI8PPTu7tPvlfc6CJVfik/ukBJibuzsNIlmjuuAv0ijWbHlhj7SNm+fspRXFIQnJ5RFmg2YFqXaNR9g1jYmqzWSiKgUnJqxMPe28envmmLM1x8WQIwvnUeFyZRCl5zKcuUxci43wO/gSTVdk4EwhA2GYRC4HRohoAmav0yqDaqCQr0YPevABXe28jTPP4Riw85+FiIb1vrbOPLNjNCZGNq9niXVvhnGEVPMiyO92xHpJQOXBXb2Weh7+llrleoH6QlPCggOp0x2Lv7nomvByfc3jDz6WK2BYEAMAsoUAdUaFBVVB0FD1mF70i216SIFqqGUApCBpoDIsXKmWwXE+eD+ZHGPpJPSEL1EBTYpQhskCkSgOS1/3TN73iPf2xncvOg4aTCYCLqX9HBqSeYa4jhsgXGascGX/YxKkgUUKShpoh0+0oFxxRYSCoDlMMkzKBwFIRKiUP0SilmoMAVJ+iZtyzKtH33RevansgtvCfzqR5Gfuhz+WJr7cEa6lZ2mHK7sTSnrL7TFlJwFXRH/g6gaA5YUM/CaM0SBKUiqQSLDer3uZs6nPDtHs9kuiJ0r/aUAGi3gmHSztSGGAZcYKFlB13P/UYfI/AXWKDlu8y1KYGCt/02m8uRvpW5V3hiShkggpXyxVhESE0v1QSQaME4tobyU8EVBN8E8ABngAP1gSGKFUAWOjBCtxGVBdOfYB9vgH4eNqfqBEwR8i5asjw8PlMiChIUowCO7XPDJSAW+Fu2gKuNSRy8aAX8Eu2vNFoRJFiBSTbz/vAfxwYmcKeoYIZUiIHMwOacRIqVSB/U7ESCU/DCiBjr6RGqGzwkbTCeov6CjwcGDbrkGBm4kQe3A7ga9cqp+vrJDrK/EXQvdOOpG2OqzmFJfD62PXFmleLJZDZ0m1QAV0lvMBQpcgQr1RU8IRWP8U/ZxlPZI+Yt1rNaqHAyZj6F8r3FxU6LQuXhD1+XDLpCKL+eQ9Bwa1IK5zbSggKvGsqAC9MTKPcQke8ed+N324jFu7B/P9VZFSW2wWk6UlU+e1CzYO9g78CfwW9g5NkCJLC61+Z8OFUPfV2+YNnzCwfiMy67i39kE0seUdKwzRTWYVncI4oss/nCnBYnhq+SrBwgS6BCg1dbg0UBYMzbvGCyDFM6rR6uBbLVa6Hv67uNW68cdKk40Q9jy6EdJc5loo4Xa4lXFDCYXXHLMytCiFDY9G/tBZAURGSDV+UQ9gTkwp8frY4ls+ia1G/lg24+Zq8jINfzB9mUYMFAY48azgLKWAUzQfcBprvFSuB9cHnQZWpXN2y065RbX84n2r86+55CWKNl9FX6LkDhUGQpNZEQJzGo/b+Exx2+lVEvGPDlVcJ2+uXfJ5/bEp5GhUDGI0vp+TWPeNA6FIJdVEa3J4Lx4JgxViMPgRxF2j+QBbVQQ/HM4oYGxxfYWxFx66jdeNrIuyf4l+b3oUTYzosQxMSQcY30alKx2BBCak67etgL1AHgyQ325e63/nZCT0d4vy77Ns3slb5NZIxf3g3XQjpbmcX6REtX8FzTYAgJLS8b6GNCXkN3PmbU6nRUpsqbWqGECEXtgEyVRAfcE42tmG7lMtex422XvL7LZNN4VcDSZPSyfiZvq0zB3Kt89S1YNXdh97L1yTU61YQMv1BWYvAIAtZAUMaJRRgiiNz4C/04rH9CebFlSZs8jSApMli1W9UmaPxY9kO/eknm/GXfzL/6qVuwJYSiAM51HhKrAEz/OsEgKhn03vJgULgCmi3ZI6bvSiVW+F+5Ks/EfVbP6YA9EOZRVtgJFEi4qP53fTK9QqI85jz5HCfDUze+L8FDevqKMbXC9IbqRTe0so6Ks7zVWuHSPPHrdJO1E5v5322BTDHWNdJscovFLlzoh2exz/7jew6qyAw2LSt6kI28pGwK1PJ1lwsFQlBVCo6U6yGAOWzUXKMAC5prkt9pig3Mdgi0NNWyO4sQRrfnTyiNS0Xf4vTBMH8rf02FSYmgpAfwqU/z5V+QdDorXUgrZCEojzgAK3G5ThUhWMNpQKvo1Gx9V8gB7mWLF/aWyaGu5GK0dKg9BOZMeSAVUCzbO9DwXXio2buKE+2cYEYP1t6DYGv56fjWn64k2x8od+uE11aTD49T+zr3KwMxEFYTYTwpw2dbOuCQZzQbeEG+YRv3Z3K1CpUEsDIzH1wNpvIbFcFLktweGYj8uiE8NrHHziepuEpUXuc+nLX9Ig1yaBb4vD1h8FW4YdBhtuEuoxmYSz5eq/b9FW6RX97o2n/eWJzqTvVraHFCsx4XtHyuUIW8AUMNsR98E6JUxnZYoRErksSKPkI2URoXwlWKaodLcE1Cw9y3vSpEAe1iNKrpjKlHyLAeg+PVHQuV/ZHWv5BnddpWqsTg5DDAnArj3ff4zZtNcjKsznnv9rBbn6pDj2IHr4rLmc33SmViVwEDJYQuSmokKGdEg8dIIxfNYRuRpa5FQkVYOqhYTP7LzZ3l4Zj5yTaxQtnqjcdJQEXxlcQdApHfIo5/VqNpgmsaB15YRRigzN/UeHS/PiUD9PzY69JwhppXJ7+Dtqe1e3QTDIDZGqKN3X4J+CGu7KmIOEggWPAIvq0RpRow99UhxTQSZJAeU62B6fBdkChFx9m2OzQK+NsKreGLYwVtC0isRVPwjdHqJ8v6XHV+1x31p/wpY69g2GUBIT8FshEhPY5cKAAlNxRiiAiuOOqj6To+KH1N8/fc4M4aLj28UrviSOJX8fGOSNJjsoBlvMtK6zFgAdU2nC19F4SRoSWKq1RLwIvQImXxu8ZERMqn/dcsIjqtW23/v7bC6gDYZ2Y+kJooknFXJLEDlEayFvYPKQU2vjuIHc3WzTz67jYwTrjwV8WFZyyT0OIFecZIN84EkC8oacVWWWJyA3QFUmooiSqMpEFFESVZmIIkqiKhNRRElUZSKKKImqTEQRJVGViSiiJKoyb5SsaZ+0U+I05UaXhzuKH2xGK3mDyouuBKGUX3JQ8taISf71PE/Y3dlV2mWLWdCQa88syfK31mz2i+RKNQwXsQQOPSgvwTDb6rnIFEFYciAQfwC2pITrTLwMQbf0PrXkNN9XpIGD+iUdJ9lOEC1FHweTLAO1dx0OVuQux/Xau66hybaBQDJcpcSyCkpYFchcF9Rue91+oY9KClIavH5QXRK9syC5tsLdxk6H+dHjuNvNphqko2BZHXQcGYczYVVJWxKRFyskSllvSxdt9cTHZ82MG+6BJ8/FcVgWMamn94dTm0e5xClnuE0Xjj7GAUourCjZHKdvPrDFaba+xLzCJhuGGTHl4FKPqD1jTpV0e9PS5kOxl45L0reNv2h53MaI+VwHW1yJkAk5eLZNcVy/MLapNnsIIdLAE6QMg5VPwAORbBM6GHh94N/r5Yd7rDtzssKmd+O+m0DWEoLUlxUkl+P65XUbOsk031y7VZWrMlhikdlACU613DH48w7X3ceX7nYRfCNnF8yJ59KziNqRwkCnJSs6tY8TgVFjJsf4IsBbbNb8i2jJhnMusT7ufekb8XRPaMYAbl1yPldb6jZSie+y6uYIqQcsdM0N6AjbfWCYGsAQ/hxqA4oHYPusn6vTLU37anm09enLPd2X9Bl4y3f5uZnkzU4sH8vg1kmD+VlxqokroBXnATvNh2D5onQMY8ZE7zkxgVUOA0sKZhozVBdjvnvPOfjKbeP4ZSP79YskrwRLOYN70UDlGTJwSABh+nycDaYsPZ1d/ik0aq7ZaCk0rJvoCTyFxqfFjvYYNLgdsmGyQ6LG55p3mHJPHOMS+zaiQ7Va1H3oMEk4X7NPg9gvZwrNG2vuI7I92LkUCV8hHQkvSVWyQNxB6mSWqIe7WN4QtVOeZ1jXLBlQmyEXAK4XUDF5FEC93gW9DFU5LA2l2dwFr4P8lmV3q38skXT33hvfu5bHt3AzcoiEPYAeImku55tBp5xzK2h2C8AzEMJTBjXntoIli8cFvapJymreB9cJJDp/WTQYMC2loU+i5N2dqSPnbyVn/zT307N/+PX88LlWqX7rvUddfVKqHmh16X5wQW0SxKctKz5AfYxRYWCOFW6M0ADRmUf9Qy8bYavFLesvUYVII9iEZqVIOFByxSCv+Z1Lt7r0PpZ87qqE5n660PDrnBfXAqmUY5XK1/OmJJXsI4RU9HJf5TGDFy4Nwo0vUjCDTze+O6peNa+9M9+f7XuwXyJZMF7Y/XTB4Ne5FoyjPW5O4DYjbb0a1dyZ53hBvwVZDS0G2MJCLssPj9iT81e07m0t3rS14s8+nVbWoDA+aB6AYHzABwoDkXqsiJhdIPx6Eya/vnOhZ06/Th3do3N+RJgfv/meLGPNJ+peDNNZu8IgO3D+yFBZYCgIK+HZQokarHTzVMXg7l+3xQf1nDbqfek6qbmuT53oebxOlFb94ghWdevPFzQDXhMPNTTcFoHyyCB4LJeveRPkF/800nZCY/czjlOnX7y3/ea7NLLyMQU22gEDO3+slBRi6ICq0eA3xTDUy2J19sY1ykmjUXkPasF6ILVmfyBUFhIK/50bU/LHeo9HN0eh+HMKBwj2MXRVwq9zXudmhwNWFQWYgz0GGD6Zm5p84oqqTbokrorw898CpaQ5OMhcDT7Plrny1WLejAlz7wMuF07zToii+lbrJHvuUYH0Vct5RcojZOFyWSB2LIxuSJmQruEF4gHgniLAnXJ+GOkpOtlJKjMF22vRREEZ13XjBiyysy8COGejNm5gjuLERQQdGOFPEHRg8JOodGBUOi8qHdhv031Rb0TQfTHZplouMhWwObA6AStmIssLKZ/Vjf4+9fPEWPedHRKbbW5vNZgknyIC+uwQ5Ms9tD744JElb6oIk27WShra8bxrQfdMwOx4CcXpgKpe6A1GMy6mIXi2mECq7ScNVAILrQ9K1yq3KhfYYrJwcfjz8JEVB5LJBIoI6SgJ80Vp/KCUtou6DPZe1ds+xir0+C8OUDrBitLOizSGJtZqlx5SNQAGBkY6AESteif7MM2j6D4Mv14YG96YxnxGbTTZ2GFI4fbU9v+ZPaXS+RjInlZntaevL/xnT3H5PD0k3huw+oDLtMEdJBkP68zlwJ5SaZo4sBSVWS1F0UK3p62qFy3bYFU/1xVb4pYd+nyxNAf2lLpJwAFKry+woXTzQiHaU6oPNbo9rcxqT19rF/h2Jr8moE4nborZ2hSp9naOKNxp/wfH0J1X5vTgYEmw/ALbkmC6FnJ7zorZyhGQG6CYDcGBR5h6BAceUcyG4MAjitkQHHhEMRuCA48oZkNw4BHFbNQIjVaxBq0iUsWo7HkcVKw150zIFgYU8u/xSCJIFQkhU3P+NJmYMcmESlvIgUwcmGSy8uD9PtOyPrsnHdyXtGvYA/I5v+K+EoVUTpZJKRbDZiPgh8M7cIIXdYQyjK9QRkg15EKQPZU/Ajs2hvzaVN5FxKvoYu0s/AJVSrm8B/RY8GLukc/sbhRLGPfB6Vjc0u1uS+MDv8d3vZrFZAnNe6qlKsjPSnxsQydl5BA5rNUC74MR/wTJIvDvDiIMmOXIjNpMEUlxBgPq28iZF3UWGNAOIl7UNFFpL4kqRKYQS4NJDtBCc7mHLCSUdL2U5rq/MjzvVbIVPtm9kXPcxLNp5TEQfVXw3GCETPNWJYm3Qk0olWSkuyII0m4R8BYpBS/C1EueS1isDgtktJfK+EFWCYlcBLmg8jiiCJVUEqb92ayXShKuvQdX1RYm75apLKAcbdVR9Z8Dv5x2ls0v7z9L+OWWJo85lV7VdLdHd7MW9q/XFva34sxNluUZzk0ieHMJN4ngzSXcJII3l3CTCN5cIhZavujW9OgzfOFfe/5tH+5SpHyeWOjHxIAPk6xtXbZaTrPIGhx2meZcodVHKhKVjJcD59qaSZKl/JaN2Bw51Cnh1WdpO37cOzK9HZ748wL/UQFTqTsrYHUiZajg+4RLFa5ifhj+DN0SglTSYdbXorPuUX5Bj5PbSf/irHvptK0ZsDLr8S8tRchWJlFLo9oE+ySkEIiENJ2hEgVwcsgvPrfLkSZF+40QLul37cnyVtOHkxOCTpon0BOCxADXi1V4QmE/hCQKVTixE2b8/jVK4UTxQACt1mgkJSX90ofsj08WDOSXipRLVFieUQ7DF3TlROO2bTyHDXZb02vpgJ4Hn5K3Ecz98IcgSFSJkcKQzlxW6YwxBekAa/RLn+qiOs5hMjVGWxxIEhNhQpDCqTh9ZW95x6aeSbvcX+yf/tKJLBzNExGbuLkjhSGcYFbh9DAF4UD55BUO4ZmYhNNOEAY/EpMJeB01uFWqCBytIV3swleGS4ZDjsYW2E+5v4GeUe1sv26LK39dkNjm0Zw9s67vIp9j98/zfPo5dtJoYQivK6vwmhpHeDoQaZrlI8EuuRJUh8oUoxUgCAbiA+JSKBVQdOBfcuVIbBD+6ACHwiSjNBeQcnx+oaYq3LuY8MCpgLOrpv17ncKGFooqi8YvF4bkKrNKrqjRJQdvghkVvUplrDT70bChEashHB8osNn9bL37hmeng1alxO8lG0LGmCl3hPMNb3s8hoArjlO0sKo5ZgjxOLUNU5xazWys37HkHJ8j5gmPGrUda0vO1Ik0Gzm+KukImXQkvXcbU2VbYwFkHVLn2QzCCGRDpMowaYRqND9c80B1eXdNNZe7oodUga9fmINXalsMtnelZxXJ4+UCwH/ClaoIF5k8QvPBqHCfcTY0cea5XQLYL0dlG+eDkLbmJcaqN+Rq2JXABjs4ib2jThF9/NJnlyz3t3afH1HJJnmYVQ5ZLYmn0tVSO5LfOplKblbQdTJAzgki54iyI77NnHkOl/QqdK/knyeE4StHSFUqGUPPiquuVVc18X4gjMuafO7TDIebBZ/C1HIJio3gAKuarFiZXzKozSX2MUviSy74SzDYuRNz55e5FI/4iItCB+Gv4phvo3pVc2JhQPwq/H+ZvGEP+Q7tcrstkxn7j4T/t0j4qd2EDEbC//kSGwn/Qbrt5ICE/23lrBVHfgx1/Nu9/N6xzyeSj7sU7LQ5xzYSbpjkXGLjLL9Pt5GFQcJv0/XdObtYG6+Vz6vUL5IlcTQ6Cf85VlQOGtYasq4d9Dv4wx0J/9Foqw4lV3VzPXRy7qwmJTeQMxTGJOHfyCq6+cYRncFJ+OtKru46Pyfdef7Dc7NG2l+bZ2QSfszKMLKoAytjMBL+k2/dr4lelvSZMX+qebtnOatMgIT/HCs4By8ZkIRfPLb/38rhZsKDJS3KiRK2kPlkjEfCv5EVITCn8bitHVPc5ixo2uxXlyuCrXdrx11a+6YVmUcAO8QXrpQDj06P2cwZcG6TmyKR5d6Pc2EAxFXKyJBQEMOppdhWjT5cDtQOi4xvS2c9yDOoa20fCITOXAb4ZgJ8t1LDpHSA74jLBT1YVTH3tcBVHAvkVy8+f/r7K30eu84NaDrkuGWouuC9uyghFNUwFjCEgrS3aZeZutgtB7q7+7JeIVQZzfQNkoaopOj4svHc+T0bTK7lPDXr5M1SddPcKSeksBsRJ6Q01wuD9nct6/efednYwZJWM/UIlOAry5RBskAWbptH2W/Lv4jZ7Bxd1nFWp60byNXn5sQD6LqqHSkMYYxgFcYQ4wiDGv7w9MlY2HsqlBHAfUkC4d6pjUMXsGQFK4swW36LLoGhSlWQLb9lF/VwVQT2AzpaHdXZ7s0/r5PEq9pmvB2568xGsl+DH+AXMVqO6H+ZO1QYwvJmFVZHk5g58FF6RauVcje6FZGqIWqWGVTjjt8cyb3t7lPOLnZ/fvJm04IslQu6dHDADTk86plO44Vq4dxz22X9olTckrNEW8HWrXpW+FxPuDVpfK/AH+NrGHfZCwBYSACQgQAAmha9IlHClTGTTKxeOF6xveQL17+3PO2cIU10orgywx72hQD0ZwMg3vEyEWi2/39Wj0NtzG2wepxTV9jqcQZfKex6nEorXZP3VbH3Wdyztv3aHhnlTKAe58QVtuzmzismUFQQGxtrgHqc9qtWu88efMF57yJLdfskvq9J1OOsZpXOdFOQjkHqcdI7FW9S7Phjt0VlxxSLnbe2lUnU40SwCmewKQiHZ8x6nBNXYrfYBLl47E+XBMQt3JlsUvU4YlbhtTeO8EyzHude+LaQYi87eO+d/MX31rYui41cj9OAVXKWRpdcodbj/Btj537ufRPHuZf9FZm8tD4mUY+DxRCM9TjAEOJxaoc/oR7n/eNfm6t1jhNsLdPx3MtlqbFGrscRX2Wrx+FfNUw9Dr/46OWPPW2Ffz/7XiYs9ZWa83oc6tqcgxoTt6tsNSatrxZWPc7DIAHv2ZwqXnM7Vbq+1uxRJuf1OFQbwQFWfFasylz9n6rH6chkxoYfkTWTeceLDqT4yJ9k9XtDzpR0j4RnJ11VkvBQ+glTPdIXDZxk6nB4ekybzRltpzllypdAzrwQ+AlIzXt2dmn3y/ucBUuuxCf3SQkwZ3w/eiYn7yBN/0r5ARPmk/coFkIrqeeedNRK7dOojZMaO/OyzgGtrCyCfynnPyWNnVs9PJdW1k8qBwKTBrkDuz6KeBwmVo0oOzGJsnLmHCerjhdFsW0eHkk4NZK8F1REiBZgBY11R8iMV1ozRDpkhTsD2uErrpg8qIfkf4PJQ9fooAiDlBxARCaH9BSwRe5RAY56ZybUf/61e6O1vZlwf/+qKzeHe23K9/Rl6cJHXucTm9TTexyd2PzNecMmkXKnqBLpwiSRmAVzIl96fHZdOryyeuVM2wHkPVEXWDwTQY/IGJeXmhv4auD1Nf0uI9Uw5MV6tYUq5UGQjhGWBAZjv4eFwxGSELVOMQj1iGQJsTJwmDRIexPq1enbuZrrutKAAjDvQjB3ChFFfZBUfe0pBP0ShAiu4xD0S/AvlX7J+6+7Xf1OvnCcenZvlPlbnytU+qUpvWIn3gzv77b8aMyKx8tndyXGicOov03PRP1gBD0Tk6QtIHsALkaktGbtOd5h+LZgcZT32PTSaf52BZEW93T4kEMIytUSFfLcByFP2imjNJ60gP0dB6nBd1CE5BqM3J8xUzPWoWOP8QiWKCZZWbnkzjYQEEVEqhgC18xRDRuOGuGdVGaboNmA9LWsIisp0jwJwXWMDxSG0HazCm2tYYVGmGAzsUhjUOEtE7XzHpMNMUeZgr16Tnjra5lCLVVhVXfgI0gGEymrld1bvhrQ+LLHomzzZ89fBs2iyqqkV2SEZIhcS2DBoyS74Kc60N2VQ75cX7/prtiEOpNVqCNO0bi+WBso4Mou1fCzIMGj0qSwKroZtHT0Nh3YVa5VPMoet0tHBYhO947NMRXHXXpXJpfe/eE9n5LyC67rElOKTtxfN5pcK+sXKguO4MO+smS3Dv0VU0/rGj7BwXApIpHL8farMtg4D5J32yMBtr/frcuc4RkuO/tFR1Xr7iVgegVEvKTrthTQjP4hBDEFbVvK1pl3O7igdWRlse67YG6q4QujyRemehzsUaypd9SlastufKtal9rgBfkV8w0JPa2fHa8k2uixzjLI2X56f+sCzjG4hPeHWB11RMyxKDBqG6Jf1ZhGgkpMK5C4eKpbNfQqe99rl2zHsS1pDe7RtpSDdQOmgPMJfnMz1m8OtMQEtpMxDdQjx2YBeYbYqKeO2UvsRZ+EXrPW9O/zq+jdF2S9hHcbCv69wWzwzzYO/LQKsYI26tbMCFjtDL4JUiJv5IvXljLvI9qb+XVw4+b9cn7TUhR0N98ujymgOZjBdtiEwB1MNxN2MItWn726XDzAdceYz15yv+EVCsfBrJzO5mD6TjeAg7l4Qh1kduqR25SpJR7N2P/NnhsHE3O8WNnX6TNc4pKT56RPHdSGAwezdDrbPJ88nWMHM2dl5XW/vgW4zvDyPDtu0CBPIzoYBes3B1ryJzqY6is/FP/48ZbrdIdOd7qefDDQeA7GhRX+lsaB3wgORlp04F7rr9muk83S0xz2F91tPAejNQVIBwMmBO5gHE3Ywch9T6WXKl1dFOuhiK7+WZxTOA4meg2bg3FZYwAHY7W39RGb2ns94i/6D/tuJ47lxsEEd+7Qrk7Frz5r1q0ab5GW4sGBg5m8hm2eK9Zw7GBmVGwtun95h+uydX23lfC+tNKIDqYv6zcHWvInOpglkipD1h595b61+56GC7JLPTeeg2nJCn9t48BvBAfT+u2Q1WMTrTzWrOuWc6a8dKrxHIzWFCAdDJgQuIMRmLCDyVxV51vL3U29NvYLOTtzn5d94TiYnF1sDmbvLgM4mCSvVL/aY2zdl4wsNqfprqd7uXEwIxpd8yvarr3X1jTpvcx7Q7lYwWTvYt0o2sWxg+k6LOBE5w7nvFcWH/N6nU//HCM6mFOs3xxoyZ/oYLpvbjJ7dYaF85EW3Tpuqzirv/EcTAwr/LONA78RHIyk7i+vOsMmum5zK1G1RgvHq8ZzMFpTgHQwYELgDkZowg7mRsma9kk7JU5TbnR5uKP4wWaF42A2p7E5mOA0AziYbeNt/U9NmOq5cO3rXV9fLL/DjYNZFLktweGYj8uiE8NrHHziepsDB7M+jW2ez03j2MEMDv/U66PnX47ba+Y8sLq70MmIDmYM6zcHWvInOpgx7xo0LPL5rPOGO2ue3Pi12tV4DqYHK/xdjQO/ERyMu9mmn13HxwjWHwv4sKzkknvGczBaU4B0MGBC4A5GxORg9O6pYKOVXuH3VKhxt/bbf0ZNEi/9/u7TssiUlDw9FeyPJzx0rlxXPEtgV3tuS8HMPD0Vpk3YU/OaOsBjacCOntUSbs3O01PhbmiLZwNW3fdM4hWLSasQtDBPT4Umrg+CXvCsnOY+3hBZURbwOU9PhcdjfaYnt2ziMb/jQ+uNHevG5OkvtaDa5E5x+4p57lJ7lPTvdvwIGCqJD/X/p0aLm/fsPGI2pFR+JBsAe1mZ40NOfWwW9Ws+xH3DwaTwwNvrYAesUvhQqyfxk2IyvByT0lULHHJcvcFQaXzo8+xjyQMGtBD+PWlAjYDts2CvCAt8iN/nVwPnplfdl+2ZOPHas6nbwVAZfMhWHpd4d+FJ9/htD/cuOuyVBobK4kNTV6zdlLqwmGj+1got3GxdssBQOXwofV7LhUWfrvGZvmWrnW+trm3BUHl86M6m5t7fi5x23ffZrM+3i1t4YMgSHwro8nbuzfetvKJ8WlmW/dr1HzBUAR9abPUx/p7knesG2wrNvqQXGwKGrAh4A4our3BA7bN0ZtzdrQ6tIPLWxAPnl0oYs2CFR9w19+ffkxPqg6GK+NDCJlVmfXtQwXl5r6xZjU7VLQWGKvEYW3FUJh44YWL4CS8bYcKVH7WLN8qeCIaq4ENK8ZdV6xff8lj5769HDc2LTwJDVQmh2HzuPmjJDZ+lvZ8X6bPnagcwVA0fCq66qHSrabZuM11iNo+Y5V8aDFXHh17Ve1M2rNp6l53tNz6Jf7RyBBiqgQ9VUd8/2r7NZs+oIZKEDd9LVAJDNfGhePP0b5d8hjnt8f6a07hPSAAYqoUP9ShbJDzSYovzuo+2LcwyRKPBUG18aMc3/9gmDmcdd3Q4u/9lsfOzwFAdfGjteHvvnDvB4k0fX5wO+dR0FBji40Mb65xLOfMxRrCq3CLJ0oRVb2nNQuryGJqFHJamzS5/YZ1oo1nK6ho9buxCmA19m4U4MZmoSsGJCStTTzuv3p455mzNceT2VyWdR4XLlUEIBiymALgRfgef4CyVKWBYGAYCYmCE1NKQMKnOlFdUA4V8NXplIz6gazGXjTPvbgZs3Yg6veULwuPdGXoxglrmMoJqXgT53aJOp30fwe/uM2lfEcETwdtFHBKCcnxIKwYAdDODiZOmKmz3lKFXTNymhxSoBnb2PEgaqAwLV6plGAUYeD+ZHFs6EXrCl6gg660yTBaI1pDM1b86bfX23Pdr3j+j5eP9yRQ+2s+hU/jkDnEdN0C4drPCtTbDJCI5Ot2knpGcHT7RgnLFFREqieCHSYZJ+SAAgXQCQySQi4OR66fZk4ybPY+9E27paj7yzMpO/1LYHvDHItgeiBGupWdphyu7E0p6y+0xZacx/ugJXF2CmI4gXZBSgUS3BC5Z/vi9DlaiXU8HB9TrNfFpwWnwOABrNytYQNVx/+PM5H/+Y8/+LfZsaoRuMPbsqTfY2LOdbhQGe/bJL80uyB0thbsrBN/b3utoIIfOkmqBOGDPjrrBRjYsv2EQ9uzEjPufvNv5ue6fspDXO8ezr9HZs3uzogL0xkSZPvLbYOKOPXvhDUerofx7LslXhh65sWv9fpNhz3ZgFV1N44jO4OzZDWXxxwWXvrrOOZryKPLOPL6R2bMxK8NIfwysjMHYsz+tt6ksjfYUrJsiP9rxvBk5hWEc9uzerOA43TAge3a5nO/L2sS88ombd6GH0xqvoSbCnu3AihCY03jc5sIUt51eJRH/6FDFdfLm2iWf1x9LXpybi0GMxvdzEuu+cSAk2Az5sKMzEQmDFWIw+BHEXaP5AFtVhIYnGhhbXF9h7IWHbuN1Cpyo+5fo96ZH0cSIHstA+ROA8W1U1s0RSMD2iX7bCtgL5MEAHSm1rJBZrJ/A6UDCKn/ZwNmtKNkkeDeCJAq7nF+kRLV/BT1SCAAKfYKfgKcpIR8ehnqiF/dLVQwgQi9sgmQqoL5gHO1swxSV6gasau6x5OiT72F3T8nI09KJuJk+LXOH8m3IdO2m+JXVMtclr2KeLDiV8Z4DwBxZAQMaZZQgSuMz4O+04jH9obckMWeRpQUmSxar+jzWrWdUptJ9d5/p9Ta6ptW2wsjkgTCcR4WrpFrqGSyoFQj9bHo3KVgATBFtuWUzNk1wPSNcMfRKSserEV4ciLYqq2jNjCRaVHw8v5teoVYZcR57jhRmBfcFd4Kvl/Bc7Tr9zIgpDYOoCT8EsZ3mKteOkWeP26SdAkTOb6c9NsVwx+jK5BiFV6rcGdFuj+Pf/QZWnRVwWEz6NhUhAUkE3PqEbLJSyG8kVdOdZDEGLJuLlGEAcg0NCvaYoNzHYItDTa0J3FiCxB46eURq2i7/F6aJA/lbemwqtLwNQH8KlP8+VfkHA+WvfLug9SkCcR5Q4HaDMlyqgtGGUsG30ei4mg/Q0zShgP/S2DQ13I1WjpQyMMiXWZVqJ3Dt6zI/oFRP0ZCeFmQbE4AVHdBtDH49Pxtzs+JR34UvH3luivIRLPfeGMHBzoQ9hNlMCA+uUzfrmmAwF3RLuGEe8Wt3twKVCrU0MBJTD6wmCr2K+NxluPfNWc5TBwwVxI2yIdNbWuQ+l778JQ0WBiM/Blt/FGwZdhhsuElwYzIJZ8vVf9+irdIr+t0bT/vLE51J361sDynGI8H3jpTLEbaAKWC2I+6DZCSYzsoUIyRyWZBGyUfKIkL5SrBMUeluCahZepb3pEmBPKxHlHzsFlPyLQaeUrpV0Llf2R2rw4O7rlI1RoaDIYYEwLt4vSJeJZp5zP065NWvuVO6kMNn7EH08FlzOb/pTK1K4CBkSIHITUWFDOlNnXnxtxjDZx2Rq6FFTkVSNahaSPiud17oUTwwy/Wv8pm7Xn16Q2n9jSsIOqVDHuWclMYG0yQWtCbfMgqTkLn/6HBpXhzq56nZsfcEIa1Ubg9/R23v6jYIBrkhUhWlJA7+Kajhrow5SChY8AiwqB6tETVSylTHVJBJUkC5DrbHZ0G2AEWK2RybBXpthFX1xrCFsYKmfhdX/SAkFLUmfi9+o+FX4QH/RMUl215tKYkJ+K0QiQnscmFAsZQVCqDiuKNyZ3JU/JD6+6fPmSFcdHy7eMWXxLH5Mv8x2GKmdZ3OLH5Ua6kLix8vXxs8qXrnS52PfRXtalZU8SDGuX9BKVlh4uIWUVlNhdwSRA6ttZB7mDzk1No4biBP2x4d0ePFaaf5P2rmjKk27xoHkNe8ywZ5mbsE5J6cVWWWJyA3QFUmooiSqMpEFFESVZmIIkqiKhNRRElUZSKKKImqTEQRJVGViSiiJKoy25Z7EPXu2jKXVWnmrx56NrSglbxB5UVqH7X8koOSNzGT/Ot5nrC7s6u0yxazoCHXnlmS5W+t2ewXyZVqGC5iCRx6UF6CYbbVc5EpgrDkQCD+AGxJCdeZeBmCbul9aslpvq9IAwf1S3rQ+7e+CSZZBvLECDywqF+av4Ym24axmSuhaAAe4AfmuqCm/opEUc2ZHrGq1IdbApd3LEiurXC3sdNhfvQm7nazaQ2iwLLa6iYyDmfCqpK2JCIvVkiUakvjW9dq1Nk7+VrFaz9qvr/IYVnEpJ7eH05tHuUSp5zhNl04+hgHKOXcYEPp2g365gNbnGbrS8wrbLJhmBFTDi71iNoz5lTJXzmbcgbI7YXz7XzltUdNExsxn+tgiysRMiEHCWxr3tQvjG2qzR5CiALz9FyDHohkm5Dg/FoY92Hq/hrC/assQ4OCt4lMIGsJQTJnBSlHz7xuQyeZ5ptrt6pyVQZLLDIbKPWH7nF3M596LTuwN+uzm90hchaReC49i6gdKQx07jPmdCE657Q5XS8mx/giwFts1vyLaMmGcy6xPu596RvxdE9oxgBuXXI+V1vqNlKpV9tj6gELXXMDOsJ2HximS1CpzqE2oHgAts03CyFN6/x81Cbp2q2Oq/m8YWc8u5I70Flg+VgGt04azM+KU01cAa04D9jpCxAsX5SOQRbuJP18XTkMLCmYacxQNegqbTl4jb9oY/UxjxfVLt2GbImcwb1ooPIMGTgkgDBtZoVp4U39nF3+KTRqrtloKTRoaTAdgSk0Pi12tMegwe2QN5MdEjU+17zDlHviGJfYtxEdqtWi7kOHScL5mn0axH45U2jeWHMfke3BzqVI+ArpSHhJqpIF4g5SJ7NEPdzF8oaonfI8w7pmyWBTrUcA1wuomDwKoJ6epZehKoeloTSbu+B1kN9S/LPbl3NVZgtS6vyUHjg8mHIOCXsAPUTSXM5vzlHPuRU0uwXgKQPhKYOac1vBkuVzll7VJGU178PWqHZD10gHr0nvBUtuJLfZmDo3gZz909xPz/7h1/PD5+LJOrvCTts5LRy2J2WRvEI3DvDJymLDB6iPMSoMzLHCjREaIDrzqH/oZSNstbhl/SWqEGkEm9De3NhX3cVzvdvkYUODF7c/3YAsNM39dKHh1zkvrgVSOcQqla0mJZXsI4RU9HJf5TGDFy4Nwo0vUjCju42oFdd4hvvmvbOe73PfUJQsGC/sfrpg8OtcC8bRHjcncJuRtl6Nau7Me52l34KshhYDbGEhl+WHxxSbpbWaz7B0O5I4rFXV8s+aU9o6aB6AaOuADxQGIulZbIjsziL8ug+TX9+50DOnX6eO7tE5PyLMj98kRyn4J+peDNNZu8IgO3D+yFBZYCgIK+HZQolaDTtyaaticPev2+KDek4b9b50ndRc16dONAuvE6VVvziCVZ0v3a/rmQGviYcamgYWWJNFeIRJ8ybIL747+cW0O7sOe8e9uu05ceKNVWTlYwpstAMGdv5YKSnE0AFVo8FvimGol8Xq7I1rlKatPOmgFqwHUmv2B2Ara/jv3JiSP9Z7PJohmuLPjdrVHq5rMcCqogCDvUR9tZPZ1+QTV1Rt4qjjFzXNwUHmqlwWW+bq50MC8+5MmHsfcLlwmndCFNW3WifZcw8yoXo5L1IzOrohZUK6hheIB4B7igB3yikt7XSyk1RmCrbXojdjJY/runEDFtlrHwM4Z6M2bmCOQvUY0fOL8CeInl/wk6g9v6g9u6g9v367pxf1RkRPLybbVMtFpgI2R58WhAubbxlc96ml9xLJkU3blllMILcgFNBnhyDfBkPfD62a3mFCZ4+FD4ue3FJa9q6geyZgdqyE4nRAVS/0BqPRj9MQzbSYQPqdRo2rG0UfimhczPGIveT5z1IS8lajbo0aqShNef6wz7fuX11m3Vw058GscVygpGJFaeBjWhsm1moXTb9rGBjpABC16p3swzSPovsw/HphbHhjGvMZtdFkY4chhdvTHv/P7CmVzsdA9vTUIzZ7uvrRf/YUl0+TbSJ7uw27vGNvzgr+52XSBQ7sKZWmiQNLceIRm6XY+aiw7WmHSh6Lxzet7xi9xWrz2LYbUjmwp9RNAg5QWs2K0vRHhWhPqT7U6PYU0xhGewqQwu2pn8mvCajTiZtitjZFqr2dIwp32v/BMXTnlTk9OFgSuDxiWxK01ULuz1kxWzkCcgMUsyE48AhTj+DAI4rZEBx4RDEbggOPKGZDcOBpKQbpHHhEMRs1QqNVrEGriF70UNjzOKhY68mZkC0MKOTf45FEkCoSQqbm/GkyMWOSCZW2kAOZBDDJZOXB+32mZX12Tzq4L2nXsAfU+iGJQiqn96dnMmw2An44vAMneIFt0fkKZYRUQy4EW6SycdhSeRcRr6KLtbPwC1Qp5fIe0GPBi7lHPrO7USzhBovXd6qHN3FKcpGqNxWdp2KyhOY91VIVbMJKfGxDJ2XkEDms1QLvgxH/BMki8O8OIgyY5ciM2kwRSXEGA+rbyJnXNBMY0A4iXtQ0UWkviSpEphBLg0kO0EJzuYcsJJR0vZTmur8yPO9VshWu69/I+VuTzLTyGIi+KnhuMEKmeauSxFuhJpRKMtJdEQRptwh4i5SCF2HqJc8lLFaHBTLaS2X8IKuERC6CXFB5HFGESioJ0/6MERNr78FVtZfJu2UqCyhHW3VU/efAL0dksvnloEzCL/c2ecyp9Kqmuz06mLWw31db2N+HMzdZlmc4N4ngzSXcJII3l3CTCN5cwk0ieHOJWCgzcfDTdveripfP7NCFtzgjK08sNGjhPxfiPFM9Dgx92LiheHwQzblCq49UJCoZLwfOtS+TJEv5LRuxOXKoU8Krz9J2/Djy0qg8nvjzAv9RAVOpOytgdSJlqOD7hEsVrmJ+GP4M3RKCVNJh1teis+5RfkGPk9uhT3HWvXTa1gxYmfGe0lKEbGUStTSqTbBPQgqBSEjTGSpRACeH/OJp1SP3b7hmJ1i7sMvZbU+ti5ETgk6aJ9ATgsQA14tVeEIhCEIShSqc2Akzfk+NUjhRPBBAqzUau3fv/qUP2R+fLBjILxUpl6iwPKMchi9I2fi98Xh40HOs15LFlc0/b5TcppCo4g9BkKgSI4Uhnc6s0rExBekAa/RLn+qiOs5hMjVGWxxIEhNhQtCF9EdEN5rtP+Ox86Fsfc6uDeTUmLnmiYhN3NyRwhBORVbh8ExBOBC6vMIhPBOTcNoJwuBHYjIBr6MGt0oVgaM1pItd+MpwyXDI0dgC+yn3NxjKs69LOou3dxX8veJLvPWCJWHkc+z+eZ5PP8dOGi0M4b18wia8DBMiCiITaZrlI8EuuRJUh8oUoxUgCAbiA+JSKBVQdOBfcuVIbBD+6ACHwiSjNBfQnCLp6sbbX5VyX/9XkZ01jm4YSeutgyiLxi8XhuROsEpup9ElB2+CGRW9SmWsNPvRMkUIuyG8G/TJ4cCpNj5bywwcUyRxEjl6NGeMmXJHON/wtsdjCLjiOEULq5pjhhCPU/sxxanVzMb6HUvO8TlinvCoUduxtuRMnUizkeOrko6QSUeSw1SIKVNlW2MBZB1S59kMwghkQ6TKMGmEajQ/XPNAdXl3TTWXu6KHVIGvX5iDV2pbDLZ3pWcVyePlAsB/wpWqCBeZPELzwahwn3E2NHHmfYTYL0dlG+eDkPYMPaQlFsjI1bArgQ12cBJ7R50i+vKddzerX6uj+5Z6DmkjTxchc4+ZE0+lq6V2JL91MpXcrKDrZIDcO4icI8qOwDZSd5/qVeheyT9PCMNXjpCqVDKGnhW8fe6jldIxrovmD/pYYdb7FgWfwhSsqDaCA6zOsGK137ChDrGPWRJfcsFfgsHOnZg7v8yleMRHXBQ6CH8Vx3wb1auaEwsD4lfh/8vkDXvId2iX2/2ZzNh/JPy/RcJP7SZkMBL+zc/YSPiDnxUGCf+kmB5PKypGuO1vsSzFt/fWTRyeNufYRsINk/XP2DjL5z4zCAn/glcBvr3ebXVeyE9/9HbFuNNGJ+Efw4oK0BuTWTvod/CHOxL+slXUb1eO4TluaD10e/9g++UmQ8Lfg1V0XY0jOoOT8C+/Hvxg3rqePtv8tszP8Zjx3cgk/JiVYWRRB1bGYCT8pTbElt3RLdR16mzP4LbXxZdNgIR/DCs4wc8MSMK/ptqUkjXvVXeZZv267qroUKUJ0FlAhHqwIgTmNB63DWCK25wFTZv96nJFsPVu7bhLa9+Q6d4tsEN84Uo58Oj0mM2cAec2uSkSWe79OBcGQFyljAwJBTEc7HKtDNaLy4HaYZHxbemsB3kGda3tA4HQqOcA30yA71ZqmJQO8G3wvKAHqyrmvha4imOB/OqnRg2QLposcFt2ymfHZ7d0s4L37qKEUFTDWMAQCtLeRjxn6mK3HOju4Of6NcLWTN8gaYhKio4vPVo7lYl9eMAran3Fk4ca/1xGOSGF3Yg4IaW5Xhi0v2LW79/+ubGDJa1m6hEowVeWKYNkgSzcNkse8I5a8hZ57lVm9mu+6yOlzxzxALquakcKQxgNWIVhaRxh0Jpj65OxsPdUKCOA+5IEwr1TG4cuYMkKVhZhtvwWXQJDlaogW37LLurhqgjsB3S0+rh7Ve/rHg+ct0y/s/tIx4hvZL8GP8AvYrQc0f8yd6gwhPX9GZuwnhp9mUHU1egVrVbK3ehWRKqGqFlmUPwH3557Z8d4pPgGzVTn9O1akKVyQZcODrghh0c902m8UC2ce/Z5rl+Uiltylmgr8uWCJS/nRPssKv8t1CLJQWzcZS8AwJEAIAMBADQtekWihCtjJpn4687c+BJ2353Xx59pMiXgTQuKKzPsYV8IQGk2AOJfawPNgf/P6nGojbkNVo8z4gVbPU65F4Vdj7Pz1pqhD8pmex5c1G9gelZ2qgnU46hesGU3B74wgaKCFStWGKAe51G/LWqzlk4eG+/8267uwidZJlGP48EqnbamIB2D1OPM8qnt+X6PrfuuCVkf1jxSzTWJepx6rMIpZwrC4RmzHqdcmGV0rX/fOC4vkz1li7lVlEnV43x9zia8x0ZfJppQPU5IkyI86wkNvNZnzZ9jEzbttpHrcS6xSi7F6JIr1Hocxx/t3kyt39E17q7148bfkq+bRD0OFkMw1uMAQ4jHqYP+hHqctePtvXPuBIs3fXxxOuRT01FGrsf5+oKtHucCPaQtlHqcZInV9VPW1q4J3VKOPp+6RcZ5PQ51bc5BjcnHF2w1JpkvCqseJyLjia/1RG/HZWYhnb99fhbGeT0O1UZwgNUFVqySDBvqGLseZzCTGRt+RNZM5h0vOpDiI3+S1e8NOVPSPRKenXRVScJD6SdM9UhfNHCSqcPh6TFtNme0neaUKV8COfNC4CcgNW9jnXMpZz7GCFaVWyRZmrDqLeP70TM5eQdp+lfKD5gwn7xHsRBaST33pKNWap9GbZzU2Jk39yHQysoi+Jdy/jOosfNfcx6mlfWTyoHApEHuwK7/H3vfAdZE9r0dFaWLoiKIYOxYQNS1lwVC6E2w7NojCRINBJMgIhbsFXvBjg1FRbEr9t67q667NixrW3uv371TAjNzZ0hgSPL7f8vz+Dwyh5lM3nPvOefec+57hpCPw9SKq1LCpkqHvDRf+7YXRMtb3D+w6WSSL40FA63Airh1R+hMYIWLKIesCGfAOHzFF5MH/ZB8EZg8dI0OSrFoyRNEZNUg3Q9skXvQm0C9HxvqP8ZtWVXJw8xnR0/HhZkJobRiJcTpS6uSR17nE5v003t8ndgs2rzh0sje23SNRLNpJGNmWuLzoE/+8wY5qBdObtyLuifqB4tnNMyIjHV5id8gVAOvj/e7TFTDkBfr1RarVEghHSMsCYzB/g4LhzWS/mqdYhD6EclyIcrogTKp9ibUqzO3c/HrutKAAjCn3oG06T6Ioj5Iqh5yB0G/BCGC6zgE/RL8R6dfCht3u2PUiWdeY89sS7V4HX6VTr80ptvykTcTegakH8xY8Ch9akdSTh5GLTI9E/2DEfRMbJq2huwBhBrROTDLj6vazFoUtF3p3fr2rv2tiqMt/unwIYcQ1GsFVMhzF4Q8mjtGaTxpDfs79lGD7xDfP99g5P+OmZoUz7aRwxEsUWy6svfLn20gINIkqtCB61P/U790tjnjNTF27GGP6h2vc6rMXIQ/CcF1TAhKQml9OZUWYlilkSbYLESEG1R4y0jtvMd0Q85RtmCvli/R+loer5apsKo78BEUg4nU1cBO23oPe7zUe6/LvmZBwVVX03VlHpqokfRTaAksBLRkF/xUT6a78iyU66uI7opLqa05lVrnDoPri7OBAjHYZTg/C7pFAI0mhXOgm0FLx2zTgV3le4inehB26aA3otO9VxNsiBMuXcrm0jvdvxNurjjvv2z3/tIjd9QcT62VjYqVx2iEsK8s1a1Df8XW09o5PCYGLkUkCgXRflUOG+dB8m4PJMD0hoNsr4CIl3TdlgIjo/MtkpiCsS3VWCyofKu4dWS2WPddMDfV8IXR9Pg1N235evhg0MyRWU//MX+VTW/wgvyKhYaE9KbrxZxjcAkfAbE66IWYY6lA2v6WflVjuAaV2KhA4tIjIL31nQmbRGl/R0SPm76+AWNLOUY3YIo5n+A3d+P85mCUmMB2MjYC9cixWUOeIS7qqS7hm1OrlRkrGtNLWe3k9ps51HEJ7zYU/AJO+J//bRoVYsVt1I3PCFjtDL4JmqqD1nG3iJaiuLv57gVMAcPB9HXHJgThYGRsDkZvPh83rfZKns9HM/PgiH4nW3vvq56WvCCpZkoBPp+mi855zVnsFJp+dOzjf7dNtC/A53PKY8JvJ2JWh89sMW3gmT7WoQX4fI5W2FtnkKM8fG0p0YQ3d8SLCvD57HYu659QPc9756blE+N7/TG9ILchs/MvyW2I6PxLNupFdP61IEQLqvbu2Ts3wye1y1+Bj/74CIkZLQlRuX3lV9vHdw5ZUuvs249hweWByIoQ1bLx2/Bi3+zg3SPjRkvsqsUDkTUh8u10LGp4/ZPeM6qv++IzYf13ILIhRDl3hzZwaH/ZLyvq13uKub06AJEtIbp3dVzVVOv3gcuazDk91ulZABCVJ0TN/JQfmuxd4rNkaNJB/yP+W4HIjhCtiR1RLe1E1eCV9mtG1pnRvQIQVSBEZeK2H3Oxey5e+rV3Ro9D5j5AVJEQvfl72+W1MQNES/6Ne1l67bb1QGRPiD48H9d5h3OHgJ2SyIHjYixVQFSJENXo+GL7mpPpolUfZjRNuZqRBkSVye81eJ7L0PGa8OWWV5svmPIkGoiqCFhpoBwI0fovQ2PrzggSrav466m/JJMcgagqIbqbuK9jTE8/vxlPHEcd6PutOhA5EqJRdw+WutuwpdeyrvVanqgyeBAQORGi74vWN1zXeIjXnn7H/7z59fU6IKpGiB680WTeazsxaNy8am+7D/1jCRA5E6Lmjod33X/5OmTRpAGzo7KPQKCqE6LYuz+Wjh12wDtrfvs6fzZ+3gCIXAiRrFXt2W+7+IRuTuluv7LRvrpA5Erqa3sb8xu3vvqsvhT9plb1BEjaWYMQ3RfXDxr6SCVetCw3u/2HBVOBSEhOh6i3i5KjAkJ3erqM2dB9RH0GUVVNAQtR1QPF75Ia520C5n7+263tdKuLPBBVxbCZqCoxuzctPHZKvHhD3tAz1YdlUJeu4iEJCqUUcfqCLQCuR9whJM/LYm3q1HEgIAZGiOgAqONxC7qBQr4ac1VNCHRdSLiBZdULSBuMyhxGwIbsL/RroJl/GhV/EeR3+6f6wnZPHsYGLL/45Yj9kBobeTyMynOCEDb4+eUFWz20I1iVCl/oFRO3iJSBoYHVPUllsMWRUi3Hjp+A95MrsKUTOU6EEhU8ca2Mk0ejK9WGpjQsVXN40JrFre/KDu5YTi0f134Os3w8X8R33ADhsuGE69O/JhHJMY866hnJuRMTTZqvLk2sRCOMkwyUCUEAom1hzV5nbpGjPDS8xmb/TfvMjkWHKmrQKg2JxyIqDUkJ39qr4E4Mdl9k8b8HNtgZ1eZ6AleTPBRFFvzJ6EAiwfJs2Uuscm4cMrmh78mTnWdSLXWRjmDxAJYNJ1hgqBP+pz+b//mPuaFIzA30CN1gzA23X3AxNyzVz1fqyNzwssNvf9kdrBSYO1c61OnDufs8Oku6BeKBueHmC66D7sf1c5ZFZW7o4rqu0Y5LA0LHfq5p1shhTaLRmRu2cKICxo2JVpkWtsHEH3ODz4OyLWbF3/da4V42RPqgbX+TYW6YzKm6wcZRncGZG4SlMjcoJ/cQbXL8Hq08POmFkZkbMCvDevT+OCJKKSnmhhNDhHaD5+4IG7ejWsDKaXnrTIC5YQsnOEtfGJC5od44y7tuK6VBUz+8jb798RC1KZvxmBsmcyIE5jQRt8WyxW2nFklCvrep6j8609X8ae2U/dRoNATEaMIo3xDdNw58tM1wYTcBMhIGK8QY8CuIu5KFAFuVBucoAMaWGK8w9iJCt+E6BU70/Uv0ezOjaFKixzLw+DeiLS4jVPICGhj/Tb9tBewFCmCA/HaZgiu9D5295Tf+37lttw1924+WTYJ3Iw4oYJcLi5To9o+HnreHvxHVV4xBKGwkFmz8plfdsSMGEDku3KRyFRi+QI52thZNrIVbVz4OXVX1ucrKeRiV1tjSl7yZOS3zRYUBNtru3LLLNs/EW3M+mB/o3KouD4At5AQMjCijBFG4z4B/01zA9sOkw7Lg0KU1pksOq9rE/Mzcp5LSgRvTN69KvXX9pz1GZAKUIR6SoJJpy56xoNbbJ8rttwbFC4Bpqt0TkV5bPDAyeFPr1+/GrMlx40G1Kk7V9jaSalHx8Yxf9Qq1bEIK2HOkMkfc7Xo74NQQr/QaFyJTsm7spSf8EIeq8Ku8t5X2IGxSDqqoJMcDm2KEY5SzOUafq1VvDW611Su7R2/HKV33UckDKsPiVw3c+oQnmWWwtl6mR8f4JiJlHIAcL8HFHiPNfwy2OMxvFA+LSnXyiPS0XeEvzFAH8q/02FSY+hqA/tgH0UC+Lxj8Ca+LW5/iHVIAFLjdANsgwWhDGS90I5ufA/RwAiT4P9ymqeFutDJJxsJe8kdWl7SWDZ+Jlh6z/7u652Kqty3XFSs6YNoY4nphNqbap9sNkj76hW1b2LaeddMum3nYmZgIYTbzQbRMT2+AwVzcLeG6BdSv3d2KVsarZdGJ2PDAaqLQ3FrCu3/vuHwkYNcYB6/AD/eoDQ+t85/LXP5ShCXBBoPB1hMF2w13DDbCJAxgMwlnytd+27SlMnT8m5fBHldGiinfzTZShtUwCsMSFQqELWALmN3J+2AhLDZm5fGDJQq5FB/kSXJNrFAJlikq3S0BPUvP8Z4MLVDFekTJ1V+zJd8yALqvXhV37jsEYnV4cNdVpsYKsTHEkAAM8Rj/vW3nUeFTtz8tVevkje7U8Bl7EDN8xi8XNp3pVQk8hAyOELmxqJABNqMye80aPuuInLMWORVlqMGhhYTvw6bBdrNXV/IZ0/rFb19821KDahtigKBTOlQp7wXRbthI4kDr71dGqWK36JycICuIQ+0CNTsewSCklSk84N+oPfwD+sAgt79MRSuJgz/FNdwOmIOEigWPAIvqZFzVSC3THVNxJkkx9drXg5gFr7xRBzKbYLNAr40wxzAMWxgr4PW7xNCXIqFoOGLR0NU314WPaWVV7sDg8Ju0xAT8VojEBHa5JKDAhjgrFGCIE45qIJujMpmef3RryU/74xJo+bf0FVfLv2layBUmDzm9No4fyEeZlWs+q21M4CJNuxV7nzn/ygPkg99yQR7zloQ8jreqTDsScgNUZSKKKMmqTEQRJVmViSiiJKsyEUWUZFUmooiSrMpEFFGSVZmIIkqyKrNDmuyD2WKR37yphzRHrC2WMEre4OBFjj56+SUPJW/xbPqvFXzU/dZmK781ZtJ+155UoOq/Er7ZL1Io1TBcxBI4zKC8HMtsq+Unh+2OY2F/YPwB2JISrjOJMgTd0vv0ktNCX5EBDuqP9KCWmfYSTLIbyBMjYEUe9lKvvWtnPNuGMWkooWoAHuAX9rqgztN+DH3U6XlIepxbZo2JeduKk2sr2W3sizA/+pJwu68Y5IRgWa14iYzD2bCqoi2JKIgVEqXZ87vG/HOtvte6Bm/nrus/NoDHsohRXcLen8wc4pelnBQw0Sf5MA8ohXGi5PmSufnAFac1jiDnFTbZMMzIKQeXemTtGXuqpOGUT6U2dvw3ZLT1WRdVb9s3RsznejYmBhEyIQcPTw9+qV8Y21CbPYQQRRfg+4QeiGKbkOAcS/HN7fe0SsDMiK0zU6+N6WECWUsIUj9OkMJe6pfXresrx7+5dqsqf8hgiUV2A/Wy97oWbn7ZQWu8rFe5hXWhFS6Sz2VmEbWSkkCnLSc69V6SgZGSzTE+6xoWYtbks2juyrN+y8MDuzM34pme0IwF3JrUfK621C1JqRflPv2Aha65AR1huwsMU2MYwp9FbUAJYGti5gZU8dO0vzjb9fiz70LvsQ1jKgY1e05tw2yN5WNZ3DpFWJgVp5u4YlpxAbDTbhCsCNQYgwwQlV/p5evKY2DJwExjh0rze501ZXeo/af+2WpLN7taZ6mWSAzuRQNVQGTgkADCJOCE6bmezq7wFBo912y0FBq0NNgYgSk0ISN29MCgIexQApsdEtU/26TNmDshGX7LX2vaOLnQ96HjJAlCfJ8GsV/OFprXx+8jsz3YuRSJMF6WBC/JVPJowkHqZJboh7s43hC1U15ArGuWDAybAV8ArudRMXkqQL3hF70MVXksDYVv7oLXQW+H/xyeutb7vc+u121dxW1vU1uelsUewAyR8MuFzTn6ObfiZrdg9y8Ijw1qzq0FS5bIL3pVk9ji78NFkv7ri5tj3R1bB6bWO/ZX0IIKWdTsH34/M/tHXC8MH6ereU8HN98UOsq/oUWP3j0G8IBPR058wPAxRoWBBVa4MRgHor2A/qNfFzXbzhJVf5mGS2lPt0hrfVmTFZ7TceBVV2X3SKrS8PuZSiOu815cC7TiwKmV0iallVcHSK3o5b7sMIOXIJMSxhepmFtJiyftbbVRtNSx2eDgViMvUBUTit3PVAxxnW/FeHkQ5gRuMzLWq6lNxIKAL/otyJy1GGALC4W8MDwi1tY46T5oSkjW9tAte83s99AohfAHICiFCEFJINKQExGbL6RfH8Tm13NmBb/r0a5t4Ph33zUWR26+peoY/0Tdi2Haa1cYVAcuTIqVR8eCsBKeLZSo1ZANUlsVQ7h/3RYf9HPaqPdljkn8uj51op+JOlFG9YsXWNWt+1zcDHh1ItTAyZMwgl94hAl/E+QX93g+IyJOeS90ruuG9/7mnVtQBx9bYKMVGNj5Y6WkEENPVI2GsCGGoV4Wq30YMaLwliaUg1qwHkiN7w/ANgrw//kxpTAlbDgSUbo/N2pHFbiuxQBzRAEGeawBYMRkVpl84oo+mnhim6SnOXjIXMV+5spc/abFXM2GedhOv/OnBEdFqd2d2smfBlWkMm6HUohQmYaUDWnnUBAPAPekAXcqaHSqOtlJOjMF12sxicCpcl03bsAi+9NXAOdU1MYNzFGc/YrgmyT9CYJvEn4SnW+SzhdJ55ssMp8k/UYEnySbbXLxk6uAzdGH/vZ5xe+u9Sw9vKf1bnCsQ27dP6n0t97M2eFdKLndl46xZRu2eh6++NWwvHsHXZcVd88EzI53UJ2eqOqF34D07tfjCCJHNpCKQhL8/dSd7A61XEKn3rFdETylFvV8tW4kwXSU7rauPeLhN2lg7omnijoNfxS3hhOidJYTpV1fGRSAnNUueK8FGBjpABC96p3qw/BHMX0Ycb0kNryxEfMJtdHk5o4hRdhTzf+YPaXT+RjIntbitKcfvvxnTwn9yHwkVcZpngfNWh+T1aCcx1Ie7CmdpokHS+HKaSmsStyevrCdJV7wOiR4WdNOb8tnXR7Bgz2lbxLwgNKHL1wo5X0pQXtK96FGt6eunPb0g3aBn2jyawL6dOKnmK1FKafXaaIE3x3vvWJzrqZF8rAkyPjCtSSYoYV8MG/FbOVJyA1QzIbgwCNNPYIDjyxmQ3DgkcVsCA48spgNwYFHFrMhOPDIYjZ6hMaoWINWETnE6Ox5PFSsJfGmZGsDKrloPJIIUkVSyfScP0MnZmw6odMW8qCTIWw6Wbjr7u8THnwKzN21PXfzwHvUc35lIyTxMgWzNwqbYXPzFibAOwp06BLGKzUynFwI0nNzcdjSeRcRr6KLtbOOilYpFYpI6LHgxfwjn69+pVnC7T1+vL6TVS58pvr0oBcTnFgrqS26qGUqSABOfmxdX2ViPwWs1YJddCDxj1SuIb47iDBgliMvNZOmErLNEYM1t55YMPojMKBtRILUCSKrUImqvzw+RBZDcYDW+OVI2O+04HVL/HpnZULBq1QrXLlrPfHlUR+P22EgRqjguUGNHH8rc/KtUBNKJUkKjJdC2i0S3lKW8CJMvRS4hMXqCqIlE74ggF1U5RKFCHJBFXBEGpVMEqf9HSMm1t5DDNVkk3fLdBZQnrbq6OOfB798/iOXX97/kfTLQ00eczq9quluj+ZyFvav0xb2p/DmJm0FhnOTCN5c0k0ieHNJN4ngzSXdJII3l4yFYjpWiro3vpZoz7ih31YfrhFeIBY6PCb5wI0dY7zHdT/f227Y49sM5wqtPnp/jEbGy4NzHcamSRNt104nHTZYu/bD37natXf/XtLt2o8PXPg+vU2Y38wj5g2P9/s9xgTate//ztX8dt13E+g5vX79egO0aw8859r2+e/p4Uv3PVgR1WYRreOokdq1z+PUzmhT0I5B2rWXibiUp94S67VEEDdle1LmYpNo1x7PqZzupqAcgTHbtZ8NP38193QP750xj8pFDjxG7Utr7HbtfpzKa2Yc5Zlmu/b9Ntm1HD0Xe0/eu1b252ULarcqw7drd+XUnJXRNQdvKrF27W1kH6us8HAO2T575ZiOEZuo3BDGateOxRCs7dqBISTi1OFscer/Urt2elsMI7drj/jB1a69zg/DtGuv9CF0+aGZoYF7P/jH1V9VdiDv7drp5GY8tCAP+cHVgrz1j5Jq115hTE7VueMXhq3q1Lp5suuAXby3a6fbCB6wqsOJVYUf/1+1ax/BZsb+I+EvEgk/vZuQwUj4BT+5SPgPMm0nDyT8f3T09pxZq7Xf8hHOCbLV6VR68uKdNufZRsINk28/uDjLHzNtZEmQ8K98dTbrxo1GASs9nrXxWCluY3QS/qucqBw0rDXkXDvod/CHPxL+GNurv77d1zR0XO3Fu+ttc6W2rjcmCf8GTtWlG0d1Bifh7zhr0G+fq1f23ZA0/nmkzTVaVsXgJPyYlWFlUQdWxmAk/Dknr52WdBAF51Rv8O3ihXrUzJpxSPivcoJz8IcBSfjbHvt5YN8fM303fFrawzbLk7pMMx4J/wZOhMCcJuK2kWxxm9i7YaOfHa56r73tmnV56cvmVB4B7BBfglIBPDozZrNgwblFfopEnn8/wYUBEFcpE/vHghgOdrlWxujF5UDvsMj6tkzWgwJCXWv7QCB0GYZJeQDftfQw6SLAd8TP4h6sqpz/WuAqgQXyqy9W96iVnvNKtPSwXZMqvROoFNdF6t1FC6HohrGYIRSkvT3/k62LXToYu7k/9WuEjU9fqay/SoaOL+uuWSjwHl4xZOqNDY6bj8QIaSeksBsRJ6Tw6yVB+5vJ+f1n/TR2sKQdmXoESvCV5UqpPJqD2yaihdmC5IvbfLddrnhfk32hFXWskg9gjlWtpCSUMYJTGQOMowxGc2x9MhYewfFKDXBfkmi4d+rm2QEsWcHKIq6xsGmH6FilStpY2KyDepBKg/2CjlZvRl986hQWHrDo8a6g6Qebr6L6NfgBUZpkBaL/Zb6oJJTVlVNZPiYxc+Cj9IpWq+RvdMcnqvqpOWbQmEmarMC8+UG7Gt4emvGx4r7iLJWLu3TwJAw5POp5kcEL1VTcZetP/aJUwpJzRFtrWt3NPHFMIVq54vSJwOcd5xt32QsAWEgCcAMBADQtekWipCtjJ5mo2yzgqGWL9V57LHsNnjpSs5fmygx72BcCIOUCYF3ATzLQTP0fq8ehN+Y2WD1OrOAERz3OL4ITJVyPs2JzRM0vEx6HTRg1c+vqFqlrTKAeJwZCwprd7Ck4YfyigpkzZxqgHudG+qvN9o2yfCY4lWr23SZtqUnU40RyaifAFLRjkHqcdjWmnn5/VRi+c9cfp9p87nTRJOpxOnIq5xdTUI7AmPU4sbHXMtv4rwybvSVo0pkOYedNqh6nIafyhMZRnmnW4yzY5tF6RYP3fhtiDi0e/LVFXSPX4zhwas7G6Jor0XqcFbO7NT1lLwydt3PHsbZzVlwziXocLIZgrccBhpCIU0f9X6jHuS+uHzT0kUq8aFludvsPC6YauR5nHcSetR5nDjOkLZF6nK9pY05VUgWGZl7cePJ11bMi3utx6GtzHmpM1kLkWGtMllKR47Ee530V9YcAs6Vh2zovaFqu3pJk3utx6DaCB6zmcGI12bA219j1OKPZzNigA/JG8rB1op37wxX/POjxkpop6ZQIz076qyQJscwTpnqkL+r4ytUJ8PSYNpuT7I6fMhVKIGdef/gJ6JaRUW8XJUcFhO70dBmzofuI+qzvx8zkFBQyxp9lFDBh4QWPYiFGJf3ck46jUvs0euOk+mLBo0/HBQIHEfxHO/8ZU1/c8+Gn47ZRMgVQmEwaCOz6EPJxmFpxVY5hU6VDXpqvfdsLouUt7h/YdDLJl8aCgVZgRdy6I3QmsMJFlENWhDNgHL7ii8mDfki+CEweukYHpVi05AkiMs1XokXuQW8C9bFsqP8Yt2VVJQ8znx09HRdmJoSuLvT0pVXJI6/ziU366T2eTmwWcd5wacThHV0j49g0kjEzLfF50Cf/eYMc1AsnN+5F3RP1g8UzGmZExrq8xG8QqoHXx/tdJqphyIv1aotVKqSQjhGWBMZgf4eFwxpJf7VOMQj9iGS5EGX0QJlUexPq1Znbufh1XWlAAZiPIJg5PoiiPkiqnvkOQb8EIYLrOAT9EvxHp18KG3e7Y9SJZ15jz2xLtXgdfpVOvzSm2/KRNxN6BqQfzFjwKH1qR1JOHkYtMj0T/YMR9ExsmraG7AGEGpHasnrWPu3vrCZh+2JfJV0dWDGvONrinw4fcghBvVZAhTx3Qchz/p1RGk9aw/6OfdTgO8T3zzcY+b9jpibFs23kcARLFJuu7P3yZxsIiDSJKnTg2upynZbn2qcGr73qVNVG9uoBp8rMRfiTEFzHhKAklJbLqbRMwyqNNMFmISLcoMJbRmrnPaYbco6yBXu1fInW1/J4tUyFVd2Bj6AYTKSuloXL3DsNXxicGffcfMCi233pujIPTdRI+im0BBYCWrILfqon0115Fsr1VUR3xaXUWZxKHfGOwfXF2UCBGOwynJ8FCR6dJoVzoJtBS8ds04Fd5XuIp3oQdumgN6LTvVcTbIgTLn08m0vvdP9OuLnivP+y3ftLj9xRczy1VjYqVh6jEcK+slS3Dv0VW09r5/CYGLgUkSgURPtVOWycB8m7PZAA0xsOsr0CIl7SdVsKjIyNb0hiCsa2VGOxIP5NcevIbLHuu2BuquELI7+oj539i0W3nwZNm7p3kP3xLxH0Bi/Ir1hoSEhvul7MOQaX8OsgVge9EHMsFUjnvdGvagzXoBIbFUhcHNzePRvWzS54T/8V0oa/f/vB2FKO0Q2YYs4n+M1Hc35zMEpMYDsZG4F65NisIc8QF/VUK8WudK+rs0SzA2b83N4qtCd1XMK7DQV/d074/YwDP6NCrLiNuvEZAaudwTdB8/3QOu4W0VIUdzffvYApYDiYvu7YhCAczAQ2B6M3n4+bVnslz+fTzbVzo+TDu72X/zuyU5W3v4YU4PO5+u3aX1/dBolzpQ1stgdaPSrA5zMi59q8pet+C5qhqTjpRdNXgwrw+UQ3EvR58uNv76VXr8q39el5pQCfz6zsRvVnJFwKmn82oPyhe/VeF+DzQXT+JbkNEZ1/yUa9iM6/FoToztFqTe26Tg0Z9Xn9v06nHx4BIktCZJFSdvkH+fPQrNV95Vk7FRANK0J0r80hp/ZlbnqlldcERA180gKIrAnRlYHPlvzdNU+UNiio177rrueByIYQ3do8+3TjZReC1vv/Imj+19U7QGRLiLJTfs7zCpf7jGrc/MzP2QHJQFSeEAVEtJJ6nleL9kufZk2+3nENENkRopQmFoqkO9MCctt/u5+eI58JRBUIUaut0iv/vN0Qkno3fsHdY2dcgKgiIZr8+pzrE1m5kIxTZ/7O63fDFojsCdHZDtsvfs2tEpbevMXF+Jd9fwGiSiS8dUeUWnnsUtD+M/PqvN/2+CgQVSZE5V7efdgia6Boe9Ubmz9da9YdiKoIWGmgHAjRxLUPX26OnBy4qdeR3jekLn2BqCoh8pt5dcCvd2cHjndbluK8oN0pIHIkRGPT1EdX3+3oPfFSQF/VkRN7gMiJEHlM3hwTljHAd7V76Q29etS/BkTVCJF4y/Zz7xVPQibUbGsjmtQVMkQ5E6LISmbrzv99STTjTIMzN1vWewpE1QlRZdfWnhrlKZ9lTaZV2fntCRwbLoToy9JhHV/3/uaTtvOxcIdZzgogciVEbXLkkXcbDPWdIh1RZV5rh4NAVIMQ2ZRuIN5Ufqjf+CnxNw8uqAQ/S0iIPru2PTNrZl2/NdNtAr7suBDBIKqqKWAhqrJaVvdct65NvJb30Uyfty9XyQNR1UQ2E1UlZvemhcdOiRdvyBt6pvowKmm8uXhIgkIpRZy+YAuA6xF3CMnzslibOnUcCIiBESI6AOp43IJuoJCvxlxVEwJdFxJuYsGrUicEgk+ozGEECI9vlmJkDjkbaOafRsVfBPndSr31V8/v5iFa+7rzoE6Lxpfl8TAqzwlC2ODnBQQIWQ/tCFalD0oxEoRcIVmLSBkYGljdk1QGWxwp1XLs+Al4P7kCWzqR40QoUcET18o4eTS6g53jjsOTV+eFjzsafn/AYgm1Daml9nOY5eP5Ir7jBgjXTU64LpYySl1G4Ucd9Yzk3ImJJs1XlyZWohHGSQbKhCAA0bawZq8zb3M/7nXFxR9DN7w4nbvQTEhtZmcRRTwWUWlISvjWXgV3YrD7Iov/PbDBzqg21xO4muShKLLgT0YHEgnW1BUTf7V/IQqbVerhuG2+jagnJIt0BIsHsG5yggWGOuF/JrH5n/+YG4rE3ECP0A3G3CAqfYKDuaF2ab18pY7MDc7vU7/3dT8jyl19pvuUQxZuPDpLugXigbnBGyLEetC9VWm9nGVRmRsEtVO2zR1xy2vloUajs/qsuGJ05gZ3TlTAuDHRKtPCNpj4Y26o8G/390dvvA/fkD3PXfChMzXlb0zmBidO1dkZR3UGZ26o2jvbvUlCtveC2+bXmvemHe81PHMDZmVYj94DK2Mw5oYLmQdyZvZvFZ7942HwjdVCKq+OcZgb3DnBqU0Dp7DzcsViboj3+Oz3IO1w+NK2u75WGVPqg4kwNzhxIgTmNBG3TWaL204tkoR8b1PVf3Smq/nT2in7qdFoCIjRhFG+IbpvHPhom+HCbgJkJAxWiDHgVxB3JQsBtioNzlEAjC0xXmHsRYRuw3UKnOj7l+j3ZkbRpESPZWAryxN4W1xGqOQFNFDVUr9tBewFCmCA/Hb/OvRvlbanY3hG5IIt47+Z9aVlk+DdiAMK2OXCIiW6/eOh520LCFACahAKG4kFjSz1qjt2xAAix4WbVK4CwxfI0c520vvtLx98O+a1tZK8csOt/lQeHktf8mbmtMwXFQZYbv3rM/7q29M3516Zia1PHTnIA2A1OQEDI8ooQRTuM+DfNBew/TDpsCw4dGmN6ZLDqtq9eLDF5VTbgHVju7R4veNRtj1GZAKUIR6SoJJpy56xoNbbJ8rttwbFC4Bpqj21MfX0vYF/heaedndrPNDWhwfV2nKqtoyRVIuKj2f8qleoZRNSwJ4jlTnP922SxfM2/kskG+6/CdvpQ0/4IQ5V4Vd5byvtQdikHFRRSY4HNsUIxziFzTH6XK16a3CrrV7ZPXo7Tum6j7prXRkWv2rg1ic8ySyDtfUyPTrGNxEp4wDkeAku9hhp/mOwxWF+o3hYVKqTR6Sn7Qp/YYY6kH+lx6bCwjIA9Mc+iAbyfcHgn1qG9eiOjjtu3iEFQIHbDbANEow2lPFCN7L5OUAPJ0CC/8NtmhruRiuTZCzsJVVdsn980TwVT1Ze+3xv6ntq7qRcV6zogGljiOuF2RgX/1t2AzZuFK2Of/5C2nD6Uh52JtIhzGY+iJbp6Q0wmIu7JVy3gPq1u1vRyni1LDoRGx5YTRQSy6bvDl6d8mKb/+byghrdL7a8Tj2Rkf9c5vKXIiwJNhgMtp4o2G64Y7ARJmEqm0k4U77226YtlaHj37wM9rgyUkz5braRMqyGURiWqFAgbAFbwOxO3gcLYbExK48fLFHIpfggT5JrYoVKsExR6W4J6Fl6jvdkaIEq1iNK7leGLfmWAdANKfbcdwjE6vDgrqtMjRViY4ihB6EkooMo08Vv7tXxif4Lp7lQw2fsQczwGb9c2HSmVyXwEDL0hciNRYUMsBlV1zKs4bOOyDlrkVNRhhocWkj43k5ZmetSb2PArtmv+lf+Ue536jF3YoCgUzpUKe8F0W7YSOJAy6eMQQMs8kUtOicnyAriULtAzY5HMAhpZQoP+DdqD/+APjDI7S9T0Uri4E9xDbcD5iChYsEjwKI6GVc1Ust0x1ScSVJMvfb1IGbBK2/Ugcwm2CzQayPMMQzDFsYKeP0uMfSlaFrOg5aTWr9t4jOzwu0/v3+scoGWmIDfCpGYwC6XBBQhnFD4aB1VGpujMpmef3RryU/74xJo+Ve7DHHgH9nyz1kL+TSTh5xeG8cP5DFznLvJJ+/1Suv48dFjc/FHHiCfbsYF+QQzEvLpvFVl2pGQG6AqE1FESVZlIoooyapMRBElWZWJKKIkqzIRRZRkVSaiiJKsykQUUZJVmRP2hdS2m9TYb9a8P5tFfN61lFHyBgcvcvTRyy95KHmbwab/WsFH3W9ttvJbYybtd+1JBar+K+Gb/SKFUg3DRSyBwwzKy7HMtlp+ctjuOBb2B8YfgC0p4TqTKEPQLb1PLzkt9BUZ4KD+SA9qmUUwP3ADeWIErMhT9EvzO+PZNoxJQwlVA/AAv7DXBR0N6uyQMGNW2NTnDTo0GdvudHFybSW7jX0RYLWgNOF2XzHICcGyejIz4c+FVRVtSURBrJAopR9xm7Q3933o9tLzmle7PvoMj2URo7qEvT+ZOcQvSzkpYKJP8mEeUErhRElRmrn5wBWnNY4g5xU22TDMyCkHl3pk7Rl7quSnfYbT/E19Q3a7qa+dy2mrMWI+17MxMYiQCTl4eHq6nvnchtrsIYQougDfJ/RAFNuEBGfD2+kHwz6V8c8t23jBtcGjPU0gawlBGscJUoqeed26vnL8m2u3qvKHDJZYZDdQn7Lrz1Ek5AVkZj3zCvL7m1aLRz6XmUXUSkoCnUGc6PTX5nRnsjnGZ13DQsyafBbNXXnWb3l4YHfmRjzTE5qxgFuTms/VlrolKfWi3KcfsNA1N6AjbHeBYXoKYTuL2oASwCYQ+rk63dK0M2/ufPK43MqwMd9/j2o65MBO6mYnlo9lcesUYWFWnG7iimnFBcBOP4ZgRaDGGGSAuK2fryuPgSUDM40dqqeJj0KqpvsHjG36JmX8+aFUMndLMbgXDVQBkYFDAgjTVU6YTuvp7ApPodFzzUZLoUFLg40RmEITMmJHDwwawg7NYrNDovpnm7QZcyckw2/5a00bJxf6PnScJEGI79Mg9svZQvP6+H1ktgc7lyIRxsuS4CWZSh5NOEidzBL9cBfHG6J2yguIdc2SgWFjaQFwPY+KyVMB6k/M9TJU5bE0FL65C14H+S2DSk8/MeXn5sDxW2vtfBub3ZAaImEPYIZI+OXC5hz9nFtxs1sAHnMIjw1qzq0FS5bv5npVk9ji78NFkr5pYJ4wq461z4bNl46UnnjiPjX7h9/PzP4R1wvD59GJZg0iKk3y2pOS5Wvxb/Pi7ptAfN6ac+EDho8xKgwssMKNwTgQ7QX0H/26qNl2lqj6yzRcStvbvezEY3M2+a8JX5QzqMW3YKrS8PuZSiOu815cC7Ryh1Mrf5iUVl4dILWil/uywwxegkxKGF90z4Un2YLNHZb7TMs9NbVllXBXqmJCsfuZiiGu860YLw/CnMBtRsZ6NbWJWPDJXL8FmbMWA2xhoZAXhsfSFPHe1um/BE590b3WsLz5UhqlEP4ABKUQISgJRJ6YcyFy05z067PZ/HrOrOB3Pdq1DRz/7rvG4sjNt1Qd45+oezFMe+0Kg+rAhUmx8uhYEFbCs4UStRqyQWqrYgj3r9vig35OG/W+zDGJX9cjA77TnKgTZVS/eIFVXRbTr+uZAa9OhBo4eRJG8AuPMOFvgvzilhvUURPeNfDeExfXrKa8L9W1mbMFNlqBgZ0/zO5uhxh6omo0hA0xDPWyWO3DiBGFtzShHNSC9UBqfH8AtlGA/8+PKYUpYcORiNL9uVE7qsB1LQaYIwowyGOdpZ3Mc0w+cUUfTTyxTdLTHDxkriaac2WuUrWYz2XDPGyn3/lTgqOi1O5O7eRPgypSGbdDKUSoTEPKhrRzKIgHgHvSgDsVNDpVnewknZmC67WYROBUua4bN2CRfRF66KmojRuYo8i1OMHkmyT9CYJvEn4SnW+SzhdJ55ssMp8k/UYEnySbbXLxk6uAzdGH/rbzhEO5t44fFi2MfbvnaJkNVaj0t97M2eFdKLndK7XrCLPQAeFL/zX/Hn7s4Yni7pmA2XEeqtMTVb3wG5AetTiBIHJkA6koJMG3Qo7L+s0KDZhpeTqysWvrdUUgCaajlPz7vTSbiqsCDwz63LhnFVlxazghSrmcKOVYnKBTAHJWu+C9FmBgpANA9Kp3qg/DH8X0YcT1ktjwxkbMJ9RGk5s7hhRhT+f9j9lTOp2PgeypjNOehv9nT0n9TNm1Prhp8399lk+vYKb+8/5NHuwpnaaJB0sRzWkpfi9xe5oyo2fH15PcQ5b7388dsWpPXR7sKX2TgAeUwjlREpekPaX7UKPb02hOexqutafzTX5NQJ9O/BSztSjl9DpNlOC7471XbM7VtOKSRcAlQR0LriVBdS3k6bwVs5UnITdAMRuCA4809QgOPLKYDcGBRxazITjwyGI2BAceWcyG4MAji9noERqjYg1aRXQOl8aex0PF2gLelGxtQCUXjUcSQapIKpme82foxIxNJ3TaQh50spBNJwt33f19woNPgbm7tuduHniPes6vbIQkXqZg9kZhM2xu3sIEeEeBDl3CeKVGhpMLQXpuLg5bOu8i4lV0sXbWUdEqpUIRCT0WvJh/5PPVrzRL2K6J08lqE2t6zagVK3hcLZGVd9mii1qmggTg5MfW9VUm9lPAWi3YRQcS/0jlGuK7gwgDZjnyUjNpKiHbHDE2peuJBbPLAQPaRiRInSCyCpWo+svjQ2QxFAdojV+OhP1OC163xK93ViYUvEq1wuUD64ltZ5U7YYeBGKGC5wY1cvytzMm3Qk0olSQpMF4KabdIeEtZwosw9VLgEharK4iWTPiCAHZRlUsUIsgFVcARaVQySZz2d4yYWHsPMVQXmbxbprOA8rRVRx//PPjlPeW4/PLWcqRfXmzymNPpVU13e3QzZ2F/lrawfwlvbtJWYDg3ieDNJd0kgjeXdJMI3lzSTSJ4c8lYKPes55k5a8+IN/8xduh1Qae6BWKhRX9uW+D9pHXgzPLxzVcHDx/BcK7Q6iMHEp2MlwfnupRNkybarp1OOmywdu3bLbnatY9iUsnw3K79YfcKpUunDg9NT26SNndn744m0K59qyVX89ss4xBmUHtOr1y50gDt2vu4142KmXxavHDCuG6DXcTzTaJd+zJO7cw1Be0YpF37pePV1y3UTPaa9D3GLPKNxUOTaNc+hVM5o0xBOQJjtmtfaXFLsWdnrtdW2Y3DdxQV7EyqXXsSp/LiTIgoyOjt2h1udheWHXRbNPdOmdOHgkY7G7ldezSn5n43uubgTSXWrl0o+71Cw33ufgvbJ5itKX//kkm0a8diCNZ27aO0ZE/L2OLU/6V27fS2GEZu1/7Nkqtd+yNmSFsi7dqVvhd6Tl70h++UWjHB/1qu2cF7u3Y6uRkPLci/WHK1IH+lH22iHu3a/6rYvPTyPlt9t7RJL9WghWx88acwDSu6jeABq0ecWP1tWJtr7HbtGWxm7D8S/iKR8NO7CRmMhL+zFRcJ/y9WJUHC3044st5h4WrR3EP3vu8w63Sbx9PmPNtIuGESacXFWR5gZRAS/n+O3mw7IOdb+Jqy3xKPHOkdaHQS/o6cqIBxYzJrB/0O/vBHwh90+sytFK9zXgfmWjh71Pxy1mRI+Btyqk5oHNUZnIS/Wrslitx97wMnNeu1b9D1ax9omU5Dk/BjVoaVRR1YGYOR8A9RLP/z8+OD4St+RluNCo+eaAIk/B05wfnFyoAk/H836WG57ZcfQYsulsv4ciiZuvQxHgl/Q06EwJwm4rblbHGb2Ltho58drnqvve2adXnpy+ZUHgHsEF+CUgE8OjNms2DBuUV+ikSefz/BhQEQVykT+8eCGA52uVbG6MXlQO+wyPq2TNaDAkJda/tAILQP4psH8F1LD5MuAnxnM8MkPQ9WVc5/LXCVwAJdLNR77sdLzSoHrztyq3PKaQtao7Oi9O6ihVB0w1jMEArS3u6xYutilw7G7mb9QigbfPpKZf1VMnR8KR3uofr2tabPjiVHniVuzI2nnZDCbkSckMKvlwTt7xrO77/E6MGSdmTqESjBV5YrpfJoDm6bES611m28IvCbFH3QYWnn4XWoY5V8AHOsaiUloYzZnMqYZBrhj0CfjIVHcLxSA9yXJBrunbp5dgBLVrCyiGssbNohOlapkjYWNuugHqTSYL+go9XRH0cIVsTMC14+MN1vzvI+y6h+DX5AlCZZgeh/mS8qCWWN5FRWoknMHPgovaLVKvkb3fGJqn5qjhnkPG3GxGEOfwfumTdoyezK45KKs1Qu7tLBkzDk8KjnRQYvVFPx+mw9o1TCknNEW9vVEQkNXR39U5ft8fdtVuGUcZe9AIDlJAA3EABA06JXJEq6MnaSiWMv76anSc0CZv1R+17v6XeTaa7MsId9IQDjuQDoOkQbaK74H6vHoTfmNlg9TntrrnocC+uSrsf560Vn8aDu30Nmyzb0iu1VX2UC9Thtrbmym57WJlBUMHnyZAPU41hN3TPRp/1Nn2Xj6yf+XUNyziTqcepxaqe6KWjHIPU4+weI43rf7xo4qc87Uc0P6jiTqMex51SOhSkoR2DMepylsVGua2olhKRNnXy2gZ3rR5Oqx/lhxaW8d0YPdk2oHifvymrPFO9pPpsne8cPOu7UyMj1OE85NXfX6Jor0Xqcnx/3+zeo18p7tn3r5MnSq5tMoh4HiyFY63GAISTi1JX/F+pxbEo3EG8qP9Rv/JT4mwcXVDJ2Pc4Ia656nFhmSFsi9TijRx6K/fgyRbRnllfTsXb13/Bej0Nfm/NQYzLMmqvGRGVdUvU4Fbe/UZr9IvNZuPp8W7t2UaN4r8eh2wgesIrlxKq3YUMdY9fjrGIzY4MOyBvJw9aJdu4PV/zzoMdLaqakUyI8O+mvkiTEMk+Y6pG+qOMrVyfA02PabE6yO37KVCiBnHn94ScgR95n17ZnZs2s67dmuk3Alx0XIljfj5nJKShkjD/LKGDCwgsexUKMSvq5Jx1HpfZp9MZJ9cUCX0jM5SCC/2jnP+X1xZdF5idso2QKoDCZNBDY9SHk4zC14qpczaZKh7w0X/u2F0TLW9w/sOlkki+NBQOtwIq4dUfoTGCFiyiHrAhnwDh8xReTB/2QfBGYPHSNDkqxaMkTRGTTLIgWuQe9CdQz2VD/MW7LqkoeZj47ejouzEwIXV3o6Uurkkde5xOb9NN7PJ3YLOK84dLIHTO6RtawaSRjZlri86BP/vMGOagXTm7ci7on6geLZzTMiIx1eYnfIFQDr4/3u0xUw5AX69UWq1RIIR0jLAmMwf4OC4c1kv5qnWIQ+hHJciHK6IEyqfYm1Kszt3Px67rSgAIw/ctC2nQfRFEfJFWvXxZBvwQhgus4BP0S/EenXwobd7tj1IlnXmPPbEu1eB1+lU6/NKbb8pE3E3oGpB/MWPAofWpHUk4eRi0yPRP9gxH0TGyatobsAYQa0eSDX54Orf9qk3ju24PnvnTZs7M42uKfDh9yCEG9VkCFPHdByNOurFEaT1rD/o591OA7xPfPNxj5v2OmJsWzbeRwBEsUm67s/fJnGwiINIkqdOB6sqF40Yr7FUNz3vyhGNg6619OlZmL8CchuI4JQUkorSmn0uobVmmkCTYLEeEGFd4yUjvvMd2Qc5Qt2KvlS7S+lserZSqs6g58BMVgInWV9PrzizFrPoRN+aVOZs7iEQK6rsxDEzWSfgotgYWAluyCn+rJdFeehXJ9FdFdcSnVhVOplcoyuL44GygQg12G87Oga6ZpNCmcA90MWjpmmw7sKt9DPNWDsEsHvRGd7r2aYEOccOlr2Vx6p/t3ws0V5/2X7d5feuSOmtTzIFZRsfIYjRD2laW6deiv2HpaO4fHxMCliEShINqvymHjPEje7YEEmN5wkO0VEPGSrttSYGQ00hJTMLalGosF1mbFrSOzxbrvgrmphi+M/KLBnnsXZC4+EDauU26dcV3GUtmGzFi+YqEhIb3pejHnGFzCN4BYHfRCzLFUIK1hpl/VGK5BJTYqkLjkeDa628D1rM/4ShtarMv7YsfYUo7RDZhizif4zatwfnMwSkxgOxkbgXrk2KwhzxAX9dTB7b2HVJooC5jVXDj4zrb2x6jjEt5tKPhLccL/0bD9vUn4GRVixW3Ujc8IWO0MvglSI/SOu0W0FMXdzXcvYAoYDqavOzYhCAeTxeZg9ObzcdNqr+T5fERpW7t7uX0P2lk3YFS38+XUBfh83F/UFSSnrQ1becHub808h6wCfD4t67UfEbf8gNfWi86PD66tX7YAn8+p0JQpWY8qBs169nKFZEfE3wX4fFadW/HYecSM4LXbm465X+l4ywJ8PojOvyS3IaLzL9moF9H514IQNZtfOXD91h+iyS4/DnndS10FRJaEaL65X2JrH3ngNN85tU9/PD8biKwIkdW01WERfbxD54/dez9i5GQvILImRHlDwpYlflwUutMuvVf7lx8g+6INIZqxZsWBlHBb3/1TJyf0694sEIhsCVHbMtf9Kn54Hjyp7LkLmc36ngCi8uQDV9+/ODH+Zti61VVav5S2sgQiO0IU2/j3Lu6qpkELrpV+G9djwlAgqkCIGiRYVekj3O+fLf5uMeJO/EQgqkiIVE29IgTul/33lz7nP8LnbhoQ2ROiVt9GjfItJw4evSzE68volvOBqBIherJOYStN6BGaMenTObN/u74DosqEKOboE/M9A7/4jk24/e5Gr5n/AFEVASsNlAMhutKj4Xeb13O8clatiJ639uFWIKpKiF4/O3ok2Gpk8Px+Povtms6GRIqOhGjYjqmxIbad/Dcfjpd2ayu1ACInQrTNseyjurcTQ+dnX6s+4uL8Q0BUjRBZj/ir88AF14M316+3p7nfJBUQORMih4dPGpyZ+TJ8ttqqYqRXhRlAVJ0QTehuETIu+Vfx3LRBr+NHfDYDIhdCVCvK/dSep0N8lvX6sGu2Y2sociVEv4mm/T7M7c/QbUOFFSrkOi4AohqEKKCBZs69IdV85gy81Dy7UvITIBKSk2j3gaNXMoeFZre66hPX1vEMg6iqpoCFqCr2tXJvi2pnw5fKJtfdMKH2KYTZ0Jeoah2biaoSs3vTwmOnxIs35A09U31YBnXpKh6SoFBKEacv2ALgesQdQvK8LNamTh0HAmJghIgOgDoet6AbKOSrMVfVhEDXhYSbWHDHBtIGozKHESA8PmWjXwPN/NOo+Iugm9Xb3Jt045cIv8WjfvnY5NR9KhV98Q6j8pwghA1+btmw1UM7glXpFRu9YuIWkTIwNLC6J6kMtjhSquXY8RPwfnIFtnQix4lQooInrpVx8mgkir2fvNowPlQYuKjOkjcdohIeUcvHtZ/DLB/PF/EdN0C4TnHCdcDGJCI55lFHPSM5d2KiSfPVpYmVaIRxkoEyIQhAtC2s2evMra5sPzzX77woPfb1pje/eFelVRoSj0VUGpISvrVXwZ0Y7L7I4n8PbLAzqs31BK4meSiKLPiT0YFEgrU4rNqAfS8X+85dYvng5K9bqTyYRTqCxQNYpzjBAkOd8D/r2fzPf8wNRWJuoEfoBmNuaGbLxdxgb1sSzA2OFheXHT8WF7Zs8eaab5cebM6js6RbIB6YGzxtuQ6617M1CHPDUvPLa8eddBDlZte7W7mxZUujMzdU50QFjBsTrTItbIOJP+aGC8E2gS2/xgetrbQzdeW4KT1MhrnBglN1P0w1nOGZucFq+Orupy3mhmf8OPplyR0Pao84wzM3YFaG9eg9sDIGY25o6Tw79cX3r+L5cyXm/2aN+mkCzA3VOcGxtzUgc8Oi38rnjVjW0H+JY+be2pHrnpsIc4MFJ0I/tHHbBra47dQiScj3NlX9R2e6mj+tnbKfGo2GgBhNGOUbovvGgY+2GS7sJkBGwmCFGAN+BXFXshBgq9LgHAXA2BLjFcZeROg2XKfAib5/iX5vZhRNSvRYBtarTLTFZYRKXkAD5Srrt62AvUABDNBF8XO2/n1HNtJ/2yKn3PYDYl/TsknwbsQBBexyoZESzf7x0PO2TmWi+ooxCIWNxIJqlfWqO3bEACLHhZtUrgLDF8jRzvZI1O6seqd+C1mR2GNiVsqjH9Rp6UvezJyW+aLCAHt84m6dmgkzwyY/Ej7b3Wl7Qx4Aq8AJGBhRRgmicJ8B/6a5gO2HSYdlwaFLa0yXHFZ17PN3FyuM8w/dV6XLq8wVW3rYY0QmQBniIQkqmbbsGQtqvX2i3H5rULwAmKbafqrkOt9nvA/Y+myS0x2VQwgPqv1WiUu1byqZTnw841e9Qi2bkAL2HE1ZtsLCfpLXbK/t4xYP+3Pph930hB/iUBV+lfe20h6ETcpBFZXkeGBTjHCM2WyO0edq1VuDW231yu7R23FK133UQofKsPhVA7c+4UlmGaytl+nRMb6JSBkHIMdLcLHHSPMfgy0O8xvFw6JSnTwiPW1X+Asz1IH8Kz02FSaVB6A/9kE0kO8LBn9K+eLWp3iHFAAFbjfANkgw2lDGC93I5ucAPZwACf4Pt2lquButTJKxsJf0W+95uNLY3T454w7NDz9eg9qWuFxXrOiAaWOI64XZmOEhf55IO+cVMHnwxuBmgtu7ediZmABhNvNBtExPb4DBXNwt4boF1K/d3YpWxqtl0YnY8MBqopBY7v5rxR8+Iz97TfW6+OzyhjHVqCcy8p/LXP5ShCXBBoPB1hMF2w13DDbCJGxkMwlnytd+27SlMnT8m5fBHldGiinfzTZShtUwCsMSFQqELWALmN3J+2AhLDZm5fGDJQq5FB/kSXJNrFAJlikq3S0BPUvP8Z4MLVDFekTJncqzJd8yALrtij33HQKxOjy46ypTY4XYGGJIAOqOfD/xrLif35J/J1pMjO1DK8bCHsQMn/HLhU1nelUCDyFDOERuLCpkgM2oxOVZw2cdkXPWIqeiDDU4tNCNXOoPnRfmOyhw9bNqE74oF/WhHnMnBgg6pUOV8l4Q7YaNJA60mpY3ShW7RefkBFlBHGoXqNnxCAYhrUzhAf9G7eEf0AcGuf1lKlpJHPwpruF2wBwkVCx4BFhUJ+OqRmqZ7piKM0mKqde+HsQseOWNOpDZBJsFem2EOYZh2MJYAa/fJYa+FAlF/7yxrr0vXfJa16TZpohvGedpiQn4rRCJCexySUDRjhOKplpHtYnNUZlMzz+6teSn/XEJtPyzL8/V8s9KC3mOyUNOr43jB/Jv8itPrOp18l37SDk/QDj8IA+Qj7DjgnywHQn5Zt6qMu1IyA1QlYkooiSrMhFFlGRVJqKIkqzKRBRRklWZiCJKsioTUURJVmUiiijJqsx5x7Nd6is+++1opcg2z8nZxCh5g4MXnV2hlV/yUPK2hU3/tYKPut/abOW3xkza79qTClT9V8I3+0UKpRqGi1gChxmUl2OZbbX85LDdcSzsD4w/AFtSwnUmUYagW3qfXnJa6CsywEH9kR7UMpNhfuAG8sQIWJEP0C/N74xn2zAmDSVUDcAD/MJeFzRmwbWv08zTRFll/jr5qsmaCcXJtZXsNvZFgNVEW8LtvmKQE4JldTIz4c+FVRVtSURBrNCpjHt2nhMDv3mNae2cff3hhXk8lkWM6hL2/mTmEL8s5aSAiT7Jh3lAaQAnSj1smZsPXHFa4whyXmGTDcOMnHJwqUfWnrGnSoJO3fqrY4uH4XtG/rPufmaVf4yYz/VsTAwiZEIOHp4eoWc+t6E2ewghii7A9wk9EMU2IcHJrhtR5xfX3SFpE9WZqjEZShPIWkKQNJwgDdAzr1vXV45/c+1WVf6QwRKL7Aaq5fM0q382/ek3La3h0RZVd7emZhHJ5zKziFpJSaDTlxOdrrZkYLSVzTE+6xoWYtbks2juyrN+y8MDuzM34pme0IwF3JrUfK621C1JqRflPv2Aha65AR1huwsM058QtrOoDSgBgO2Ifq5OtzTt1Jbnrden/eW3/dL6h5c++felbnZi+VgWt04RFmbF6SaumFZcAOz0dQhWBGqMQQaIc/r5uvIYWDIw09ihGjHo2uibVrf919kf7pTe3bUt1RKJwb1ooAqIDBwSQJiOcMK0W09nV3gKjZ5rNloKDVoabIzAFJqQETt6YNAQdmgbmx0S1T/bpM2YOyEZfstfa9o4udD3oeMkCUJ8nwaxX84WmtfH7yOzPdi5FIkwXpYEL8lU8mjCQepkluiHuzjeELVTXkCsa5YMDJtP9gDX86iYPBWgfsNeL0NVHktD4Zu74HWQ3/L68z436hweEpjdt/WxrxfyhlNDJOwBzBAJv1zYnKOfcytudgvA8wHCY4Oac2vBkuW5vV7VJLb4+3CRpGevT9tzZEp10UbnrLM/4kOoLEfE12Vm/4jrheEzcOsX+cVLdn5pNy8k5tmaC3nAJ48THzB8jFFhYIEVbgzGgWgvoP/o10XNtrNE1V+m4VLapwnN9zX/53f/1L4Od6Mq32pGVRp+P1NpxHXei2uBVs5zauWoSWnl1QFSK3q5LzvM4CXIpITxRTPhBxyy8XvrGj5v4IYDQ7MGlaMqJhS7n6kY4jrfivHyIMwJ3GZkrFdTm4gF/9jrtyBz1mKALSwU8sLwGFz6xtnRs277bvh1waGqX9p1o1EK4Q9AUAoRgpJA5AYnIqfsSb++nc2v58wKftejXdvA8e++ayyO3HxL1TH+iboXw7TXrjCoDlyYFCuPjgVhJTxbKFGrIRuktiqGcP867sLRzmmj3pc5JvHremTAM+2JOlFG9YsXWNWlM/26nhnw6kSogZMnYQS/8AgT/ibIL15mnNPEoHk/gkeVe7bCt3S76tTBxxbYaAUGdv4wu7sKYuiJqtEQNsQw1MtitQ8jRhTe0oRyUAvWA6nx/QHYRgH+Pz+mFKaEDUciSvfnRu2oAte1GGCOKMAgj3W6djLvMPnEFX008cQ2SU9z8JC5SrLnylwptZjvZMM8bKff+VOCo6LU7k7t5E+DKlIZt0MpRKhMQ8qGtHMoiAeAe9KAOxU0OlWd7CSdmYLrtZhE4FS5rhs3YJF9AJbMTkVt3MAcRVYlBN8k6U8QfJPwk+h8k3S+SDrfZJH5JOk3Ivgk2WyTi59cBWyOPvS33h5X87YMlfqPqvFgxsdtn59Q6W+9mbPDu1Byu4iGwTcGPDrrneuf+qjmpRZNirtnAmbHPqhOT1T1wm9AurXSCQSRIxtIRSEJdu+lHLm0bf3AjP1pq6bOrzmsCCTBdJTqZPVSr7l/WjxX2vJQ3X7DrHhAKYsTpWWVGBSAnNUueK8FGBjpABC96p3qw/BHMX0Ycb0kNryxEfMJtdHk5o4hRdjTXf9j9pRO52Mge9qZ0552/M+ekvrJej8mo/L1W2H79p7o5ZSkOsmDPaXTNPFgKSI5LUVAidtTl+jDreetveO3Wv7s36DfN7bgwZ7SNwl4QKkjJ0q/lKQ9pftQo9vTSE572lFrT3eb/JqAPp34KWZrUcrpdZoowXfHe6/YnKtpkTwsCSpV4loSWGshz+WtmK08CbkBitkQHHikqUdw4JHFbAgOPLKYDcGBRxazITjwyGI2BAceWcxGj9AYFWvQKiKHGJ09j4eKtT28KdnagEouGo8kglSRVDI958/QiRmbTui0hTzoZC+bThbuuvv7hAefAnN3bc/dPPAeNRouGyGJlymYvVHYDJubtzAB3lGgQ5cwXqmR4eRCkJ6bi8OWzruIeBVdrJ11VLRKqVBEQo8FL+Yf+Xz1K80Slu9yIUja5E149tcatVdPa1WRzRJadFHLVJAAnPzYur7KxH4KWKsFu+hA4h+pXEN8dxBhwCxHXmomTSVkmyPGpnQ9sSC1IjCgbUSC1Akiq1CJqr88PkQWQ3GA1vjlSNjvtOB1S/x6Z2VCwatUKzw9oJ747ciKJ+wwECNU8NygRo6/lTn5VqgJpZIkBcZLIe0WCW8pS3gRpl4KXMJidQXRkglfEMAuqnKJQgS5oAo4Io1KJonT/o4RE2vvIYbqPpN3y3QWUJ626ujjnwe/vK4il19eUZH0y/tNHnM6varpbo9mcBb2p2sL+w/w5iZtBYZzkwjeXNJNInhzSTeJ4M0l3SSCN5eMhTbvrd/gxNp5gdsuuFqrf6gaF4iFLh+5cbju9JchaUkR1+IOKA4xnCu0+siBRCfj5cG5HmTTpIm2a6eTDhusXfuqylzt2hOYVDI8t2u3c9wx55j8eejKy3+Mbp552BTata+ozNX8Nt04XCjUntOLFy82QLv2ybMHWgalxoUs9Iy8Mv6PU0km0a59Gqd2xpqCdgzSrv2Lol6Ufd0V4m0ql/sdnCKomXRjtWsfyqmcBFNQjsCY7dpnWeckaDZJAha++qt+ysfjVFpiY7drj+FUXk8jcUCZZLv2Iw5dUnu0nRWSHjx+u/uBxEwjt2uP5NRcgNE1B28qsXbtKdXMa6XWig+d5Wd7Ntl+MrWxubHatWMxBGu79gQt2dMhtjj1f6ldO70thpHbtT+rzNWu/Q9mSFsi7doFY/5st/b0Tf+dvef/VV0xaRPv7drp5GY8tCB/UpmrBfkd/WgT9WjX/mlZSo56W+XwTSPzJlb/q48N7+3a6TaCB6z+4MTqjGFtrrHbtR9mM2P/kfAXiYSf3k3IYCT8oipcJPy1q5QECX+3yS6aF+N+8duwdsDlw+e87vN42pxnGwk3TLyrcHGWt6piEBL+7EuP485erO43N/iQ3d5R6u1GJ+F350QFjBuTWTvod/CHPxL+cuOjtzmEXw3IObdqWHR/x54mQ8LvxKk6O+OozuAk/NcedcwNfh8aNG/QxczH/dN3GJmEH7MyrCzqwMoYjIT/kTR1xZUGft4TuyVEmNWtOt0ESPjdOcGpXcWAJPw7nlp0OHiwc8DWQ7uON6/950sToLOACDlxIgTmNBG3HWGL28TeDRv97HDVe+1t16zLS19SG+NYY4f4EpQK4NGZMZsFC84t8lMk8vz7CS4MgLhKmdg/FsRwsMu1MkYvLgd6h0XWt2WyHhQQ6lrbBwKhDRDfPIDvWnqYdBHgO5oZJul5sKpy/muBqwQW6KXTSKnPhu1r/LMtOo65W2kxtadtkXp30UIoumEsZggFaW/XVWHrYpcOxm6GfiGUDT59pbL+Khk6vtxwd2rOj7Nz/dc7BTb5u30mlUuxnC92I+KEFH69JGh/53F+/6lGD5a0I1OPQAm+slwplUdzcNs0/DTTIVtWwTerYURCu3VraGOVfABzrGolJaGM0ZzKGGIa4Y9An4yFR3C8UgPclyQa7p26eXYAS1awsohrLGzaITpWqZI2FjbroB6k0mC/oKPVh+0ddnUc0807883uTR3iKlK39CzhB0RpkhWI/pf5opJQVjynsqQmMXPgo/SKVqvkb3THJ6r6qTlm0PGZHmd6dz4aMGZT5S3dLc2eFmepXNylgydhyOFRz4sMXqim4vWL9YxSCUvOEW0lPpnuvfONW0CW75llgoNfxhp32QsAmEECcAMBADQtekWipCtjJ5loU/bHhr9TN/rldvnFtXXZ7qOMetgXApDIBUDX/tpA8+j/WD0OvTG3wepxGjlw1eN8ZEaWPNfj+LUMn/jcolPw+h6yfhdXnf/DBOpxGjhwZTdrOJhAUcHo0aMNUI8zvM3In3NnrgpettvnSoY476lJ1ONU4dSOtSloxyD1OIsc5z5XXF3qs31L7+9eiScqmUQ9TilO5Xw0TrxkQvU40ac77DwaUs8r2+ehTfXs0k9Nqh7n3ypcyrtv9GDXhOpxXHNXdX9+tZt/6pmv1bf7nqtj5HqcPzk1d8HomivRepwqbQ5sX64cEzjh2eoFLUtPmmAS9ThYDMFaj/NRG6ce+79QjxPQQDPn3pBqPnMGXmqeXSn5iZHrceIcuOpxujkYph6n4t3RMvX1U94rXw1xm77XfSnv9Tj0tTkPNSYDHbhqTCQOJVWPcy5tYTdPj82hG1+2enjuxrVzvNfj0G0ED1h148Qq1LBxqLHrcY6zmbFBB+SN5GHrRDv3hyv+edCDmq+y7pQIz076qyQJscwTpnqkL+r4ytUJ8PSYNpuT7I6fMhVKIGdef/gJaKqc3QeOXskcFprd6qpPXFvHM6zvx8zkFBQyxp9lFDBh4QWPYiFGJf3ck46jUvs0euOk+mJBM0jM5SCC/2jnP2Pri3c0tT9hGyVTAIXJpIHArg8hH4epFVflCTZVOuSl+dq3vSBa3uL+gU0nk3xpLBhoBVbErTtCZwIrXEQ5ZEU4A8bhK76YPOiH5IvA5KFrdFCKRUueICIbTrbIPehNoH6SDfUf47asquRh5rOjp+PCzITQ1YWevrQqeeR1PrFJP73H04nNIs4bLo2ct6Nr5BSbRjJmpiU+D/rkP2+Qg3rh5Ma9qHuifrB4RsOMyFiXl/gNQjXw+ni/y0Q1DHmxXm2xSoUU0jHCksAY7O+wcFgj6a/WKQahH5EsF6KMHiiTam9CvTpzOxe/risNKACzZQVIm+6DKOqDpOoOFRD0SxAiuI5D0C/Bf3T6pbBxtztGnXjmNfbMtlSL1+FX6fRLY7otH3kzoWdA+sGMBY/Sp3Yk5eRh1CLTM9E/GEHPxKZpa8geQKgR3SDgF9cty0vl+c9pmzlgzYTjLYqjLf7p8CGHENRrBVTIcxeEPA0rGKXxpDXs79hHDb5DfP98g5H/O2ZqUjzbRg5HsESx6creL3+2gYBIk6hCB67mS4Q/3/1+WrQs5tahRFf7DE6VmYvwJyG4jglBSShNyKk0B8MqjTTBZiEi3KDCW0Zq5z2mG3KOsgV7tXyJ1tfyeLVMhVXdgY+gGEykrm4OGXpmtjxHvNVm44/h//Ryo+vKPDRRI+mn0BJYCGjJLvipnkx35Vko11cR3RWXUm04lVq6AoPri7OBAjHYZTg/CxI8Ok0K50A3g5aO2aYDu8r3EE/1IOzSQW9Ep3uvJtgQJ1z6aTaX3un+nXBzxXn/Zbv3lx65o+Z4aq1sVKw8RiOEfWWpbh36K7ae1s7hMTFwKSJRKIj2q3LYOA+Sd3sgAaY3HGR7BUS8pOu2FBgZ1bTEFIxtqcZiwZdit6i2xbrvgrmphi+M/KKDlrx/8mfcr+IZ/1Tu1D97C5U5xYzlKxYaEtKbrhdzjsElvCPE6qAXYo6lAml5O/2qxnANKrFRgcSlXd8qZeznx4dtiC33rKn12fOMLeUY3YAp5nyC39yM85t/MWyDaZbtZGwE6pFjs4Y8Q1zUU/vXVa6mGG/lN6HsnX+fK7pS96AwliJDwf+qPBf8j4wDP6NCrLiNuvEZAaudwTdBaoTecbeIlqK4u/nuBUwBw8H0dccmBOFgzrA5GL35fNy02it5Pp99r1RmbYZdDNiWNzl86Lw6wgJ8PvbdLLw7HdsSuLzCfIexaxT3C/D5HEnaePN0mwuBGfIbz9KjA5sW4PM5cn/AzF6LVMG7F763rDW0+e0CfD4f7q1ZtVM1yGtukG1Mlb72xwvw+SA6/5LchojOv2SjXkTnXwtCNN6yddDuES5hGaP2p9xv/8QaiCwJ0Yvdf6Yk+P4RtHVKyC53txajgciKEN2YNS9z56tIr4WrVszvOazlr0BkTYgs6tzrduRaj+Adw2ZpElN2iYDIhhC1G2XTWLr3N9/UC2dkDTY92ANEtoTocamINd8iHwdtq3tt/qAtlb2BqDyJxq+WXQaED/Za+KNn18i/tswBIjtC5H60q8PH8Vd8lt++1nXmbok/EFUgRKWGmYeWFgp8l+bVyXs049gKIKpIiEq39o85+o+n174/qtmOHdp4PBDZE6Idw2zaZJ2/673taPiKpQ+b9wWiSoRolEfYvsjfvgVmp95+17nCnllAVJkQJQVVl5facTz4wLWuj+0+/WUDRFUErDRQDoRo26Y/GwtU4IGPdzpPfhpzHYiqEqIBQ5+VTn6TFzj97rpPQ1XPdgGRIyEanej0+8KnYwM2lorWZH5O9gQiJ0I0Y8wRm07vr4YvvbSwzPT6jYYDUTVC5Lv9nMDsZbvwCZ5vnA9fPVgHiJwJkV/a8xsTv24MGuXlq259cDHUcnVC1PbavDyXR99Cd4iXJQeVKQd5pVwIUdU6G+6LSqn9dvipKu2xd4kGIldCVL/+njeLNv0jmvPyydzfJpaXA1ENQtQh9bIyya+e17bhz0bd6j4fEoQKCVGt0dt7fv7pGH7g99sfJ7kHLWQQVdUUsBBVtXm8YnDzNWu8dk9bf33Zng8ZPBBVnWUzUVVidm9aeOyUePGGvKFnqg+jfpa5eEiCQilFnL5gC4DrEXcIyfOyWJs6dRwIiIERIjoA6njcgm6gkK/GXFUTAl0XEm5iwemqkDYYlTmMAOHxtqr6NdDMP42Kvwi6/17F6LAzbToGrz357Ppc/4lTeTyMynOCEDb4OVmVrR7aEaxK91fVKyZuESkDQwOre5LKYIsjpVqOHT8B7ydXYEsncpwIJSp44loZJ49Gonj6SbxTG8v5QTMDT2yYP6L8XGr5uPZzmOXj+SK+4wYI1zZOuNZVNYlIjnnUUc9Izp2YaNJ8dWliJRphnGSgTAgCEG0La/Y6c0G98dcmdBjks+binO2XHnfpQas0JB6LqDQkJXxrr4I7Mdh9kcX/HthgZ1Sb6wlcTfJQFFnwJ6MDiQRrYVJwjZYVDgRPsthjHRTQi7pSLNIRLB7A2sYJFhjqhP85x+Z//mNuKBJzAz1CNxhzg4sjF3PDd/18pY7MDZqXLWZPenjDa+3t/hd+ez59Co/Okm6BeGBucHbkOuhe0dEgzA21Iu13ZTVYJVp056/WZg9aLzM6c4M5JyrfjeMTdagyLWyDiT/mBo9zDy5ezzgjnqdssKr0kZUbTYa54W1VLtU9MdVwhmfmhpFL4+++W9jXf/WqDr2mPrl+1sjMDZiVYT16D6yMwZgbZja+Xcba83hoVtOKF71m1qUWRRuHucGcE5zvVQ3I3PCzS+7PHt+3+c4NWDbAcuk/VApH4zE3YHOaFaEn2rjtPFvcdmqRJOR7m6r+ozNdzZ/WTtlPjUZDQIwmjPIN0X3jwEfbDBd2EyAjYbBCjAG/grgrWQiwVWlwjgJgbInxCmMvInQbrlPgRN+/RL83M4omJXosAyvWINriMkIlL6CB1676bStgL1AAA/QBhRcJs3z7eXgtcw106nAl+AotmwTvRhxQwC4XFinR7R8PPW/tahDVV4xBKGwkFpStoVfdsSMGEDku3KRyFRi+QI52tuqmc8edvPQmbMqsEcp/RzboQJ2WvuTNzGmZLyoMsEBFwJM+eS2CpytOBXUbeaYKD4B9deUCDIwoowRRuM+Af9NcwPbDpMOy4NClNaZLLp9zbMGDjI4fvHJa1n32T6JdRXuMyAQoQzwkQSXTlj1jQa23T5Tbbw2KFwDTVHvszc88396d/PbXvzXz88iWbXlQ7T+cqr1lJNWi4uMZv+oVatmEFLDnSGW2n7puTZtpvwZla55mj+gn9KIn/BCHqvCrvLeV9iBsUg6qqCTHA5tihGO8wOYYfa5WvTW41Vav7B69Had03Udtq1QZFr9q4NYnPMksg7X1Mj06xjcRKeMA5HgJLvYYaf5jsMVhfqN4WFSqm0ekpe0Kf2GGOpB/pcemgsYJgP7YB9FAvi8Y/DFOxa1P8Q4pAArcboBtkGC0oYwXupHNzwF6OAES/B9u09RwN1qZJGNhL1nTQ1m+ljAzdMua5n9IxGOoh9jLdcWKDpg2hrhemI3xWXA+YcMRK68tjlunD/xtcQ0ediZUEGYzH0TL9PQGGMzF3RKuW0D92t2taGW8WhadiA0PrCYKXaa35uGtmV/8QxaN6jr7+YPxi6gnMvKfy1z+UoQlwQaDwdYTBdsNdww2wiRcZDMJZ8rXftu0pTJ0/JuXwR5XRoop3802UobVMArDEhUKhC1gC5jdyftgISw2ZuXxgyUKuRQf5ElyTaxQCZYpKt0tAT1Lz/GeDC1QxXpEye2d2JJvGQDdesWe+w6BWB0e3HWVqbFCbAwxJAAX1p2Z+SKvrO/Wjh367Dp3cic1fMYexAyf8cuFTWd6VQIPIUNbiNxYVMgAm1F5OrGGzzoi56xFTkUZanBoIeF7s6HBxHmfx4euu73bZfA6iS31mDsxQNApHaqU94JoN2wkcaBV3ckoVewWnZMTZAVxqF2gZscjGIS0MoUH/Bu1h39AHxjk9pepaCVx8Ke4htsBc5BQseARYFGdjKsaqWW6YyrOJCmmXvt6ELPglTfqQGYTbBbotRHmGIZhC2MFvH6XGPpSJBTO8sHVrmc8982de/v+rKjNrWiJCfitEIkJ7HJJQFGPE4rqWkd1ic1RmUzPP7q15Kf9cQm0/PvuyNXy770jCfllk4ecXhvHD+RW/T9crbspPnj+9jBxjXc5r3mAXF6NC3JJNRLyK7xVZdqRkBugKhNRRElWZSKKKMmqTEQRJVmViSiiJKsyEUWUZFUmooiSrMpEFFGSVZmDfIKH9anVKWjGrsEXUrzzTjNK3uDgRY4+evklDyVvV9n0Xyv4qPutzVZ+a8yk/a49qUDVfyV8s1+kUKphuIglcJhBeTmW2VbLTw7bHcfC/sD4A7AlJVxnEmUIuqX36SWnhb4iAxzUH+lBLZMI7doN5IkRsCLv4qjX3rUznm3DmDSUUDUAD/ALe13Q5dvjUyza2/hOSHi9z325x7ji5NpKdhv7IsBK7Ui43VcMckKwrJYyE/5cWFXRlkQUxAqJ0vwydx4G74jyXvJ1xIut5l9r8VgWMapL2PuTmUP8spSTAib6JB/mAaUunCj5OTI3H7jitMYR5LzCJhuGGTnl4FKPrD1jT5XEttl8xu33H2Gj1mT8UaPX5AFGzOd6NiYGETIhBw9Py/XM5zbUZg8hRNEF+D6hB6LYJiQ4g73u3K4R+EycFRjze8iFqoEmkLWEIPXhBKmLo3553bq+cvyba7eq8ocMllhkN1DRN34mnrhfx3fcL23XNzxmMYmaRSSfy8wiaiUlgU4wJzre2lj0DzbH+KxrWIhZk8+iuSvP+i0PD+zO3IhnekIzFnBrUvO52lK3JKVelPv0Axa65gZ0hO0uMExHIWxnURtQAgDbRv1cnW5pWqccv1NXhRkh8wbfTWmyaiQ1OWWN5WNZ3DpFWJgVp5u4YlpxAbDThyFYEagxBhkgdunn68pjYMnATGOH6pXzZOmr5bUCNqY6XXreffpWqiUSg3vRQBUQGTgkgDBt5IRplZ7OrvAUGj3XbLQUGrQ02BiBKTQhI3b0wKAh7NA1Njskqn+2SZsxd0Iy/Ja/1rRxcqHvQ8dJEoT4Pg1iv5wtNK+P30dme7BzKRJhvCwJXpKp5NGEg9TJLNEPd3G8IWqnvIBY1ywZpOJ0AbieR8XkqQD1Iy56GaryWBoK39wFr4P8lqunTJ3RfNiegO3iMrvvJEf+Qg2RsAcwQyT8cmFzjn7OrbjZLQDPPQiPDWrOrQVLlusuelWT2OLvw0WSfrjUwx5tdnf2Wv7VfLP1T1EwNfuH38/M/hHXC8PHcm3nSy+tA0J2NKx9VhK01oEHfM5x4gOGjzEqDCywwo3BOBDtBfQf/bqo2XaWqPrLNFxKe/DlVd9SJ7aGTG0Z1T7r+K2WVKXh9zOVRlznvbgWaGU3p1Y2mZRWXh0gtaKX+7LDDF6CTEoYX6RiRk9pFTnk6J3QnPseT2taNaVuypQLxe5nKoa4zrdivDwIcwK3GRnr1dQmYsFlF/0WZM5aDLCFhUJeGB53S5V+vfPjbv8D3qUa141OoW7HmovwByAohQhBSSByhBORbS6kX7/O5tdzZgW/69GubeD4d981FkduvqXqGP9E3Yth2mtXGFQHLkyKlUfHgrASni2UqNWQDVJbFUO4f90WH/Rz2qj3ZY5J/LoeGfCZLkSdKKP6xQus6sYw/bqeGfDqRKiBkydhBL/wCBP+Juj+L5Wm+ndodjZ4q6TnhMb7T0qog48tsNEKDOz8YXZ3OsTQE1WjIWyIYaiXxWofRowovKUJ5aAWrAdS4/sDsI0C/H9+TClMCRuORJTuz43aUQWuazHAHFGAQR7rMdrJfMPkE1f00cQT2yQ9zcFD5qqfC1fmqrsW8z/ZMA/b6Xf+lOCoKLW7Uzv506CKVMbtUAoRKtOQsiHtHAriAeCeNOBOBY1OVSc7SWem4HotJhE4Va7rxg1YZK+DJbNTURs3MEcxxxXBN0n6EwTfJPwkOt8knS+SzjdZZD5J+o0IPkk22+TiJ1cBm6MP/a0kIMvzVD9FQG61hv6hknZpVPpbb+bs8C6U3G7Ahb/e/1bK02tmqXnz2wzq0by4eyZgdqyF6vREVS/8BqRLXU8giBzZQCoKSfDpnts2VLicK06/ntw5YfA/kUUgCaajFDVm9ZZTT2RhWYL4/9fed4A1kbz/R+UUROwiiiVYQWkWLNgSktCLgl1PjRAgGggm4RDLiR0LdhSxYsXeez17O8/ezga2s+t5nuVO/c9sCezu7JKYJcn9/l+ex+eRHXaz+bwz7/vOzGc+7+fYwHkNeEBpDidKk+swJAA52S54rQWYGBkAEJ31To1h+KOYMYy4XhwL3liP+YhaaHL1wJAi/Omt/5g/pcv5mMmfduL0p27/86ekfVqNPbK3xM8h0i17j37o/qy7nAd/Spdp4sFTdOD0FC2K3Z9e+Xlqm6MDEkN2VW/Z9tCDO1E8+FP6IgEPKLlxolS3OP0pPYZa3J924PSnbnp/+rvVzwnow4kfMptPiRpvMyRJ0p3vRfGbr2RE8jAl+Mo5JfhbPyW4zRuZrTwJuRnIbAgNPD2ZjamBR5LZEBp4JJkNoYFHktkQGngkmQ2hgUeS2egZGoOxBr0isovR1fN4YKzd4c3I9mY08vfpSCJEFUkj0/f8GTaxYbMJXbaQB5vcZbNJ9u77vSY+/Bi0d/eOvVsG51HP+f3QWZ6oUDFro7A5NlexMAneUahClzBRrVPg4kJQnptLw5auu4h4FUO8nX1UtEatUkXCiAUvFhz5fNOJ5gmXDwvLm/D6YNie7gtkqVKHoWye0LabVqGBAuDkxzaUqpMHqiBXC1bRgcI/MUod8d1BhgF3OfLTVtFMQpY5YixKN5IJlLWAA20rEaRNlJQNk2vilImhilhKALTHL0fCeqeFr9vh17uqkwpfpXrhxWGNZGvia52sgIHYWQPPDeqU+FuVId8KNaA08pSgxBgou0XCW8IOXoRbL4UuYbm6iijJhE8IYBVVpVwlgVpQhQKRTqOQJ+h/x4SJ9fcQXfWe1YdlugooT0t19P7PQ1zOrMUVlzNqkXH5vtVjTpdXtd7l0SmcxP6xemJ/Hm9h0kFgvjCJ0M0lwyRCN5cMkwjdXDJMInRzyVzo16wvo5ef/lE0IeHln/8u8x9VKBfq/PhtxSUZZf3Hbpxwok+Xh8mM4Aq9PrIj0cV4eQiu+WyWtNJy7XTRYbOVa59el6tce5+6xV2u/axuV1humWjZiuA7+4Lm/EKdT1mmXHtGXa7it2PrWkHN6Tlz5pihXPugU5lN+v1aOWDL+tWb03p+yLKKcu2pnNZRW4N1zFKu/cyr30rOq+0syvj6S7L8QA2qtomlyrUrOI3TxxqMI7BkufYmuS/nRO+RBh/qMse2RuiBa1ZVrr0Lp/ECLGM86yzX3mnvH99yAhcHLbFTNSy14PUPFi7X3oHTci0sbjl4U7GVa19c3jdIeGhFUO7jbWPKvOr4j1WUa8dyCNZy7cAREnnqA7Y89b9Urp1eFsPC5dqv1eUq136YmdIWS7l2x6itNkp3t4B1H/IWXfjWbxjv5drp4mY8lCC/UperBPkZ42QTjSjXrgs9Nn5Nyl7Jtujl3eSj1lYzfQjTsKL7CB6wOsyJ1U7z+lxLl2t/yObG/ifC/10i/PRqQmYT4fcUconwlxcWhwj/jr13pt37PEKac32/f99zrcrweNqcZx8JF0zchVya5fWEZhHhbzE5rOPBHVUjVvnMHTFiYnmpxUX4nThRAf3GauYOxh384U+Ef67mceUyO9oETB1QO1lXoxpVDNOSIvw2nKb7bJnJg9lF+Ct11NWw26+TrO4//d2Mbw9OWliEH/MyrCrqwMuYTYT/zrJFg22rLQ46cLrryvanX/awAhF+J05wygvNKMI/613z+allO4QtbBbSsO7ov0dbgZwFRMiGE6HP+unnI7a8TSZu0vRbhyvi3Lt11lxa/JrKILPHDvElqVUgojNzNlsWnH0KtkiUBfcTWhgAcY06OS4e5HCwyrU61igtB3qFRda3ZaoeFGo0lNsHEqF5EN98gG8uPU26APBNYKZJRh6sqlrwWuAqgQVabt7dt1XuyZzQdPnZRgsWLVhteu0uWgpFd4wmplBQ9jZTyFbFLgv03SnGpVDl8OEbo4jTKND55YWZ9e847H8qnjW3lniq+6HFtBNS2I2IE1L49eKQ/R3N+f1TLJ4s6XumEYkSfGWlOkYZzaFt03v952/xrSLEmZtOPzj0PrQCta+SD2D2VX1LcRgjgdMY0ZYxBqM4tjE7Fp4hiWodCF/yaLh26urdAUxZwcwiwV3YrEN0vFoT4y5s3kE7RKPDfkFnq2UOJ8S4yz9J1/dfvLOyTx51S94OfkCULlWFqH9Z0FQcxurFaawIqxg58FFGZavVCha6E5M1A7UcI+i3rEqHHNXVAlfWHTTm0r6026ZMlU2dOngTjhwe9bzA0IVqJls30cgslfDkHNnWeZHio6bLlpB9NXzC7j3Zvduy014AwHASgBsIAKBrMSoTJUMZu8hEpQcnQh2yu4fMqVN1R0X5w88WPewLARjABUD3SCGZaD7+j/Fx6IW5zcbHcXTh4uPkMzNLnvk4P7wRu/YWZgVlNvll/Z17zj9aAR+nqgvX7mZZFysgFQwbNswMfJz7i0fGfUlJEM1b1apf1WWvHlsFH0fAaZ2/LROSLcDHGX3MRRLfor7/vsqTfq3p/TzAKvg4L4Rcxsm3BuMILMnHGRuond934enQBYcazbk39PRGq+Lj3OA03nmLJ7tWxMdxmDeyjueR68FTSj1M901Y/NLCfJxjnJbba3HLFSsfZ+t2cZ1Fi7witm/rfT/zanCiVfBxsByClY+Tr89Tn/xf4ON0SLukTvFvJNo+8vnoO73nnbQwH6enCxcfx8/FPHycdm6p70okXg9Li+nW8p8OK1bxzsehz8154Jh0d+HimIS6FBcf51SfN5fHu5+SZoV6PLSvdzWBdz4O3UfwgJUfJ1ZtzDtLsDQf5w82NzbkkLKpMnytZNfBCNWTh31eU3dKuiTDs5MBGnlSPPOEqRHbFw2kSm0SPD2m381J9cBPmQrlUDMvDn4CsufVG7Oj76dvThGHet39MMkjOJv1/Zg7OYUbGf3PLgq4sIjCR7EQvZJ+7snAXql/Gr1wUmOZwBmewneUwH+0858JjWWqmrVPOkQpVMBgipgg4NeHko/DzIqb8imbKR3zM6SVfX+T5Pg8OLTpVAqVA1LCD23ASrh3R9hMUBZvohyyIoIB4/AVX0oe9EPy36HkYWh2UILFSt4gI4snS+QeFhOoP2ND/ev4rSuqeNr47ezrlL0qKWxlkacvyxY/8gaf2KSf3uPpxOZ3jhsui+ypSbfIczaLLJ2Zkfwi+GPA3CGO2uzJ7tQVq9L+kDyjY2ZkrNNL/AahFkR9vN5lshamvFittni1KgbKMUJKYCz2d1g6rJPHaQ3KQehHJEuHqqMHK2L0N6Fenbmci183VAYUgOniDGXT/RCkPiiqXsIZIb8EIYLzOIT8EvxHl18KH3+3Y9TJ56JxZ7en2b6NuEKXXxrbI2fUraS+gVmHl85/nDW1I9lOHkb9bnkm+gcj5JnYLG0P1QMIM6Kr4OTUnVEy5YZko2v8+z13oxuaYi3+5fChhhC0a0VUynMfpDzVnC1SeNIe1nfsrwXfITGuwGEU/I65muHevpEjESpRbLaq7F8w2kBCpEvWoBPXTe5l4xbcXOu3b+Sti9USKgk5TVZGgj8JoXVMNBSH0ew5jVbCvEYjXbBNqAR3qPCWUfpxj9mGHKNsyV49KVH6WpmoVWgw1h34CIrDRNqq+4OPpUuvGRsybvO2IStyBp2l26pMWLJOPlClF7AQ0Da74Kd6M8OVd9FaX98XrriM+qEml1Ff1mRofXEWUCA6uwLXZ0GCR5dJ4ezoNtDTMct0YFf57uJpnoRfOixGVLoXeWFdnAjpL9hCepcH9yLKqM4HLNlzsOSonS5UmcKyUfHKWJ0Q1pWlhnUYr9hqWjtHxMbCqYhcpSLKryph4Two3u2JBJhecJDtFRD5kqHLUqBn/KAXpmAsS7nLBI9MLlHtgFXfBWNTC18Yze88OezZssyTouzhvzlGeYZTC6LasHzFIlNCetF1E8cYnMKXglgdFiHGWBpo/cQsSs3JGsMtqMZ6Bbps/OnlLYbN/lOyfcXChsuVv8gZS8qxhgFj4niC3/x1Da5v/si8BaZZlpOxHmjEHps91Bnikp6aX99x9PmX6f5zxr6qfSqjRTi1X8K7zQX/75zwX7QM/AyGmKmFuvERAdnO4JsgLUKvuPudnsLU1XyPQq6AEWAGeGADgggwL9kCjNF6Pq566xW/nk+1C15uS367Jt5w62SDw68yTxbS82nz9/wBlcUDxQtVnyQfor2fFtLz8f318qUDtZaKp8/u9fHD8V1XC+n5aO5fWRRzZJV0b6lb5+bmTf+hkJ7P4S+21/P2Hgg8FP1HWNjN+NeF9HwQlX9JbUNE5V+yUC+i8q8t0bR2ecOb5dpHBky2T9joWdXxD9BkRzS1fT912IOnR8Rjex/7fMNmYSnQVJZomtH5icvlKc+Dt/YK//K207vjoMmeaKoT3Gj7o9lf/TPaN9F+WenwGDSVI5ruZI2rvLhNp4Cc4EHHatUSaECTAwlUdLtR7Vut8h+7eciPV39dMQQ0lSeahPkrjiydVFa2YXtnZfOd0lTQVIFomiyqV9atdV3/nVuvPSnhnuoDmioSTZ0zjxyt8c/twC1dfEf3aDGyLmiqRDQdcPiYdUQxSTR1uM2pCs77oJJSZaIpLv7RIGFgxaC0z48rBNp1jwNNVYim3Mp5fzdtPFmUVjMvb8LpAPjAqkTTuiyfRUt73Azd9VOO//aHmmGgqZqAVQbKkWj6dMJxxOnDa6TLs2Y0zPQ90go0VSea5M/bdnX3DfHPqnenyqV5YRdAkxPR9C1p7DEXT1/pBoldpf0N4kSgqQbR5F7F72RHySq/qQ62Zb78/Pg5aKpJNJ2fVHnHrarRflOWJ/3aaU7z7qDJmWgq1bR1hODWyLBt3qVaVp6vgXqOtYimzNzP55r4lgo52HbYpN5XtiwCTbXJDvDL7K+nmjuFb3mw+06t684hoKkO0ZRxKqRDxQfr/KcvCppcteWLw6CpLtHU5W25xiEuGtF0ryORzd5JaoMmIdHUatvutXZRQUGLVh0vfTSvjC1DqMpFwCJU1a7WlWqPlzmErsxyvv6o94FohNswVqjqFZuLqha7Z1P28dOyhevzh52tNWIpdeoqG5qkUscgTl+wJcCNiDuE5HlZrEydNgEkxMAJERUADTxuQXdQyFdjzqqJBkMnEpBbVB/KBqN2DjuD9PhZPeMKaBacRsVfBPndBtyZ3l738qfwdcdruMyUBOfweBiV5w1CWODnaz02PrQTmJX+Vc+onNgnUgG6BsZ7ilHAEkdqrRI7fgLeT6nCpk5kPxHKNfDEtTpBGY1W6N7gVGpITfuIvdfKLeq+f0I3Kn1c/zlM+nhBE995A4TrGSdc9+tZRSbHPOpoZCbnQQy0mAJz6eLlOmGCfLBCCBIQfQlrdp7514ODf6pVK0IyR3D5eNcOKzrSmIbEYxFMQ7KFb+tV9CA6uxRJ/vfEOjuDbW4kcC7koSiS8KegA4kES1O9+5qoe+OkM6eKe7wS+Hcw/QgWD2A94wQLdHUi/rxmiz//U274LuUGeoZuNuWGqPpcyg0t6heHcoPH9uNJzV+mB65tUrX7qJnzVvMYLOkeiAflhi71uQ66B9Q3i3LDxFGzkjdF7AqY2yat+76ut89bXLmhAycqoN9YKcu0qAUm/pQbTq/Vldj6rqPf7EEbr5bbvv+q1Sg3uHGarq5lTGd25YZnVWs8Kz/pbliu/4mnJyvOcrWwcgPmZViP3gMvYzblBo3vT60nVEz1n6RctfyXh9VpM0iLKDd04ASnRX0zKjck7559I0h9JnjM2qObzvfofd9KlBvcOBECY5rI296w5W2nF8hDv7StHjBmVZ0yz+oPP0jNRkNBjiaMkoYavnDgpy+GC6sJkJkwmCHGgl9B3pUqBNhqdLhGAXC2RH+FuReRuo00TPKKtn6Jfm9mFk22GDENDGhClMVlpEoiYIHGTYxbVsBeoBAGyG/XWhIdPOPLv9Kx56tf+fevlrRMKQrejTiggF0uKlOi+z8eat7KmhDsK0YnFDaVCdo1MYp37IQBRPYL1xilBnRf0I4Otp0vR5Y6cLW0KH3PEv8uuUpqxU87KXkzc1gWNBUF2KCaG9vUue8sXe0olDfpc13JA2DNOAEDPcoiSRQeM+DftBCw/TDlsGw5bGmP2ZLDq049duzErIvDpVvjrvU/on2ZXRkTMgHGkA1N0ij0tGcsqRX7Rbn2dDMtAaaXxezcutKAk38Epo9Ndzt/f3JPHkxbm9O0VSxkWlR+PKOTUalWudBC/hzNzn02tezAiPf+m+bVezf7Qbe69A0/xKEq/CrvZaU9CZ+0GUUq2eyJDTEiML5lC4x+V6rf+an1NtGGPv2cpnQ/QC2rVBWSX3Vw6ROeZFZAbr3CiIrxXhJ1AoAcp+Bij4kpeAw2OSwoFA9JpQZFRPq2XdEvzDAH8q+MWFRY2wCA/ocfooD8AND5FzYwlZ8iDi0EClxugGWQYLahThS6ksXPAXq4ABL8H+7TtHA1Wp2iYFEvGXjb6+ajzLXSbd297AYpdyuoPqY7Rjpg+hjielE+5kfJgAUe+Q1Fc3U5XScM6LGTh5WJXAizjR+iZHqWGwazqUvCDQuZX7+6Fa1O1Cqik7HugXGikFgmDtRdrDd4qv+qj0133Xz+1Yl6IqPguczpL6WxONRgMNj6omC74YHBRriEP9lcwtny9d81a6UOm/Dn6xDPy6NklO/mEKnAOIzC8GSVCuEL2BJmD/I+SITF+qwy8Se5ShmDd/IUpS5eqAbTFI3hnoC+S8/xngwrUJuNyJI1Ddg235YCdPuaPPYdgzAeHlx1VWgxIjaGGBKA/DsjNz6vdEuc1uf6im+jGx6lps/Yg5jpM365qOFMZyXwkDIkQeTGoVIGWIwqtgFr+mwgcs565DSUrga7FhK+RWfHDPlg8ygwd3BtRWKXWuupx9yJDoLe0qG28k6IdsV6EgdakQ0swmK37ZqapCiMQ/1CnB3PEJDSKlSe8G+0ngGB/WGSG6fQ0Chx8MdUx+2IBUhoWPAIMKlOxU2NtDI9MJkySEy06wBPYhS8EaMOZHpho8CohTCncAxbmCvg/F2i68cgoSg1usn54acOBaw9UHFa0MxRNH+BfSvExgR2uTig6MsJRaQ+UL1jC1RWU/OP7i35KX9cDCX/WjTgKvnXVA/5X1YPOZ0bxw/kwo7/hFVqPlOa4bjJvfy+yGU8QL6kIRfk8xqSkL/njZVZgYTcDKxMBImSZGUiSJQkKxNBoiRZmQgSJcnKRJAoSVYmgkRJsjIRJEqSlfnRpuq7NiNOBqzoX72EvPOTXxmUN9h50bUZafRLHihvf7PZv17IMY87W8r6r7aJGXjtaUWq/avgi/0SlVoL00VsA4eZlJdmGW31/JWw3HE8rA+MPwCbUsJ5JkFDMGx7n045LfIVGeCg/sgIaZl1cH/gBvLECJiRTzFum98Z323DlDTU0DQAD/ALOy+oSZ9Xv/9+t1LgpoVDv9Wc8Lu/KXttxbuMfQFgtaY+EXbfMMQJwbQ6m7nhz4VVNT0lojBW6CM1ru6bHn5sGDyz1+H8ms+1Oh5pEaO7hb8/tWqo/xr1pMB0v9QjPKA0hROlEfWZiw9ceZp7Z3JcYYMNw4wccnCqR3LP2LdK/PtEryjzT6Bsoa3P5DGK0akW3M/1dic6EXJDDh6eXmLkfm4T/e4hhCi6kN4njEAU34ReCfipScSpkhGy9TcTJzU+8/K0FexaQpAyOUGaYuS+bkOpEv/m+qWqgi6DbSyyOyinIUpb+waPQhdUdPonZ+CHmtRdRPK5zF1EfUtxoDOaE50U/Z7uB7bA+Lx7eKiN1ydJ5vJz/jkRQb2ZC/HMSGjDAq4LdT9XT3VLURsluU8/YGHo3oCBsN0HjukzhO0cagFKAGB7aFyoM2yb9kXZmnvTs5cE71hTLuXx62etqYud2H4sS1inNBblxekuzkQvLgB++iMEqzOqj0EFiFfGxbryGFgKMNLYodox4ty1J6kLAtdOSNj+h88HatE/Oxm4Fw1UoSYzpwQQpoecMN0yMtgVvYVG32u22BYa9DRYH4FbaEJG7uiJQUP4oY9sfkjS+JxX27H3Qpf657zVta1Rm74OnSBPEuLrNIj1crbUvDF+H7nbg51LkQsTFSnwkkKjjCYCpGEsEtrhLo43RK2UF2o2dJcMdJsabgDX86icPA2g/snVKEdVHtuGwhd3wesgv2Wz/c98VXYTAja9qzs0aOvVxtQUCXsAM0XCLxc15ujn3Ezd3QLwVIfwlEONuVwwZXFwM4pN4oC/D5dIenhq/7Zfu3QIXve055jWL25QJynE12Xu/hHXizzY3vbLCbfU2qEbN0W//Hd8tR484FOKEx/QfSzBMLDFiBs/4UC0F9B/jKui5tBVrolT6LiMdqrkodEtf+ktnn1i+LeG73+hHq0rjd/PNBpxnXdyLbDKa1cuqzyyKqu8OURaxajwVQFzeEmKGML5omsuDIkKUvgPCBodLp7fo+aCO1TDhGH3Mw1DXOfbMCJPwp3AZUbGfDXNSyawdTNuQuasxwCbWKiUReExr1+Xf6ShHcKXCZfXWvb3uAE0SSH8AQhJIaKhOBD55MqFyDNXMq5/Yovrm2eF/NWnnW/QhL++6GyP3npHtTH+iYaTYdrrZxjUAC5MiVdGx4O0Ep4tlGu1UA1Sz4ohwr9hkw/6OW3U+zL7JH7diB3wk64ET5TBfhGBWd0eZlw3cge8FpFq4OJJmMAvPMKEvwnyi/89511K/r9fgnPnP3TN+9CcSp4rw5bY6BvMHPzh7u5xiKE3iqMhbIJhaJTHah9O9Ci8pAnloBbkA2nx9QFYRgH+vyCnFA4PH4mWeaHFc4tWVIHzWgwwJxRgUMd6j34wf7b6jSt6b+JJbZK+zcHDzlWWK9fO1Qw95v+wYR6+y//8acExSVrvGu2Uz4IrURW3wyhCqExHyoa0cxjIB0B40oE7VTQ5VcP0JmnKFFyvxRQCp7YbunADJtn3YYSeilq4gXsUZ9wQepNkPEHoTcJPoutN0vUi6XqT360nSb8RoSfJ5ptq+ys1wOcYI3+7Vvbr+dGbnwbOern1H822mNlU+Vsxc3SIixS3m3E6qmLJR0sCN946IWs+doap5yYFYHTcheb0RrEXeoLWK24nEUKObCB9j0hwcvoYUf6GuuJ5h2bNGW67ptV3iATTUdr1rvryP8Y/8z+0ZveHciuPmko4gCid4UTpsBtDApCT7YLXWoCJkSEqyjTWOzWG4Y9ixjDienEseGM95iNqocnVA0OK8Kf//sf8KV3Ox0z+NJnTn/b/nz8l7TO/jyLygc160Yrb/V+d67pkBw/+lC7TxIOn0HJ6CmWx+9MD2x/77q3ZPXh2aP6GtKWDXvDgT+mLBDyg1J8TpW7F6U/pMdTi/lTL6U/76/3pF6ufE9CHEz9kNp8SNd5mSJKkO9+L4jdfyYjkYUrQ0o1rSuCuh/wrb2S28iTkZiCzITTwSFeP0MAjyWwIDTySzIbQwCPJbAgNPJLMhtDAI8ls9AyNwViDXhHZxejqeTww1r7xZmR7Mxr5+3QkEaKKpJHpe/4Mm9iw2YQuW8iDTaBBkDbJ3n2/18SHH4P27t6xd8vgPOo5vx86yxMVKmZtFDbH5ioWJsE7ClXoEiaqdQpcXAjKc3Np2NJ1FxGvYoi3s4+K1qhVqkgYseDFgiOfbzrRPOFC5/mZVfuMDMgsOaFq0CzX02ye0LabVqGBAuDkxzaUqpMHqiBXC1bRgcI/MUod8d1BhgF3OfLTVtFMQpY5YixKN5IJFjYGDrStRJA2UVI2TK6JUyaGKmIpAdAevxwJ650Wvm6HX++qTip8leqFuwc3krVY0PhkBQzEzhp4blCnxN+qDPlWqAGlkacEJcZA2S0S3hJ28CLceil0CcvVVURJJnxCAKuoKuUqCdSCKhSIdBqFPEH/OyZMrL+H6Kol2Lqq1YRlugooT0t19P7PQ1w+25grLh9tTMblklaPOV1e1XqXR3/hJPbv0RP7S7FhbnSYdBCYL0widHPJMInQzSXDJEI3lwyTCN1cMhca13LewioPZkhXp7VfHzPuz6OFcqHr67ofGPhbvfDlaSmyLldSchnBFXp9ZEeii/HyEFxt2CxppeXa6aLDZivXfrwJV7n2mUwpGZ7LtV/R7R3yXpovOTRl7pQnj13eWEG59qNNuIrf7rGMYAa15vTUqVPNUK790Z8ZlcqGT/fbFRe0ebsulbpaaKly7Zs4rbPSGqxjlnLt0ZVqf+sQ0k4y/Vqb4KNtQqkrzJYq176A0zgzrcE4AkuWa690tdTzXncHB8+LaN2u0qHuZayqXPtETuONtCKhIIuXa59WL91jjLSC/77Kl/8asFMxwsLl2rWcllNa3HLwpmIr117m0645sXfV4uWjsj8Kl316bxXl2rEcgrVc+0y92NMPbHnqf6lcO70shoXLtZdrylWu/W9mSlss5doHRd0eHD5/acBi5Y9Pl/24kyYHyUO5drq4GQ8lyMs25SpBLmhaXOXan+8Xl/zX72LY+vP9R3SZ+uoE7+Xa6T6CB6z+bsKF1Qvz+lxLl2svzebG/ifC/10i/PRqQmYT4Y9pyiXCL21aHCL8z/9K3H3gpVPQglc7vs5yr12Px9PmPPtIuGAysCmXZnlPpo8sDhH+8uM2pQXtaBm+sWa5858fBGRZXIQ/nBMV0G+sZu5g3MEf/kT4q8xx2hgUW0qyu2Ol3r1rfq5gNSL8vpym87aM6cwuwv/r9Xv/Jm5pI5o+umvktrXlKtB2Os0two95GVYVdeBlzCbCn7Hf6VPyL3PFM0RZX/Pcf69uBSL84ZzgSJuaUYT/9nrP8+PqL/dbXm77+6O5daZbgZwFRMiXEyEwpom8rQxb3iYTN2n6rcMVce7dOmsuLX7dgqojgB3iS1KrQERn5my2LDj7FGyRKAvuJ7QwAOIadXJcPMjhYJVrdaxRWg70Cousb8tUPSjUaCi3DyRCv0J88wG+ufQ06QLAdzkzTTLyYFXVgtcCVwkskF996NtL0kpVu0vnTmu/YJV/b6qeynfV7qKlUHTHaGIKBWVvzzZlq2KXBfruL8alUOXw4RujiNMo0PllUOXSfna+7cKy7ma32Hht3UPaCSnsRsQJKfx6ccj+7uL8/hssnizpe6YRiRJ8ZaU6RhnNoW0T3u5h2XO/3Peb/6WpJu/fSBW1r5IPYPZVfUtxGGM5pzHmW0f6IzBmx8IzJFGtA+FLHg3XTl29O4ApK5hZJLgLm3WIjldrYtyFzTtoh2h02C/obFXUaemVv4VHA8Y5ddnxZd1MKrfDDn5AlC5Vhah/WdBUHMaazmms8VYxcuCjjMpWqxUsdCcmawZqOUbQ2h2iXlPTy4TOvFu1WtC1MQ9NmSqbOnXwJhw5POp5gaEL1Uy27oCRWSrhyTmyrVLKL/V3Px0euE5VWryxUd0tlp32AgC2kADcQAAAXYtRmSgZythFJm7kfQptoG4v3j9p0tZmz4PHW/SwLwRgLhcA3dP1iabtf4yPQy/MbTY+Tqg7Fx/Hyb24+Tgj4gZH/+yQFzZve2b6tSpjB1gBHyfYnWt3U+RuBaQCLUjpi5+Pc6fHr9NWdxkWnLlnrMsd2xt2VsHHacVpHXdrsI5Z+DhJYzfV3JJ2zn/e773ur/o89oRV8HHqcRrHyRqMI7AkHyev5p2vd5fbh6/Mi1j7efeUw1bFxynPaTwbyxjPOvk46aWWugaW+Fkyb+kV97Rr9/0szMf53JTLcm+sYppSbHycie96XZ9zda54zYJdD17YNZNaBR8HyyFY+TjAERJ5qt3/BT5Ol7flGoe4aETTvY5ENnsnqW1hPs40dy4+zlBmSlssfJxmLzrvHpz+PHBz1Ke6TbfeDOCdj0Ofm/PAMZnqzsUxGeNeXHwch3ivxMGrP0rGZge3tamReJh3Pg7dR/CA1VBOrBLNGy0tzccpy+bGhhxSNlWGr5XsOhihevKwD7UQm32XZHh2MkAjT4pnnjA1YvuigVSpTYKnx/S7Oake+ClToRxq5sXBT0D2vFbbdq+1iwoKWrTqeOmjeWVsWd+PuZNTuJHR/+yigAuLKHwUC9Er6eeeDOyV+qfRCyc1lgnCoDCXowT+o53/HNRY9neo60mHKIUKGEwREwT8+lDycZhZcVPas5nSMT9DWtn3N0mOz4NDm06lUONsCT+0ASvh3h1hM0FZvIlyyIoIBozDV3wpedAPyX+Hkoeh2UEJFit5g4xssRtRIvewmEC9HBvqX8dvXVHF08ZvZ1+n7FVJYSuLPH1ZtviRN/jEJv30Hk8nNr9z3HBZ5HVDukUc2CyydGZG8ovgjwFzhzhqsye7/0hdE/WH5BkdMyNjnV7iNwi1IOrj9S6TtTDlxWq1xatVMVCOEVICY7G/w9JhnTxOa1AOQj8iWTpUHT1YEaO/CfXqzOVc/LqhMqAAzB6NoGy6H4LUB0XVWzdCyC9BiOA8DiG/BP/R5ZfCx9/tGHXyuWjc2e1ptm8jrtDll8b2yBl1K6lvYNbhpfMfZ03tSLaXFJgoz0T/YIQ8E5ul7aF6AGFGtOaD+679qiqa0DmPf/qcVOH8OVOsxb8cPtQQgnatiEp57oOUJ6SRRQpP2sP6jv214DskxhU4jILfMVcz3Ns3ciRCJYrNVpX9C0YbSIh0yRp04jok7uC7hZ03BWalHhFcX5uwhNNkZST4kxBax0RDcRhNzGm01uY1GumCbUIluEOFt4zSj3vMNuQYZUv26kmJ0tfKRK1Cg7HuwEdQHCZaMH1X3vWhN16Lt+5L2VKj1e2JdFuVCUvWyQeq9AIWAtpmF/xUb2a48i5S6+s7wxWXUT04jVq/EUPri7OAAtHZFbg+CxI8ukwKZ0e3gZ6OWaYDu8p3F0/zJPzSYTGi0r3IC+viREgvzxbSuzy4F1FGdT5gyZ6DJUftdJlA5cpGxStjdUJYV5Ya1mG8Yqtp7RwRGwunInKViii/qoSF86B4tycSYHrBQbZXQORLhi5LgZ7RTi9MwViWcpcJnBuayiNzwKrvgrGphS+M/KIRz++O2dw4U7I860K53GHxB+gFXpBfsciUkF503cQxBqfwbSFWh0WIMZYGWr0aGscawy2oxnoFEhf7oRElstcuitgkVnXv+KO8NGNJOdYwYEwcT/CbN+T85qCXWMFyMtYDjdhjs4c6Q1zSUz2iZS5Dp0lE0+36V7+bPX8ttV/Cu80FfyVO+MtYBn4GQ8zUQt34iIBsZ/BN0EULaBV3v9NTmLqa71HIFTACzAAPbEAQAaYCW4AxWs/HVW+94tfziXeeEH53ZuvA9P2ZNVJWtyqsbfgx8+y5txFK6fTLeyce/izYXEjPp6+sQV6JfoNEm+MPNY693dKpkJ7PuKTXs5ueqhY+69qkzwEnfmpVSM+nRMSjlVXj9kn2V730k7ChuF8hPR9E5V9S2xBR+Zcs1Iuo/GtLNJVa6jDzwqqciP3794r98vLqgSY7omlpcsrwOeuv+c1YMvxLC8XImqCpLNG0bU0FUe9BQ6SHXo4699H7K3ygPdH000+ew5c8VImy3g2pkfZlbHXQVI5o6vzzmmNO/9hJM/KHT/zFPycZNDkQTZ6vHS9NizoSMev078sex/nNAE3liab+XkfDbtU4Fbph1zqnZkH3xKCpAmmUzytmbvvlZuD+5qFrju4aBF+jItFUrp7/CM/dztKNLcps6ZbT3w00VSKaTi8RPviarfFPS9mU8ccI0Y+gqTLRZHvnr/297WsFbonw7+iW1K0TaKpCNDl2eN9r3/iGIXP8+434dbxiE2iqSjStTIt90ezAZdGhNv1bBwWerAKaqglYZaAciaZ7x7LFNeYvFR0o1aPfW120L2iqTjQ5pNrtKz+nkizbY9kjt1pnYAdwIppC3i3QpDSbFZDZbX+fi68S4WfVIK3ca3dIYM1k0YRW4asmZ8V1A001iaYL2b0PVZbOEe0uFXKzXZ1p00GTM9G0L6Bhk2plVwQszryWuTLeQw6aahFNv/168fHdGuGBOT0vjY93WLIDNNUmmrYOznQWTjkhW3Y7pJfy69l80FSHaLKx7+JdZd0I2YxLNweL35b/HTTVJZr8W273rns9Jixn5diuUcd9boAmIdGUf95D/u+rOeLRty8cfVPh5mmGUJWLgEWoKm7TI99yvf6O2H8v+VyluE8OPAhVVWRzUdVi92zKPn5atnB9/rCztUYspU5dZUOTVOoYxOkLtgS4EXGHkDwvi5Wp0yaAhBg4IaICoIHHLegOCvlqzFk10WDoRMJVJljsCWWDUTuHnUF6nO5pXAHNgtOo+Isgv1uvhMAeMasr+I8/svrQj5NV13k8jMrzBiEs8LPQk40P7QRmpbM8jcqJfSIVoGtgvKcYBSxxpNYqseMn4P2UKmzqRPYToVwDT1yrE5TRSBT7vKpYrmY9x5BZK5rfazp120wqfVz/OUz6eEET33kDhCudE66fPa0ik2MedTQyk/MgBlpMgbl08XKdMEE+WCEECYi+hDU7zzy3TucA9+xOkq1z/+k7dVmFGzSmIfFYBNOQbOHbehU9iM4uRZL/PbHOzmCbGwmcC3koiiT8KehAIsF6Y9/x3/GzfCSb1pQdkXWxXIzpR7B4ACudEyzQ1Yn4U4kt/vxPueG7lBvoGbrZlBveenIpN1w0LlYaqNyQPLmkRnLgiHjiHVf5Fd9393gMlnQPxINyw2tProPuj4wLlt+r3FB1fKl6O+e0DTq0Kv7Q+CNzqf3DEsoNv3OictEyMdEAlmlRC0z8KTec+fKk8oAJD8NWtjg808PvSDurUW44yWm6A9aazvCs3JDsUMX7eZXlYZPWvc86UankZwsrN2BehvXo/SNEllJcyg21T2RtqLpZELE7w+59pdofqQQhyyg3/M4JzkVPMyo3pJdxnrIuo3NEWtzwklJp55ZWotxwkhOhA/q8rTJb3nZ6gTz0S9vqAWNW1SnzrP7wg9RsNBTkaMIoaajhCwd++mK4sJoAmQmDGWIs+BXkXalCgK1Gh2sUAGdL9FeYexGp20iDEif6+iX6vZlZNNlixDTwkQ9RFpeRKolg/VIf45YVsBcohAHy2zWIK5WeNP1S+N6RXqEVfafRDu5GwbsRBxSwy0VlSnT/x0PN2wc+BPuK0QmFTWWCmz5G8Y6dMIDIfuEao9SA7gva0cG2dw/b1pOuNRbtvv3w4bThgonUYSklb2YOy4KmogB7cjWm6fisvyUZilqp2+qp9vMA2G+cgIEeZZEkCo8Z8G9aCNh+mHJYthy2tMdsyeFVw1a6p4W12xe0Z/LMVz1KT/GsjAmZAGPIhiZpFHraM5bUiv2iXHu6mZYA00x7pva7P9pPGybJzHF79XxOjql6b9C0+zhNu8VCpkXlxzM6GZVqlQst5M/RRxrr/rEjbvR96eJzzoOiffyu0Df8EIeq8Ku8l5X2JHzSZhSpZLMnNsSIwFiFLTD6Xal+56fW20Qb+vRzmtL9ALWsUlVIftXBpU94klkBufUKIyrGe0nUCQBynIKLPSam4DHY5LCgUDwklRoUEenbdkW/MMMcyL8yYlEh0BuA/ocfooD8AND5fb1N5aeIQwuBApcbYBkkmG2oE4WuZPFzgB4ugAT/h/s0LVyNVqcoWNRL8rUlK3ya5R2RPehozmJJK2qRvtLdMdIB08cQ14vyMYq8qzl9RSv8xye5aiZ8iRzLw8qEP4TZxg9RMj3LDYPZ1CXhhoXMr1/dilYnahXRyVj3wDhRSCznpXt+leSIpDvH5g2Onxn0O/VERsFzmdNfSmNxqMFgsPVFwXbDA4ONcAlV2VzC2fL13zVrpQ6b8OfrEM/Lo2SU7+YQqcA4jMLwZJUK4QvYEmYP8j5IhMX6rDLxJ7lKGYN38hSlLl6oBtMUjeGegL5Lz/GeDCtQm43Ikit6s22+LQXofvYydew7BmE8PLjqqtBiRGwMMSQAZ/tt25SaLwjMuf9WONb/bFtq+ow9iJk+45eLGs50VgIPKUN5iNw4VMoAi1HZeLOmzwYi56xHTkPparBrIeGTdZ6ytfJtu5Apdd8caZ4xgCq8VY7oIOgtHWor74RoV6wncaD1xssiLHbbrqlJisI41C/E2fEMASmtQuUJ/0brGRDYHya5cQoNjRIHf0x13I5YgISGBY8Ak+pU3NRIK9MDkymDxES7DvAkRsEbMepAphc2CoxaCHMKx7CFuQLO3yW6fgwSCu20iCNXl3UNGvek78V3r1U0fhf2rRAbE9jl4oAC6+KsUIAuTgSqamyBympq/tG9JT/lj4uh5N9FL66Sf6f1kDtaPeR0bhw/kB89flvecIJjyIpBF+/PO/w+lgfIOzTjgtynGQl5dd5YmRVIyM3AykSQKElWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrE0GiJFmZdud9ur6qsFmS1ah05pipe5IZlDfYeZG9j06/5IHy5sRm/3ohxzzubCnrv9omZuC1pxWp9q+CL/ZLVGotTBexDRxmUl6aZbTV81fCcsfxsD4w/gBsSgnnmQQNwbDtfTrltMhXZICD+iMjpGWCoF+7gTwxAmbkbsysnGvt2hnfbcOUNNTQNAAP8As7L6hO85rjHs2ZETTth0VhAU1qJ5qy11a8y9gXAFYBZNh9wxAnBNPqNl7IPJwNq2p6SkRhrJAo/fvPob7Vul2WzV0xaMZ+3ZhHPNIiRncLf39q1VD/NepJgel+qUd4QMmNE6WaXszFB648zb0zOa6wwYZhRg45ONUjuWfsWyUDD5/Ma3G4e/As0aMwQe5ohQX3c73diU6E3JCDh6c7eBmXxjbR7x5CiKIL6X3CCETxTeg6scLVtg8W5oknXv99xeuy8ZOtYNcSgtSCEyQ3L+P2dRtKlfg31y9VFXQZbGORw0GdGvHo7YFjYePmP/2x1LdTG6m7iORzmbuI+pbiQKcuJzrV9LloDbbA+Lx7eKiN1ydJ5vJz/jkRQb2ZC/HMSGjDAq4LdT9XT3VLURsluU8/YGHo3oCBsN0HjikLwnYOtQAlALCNMS7UGbZNG+c86G+v26VkaaLU91tePzpDXezE9mNZwjqlsSgvTndxJnpxAfDTcyFYnVF9DCpATDUu1pXHwFKAkcYO1cxRL/dN9bKTTYpu4PZs/Z72VE8kA/eigSrUZOaUAMI0hhOmoUYGu6K30Oh7zRbbQoOeBusjcAtNyMgdPTFoCD9Uk80PSRqf82o79l7oUv+ct7q2NWrT16ET5ElCfJ0GsV7Olpo3xu8jd3uwcylyYaIiBV5SaJTRRIA0yC3RD3dxvCFqpbxQs6G7ZKDb7GoJcD2PysnTAOrzWhrlqMpj21D44i54HeS3vNf74Ml659Nla1OH/9v1RBtHaoqEPYCZIuGXixpz9HNupu5uAXh2QHjKocZcLpiyrGtpFJvEAX8fLpH0Wskv5Ff695NkeeyOWCVavp66+4ffz9z9I64Xhc/h6TtrJVydF75iUM7dZtnrL/CATw4nPqD7WIJhYIsRN37CgWgvoP8YV0XNoatcE6fQcRntwJbLaVMiB0sWnRjsf3F9bDDVaPj9TKMR13kn1wKrZHBaZaxVWeXNIdIqRoWvCpjDS1LEEM4XaZjWpbO1I+KvBEzP2fD7k067qYf9Sodh9zMNQ1zn2zAiT8KdwGVGxnw1zUsmWNXSuAmZsx4DbGKhUhaFx/I+yu2DX9wKW5RRfVJi1jlvmqQQ/gCEpBDRUByIzONEJL0lGded2eL65lkhf/Vp5xs04a8vOtujt95RbYx/ouFkmPb6GQY1gAtT4pXR8SCthGcL5VotVIPUs2KI8G/Y5IN+Thv1vsw+iV83Ygdc0ZLgiTLYLyIwq+vBjOtG7oDXIlINXDwJE/iFR5jwN0F+8WcNRxz3H9TSf/nvy+aGdV9J63xsiY2+wczBH+7uRkMMvVEcDWETDEOjPFb7cKJH4SVNKAe1IB9Ii68PwDIK8P8FOaVwePhIJKL0eG7RiipwXosB5oQCDOpY99AP5lpWv3FF7008qU3Stzl42Llq1ZJr58pTj3ltNszDd/mfPy04JknrXaOd8llwJaridhhFCJXpSNmQdg4D+QAITzpwp4omp2qQn6QrU3C9FlMInNpu6MINmGT/DKmaU1ELN3CPIt4HoTdJxhOE3iT8JLreJF0vkq43+d16kvQbEXqSbL6ptr9SA3yOMfK3rZ2iPl6QSvx2n3u6TLfjqpoqfytmjg5xkeJ2wyp5TalQ7rJ0Z5Bq/VBNy4GmrpmA0TECmtMbxV7oCVo1PicRQo5sIH2PSPDmodvf3p4/wW/+lIc7z7ocuPwdIsF0lBQ9IoPvrWkXMX3jkYPeoy9s5wGleE6U+vkwJAA52S54rQWYGBkAEJ31To1h+KOYMYy4XhwL3liP+YhaaHL1wJAi/Gmd/5g/pcv5mMmfVuH0p19a/s+fEvZ5XnJdTK2RP0qzDnh+VAbYlOXBn9JlmnjwFJU4PUWZYvenpyUHN9f0nBS2OH1/TI3F4u8RXaejRF8k4AGlLy25UHrXshj9KT2GWtyfVuL0p1/0+Wldq58T0IcTP2Q2nxI13mZIkqQ734viN1/JiORhSnCJc0pwRg+5kDcyW3kScjOQ2RAaeKSrR2jgkWQ2hAYeSWZDaOCRZDaEBh5JZkNo4JFkNnqGxmCsQa+I7GJ09TweGGsuvBnZ3oxG/j4dSYSoImlk+p4/wyY2bDahyxbyYJN6bDbJ3n2/18SHH4P27t6xd8vgPOo5vx86yxMVKmZtFDbH5ioWJsE7ClXoEiaqdQpcXAjKc3Np2NJ1FxGvYoi3s4+K1qhVqkgYseDFgiOfbzrRPOFvzQI2X08cGTa78Zb7/p3ve7B5QttuWoUGCoCTH9tQqk4eqIJcLVhFBwr/xCh1xHcHGQbc5chPW0UzCVnmiLEo3UgmaNsCONC2EkHaREnZMLkmTpkYqoilBEB7/HIkrHda+Lodfr2rOqnwVaoXfhPRSObQpsXJChiInTXw3KBOib9VGfKtUANKI08JSoyBslskvCXs4EW49VLoEparq4iSTPiEAFZRVcpVEqgFVSgQ6TQKeYL+d0yYWH8P0VXrW31YpquA8rRUR+//PMRlZQuuuCxvQcblBlaPOV1e1XqXR/tzEvt76In9DXkLkw4C84VJhG4uGSYRurlkmETo5pJhEqGbS+ZCTdcPn91p7XjpOJ/VIT+M87hVKBdS3Z3V8UT5vOAdLnfcxdm5YkZwhV4frZxCE+PlIbg2YrOklZZrp4sOm61ce3QrrnLtXq2Ku1z70RrCkZu0p2VrZvm1kS+sRT3ZaZly7fJWXMVve7SygprT48ePN0O59twWM3T7lmaGb72RPPpeVAx198VS5drDOK0jsQbrmKVce832mQ4u4nd+E5/M2VfiRsedVlGuvS2ncbyswTgCS5ZrPxJ6Rjm4Zoh4z5T+/epXHENV2rV0ufaGnMZztozxrLNcu2TB6OpdKutkizP7njhRLXSPhcu1V+K0XBmLWw7eVGzl2su+7X3MoeVg0WL7zFpnSq6XWEW5diyHYC3XDhwhkac2ZstT/0vl2ullMSxcrn1tK65y7XOYKW2xlGv/kNbswaj+XwM2zUr+o++mbKpgIh/l2uniZjyUIM9txVWCfHGr4irXfsfxcqj/yr4BozscFIoUF/N4L9dO9xE8YDWHE6vJ5vW5li7X7srmxv4nwv9dIvz0akJmE+Ev2ZpLhD+f6Tt5EOEv/cvfY+pW7Bg0+0H6vh13jz7m8bQ5zz4SLpgIWnNplv/N9JHFIcLv5dP7zsvpvf0WSsK3bfDeQ62DbgkR/hetuFDJt3gGWnjHyTIi/NVrJahsI/dKF1SvPnbLyv4LrEaE/wan6c5bxnRmF+Ev895t1IPAbL8Vm2cln/Jq+8rCIvyYl2FVUQdexmwi/A8vPBvr8vFeUKabd2NZhKypFYjwY86GFZz8VmYU4R+6bNu8sU0eSWY1WrOpZIMdd6xAzgIidIMTofP66acbW94mEzdp+q3DFXHu3TprLi1+3YKqI4Ad4ktSq0BEZ+Zstiw4+xRskSgL7ie0MADiGnVyXDzI4WCVa3WsUVoO9AqLrG/LVD0o1Ggotw8kQoPh8MwH+ObS06QLAF9xa1MPVlUteC1wlcAC+dXblOsaciR5fsTuHVNn76+Zesz02l20FIruGE1MoaDsrbI1WxW7LNB3+7c2rhA2PnxjFHEaBTq/HDKvc5Xm819HbHJsphmVXItaiLm0FLsRcUIKv14csr/dOL9/SGtLJ0v6nmlEogRfWamOUUZzaNv8sefImjU1p/qN6X7wlWDsJ6oeuC35AGZf1bcUhzHEnMZobRljMIpjG7Nj4RmSqNaB8CWPhmunrt4dwJQVzCwS3IXNOkTHqzUx7sLmHbRDNDrsF3S2Wv/+SOW2T5NEC4Me+G0NGkpNh+zgB0TpUlWI+pcFTcVhLA9OY9W3ipEDH2VUtlqtYKE7MVkzUMsxgnJ8hpZLT3jutycqdFiGfd5rU6bKpk4dvAlHDo96XmDoQjWTrevT2rgslfDkHNnWhKkug1+Nqxg2v3HiSMd6WZctO+0FAESQANxAAABdi1GZKBnK2EUmWqVVX7e+3qOw3NuRlYdtDa1NC2XmPewLAWjJBUD3Rq3JRLPJf4yPQy/MbTY+zrPWXHycnczMkmc+ju2Rn0ZvDR8XOn/o6p8Ha1+NsQI+zh+tuXY371rG6VNJBYMHDzYDHyel+sxVjWtWlGyt07v5rzH3hFbBx7nCaZ0z1mAds/Bxen99WT32SWTIodUD72ZMWP/eKvg4hzmNs9MajCOwJB+n5KhJ8e3HpvjN9f6YdPjblwir4uOs5zTeMosnu1bEx/mYPDKjVVKsZGzN2VPf9V5X08J8nCxOy02zuOWKlY/j8avzorkpa8I3rDz748xfVK+tgo+D5RCsfJyd+jy16f8FPo5/y+3eda/HhOWsHNs16rjPDQvzcdzbcPFxHNuYh49TU/lt+SG/3tKNpzY1mya4VJt3Pg59bs4Dx6RJGy6OibBNcfFxXGKqOgW/Xho2+fCVZfnSSit45+PQfQQPWDlyYlWuzf9XfBx3Njc25JCyqTJ8rWTXwQjVk4d9qM7ZvksyPDsZoJEnxTNPmBqxfdFAqtQmwdNj+t2cVA/8lKlQDjXz4uAnoAsfnveQ//tqjnj07QtH31S4eZr1/Zg7OYUbGf3PLgq4sIjCR7EQvZJ+7snAXql/Gr1wUmMwnYen/Rwl8B/t/Ke6sey3py1OOkQpVMBgipgg4NeHko/DzIqb0oPNlI75GdLKvr9JcnweHNp0KoVaHb2EH9qAlXDvjrCZoCzeRDlkRQQDxuErvpQ86Ifkv0PJw9DsoASLlbxBRtaeLJF7WEyg7smG+tfxW1dU8bTx29nXKXtVUtjKIk9fli1+5A0+sUk/vcfTic3vHDdcFsloRreIF5tFls7MSH4R/DFg7hBHbfZkd6qmUWl/SJ7RMTMy1uklfoNQC6I+Xu8yWQtTXqxWW7xaFQPlGCElMBb7Oywd1snjtAblIPQjkqVD1dGDFTH6m1CvzlzOxa8bKgMKwHwPwdzshyD1QVH1q80Q8ksQIjiPQ8gvwX90+aXw8Xc7Rp18Lhp3dnua7duIK3T5pbE9ckbdSuobmHV46fzHWVM7ku0lBSbKM9E/GCHPxGZpe6geQJgRaa0Bmr82rK/vHTY78+Cx+3X3hJliLf7l8KGGELRrRVTKcx+kPE+bWaTwpD2s79hfC75DYlyBwyj4HXM1w719I0ciVKLYbFXZv2C0gYRIl6xBJ67nnZ52qhfaO3TW2i6nHz+pVJ/TZGUk+JMQWsdEQ3EY7R6n0a6a12ikC7YJleAOFd4ySj/uMduQY5Qt2asnJUpfKxO1Cg3GugMfQXGY6CPPXtF1vTaUDNk1o2S+y5IJjei2KhOWrJMPVOkFLAS0zS74qd7McOVdpNbXd4YrLqOe5TTqL80YWl+cBRSIzq7A9VnQBHGaTApnR7eBno5ZpgO7yncXT/Mk/NJhMaLSvcgL6+JESPdmC+ldHtyLKKM6H7Bkz8GSo3a6TKByZaPilbE6IawrSw3rMF6x1bR2joiNhVMRuUpFlF9VwsJ5ULzbEwkwveAg2ysg8iVDl6VAz7jpTQpTMJal3GWCPSaXp3fAqu+CsamFL4z8ot331V+fe3hB+J455QeMW7ZcSS/wgvyKRaaE9KLrJo4xOIW/DrE6LEKMsTTQ+iuzKDUnawy3oBrrFUhcpo5P/3ws5wfZtmE+Pus9XEozlpRjDQPGxPEEv/lRzm8OeokVLCdjPdCIPTZ7qDPEJT0V5Pnm+YHbVYP3rbr7e4u359Op/RLebS74N3HCv9Iy8DMYYqYW6sZHBGQ7g2+CluqgVdz9Tk9h6mq+RyFXwAgwAzywAUEEmGZsAcZoPR9XvfWKX8/nlrDqrtVaG+mBto9sSrW/GFJIz+fd47Jhh7IHhS7c2buMo2yfupCeT7gu/GZI2LKQ1X+JkgOCM3IL6fl0rxKdP8T1rN/MqCm/25ypHVZIz+du++z3Dp0Hyg62+mhf0WuxopCeD6LyL6ltiKj8SxbqRVT+tSWaGrW0b9bXMSdo0Q8vc1TbYv4GTXZE09OSeQ2Ob0uSzekZfa3jkTp+oKks0dS45os1US1TI5ZkhsxpE/hbS9BkTzT9vmFN/C2PQeIc+Y2LQy/9XgM0lSOaZtlpj89/uFO8NfGqY/ye1QmgyYFomjqmw+Ps9jdDp/kPyP5XO687aCpPNF0b5BIdWFMXvCCllvNxTeWboKkCCZT9+Np/vgjx2+a8p+YeG2E30FSRaPL93fZSFfuk4Fz/I5KRNi0OgqZKRFP5rj55XR2T/XaOGTrg+fDpfUBTZaKpRcTYf59tGSOZtKdF3uW+DRxAUxWi6cTV85F7f3jqt2GLqP7X1j1PgaaqRFOPsu/eOn8KClg12KPE8NDQ1qCpmoBVBsqRaAo4eOxGu7DxYZnbr2SOz7q+GzRVJ5oS3vZ0zllzS7q+i49zXd9x7qDJiWhS7loWOO9KCfGE9a69zjnNeAWaahBNQz1UXb7IXIK2/dGs1k+XHRaDpppE07DJJ64MlEv8ZoluvF904dBA0ORMNO15kt8ye9k/gdMnR18ZcnvgU9BUi2hqZhO/JXfzdXHGO8cnTbZOfwuaahNN43rmTv/Zvl3oElWVps1K9oP2qkM0xR46Xc398HHR6G0nuqW4T8wHTXVJ5I9fD8+YLAqY9PnOmb3S4fNBk5C8a27Hi8sWtxCvC3WrNK32zvIMoSoXAYtQ1ZzdwmV9nNJD1+yp1TFV4nyQB6Gq5mwuqlrsnk3Zx0/LFq7PH3a21oil1KmrbGiSSh2DOH3BlgA3Iu4QkudlsTJ12gSQEAMnRFQANPC4Bd1BIV+NOasmGgydSLjKBL6+UDYYtXPYGaTHDXyNK6BZcBoVfxHkdxvZZqJvntvqoKnlh2UdXNrbjsfDqDxvEMICP2182fjQTmBW6ulrVE7sE6kAXQPjPcUoYIkjtVaJHT8B76dUYVMnsp8I5Rp44lqdoIxGS9jmbc29VmqrZFzmklerYg/kUunj+s9h0scLmvjOGyBcDTjhqulrFZkc86ijkZmcBzHQYgrMpYuX64QJ8sEKIUhA9CWs2Xnmke3r1w/r/l4yrceDCZ6h0n9oTEPisQimIdnCt/UqehCdXYok/3tinZ3BNjcSOBfyUBRJ+FPQgUSCtaPrUscT47pKp12e2SXz8odBph/B4gGsBpxgga5OxJ8WbPHnf8oN36XcQM/QzabckOHLpdyQYFysNFC5wXbCVfmYVS4BS0fvdtJs2eTJY7CkeyAelBum+HIddB9tXLD8XuWGXX8OuXDx94uhq/tduBM4OY9WJtQCyg0pnKgkWCYmGsAyLWqBiT/lhkdCSXLc8FrSmS2HlLu99Bn11JEllRuiOU3Xy1rTGZ6VG/Ja3p3u6RMdPPufPgfv1+hrY2HlBszLsB69H43IUopLuSH9ZeOvO6ZvlKzzfPwi5FOpwVag3JDCCU6CrxmVG9J/Lr1/nZNImr4lzuPE7RdPrUS5IZoToV76vK0lW952eoE89Evb6gFjVtUp86z+cOoahW0oyNGEUdJQwxcO/PTFcGE1ATITBjPEWPAryLtShQBbjQ7XKADOluivMPciUreRBiVO9PVL9Hszs2iyxYhp4GgxURaXkSqJgAXkYuOWFbAXKIQB+uj74th5EY+Vor3zks8MVJXKp+0mwbsRBxSwy0VlSnT/x0PN21Fign3F6ITCpjJBstgo3rETBhDZL1xjlBrQfUE7OtiOX1BFI9CcC19xvXn2c49p96jDUkrezByWBU1FAXaln134lHzbkFXey8bfrXu3OQ+ADeYEDPQoiyRReMyAf9NCwPbDlMOy5bClPWZLDq/asuSxNyNWXQ2cmh18cMHsi80rY0ImwBiyoUkahZ72jCW1Yr8o155upiXANNOe7be9TtK6eaKxLh9uKR9Xa8eDaXtwmjbMQqZF5cczOhmVapULLeTPkcbcsGJQYKPwH8QL5sQed43fXIe+4Yc4VIVf5b2stCfhkzajSCWbPbEhRgRGH7bA6Hel+p2fWm8TbejTz2lK9wPUskpVIflVB5c+4UlmBeTWK4yoGO8lUScAyHEKLvaYmILHYJPDgkLxkFRqUESkb9sV/cIMcyD/yohFhYftAOh/+CEKyA8Anf9aO1P5KeLQQqDA5QZYBglmG+pEoStZ/Byghwsgwf/hPk0LV6PVKQoW9ZLbdYdv27SwdPCeP1/tbuKfS1WvKt0dIx0wfQxxvSgfs7dkXr2IGzLJRK17p4u3XHN4WJnIhzDb+CFKpme5YTCbuiTcsJD59atb0epErSI6GeseGCcK7QTqfFy+7KetYWM+z8z97fXP56knMgqey5z+UhqLQw0Gg60vCrYbHhhshEtoxeYSzpav/65ZK3XYhD9fh3heHiWjfDeHSAXGYRSGJ6tUCF/AljB7kPdBIizWZ5WJP8lVyhi8k6codfFCNZimaAz3BPRdeo73ZFiB2mxElry+Hdvm21KA7lyTx75jEMbDg6uuCi1GxMYQQwKg/azbvP7ulPCVt5e+3REy4go1fcYexEyf8ctFDWc6K4GHlGEtRG4cKmWAxaiWtmNNnw1EzlmPnIbS1WDXQsLX5+/do+PaOUjm3b6a82qkfR/qMXeig6C3dKitvBOiXbGexIHW1HYWYbHbdk1NUhTGoX4hzo5nCEhpFSpP+Ddaz4DA/jDJjVNoaJQ4+GOq43bEAiQ0LHgEmFSn4qZGWpkemEwZJCbadYAnMQreiFEHMr2wUWDUQphTOIYtzBVw/i7R9WOQUFSI9819kvqDeE6J3DIHptWdQNuYgN8KsTGBXS4OKOZyQjFVH6haswUqq6n5R/eW/JQ/LoaSfwntuEr+KfSQt7F6yOncOH4gfxX1bkzfkrP89vR2Obr5/Q43HiC/2Z4L8ovtScjb8sbKrEBCbgZWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrE0GiJFmZCBIlycpMGGkn3h9xPmBGv/IDug/Iv8qgvMHOi+x9dPolD5Q3Xzb71ws55nFnS1n/1TYxA689rUi1fxV8sV+iUmthuoht4DCT8tIso62evxKWO46H9YHxB2BTSjjPJGgIhm3v0ymnRb4iAxzUHxkhLfMI7g/cQJ4YATPy48Zt8zvju22YkoYaKwavhqxAdl7QkKMVFLIBEZKNrefELNtbfa0pe23Fu4x9AWD1wJcIu28Y4oRgWn2FueHPhVU1PSWiMFZIlHYfuL1j3iKfoMz0itfme8iW8UiLGN0t/P2pVUP916gnBab7pR7hAaXjnCjt9GUuPnDlae6dyXGFDTYMM3LIwakeyT1j3yrpdPn8jhPb9gUu3vKu5dqYz18tuJ/r7U50IuSGHDw8fdPI/dwm+t1DCFF0Ib1PGIEovgkJzouVP6Qn1r0XsTvtVFrPfd82WsGuJQTpN06Qjhu5r9tQqsS/uX6pqqDLYBuL7A4q5d7Awwt9KofPePAhMrnUlR7UXUTyucxdRH1LcaCzjxOdLfo93XZsgfF59/BQG69Pkszl5/xzIoJ6MxfimZHQhgVcF+p+rp7qlqI2SnKffsDC0L0BA2G7DxxTS5jCn0MtQAkAbHWYC1Cmb9O69a2b9G3rfMnKlHeq1iu2rKYudmL7sSxhndJYlBenuzgTvbgA+OnmEKzOqD4GFSBc0WtObGCVx8BSgJHGDlXsqlpjbzwuFb7T9cy82Tkz/qV6Ihm4Fw1UoSYzpwQQpjqcMFVFrLSbtoVG32u22BYa9DRYH4FbaEJG7uiJQUP4ofZsfkjS+JxX27H3Qpf657zVta1Rm74OnSBPEuLrNIj1crbUvDF+H7nbg51LkQsTFSnwkkKjjCYCpEFuiX64i+MNUSvlhZoN3SUD3SZKBHA9j8rJ0wDqLURGOary2DYUvrgLXgf5LV13jj5zs/so0fLrpTLWd75AlS39AXsAM0XCLxc15ujn3Ezd3QLwdIHwlEONuVwwZQkQGcUmccDfh0skfcG+ZQ3CVjuHrv+s7el9P7QMdfcPv5+5+0dcLwqflAdL/m1RY3bIruej3DOHz1vDAz4dOPEB3ccSDANbjLjxEw5EewH9x7gqag5d5Zo4hY7LaCvWdJq1ZuMvAZNnnm9/YkvcbarR8PuZRiOu806uBVZx47RKXauyyptDpFWMCl8VMIeXpIghnC/SMJOi/41pX7urdE+fPgfnrDnrSDVMGHY/0zDEdb4NI/Ik3AlcZmTMV9O8ZAI/kXETMmc9BtjEQqUsCo9S/qNjx+1/G7H/r2aznWeOKkmTFMIfgJAUIhqKA5EWnIg0EJFxvQNbXN88K+SvPu18gyb89UVne/TWO6qN8U80nAzTXj/DoAZwYUq8MjoepJXwbKFcq4VqkHpWDBH+DZt80M9po96X2Sfx60bsgJcQETxRBvtFBGZ17zqZugNei0g1cPEkTOAXHmHC3wT5xUOuvE2rs/pRwP5+c69+2DK4A7XzsSU2+gYzB3+4u/ut00k4gUNwNIRNMAyN8ljtw4kehZc0oRzUgnwgLb4+AMsowP8X5JTC4eEj0QsGtHhu0YoqcF6LAeaEAgzqWAPAiMHc0eo3rui9iSe1Sfo2Bw87V5c6ce1cndFj3okN8/Bd/udPC45J0nrXaKd8FlyJqrgdRhFCZTpSNqSdw0A+AMKTDtyposmpGuQn6coUXK/FFAKnthu6cAMm2TUhVXMqauEG7lHYiBF6k2Q8QehNwk+i603S9SLpepPfrSdJvxGhJ8nmm2r7KzXA5xgjf7txxF/1Ag7uCJ54r01Fnz6zK1Llb8XM0SEuUtxu/eQnKW0rpIo3Tu1/rv/p8yYvLYHR4QTN6Y1iL/QEreXFJxFCjmwgfY9I8KNSW88mhPQPnzQyTOuZ/mzSd4gE01E6Me5viVBZK3D0+cnecxtl1OcBJRtOlD6LGBKAnGwXvNYCTIwMAIjOeqfGMPxRzBhGXC+OBW+sx3xELTS5emBIEf5U9B/zp3Q5HzP5000iLn86X/Q/f0rY55JCcDhjSLvAhfJJi9deChzMgz+lyzTx4Ck2iLg8xXJRcfvTjvabWuXPOBqR9ePkTk9Gn2rPgz+lLxLwgNJ8TpSmF6c/pcdQi/tTrMew+tP5+gm+2OrnBPThxA+ZzadEjbcZkiTpzvei+M1XMiJ5mBIkirimBLF6yP14I7OVJyE3A5kNoYFHunqEBh5JZkNo4JFkNoQGHklmQ2jgkWQ2hAYeSWajZ2gMxhr0isguRlfP44GxJuHNyPZmNPL36UgiRBVJI9P3/Bk2sWGzCV22kAebSNlskr37fq+JDz8G7d29Y++WwXnUc34/dJYnKlTM2ihsjs1VLEyCdxSq0CVMVOsUuLgQlOfm0rCl6y4iXsUQb2cfFa1Rq1SRMGLBiwVHPt90onnChS3zz8tzo2TjOvYqva79xdNsntC2m1ahgQLg5Mc2lKqTB6ogVwtW0YHCPzFKHfHdQYYBdzny01bRTEKWOWKo5jaSCS51BA60rUSQNlFSNkyuiVMmhipiKQHQHr8cCeudFr5uh1/vqk4qfJXqhbO6NpKNv9jxZAUMxM4aeG5Qp8Tfqgz5VqgBpZGnBCXGQNktEt4SdvAi3HopdAnL1VVESSZ8QgCrqCrlKgnUgioUiHQahTxB/zsmTKy/h+iqMqsPy3QVUJ6W6uj9n4e4/APnUt2XjmRc9rd6zOnyqta7PPoPJ7H/nZ7YH8BbmHQQmC9MInRzyTCJ0M0lwyRCN5cMkwjdXDIXmj2+yVqnd/6yvTd1J+dNrrqpUC7k2Stl9qCn78JWDynlVUraM4gRXKHXR3YkuhgvD8E1kM2SVlqunS46bLZy7d/EXOXazzKlZHgu197FxqVGl40XpMteVFrVZrwndXfeMuXav4i5it++s4xgBrXm9MiRI81Qrv3MiPqSlkeHyCaW7zj6rwaVqafLLVWu/Smnde5Zg3XMUq79r9e/vvY53VM6J/dig73r+h2zinLtVzmNc9YajCOwZLn2tnX8PzQvGRcyfXrmyYQzMbOsqlz7L5zG22VFQkEWL9f++8C3Ja+HVA9ZsejJmQMXZGUtXK59A6flllvccvCmYivX/tpua+1yJ98EbKk78f79/KcvrKJcO5ZDsJZrP6vfQAxiy1P/S+Xa6WUxLFyu3d+Pq1y7t595yrX3GH37/rQni4M3P6vul19nvYj3cu10cTMeSpBL/bhKkPv6FVe59pG3UuZnDcv0356ntm1wYMcX3su1030ED1h5c2LVyO//q3LtwWxu7H8i/N8lwk+vJmQ2Ef7Fflwi/D8zfScPIvzRPb3eH1V6hqc10CQeLdtjCo+nzXn2kXDBZKEfl2b5LKaPLA4R/svlLgwRbG8i2z3q8bxL6RKxxUX40zlR+dm83pBz7mDcwR/+RPiPa3ckbX+7LWylzZPfJrZ7uMFqRPh1nKYbZBnTmV2EP6SmOPLn1ArBK5wf/9PJJ9+Sog1w4RXzMqwq6sDLmE2Ef6L4041nTSoEb/iwdXsbzVFqv7WMCH86Jzg/+5lRhP/P/tvKB1XcJpnV7o3P4JoVrlqBnAVESMeJEBjTRN4Wwpa3ycRNmn7rcEWce7fOmkuLX1MFaO2xQ3xJahWI6MyczZYFZ5+CLRJlwf2EFgZAXKNOjosHORyscq2ONUrLgV5hkfVtmaoHhRoN5faBRKiMBOCbD/DNpadJFwC+d9inmAYerKpa8FrgKoEFOnnq9/5z/6HHA5ZEXd3s/4eEphfyPbW76MXmaY7RxBQKyt7+IGGrYpcF+u4/xqVQ5fDhG6OI0yjQ+eU1px+zp9afH5h96ev8wJeu1LK/paXYjYgTUvj14pD9fevH9f2fWDxZ0vdMIxIl+MpKdYwymkPbppb4lEznly7NWtmg29KZk05S+yr5AGZf1bcUhzHucBrjsnWkPwJjdiw8QxLVOhC+5NFw7dTVuwOYsoKZRYK7sFmH6Hi1JsZd2LyDdohGh/2CzlZ/dTk7cMqa8ODxk3Ye6VnJawE1rsEPiNKlqhD1LwuaisNYpzmNdcgqRg58lFHZarWChe7EZM1ALccICu9sEyRt+Ew2Q7qw6RSfpn1NmSqbOnXwJhw5POp5gaEL1Uy27oORWSrhyTmyrZ4TMruNvxsesfDt7Dy3mY3qWnbaCwB47kcAcAMBAHQtRmWiZChjF5nw/dfdq+7CqUHbU2VT7tcKOGLRw74QgAtcAHQ/ok80Q/9jfBx6YW6z8XEmSLj4OJGS4ubjVLjV/GmfqknBcw91Hmv7askzK+DjjJNw7W4Ok1gBqSA6OtoMfJxJ5c+Neng3LXj73Y/T/xj6Ltkq+DhJnNaJtQbrmIWPczRp8ymn9GXS5bVfXIzstNPJKvg4fTmNE2kNxhFYko9TJ+2vT8ee9AmcU6PqL88/hE23Kj5OIKfxOlrGeNbJx7m9a/bj3/6qIDowv8mB47W/PrMwH6clp+WaWNxyxcrHmXvlxDenPTFBuQ13LC9bcUCqVfBxsByClY8DHCGRp4b9X+DjlD9+PTxjsihg0uc7Z/ZKh8+3MB/nlISLj7OVmdIWCx9H0r9Xycipr0UzJ70e2npLwkre+Tj0uTkPHJMTEi6OyX5JcfFx4ir0/7n0gJDwBbc2vrnQIrAR73wcuo/gAautnFjlmtfnWpqPE87mxoYcUjZVhq+V7DoYoXrysM9r6k5Jl2R4djJAI0+KZ54wNWL7ooFUqU2Cp8f0uzmpHvgpU6EcaubFwU9Az7vndry4bHEL8bpQt0rTau8sz/p+zJ2cwo2M/mcXBVxYROGjWIheST/3ZGCv1D+NXjipMYg78LSfowT+o53/jGksCxzb6aRDlEIFDKaICQJ+fSj5OMysuCkj2EzpmJ8hrez7myTH58GhTadSpDQVDLQBK+HeHWEzQVm8iXLIiggGjMNXfCl50A/Jf4eSh6HZQQkWK3mDjOyGiCiRe1hMoN6ZDfWv47euqOJp47ezr1P2qqQwahhBnb4sW/zIG3xik356j6cTm985brgs4taBbpEubBZZOjMj+UXwx4C5Qxy12ZPdf6SuifpD8oyOmZGxTi/xG4RaEPXxepfJWpjyYrXa4tWqGCjHCCmBsdjfYemwTh6nNSgHoR+RLB2qjh6siNHfhHp15nIuft1QGVAA5kwI5mY/BKkPiqoP6YCQX4IQwXkcQn4J/qPLL4WPv9sx6uRz0biz29Ns30Zcocsvje2RM+pWUt/ArMNL5z/OmtqRbC8pMFGeif7BCHkmNkvbQ/UAwoxIa906/fFLcs8t4avHtVso7irvYIq1+JfDhxpC0K4VUSnPfZDyjO9gkcKT9rC+Y38t+A6JcQUOo+B3zNUM9/aNHIlQiWKzVWX/gtEGEiJdsgaduC6qvjvnSMI7/z03tz179eOnFpwmKyPBn4TQOiYaisNowzmNNsS8RiNdsE2oBHeo8JZR+nGP2YYco2zJXj0pUfpamahVaDDWHfgIisNE2ur03K+RkQtGSjZVTfMPutmOMbzKhCXr5ANVegELAW2zC36qNzNceRep9fWd4YrLqHGcRv2xA0Pri7OAAtHZFbg+CxI8ukwKZ0e3gZ6OWaYDu8p3F0/zJPzSYTGi0r3IC+viREiPZAvpXR7ciyijOh+wZM/BkqN2ulCrn5aNilfG6oSwriw1rMN4xVbT2jkiNhZOReQqFVF+VQkL50Hxbk+0oAit4CDbKyDyJUOXpUDPSNYLUzCWpdxlgm7tTeWROWDVd8HY1MIXRn7R3h0yBD8nCyVTttXz76a9eYBe4AX5FYsm3tOKrps4xuAUXguxOixCjLE00KpsbxxrDLegGusVSFxiKqdHbNp2Q5Sp9fxR2T9vHmNJOdYwYEwcT/Cb9+f85qCXWMFyMtYDjdhjs4c6Q1zSU5rq0TUuz2jsv/nM4ZdfT5VzofZLeLe54A/hhF9sGfgZDDFTC3XjIwKyncE3QVqEXnH3Oz2Fqav5HoVcASPADPDABgQRYKLYAszpBfLQL22rB4xZVafMs/rDqbritlhRrChpKJNuwhZe/Kg16YiCWsIYRSz4NUY4MLVw4TZ3MGHE6fhwHkmcTBtp0ARyoW/S/Va3Uv23q2x3TX+81Qv93syFWbLF0F4PUhrRrOMCwX5UaHoDMBbNPM5/8TrnaYtvflxQO2BDj6nXynb/OInmcuHdiF087HJR8WjRbXnp3Ot3xcta/PBIFhN80MR4BItmeUOAvFE53wXgFu5TASpqguOEAUT2C9cYpQZ0X9COZmeKK3zrPrJunuRg+Wt93w99T61pbCclb2ayMwuaigJsRy1F7uKQKeKxYdfTM/cG5/EA2IyZXICBHmWRMIYfiYF/00LA9mPcmTF7zJYcNMajXzNHyU+UDMn8kvLx2dWRJyxKY4SWeTODyzJLZ1jGMsjTe4d4rm/Yd8uw/Qf9OoqyAht2+7BkX7jF6htu9iRcymbUxGmAFzZCiLjWlS2uCfde36n7baZ4dfd6jssTvanlP0tHqnWMEztck6a6+A0gqpHnxjTwnSGpUj5UqUVPnLpeaVSv39G+AdMqbT0b8vcsf9QrILSnseuGMsHdgDOZexwvbcQITxVBeJqRaVx46o5/P1izEHsR5Dd7vHv859ryf4JG94t6OOFlXhfqN8MfwfxmxPWi/G1Mvm3pUMmU0Jygjm1WvL3w3ER/KwIQpUGIpKhRHQhGtfdcZIBinUliFoKHkaDpkfhs798xt9ri8dLRRx6t/80/i1q20EYMbmMOJexqUdjQxygP2NzP5MKG1n3gg2wFHGUZCrBJhAf/XZWJxHkkLTp+/7O+Tqe3n0eG7H3bePScurP7UxMdMXwIM9HBLxeFlbZkcvXw2hWDZ235a8ugd7vas2LVTavAjzgViMYagZ+IE783c6wnYhjJciqPe6IYwuUhzTfg0IF3zvv6+o/Lz+1V/k3rVaY5AhPjxgUPYqTb+CHixg1PrDcTcaPbd+0l4z3P7PvJRo8qetc3ZVSZuKkMCSm7Zx8ntzD/Hw== + + + + iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvwAADr8BOAVTJAAAAtpJREFUSEu1lF9ojXEYx59OS5IrF5IkiTVriWgXS5HWlFwQbpRYyr+xkgvFLpQMpRU3SEmjmLWEuZLcKGlpaRe7WNKulnQu1trFWms+39/ved9zzvu+59z5dr6d3/d5n3+/v1aNy2Y7fdgI6/w/xQWzbT6sj4tmW3rNlnvMmqUpdvOS2cfwsYJVcBF2BwXOmK0hZgn/O24qBskOq8DZmES6U5rutgeHCu7BBbgjKIBft4oQc85NeeBwSAlPma10kwIn4bDLBCX4FU74OIAZ3CLHQkFDEfqQ7ZigY95Zi5sStMFl2BVURAm/cWJGXedQIlkZp+uuhZLPYsh1NX7CB3EYQfKT5FhkP1e7qRYkeoqDpp6CgqcVdN5srZsSvICf4zCC+Datgv7dVAsq75EDnbS6ybTp2GYpdMVNCZ7AmgI0sk/x7PQmN+WgJZnRhrkOwDaE7ZPLBCPwQxxG4DNAkd8ui4HTY/jDZQD6RkHgOHwYh/E+0MgcM+1zUzG05jjOuwzA1kuRPy4FHWXdhRNBAXyew791NzgBiXoyybRE/XDSpdAJdUw3SDC7cIfgEemGIPkI/OIygMBvcNClcB9OxWE43tN8f+m6PvaaNeFYc2IIboZL6tJNwhh8pgG+LcToDdst3RB03iVnbvNmN4VNJ8kvhsmz0AT14IX1J3E4mgX3JA+SvYbqLsBPxjw2fik2Qq1/hwQfWlWAzU0fv0L4hVIymoqg8z5ss5mT0Q5VIFym42YrPI6JNwBOB9VJ9VSpNE3ggMsE+6EKpH74vIHpzAtBt3cpkB5FdLsKFjy/2kwVSPcpeWJo6ICb8iDhK7p461L6KkEzLquhzlVAM0lB7CicqnvRvIDelwAVg+9cZqHC1+Iwgu7XwzJNvde+uLkCkt1WBy6lx+Ajl1noUn2Pwwrw76DAHIUm+N/l5ghmoAvT71KbPozjUZdZaHnKcVgL4rbCQWLTd+o/wuwf9N7EUShQvi8AAAAASUVORK5CYII= + + 314fd0aa-b899-4f85-bf12-5b9e9659f93e + DIFERENCE CURWATURE SHAPED GRAPH + DIFERENCE CURWATURE SHAPED GRAPH + true + + + + + 37 + 098e7b9e-7b4d-4cef-bda0-50875a59b926 + 0fb027f2-bb77-4eca-a35d-796b227556fc + 19507874-964b-46ac-a895-60e53f632f29 + 2adb01ba-7cd9-4c5f-a316-08243357a8cd + 2d53c230-0155-47b8-be10-65af0a7e136e + 3b356cfc-faae-4b8a-ad5f-521a9c4cc56e + 3c447cd3-e651-430e-8806-4c598ead2225 + 4f8d7f4e-f77a-484d-900b-333bfe51ba19 + 5511ee1e-138a-45cb-b69e-9ea295492e11 + 5927aad1-90d6-4006-b966-f46d1465952b + 5b40150d-e9eb-4ea3-8661-fb71b0a913f2 + 5f22b34f-4cbc-4347-a5be-30f64bdd9352 + 61dadb66-9f1f-481f-9353-6dd2584b5b6d + 648205e6-512f-460d-8649-72b4e8c4d978 + 6484f3aa-0d26-42dd-912c-1d535fe27c98 + 66b0ed95-d3a5-4c74-8fa1-0b63e7386b14 + 76cd154e-bedf-48ef-8855-4e6107eba638 + 7b38907c-c7dc-4ebe-ae16-a3819d667992 + 7bdc141e-6a35-40d3-9584-5154c4315eda + 87290722-834a-4c57-9a9b-e0dd5cb9b39e + 9fa27823-77a0-4b75-bcd8-4f611d88e4dd + a2801291-d228-47b3-8ae5-5c784851fd5f + a2f18f21-fc41-4d19-b1aa-1d9a7c2c8690 + a6d64955-5e50-41a2-bee1-f25dc8986948 + b557f7b9-32f7-4d1b-b816-f247b02e448c + b7326999-e8c5-453d-a50e-5d60958d0c4f + c169fe0a-a0dc-4e54-808f-9ac11fd63248 + d1929846-c2c8-4d52-92c3-08ed69f640cb + d5cad9cd-1030-4389-a33e-5a68c398ba17 + d774309a-3843-42ba-bb8d-21ce60b8e8ec + dbde79e0-7764-4ce9-a54c-7dfbac0cbc8a + dde5657d-1af7-439f-8363-65e4a0c6e86f + df5def10-369b-46f8-ad3c-a280d4592df7 + e457f7af-00ba-475e-92b7-cd11adf29380 + e5295388-f02c-4451-a296-4ed151ef7c46 + e9642a8c-122c-4b43-8755-8dcef8132cac + fda35d21-9073-4d87-928a-96c2feb7e0f8 + 81fd98cd-c9a3-405d-866d-edf2fca2467f + 4a525765-a9df-4f3b-8fae-c2be3081d0b4 + 16c32cca-03cb-4d8e-bf89-f521eb08129b + 7e2338e0-fce5-4964-bac7-ea6c242afeb1 + e860b9e2-e037-4c18-988a-393d0094d8e4 + daca2ebb-26cb-48f4-8885-277e43200f92 + a43519fb-325e-4058-bda1-f7e34cc92c6f + a7e4f8f7-1ccd-48f0-863e-6ed19022d27b + 937bac2b-aa3f-4485-8435-a74b05842dda + 17750273-1d4e-4a10-92b1-f4b16af3b73c + 326b8016-5135-4828-b69a-a21c171e1a06 + bbece122-0a0d-43f9-bd1e-b6e66ae744df + 735da924-e3a7-45ca-9564-36c125627c0a + a67255eb-66a4-422d-aed0-4b64cd94d270 + 130433e2-dd09-4dbb-8e9f-946a284f4836 + ddb00df8-65f0-4650-a3c7-89c56da7f06b + 2927bcb1-a8c7-4996-b4cf-1e0b73fe722c + 36be5f7d-3d93-4e60-9b58-2ea01268c3ff + 59e3ea83-51fb-46fa-8bda-938de18b7cf2 + 1af94696-7c3b-4341-b4bb-415b935cb441 + df2cb580-23c8-45cb-aac6-97ce3b2e2214 + 88db9398-ca86-4220-85b3-d1387046010f + eabf9208-959a-42b3-8af1-f5ce33e4d91a + 53133e66-86e1-4322-bb85-7afca5c21f4f + 3d99a0d8-87f4-42b3-ae8c-13046d610738 + 9a110ceb-3e62-489e-8e19-61581f5671d4 + 8de15979-110c-49a4-bf71-f92c5c15659e + bae8f0e9-2af4-409d-945a-a91a08fdc45a + f12cf189-9dd5-4b8b-822d-2da85bac7a45 + 233b0ef6-f843-44d6-99fc-9ecf077d1b78 + a317f3b7-85e8-46ea-bfa9-b8f70ca5c382 + cb30ccba-a894-45cb-b1d5-847ad7005125 + 43f684c6-6920-481c-81ce-8a3096268d23 + aa2a8593-f318-4546-bad9-74c7978a14af + 9c973484-e313-4490-a780-3cac6484f2c3 + b2a58353-e9c9-4e65-a900-6efa66489724 + 20d03587-b988-43e2-924d-d6655441a5e8 + + + + + + 1607 + 4968 + 103 + 404 + + + 1668 + 5170 + + + + + + 20 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 + 17 + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + b6236720-8d88-4289-93c3-ac4c99f9b97b + + + + + Second item for multiplication + df5def10-369b-46f8-ad3c-a280d4592df7 + B + B + true + 64c76e08-bd85-4d09-a143-3a38170cdfe1 + 1 + + + + + + 1609 + 4970 + 47 + 20 + + + 1632.5 + 4980 + + + + + + + + Second item for multiplication + 0fb027f2-bb77-4eca-a35d-796b227556fc + B + B + true + 64c76e08-bd85-4d09-a143-3a38170cdfe1 + 1 + + + + + + 1609 + 4990 + 47 + 20 + + + 1632.5 + 5000 + + + + + + + + Second item for multiplication + dbde79e0-7764-4ce9-a54c-7dfbac0cbc8a + B + B + true + 64c76e08-bd85-4d09-a143-3a38170cdfe1 + 1 + + + + + + 1609 + 5010 + 47 + 20 + + + 1632.5 + 5020 + + + + + + + + Second item for multiplication + e9642a8c-122c-4b43-8755-8dcef8132cac + B + B + true + 64c76e08-bd85-4d09-a143-3a38170cdfe1 + 1 + + + + + + 1609 + 5030 + 47 + 20 + + + 1632.5 + 5040 + + + + + + + + Second item for multiplication + 61dadb66-9f1f-481f-9353-6dd2584b5b6d + B + B + true + 64c76e08-bd85-4d09-a143-3a38170cdfe1 + 1 + + + + + + 1609 + 5050 + 47 + 20 + + + 1632.5 + 5060 + + + + + + + + Second item for multiplication + c169fe0a-a0dc-4e54-808f-9ac11fd63248 + B + B + true + 64c76e08-bd85-4d09-a143-3a38170cdfe1 + 1 + + + + + + 1609 + 5070 + 47 + 20 + + + 1632.5 + 5080 + + + + + + + + Second item for multiplication + 2adb01ba-7cd9-4c5f-a316-08243357a8cd + B + B + true + 64c76e08-bd85-4d09-a143-3a38170cdfe1 + 1 + + + + + + 1609 + 5090 + 47 + 20 + + + 1632.5 + 5100 + + + + + + + + Second item for multiplication + 7bdc141e-6a35-40d3-9584-5154c4315eda + B + B + true + 64c76e08-bd85-4d09-a143-3a38170cdfe1 + 1 + + + + + + 1609 + 5110 + 47 + 20 + + + 1632.5 + 5120 + + + + + + + + Second item for multiplication + 7b38907c-c7dc-4ebe-ae16-a3819d667992 + B + B + true + 64c76e08-bd85-4d09-a143-3a38170cdfe1 + 1 + + + + + + 1609 + 5130 + 47 + 20 + + + 1632.5 + 5140 + + + + + + + + Second item for multiplication + 5f22b34f-4cbc-4347-a5be-30f64bdd9352 + B + B + true + 64c76e08-bd85-4d09-a143-3a38170cdfe1 + 1 + + + + + + 1609 + 5150 + 47 + 20 + + + 1632.5 + 5160 + + + + + + + + Second item for multiplication + d5cad9cd-1030-4389-a33e-5a68c398ba17 + B + B + true + 64c76e08-bd85-4d09-a143-3a38170cdfe1 + 1 + + + + + + 1609 + 5170 + 47 + 20 + + + 1632.5 + 5180 + + + + + + + + Second item for multiplication + 66b0ed95-d3a5-4c74-8fa1-0b63e7386b14 + B + B + true + 64c76e08-bd85-4d09-a143-3a38170cdfe1 + 1 + + + + + + 1609 + 5190 + 47 + 20 + + + 1632.5 + 5200 + + + + + + + + Second item for multiplication + d774309a-3843-42ba-bb8d-21ce60b8e8ec + B + B + true + 64c76e08-bd85-4d09-a143-3a38170cdfe1 + 1 + + + + + + 1609 + 5210 + 47 + 20 + + + 1632.5 + 5220 + + + + + + + + Second item for multiplication + 648205e6-512f-460d-8649-72b4e8c4d978 + B + B + true + 64c76e08-bd85-4d09-a143-3a38170cdfe1 + 1 + + + + + + 1609 + 5230 + 47 + 20 + + + 1632.5 + 5240 + + + + + + + + Second item for multiplication + d1929846-c2c8-4d52-92c3-08ed69f640cb + B + B + true + 64c76e08-bd85-4d09-a143-3a38170cdfe1 + 1 + + + + + + 1609 + 5250 + 47 + 20 + + + 1632.5 + 5260 + + + + + + + + Second item for multiplication + fda35d21-9073-4d87-928a-96c2feb7e0f8 + B + B + true + 64c76e08-bd85-4d09-a143-3a38170cdfe1 + 1 + + + + + + 1609 + 5270 + 47 + 20 + + + 1632.5 + 5280 + + + + + + + + Second item for multiplication + 19507874-964b-46ac-a895-60e53f632f29 + B + B + true + 64c76e08-bd85-4d09-a143-3a38170cdfe1 + 1 + + + + + + 1609 + 5290 + 47 + 20 + + + 1632.5 + 5300 + + + + + + + + Rotation angle (in degrees) + 5927aad1-90d6-4006-b966-f46d1465952b + Angle + Angle + true + 0 + + + + + + 1609 + 5310 + 47 + 20 + + + 1632.5 + 5320 + + + + + + 1 + + + + + 1 + {0} + + + + + 0 + + + + + + + + + + + Contains a collection of generic curves + 3c447cd3-e651-430e-8806-4c598ead2225 + Curve + Curve + true + 7e4e6adc-a4d1-47ab-a4c6-c48fb8239b6b + 1 + + + + + + 1609 + 5330 + 47 + 20 + + + 1632.5 + 5340 + + + + + + 1 + + + + + 1 + {0} + + + + + Grasshopper.Kernel.Types.GH_String + false + 256 + + + + + + + + + + + Contains a collection of generic curves + true + 6484f3aa-0d26-42dd-912c-1d535fe27c98 + Curve + Curve + true + 0e0d5017-4f0f-4bab-986c-96ea91bffc65 + 1 + + + + + + 1609 + 5350 + 47 + 20 + + + 1632.5 + 5360 + + + + + + + + 2 + A wire relay object + e457f7af-00ba-475e-92b7-cd11adf29380 + Relay + Relay + false + 0 + + + + + + 1680 + 4970 + 28 + 23 + + + 1694 + 4981.765 + + + + + + + + 2 + A wire relay object + 5511ee1e-138a-45cb-b69e-9ea295492e11 + Relay + Relay + false + 0 + + + + + + 1680 + 4993 + 28 + 24 + + + 1694 + 5005.294 + + + + + + + + 2 + A wire relay object + e5295388-f02c-4451-a296-4ed151ef7c46 + Relay + Relay + false + 0 + + + + + + 1680 + 5017 + 28 + 23 + + + 1694 + 5028.823 + + + + + + + + 2 + A wire relay object + 098e7b9e-7b4d-4cef-bda0-50875a59b926 + Relay + Relay + false + 0 + + + + + + 1680 + 5040 + 28 + 24 + + + 1694 + 5052.353 + + + + + + + + 2 + A wire relay object + 76cd154e-bedf-48ef-8855-4e6107eba638 + Relay + Relay + false + 0 + + + + + + 1680 + 5064 + 28 + 23 + + + 1694 + 5075.882 + + + + + + + + 2 + A wire relay object + dde5657d-1af7-439f-8363-65e4a0c6e86f + Relay + Relay + false + 0 + + + + + + 1680 + 5087 + 28 + 24 + + + 1694 + 5099.412 + + + + + + + + 2 + A wire relay object + a6d64955-5e50-41a2-bee1-f25dc8986948 + Relay + Relay + false + 0 + + + + + + 1680 + 5111 + 28 + 23 + + + 1694 + 5122.941 + + + + + + + + 2 + A wire relay object + 2d53c230-0155-47b8-be10-65af0a7e136e + Relay + Relay + false + 0 + + + + + + 1680 + 5134 + 28 + 24 + + + 1694 + 5146.471 + + + + + + + + 2 + A wire relay object + a2801291-d228-47b3-8ae5-5c784851fd5f + Relay + Relay + false + 0 + + + + + + 1680 + 5158 + 28 + 23 + + + 1694 + 5170 + + + + + + + + 2 + A wire relay object + 3b356cfc-faae-4b8a-ad5f-521a9c4cc56e + Relay + Relay + false + 0 + + + + + + 1680 + 5181 + 28 + 24 + + + 1694 + 5193.529 + + + + + + + + 2 + A wire relay object + 87290722-834a-4c57-9a9b-e0dd5cb9b39e + Relay + Relay + false + 0 + + + + + + 1680 + 5205 + 28 + 23 + + + 1694 + 5217.059 + + + + + + + + 2 + A wire relay object + 5b40150d-e9eb-4ea3-8661-fb71b0a913f2 + Relay + Relay + false + 0 + + + + + + 1680 + 5228 + 28 + 24 + + + 1694 + 5240.588 + + + + + + + + 2 + A wire relay object + a2f18f21-fc41-4d19-b1aa-1d9a7c2c8690 + Relay + Relay + false + 0 + + + + + + 1680 + 5252 + 28 + 23 + + + 1694 + 5264.118 + + + + + + + + 2 + A wire relay object + b557f7b9-32f7-4d1b-b816-f247b02e448c + Relay + Relay + false + 0 + + + + + + 1680 + 5275 + 28 + 24 + + + 1694 + 5287.647 + + + + + + + + 2 + A wire relay object + b7326999-e8c5-453d-a50e-5d60958d0c4f + Relay + Relay + false + 0 + + + + + + 1680 + 5299 + 28 + 23 + + + 1694 + 5311.176 + + + + + + + + 2 + A wire relay object + 9fa27823-77a0-4b75-bcd8-4f611d88e4dd + Relay + Relay + false + 0 + + + + + + 1680 + 5322 + 28 + 24 + + + 1694 + 5334.706 + + + + + + + + 2 + A wire relay object + 4f8d7f4e-f77a-484d-900b-333bfe51ba19 + Relay + Relay + false + 0 + + + + + + 1680 + 5346 + 28 + 24 + + + 1694 + 5358.235 + + + + + + + + + + + + + + 33bcf975-a0b2-4b54-99fd-585c893b9e88 + Digit Scroller + + + + + Numeric scroller for single numbers + 64c76e08-bd85-4d09-a143-3a38170cdfe1 + Digit Scroller + Digit Scroller + false + 0 + + + + + 12 + Digit Scroller + 2 + + 0.0625000000 + + + + + + 1205 + 4937 + 250 + 20 + + + 1205.704 + 4937.567 + + + + + + + + + + f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a + DIFERENCE CURWATURE LINEAR GRAPH + + + + + + 7J0JIFTr+8dHZW1DSKWaEpGS9r1mBmMbS6i0NxiMGBpLtKpkV1QiVFRaqCwhO3Uj3TYtSrt2ad91b8vvnHFGZ87MOXGdMaf7u/7/26/mnTnOfJ/3fd73fd7n8xw5Iy8nP08Wx/cH8CNFIpGkgf96eHv4ubI5i/1ZXB+2FwdssgFeBpvBH1nwLfzPmbKYziwu+BZpqFmB32RmBL4sD7w0/tGLhNVhhy0SvnCaXI2Wf5a14bL82azlYLsC0C5j5wZcxbkn9LIly8fNPtCbBTZ3hn5xd6jNyovryfQAW4YAr6ampv7gf8qO5cFy8mU589vYbPYPFSOWC5vD9gW+hQ3Xy5vF9WWzfPiXBf/rYsT05f0eOeAfx+57RsSG3pLrasTyceKyvX2hLw/eIqmLFdOTxf/Xy84Opib6+g/ydjTuCgf+fBCfCfx5Pz77fnwu7y+8f+amgX/GbuL9GXM/Nq7lnTUJVuDftwaDV9gOfuRB8r6Wv9/ftvX+triWt92PP9Rytea3NV+kMf4Y+PqOdQK/mv9Z6Jag1kOCt7fz5++NSOS9OQrr74npLReE/oRewfwU7+/QN+L9RtgNHGq5N+g++bf98z281ubvCP1S3neHVOVdAdKH/1lhJZsVhtRu/kV8Q0B2ga4mYD5IXp5l9fVNTB3kbYEeBg4FH/4wAX+681819PJrHkCd+UMA6GzuQGeE+k8n6GUZeybXlcV75wDgnzu1SaRp6kDPmufl5ckfQUrzzs+Qng10Z4FfJQ++IvRr5G2dvBnMQC8/X/h7FUy4Xn7eQm/uZmJKZbAduUwuNASkoJElLfBW8BXZ5vcF8u4Z+rgi1ceH5enoEUj38/CADwWqjZ+LC4vrwvZxG06e3ewxpo3RNwD/bzjZ0M/D14/LmsZh+flymR7DyTZ+jh5sJwtWoL3XUhZnGge4Wk/+pWf/9DfglWWhq8hQ/XzdvLj8l7tbsp3cmCwPsg030IvbycyZ72VSG3ZqLB41m5Eps5n9vUFhhcCIVfh5m7Iov0fpp7OwdgTN1yKTNPBH1+bXBMQCX5dpfh3UqBOkXxeTWT9936h9tpXzMw/RD+7refbkmo/bBe5KmmcreUMvji+TzWn2ozrQVWRoXlzItfINI2Po5eHlx+V7OPB/RfmqAVSyK3hdspcL2YTL9PFx8/IGfB/Zq/lbdTIz4vUe4L/vi4+kHJ3eaBl6ICNBxc7PGGiSgpq4uUqOIf0qLfbrXHHWrP/4CmjqBDX1O7Y4uX4myzQrKnvt4Z5TLYCmzlCTbC/1fBdFRauSs38rcLyDaUBTF6hp+rUGqz4ZKYy069dDi292bgSapKGmCJpRhHyciem2XQ1bV/uHbwOaZPh36NrrVRnzuvX6u/H+pyimTUCTLNSU/3j5yUqZKqtQxwdVod+jugBNclBThifjwBelWMuCer1nCnnpVKBJHmp6OfjD2WmrZxpvMr52lq3gugxoUoCatFmD4lXmhNMLIpfIkvSylgJNXaEm/x5yZwpi9Rnrbs8+bKrfWAI0dYOadm16eNO7+2XjOPtJ7BDNyVFAU3eoSSMyrMtovVvWB+pfr74xLe4G0NQDanoR5Pp5SXqa6XGZeiM3mVgpoKkn1MQ2P0l2sXpO2bJv/PfnqpTXQJMi1NRFWlVXaZg/I+vTY7MjoV8nA01KUNNxl5GnAujTTffO6uG6RlrhA9CkDDXFfZ//0iyAaZFzcnuj8uR71kBTL6hpmWb83ZO0k4yNWwavyYhd1hloUuFfcEf/69eTp1LDqPOUbHa6TgGaVKGmzQrdz5ByjlgdZyeuiS9rLAOa1KCm4fsGRfRebme8P+A+9f71pL+Apt5Q063M2Cvap2XMs4Z225htOUgaaFKHmhYNVrGsJy03CbOq1Bk91vko0NQHajL1cddc2vMRLfaHlGNyv1J9oKkv1ETK2OTkM8+PXvbJ6tSc0Ze0gKZ+UNPlxJxlL2avMI5ihuraGMqUA00a/Jvf2yOHmapJ2XBp3qgCr+GxQFN/qOn2INveEZdDTY+9s8jRv1QOGmUA1HT6RMJnWo8e9Pyzo2znZpWvB5oGQk1/viyP+fa3rFm6vd6zoSE5/YAmMtREfR52arF3luWm6r6Wi8obwuXMjBYLeJBBoGc24/j4MjlOLBM/doszUzJQ/bTX6Lt56pgtL2Ne3aoX4TbkrNhOS+EvkxSovr5ctqOfb7OHh1w330VJ4eaiBnagiyrtveRI6vwwq6Kzn8JsdQPtYC6Kvl+vXPbVS+u8F511GlhfqmAu6ii7Rt58Vj+T9U/u9FxNsfgAc1EZh30mnLQwo4f0lmbQqyepwFyU8ZqKFEpYk/mmhckc2vN8PZiLurRAVqN42W7DvClqH0fPldaEuajyOZ5X53/0MwsZ1SeAHqx1CuaiAkIrV24aNp6SOqIsTU5zVgjMRbH3rylhjb1slhZDmjRDvyIZ5qLUf4wiXXCVNolU6nM0YSKlBOaibJwtDrwI9KBkHNcOjRzT9QjMRdkP1dO48qTUMlHOkxO65ZItzEVNyXk/aNK1WquU0lWaNaMHH4G5KM1A92Fh96LN42t2VNmnDl4Ac1EnI/6IuxrJtYpcfeLm/jU3FsBcFGOnrHpAX5b1oZOsG5Wf1KfCXNTDtPFvBz8ZQE3l7nR4KVu+AuairDa8G2QWV2xWGGs5R+GM2ieYi0oq+vbg0I40Wr6nzKbE9Hf6MBc15jKLMW2mvElwflqY1qq+u2Auinsj/mCR8iTrtA8n/p474sgjmIuat46TPzwyySqB5piY8+OdLMxFGXlr2eYr2JnHXahr2Gg1SQfmoqhN3zjqc3SNd12LemLAVRssNF7V0cbr8JIHs/MXbTDKrLTf821KbQ0O47UTbuNVuwPHq4h1A3+8ilg38MeriHUDf7yKWDfwx+vKGx69nu80MyoILrffd0b76n9Liv+WFK1YUiBnZdiSItiwc0GGphc144qxxqUTqYqwJcXieV/qF1KHGB91mMwICtwnBVtSDNceq37aUp2ewjq5wPMqtQS2pLgyezybnLHP+FBiVNrBL4fHw5YUi48xpE03PjVcp6tXPllp2mUhZzMQzdkgl+04OJvOuDkbtQ50NiI8Ct/ZiPAofGcjwqPwnY0Ij8J3NiI8Ct/ZyAWqa70qzLWKOOuZsav28QOYs8loOhy7sPALI4ZG/Thp9ZpQmLMR4Yf4zkaEH+I7GxF+iO9sRPghvrMR4Yf4zkaEH+I7m+Q7hya73/9Mj9zuNOi5+4qvMGeDHF5CnbcnWudFThA4dN4uaJ1X/6njoK/cJottc6/WjTyYriLwu7oZsf3ZziyyoR/XnyXYh0HDgmYS1Tt1oY8xyU7gB8lsjq8XmbXMj+lB9mBxXH3dyD4sVzD+6SNjynZ2ZnFagi0i5UB2YfRbFFJFoBWhUEvMiQYYxZn3kib475jjlaS6tEoS6QGNRAqiSduw/b18+Wt6kkE+0Lqvsqs3k8v0XMzmePvxAhuykLai5OjJ++1kQANn3t2I/JI31u8pXpjYn55eOKG+dk7YdUGbi/520MvWvN/WHPLlhbhk7AAX4sTiuwBPm1CXUd03WGyrsbk55evGmK7NzUJBrVbqEwToUw3q84ZKIqVQEfrIAa0BaQL6SEH6dELRR9nKz9MRdF4uLf1CpER7utG/hswYZrYzwcZjzq3aMQiJwK8jQiLey7+SCDmB4iCRDqZEQBfqYQMG2Xx8ge9rxPRltowBkqiAowyNC8jhRoINY+E3dbFh+rrxv3nnlQaru5j5sjxJpJ8HEzIcntT8D4Hvg1sKvLQMhqV623l7sH1brERm+pKXsjlLRZur9Ovr8uH9zzMyC5d/KlHabyBoLgvwc8Lman5ZyFyi7CHC6WHZI2wflj0mSsYeso5eXh4sZosDJHVrtoaXny/CschQnZxYPj7wy4v0NaDDA0O3ZG8vNtpA+hj8rddrqyVWiVti2aY+9L8FLCNjw/ugkGn4r+Ntm5o8yJ0soImwzYdcnjsRkEWq7bIMtmdyXAHDkv2BudCLy+u5zq1QqsFM4VKXz1tMQkZZZK3jHPxDQCk56KLCWv1sEYdaOphqAZ5FQK1ObVdL0wb8PMsX8Mn+TA8/VqvlWvrkflPDjcmm2XMz113Vvj0Gcb7Av6qwYPA2cUjGG/yokgGDH1omSZNQlklnkpiMb5N6m6zfP0C2UXNlmWBHYACrIrKdEUN4iSSNIjHNkMti+oJLJA/ws5BHJTuD5yssZ7JjIBlQl+vbLPZwsi/UfZkcZ2gJpb+6VWsn5Bpf9H0Ld2B+Sys1dgBWRQZ7AY1LRK2ZwgCNDfYIrZmwZhpF3g3ANBD57dK/+t/rbxVuknL+5PHa8pRcwSnGDvy08BTT/DLevcwUUIAMKmAgqpclAH2wZo9EphgFQy9gl8nmQKf4Y0joP8hFG5aB1HkG4vdLHWc2t/k0V1ekobwfVSX0YPUxTZd7qZX4TPkvAUPJG/E/LGQsWJM4DBa0B8tgBpIxmEzzHCVorDczsIz1q3VbV56xmh2HSPts7qH1/HPOO1pxfY7mqCnLjARXBAzeB4VXBNDr4rBMfSqWZWJSJb165h/6g5YRWrPJkNDn1m4MmL8XaQvkdk3AFl3AjwtZovlVvO2gkwu5tCxg1eyNdOo1x3gjBJo4+b3vXzNxIiNgYpw4CzKwJs6CdJHBhvZNnE/qPFgrB84w2Vxh8eWmoSylPRMnYiuN3Fy0cysNOoODGVjOwCHj/3devUTLef92vInFsduuvk6H5+0lyLwqh2kwoEcTZl7l//ycX5HzKtZg++W8OobmmyS3NNNqDyUoK+XV89D2zauIkaZ2p++9H0Fb6XH5FP/E21um4jDS3NKxDKcuIcN1yLQ7Rer29Mf2TrSsK5FSatKlFhKddnkeD3XaBQYQNO3yO6fQtGt1nH7hDOmUYdC8PlPYjeZKAt+mh6Wfhy/b24PtxARvXXjyRevv/SwBW7E8gU85MT3IngJXadWsijwhwrotIbkR7a2UU/E4INgBQM4oGti1EXLyvNWByu4t8Qd+rwZl4IVIzUBHIGBLnlfgvWzmzB+Lc52rN0mVyxsVvept2V2vVw2/XQqlvas1r9sKjQa55tfRL9x8P7zbJZGwzx3609lcH18yGxhOZBcvLsJeIu1TM0Bea3y3AZZx3TbFfVk431XAPlJUIZMALyG7vxTCSyGP3NrppUiAOQ+C5jQQFcq9CpjT4UAlTCSpX4g0wI7l5AUsDtui0kD9jxT7i92NNuy9F219oUhOUCWasEq0X6oUk3MgIUhtMyP2GiXo8bCbm3FQSQ5TpYL9lVAfbOlLWP5T3ZblAwgDntG0QiDkzCQ47TVfSnjag17H25825EE9pgnQgox0AB55PKUgfyqH5k+3N3zcOWJWFKPwT+sTJj9SBgtGNo0DvLksHx8hX4q10FMzBmOrvK0Mh8xquQDsWvx3KtGtbS2p9jqDVxpMtl09eLi1bqt8LfLwHO2WhYOxP9taG2ItqCQFxQISjzckkeqR3a0ekFgxVoSP5R9Ki/CxUiJ8bMK3oKLUWAez/AOHrCiP9W51hA/t9VMLsj+Ty2Y6eog+v1X/UCJ1bgTVNOVNr7L7p9ZWCqo9G/oo2VrYOVh3tAutAKzlHQs5hwqktbYV8KzVFueg8tM5/OzIIlWak5F4gX77g0nayT5b6MP9ElvlGKTIuPuEJccgCSooIiQwPcaTAPIJ8mg+IbGgfm7ooyazooK8ouyl9xmCm2gbJoflIegO+FcSpaEOlewNfoI3Bzn5+fh6eZI5Xr7g2QswO/myAnyhsxiRuiKzYUTcinDGiChVnbheHh62oGfn+6/mnzczEH0SaUm0Pik3y4fFtQdun/9rtYy8/MCR4ATMIEvBpAiWM9sX+u7ATAzuLB4E7UfYkU/OCe1ZCitJOomAHWcbkoJCDRUsmVxXNofBchHoFF2bX7Zlu7oJ0kHNr9t7ecNfFewMKcaFlV3IiZU9eSIKInKy/LsSlbTFZS434ziznWAokTz4Irjdgb3EW9OCoayfztzOm+XEZnoYejn//Cyw9/PlspieLf/uMofL9P7pMJq7qgJaVyW7auaHRYfTtv5xmLHjS+FKwf5hy/JgBgp2VTmSyBNDtN7bi0pezuayyFzwSlAWmsiOiszNEnEjrRr/iN6I7P/t9JAJwAJpSVIluFwgkYKQ7qEJmM/ISXz30JXwmiOnD5w0R+a+4qC5XAyW5tWb+Zp3Q9O8zamYXfmadwRKJpzNyN8eishm5Kdiishm5KdiIg0rlGEILrBEdglksiMOGYbd0WyyrJytx7ZKNzxeZu3x9NH81wK/q+tMP3AaAITzdhOeLNuQszDEiO3jDQ4EJtmHxVuKBI7gJy8A/w/YCPgNIrVAZnei3p+QIgKNQsNF3s6L62sN71UiBtE/XNq1XA05H4JLuxRgEKkZgv8JDqJao4LKZE5KZXc+Bw7MT6wAgcs1m7IHmilLWfvTOd/OMqKHVx4z4CovFAw3g9mITJBlFQ4oyaBYbUrLJsjXjcXLFuVdADQfP3mU6QuaFJwSXdgsZ7I3fxOh36pNEJITQLlj4QB5S1Nrd5nAjjvLE1D+L1EHOeAeNGtpm7JGlVqyRlmQRiK/4IjsNRN2nr1kfshypsmKuWPP4Jg3iqQl2ung6wCFYkCFTGlgIh5CITBMl+IhMm8UTSGtn2lKwO6subc4e3kCHe+XqpHsv/lM+VuRsWm4WvLVl7Wqgt2i5brC3eJn06/U69ojPq4sT9c8Wlv1xga3N7o4qAf0IAz1Ktwr2xQSV+Ul9P2UDhhoK31Xi5QrXm5i1bGcsYbrFumv6Bx54yxiewFeR7iTNb+M984tLA/qRVNFnVKcy60kvfEQThfE0qF3y1CHsgOxlBgW0dmYrqdOT1h7e/qeo97ZbfcnYlHExgNLEaDfCKUEtlIRJzbXyQOzb3h7mh+vNnpLLS/Xpc0zNptPEEUUl2Ip4u3OX0qCEMbvCkYgSbcOACOC3LDAiCAX/MGIjytKNkjZ3mBs2BX7ddcCSg1xJzgwy3yJG1aWeYWrWMCIojSLJd2fK5mGPbY8sfLwoi04ghFIAg8HiciuWBIBXejfDkYEhe3wcJT6bpX8doQtpcufFyQMRtSzsOxBYf0fgRFrrz238h1Hp6Yl7FbUnLD+q8TBCJ47Qc1bB9yJpMAI27ph7l80Aq0KJnGepD+3v0IIMILnWVDVAjyLxMAI5GaAMGAEb/CjSgYMfmiZpEhCWSbtXrm99lXDUsODR3S/Xbg4ulbE9Cw6riNK36HQO8GAjZOXh0dziho4/wGdhsVlOzWvm1q3OkLO7rKWTG9vNseVrxT4dXBcTCAx9nbOlGRwMWFTCabMCJ9QnS/Iq/ROsOYbRwnNOI46IZqJXcooeQ5D1NPP3lAT+Lo9jcDMBx9frp+TL5nKdWp9Du4UWxbwFVj+zVEbR6YPi+ztweSwhpO5TGe2X/ORFTDQPVr242A8h0Nmcp1aF7VBFmPAvG8hgyHf0IblbQUXUPycqOVtELC8rfBu0/JWA/jdZGA7adi8hwKXuT9vTOT3zkqZ/tXXlk1Pnr1huOUf2wTja51FfVfei7/qmsgtGg6LuBRQqBRRCWoGx3lCtSkU0Y/W0od4XaVZt+a9p0ihKAvUjD8VbzRLHcziTj/XtEbQn/KuZgNeTdifwtrw9qfkfEgXB1H+1BTwtiRuG0MTts3jqVWa7NnQ9FFWu7PR3qu+B/IinpxAnK3zriQi6ab5dXFosWQZlhbIPvKroASZCncoOsB/oLNhcnx0IXlEimL/ZP3G2EuVRuVzyI929qtWFnT4vEsKO/zml8UhCdkbS5IgL75HV0bz6CO3rA7sP/k7PXbWuEhS0tx4wY5vDYwfa39gdeIg7Mw7o+jay9DLE5AfGHjg4AM/HNA6J40si4N2K8Jj8GdbaykJcNu4CUyJpYnILyIBwmZFt8k1d+VlADUv4kR+uZMm97dz1miaZeSMv6j6pkYwUVV6Nvg54X7T/PKvvDGyjk9707YBbRRBbRpEZfNcbdambbnSzak/GOoY/i1zM6nU3+hIQtOzfswnyyWa35eSBwnQJEqAIXk8AaBx1QttXBHmsB55qo7TYT3SYngc1m/GPKzfxNdcBU3z3zCnElnUS8w5lQYBWDmVNsv/5TmVVTLD+h3P7WKe73l4/TPfrUV45lTi7IXBnErFAKycSsBa4smpNLC/uHM+c7JF+PIpOnJRr9Va5YzFlFPJkwA1pxKQAPIJqmg+gUA5lcgqfeLPqURaUjI5lXVAZ5XbCNhxkrhyKsOvFlSad95I7JxKfjKMGlpXJc6SAVEzEqclA7L/47BkcAjBWjKoh/DdQ2/Ca46cPnDSHLmHx0HzGl8szW18+Zqro2letj9q+sFvmeZ5FVPtq4t9BLfQMs1HlIKiY51pjkQN8bp4eAE+kuPaHEcnNx/IiXbNyHJtom5JeP8Bvf4rG4yu3a4y0liLscN8o1yW/bHS9q4MABvEMKHEHeS0KPc5r1L9/BJJH3n+nJNiKFB36IPWHdoc8OcPQbEH/JGlbnEM7iPhYBz6hOkRlD5x62NeJf3xYf647ItmiDbnOrf4wg7IdUbaQig1GfytIq2ILJvamtRkaVFpLPwuDenYD03Hi/2fP/u0xdIy+Oj2wSOWfBTMhe5i6SUqwQftZGSYPTA0fTzAHaiOJ/BJXXAj2qwOmenhBTg3JnTS2roYG/LRDsL3Jgylg6+2sh++AWP1RUA//CqKjQbjaopFbYqrdeeF111ZXsCelBso8isV9ln616beRYalWe8X7DC7O1Hw5NgE+qjwyXFLy692dsiu186xWg8mXoIaUUSFbXnHdEVty+rh9xHe/pfXGUQfgl0dMii9Vs4qoWbv0GON/QTPjGUsvUQy8vzXf+XQ9M8HcOi2BhZBKvbSXRmk3TiIpIgpUkUh8Yp+8H+GUNoUH+3VMsidsbu6zjuD/lqs69YJGg6lQ2ZkX2l3V8cjVMrry6aizFSXy+vLbTqhatbCBXzkHK8/OwOGFe3JzJNUFmk9ZkQH3n9rvqbXd8E00ZarCKeJ/mwSS+AYUw2g00KzhwYJZfbI0C+cPejSZ8NtVzzq3txprEPEqJoTih3mzms9E6HdUuEKSkd24Xp5klcGBK5YDayRPL29OGACTevmD+Tzf9DuTjhe+bOtlWo2AYMcjFmSehqKOD4ngQUQjwvNJXzeXmQEDLqFlQGw7y3yW5pRlv2wo+cxIp1LclVVv8Qom3F8WVygpwjHfTuNcBDkexx+XluY74E3/sqjnjpTE7c15JhF4qtlWXU+B/q106OCPAkYVCTtEdU5nYGp2buAONuGN+VtmQFbLBv4K8seuUPKDnxVRMnzJ5v1mjI9SdB2c7FsN7cNtnO4ExhoGRBFy6AOTJQ6O6W9CRKg7ciYtgOGAmFs17ZM1xbbrfiV7T4M6KPGLl/F2J36REqFMzhC0HbzsGw3D8t27S0HAiYZH8cyjgGhjNOmpYkiZB3sNCPk4k9wZdl8CeGVJfQ67rNwLuTo5ESBTepAq2lB29Yk3SERMOqyZeikZH2X0zY+eOXb3cLDfd9ItN4pqEDNcSwFHI7z1yH9SSjrkOzFjCcLgrPNw5UWj9moViRYuUnGjgU+07T1+9h+LWsQH94nwQ0/FJBr3cID+XRBUbcjLHDz6609bwIkA6ET0mVR+Xrg5tUgr001p/s218tq/p5kkCJ0Y0HfX+R3VHjXm6s+65PxzuIdecsj8j5KsPq0DTjj5KPl8deBM04ecZzamxltqYg5xM6X5U32Ya9g8c7xWEwnN7KPHy+cz/ZnQeYSaaBXI/zWfjd1MdlWu15FLaDwi2D0BLyscPSE96o4zBOUh2UeA8Kah58mj2aeAT8hJSgn/tcjZ4OZmwVbe7XxsZH2e0gOFxGP7mwXsIR8QGk7l3Kg5epzsSwXkytpy/GBJaGVAsrhF9q8qWSH9PUijYfc6Pwyr/4X7l4s+3qeMwTxT6H8ZDAhDBht0Hw6gIQyn+p+661+lNzZOI/25m/WAFfB5zF1ZQDWJjcvB1qfadnfksX0AaFacHRAvCev0IEHcLXWTavIJ/Oi3pXwmhrW2EodA8BHOWUBOp4UlXXpDaaAZYnc0behz8nzAsagAKL72pf05DkLelrk640KHLnOVzAbrgv4lUQVZfX5tZvAGf10A6RyA6VKEJX+o3GcJxUqwiZyn/XTrYKlKXlelSFSI9WGv5/MtjNnxMa/9dxH8e6LHI9SQuOxg9e3ivmQOKJOu3iwNiAONB4Hoo1HAiUGIacY3BODhHqrXFj2iIN3V1plOOYdoEWrdJNMYlABYMeAYy3xUjEkBoXm51cuWnYMj8QgknBiEAnfYmtktK46qNPG+UPzrllEOT6jup3nCGYndLdk+viQqc6AHYRSW0Hhu6B1WWCNAUbByZ7g55nQ53/OHy2OolXzCPJZ7Ri3KNSVBZvbcEDklgP0nU+iThrBPJWC7PbOJQNhSf0+zbV84Vrpi44E7NiZfnDaZJNM2ibL+FPViFN03hWFl6LNL/9qjkE65nbOMWCIwAGUsI5KEq5j63ycJ2GbokW9YUV94UqJFArpgySa8z8xH9IiTFQQTwecUnLazUb3ZkDjCriOL+AjyFzelxE9KezcVDDkzcAMo9IRXeaN/fbqviCyaANdoVkO4aWw0BvEIRjQPTAEc8vmz8GD0BxbmzNOlPmCd0DGCTJVAlZdD3kKBquuh4xTwarrIdfasAcdI1cAsAcdIz0r7EHH+i+3hUdsD7fY/kP5S88hFxbDHnS88tnMt6OitI0Oksa8ki4KDYE96FhxwIEzhRYfqBvrj6ZPXXF7LOxBx+NjZlFClV5b75TPXMacUtgf9qDjS5m14VtLzzOS4jU673a8/EMo/wYsfCiyI//5sjzm29+yZun2es+GhuT0w6E04GC0DkX00oDIx6B3aGnAf0gotFxNVGnASJTSgH3oBZWn2ZG/Lg2oiWbK3/U5T6W9lxxJnR9mVXT2U5itbqCdGJ/z5P0K6zlP3i/F8Jyn4xc3hux3zLDYM6xIQ+Fk1d72hKjF/5ynJa+wnj6j+Or/9zlPl6fdjPkycafpNsXTDLpq97cEec5TxUssgwE9mnApX2J6ztN20tTJhgoO9FRl/8ba00tP4vqcJ8ULbl2vGKqYHx4xasehEbJbcRhpZEzD1byQdEhbjM95OmA2NSa770zrPaxuKUvcr+6S6HOeeB4P9TlPwACCpt0hJJRp9zdkaOn79cplX720znvRWaeB9aVKzAyt6U0shrbuxr+cob2WVD0vTu2JZaly3PZLNx59xpOhNV5TkUIJazLftDCZQ3uer4cDQzvxJhZDC1hLPAxtjs2L1M59DpomrXH+likbsV+SDC1PAlSGFpAA8glaaD6BQKHyo+waefNZ/UzWP7nTczXF4gO+ofLTFzo1IBlapCUl91yS+gfifC7JRqPCyk51D4jN0PJD5dpoXZUwPGfGYZ8JJy3M6CG9pRn06kkqIm7kn/CcyP6PA8+p8wiL52x4yHcPQwmvOXL6wEnzgNDKlZuGjaekjihLk9OcFYIHQ1uHpXlMHV9zHTTNiR7ourRAVqN42W7DvClqH0fPldbs0EDXP1xGoAW6bICFgs4zlEBXkUVBZbL2s18HunQJP3xORvwRdzWSaxW5+sTN/WtuLCBupSD1GqzhU3eRP3yGoWlOu9r7jv+EY5Qj8xepR84uFVzRqIBf1RdMBTRiu7iwuCxAJxGprmhZOSP59c+4/Ms4/7wMb9Xz84AVpJtatccpn+N5df5HP7OQUX0C6MFap359w0KmEvmuVopefRzY99SCNcFEZe7YACapu9re01YqAyYKuF4CVyBMXh05sg6UPwZWLGyuigv+raXEsIeH13KWs+hIV42nxp8jGxYbBiVpx6/T65KGyE3neTMRuenNr/+qbydTpE9evTDZ9ED0pc9Vpu9etrNvFwAyTwRl7iIqsWXscZ7M7S1crQUzP9mR5bucxeLw8vtZTn687sE79Rep5fOwG5+HpT+xTjshZ3nnZp5gYZCuP6/rLOzV4Y14b3Le5EGyLRAlm0oeTzbIJegR3g0jlxutccMitjiInoo0HR7FV65hFl+5xpd8OOElZ+9fU8Iae9ksLYY0aYZ+RTI+kiPnUxwkf3MJS/KsS3zJR6BJTujn2SF7PuzEHWkh2Ik7cmqEnbjbOFsceBHoQck4rh0aOabrkdY/z079xyjSBVdpk0ilPkcTJlJKcDi01kezydkemu9HjfeyDHn32kL/ylpjwdwpWxawAndika38PDzaANyM4H+OA34OnC3ZHGDpznZunl6Xs8FcYV83wA6tXoMg1cS4T+EcL4HmVvb4g2Cu/BWwEKeoHC8wx8TgSntXHWpmvGRYYLkB3Iwvb3kGKiZSAC2Lc0vXKhuYrJuSYtntmksjIrULvJCI1C7ey7/yFcj+3V5fAbLToHLBoo5kYsAn61xBrTHRSuX6tSjHFehqYNcSKd+EgeW1qj1u0I5cL++6sKCiWvDpQlAH8RT5mAfBVrzXD6BaBphq1V/u0AMs/o3K2Qd6s+A6aMIcqL4Fi8theeiD7/HRNzFdDELqriwuAuQAf9q7ZFTjLc1BwwKXIDM5gc2mFmll5JK4PYOknXatzoVGgUjWxiaXNwraRIKqI5Pooa7vLFKKMwWb09IP5FulO29/oDa/SPAsrY1UEg5SGGBKAXRxaKIaSUKZqKyO0y+cIZ0yDJrXZwq70VxJ4Pv04AV4vT3YTkzRichoq7R+lsAwYIHlPpyYHmRPgau0al6yH6qnceVJqWWinCcndMslW6zbEtIb0d5aAgF8YkEjIGeUqJkJPBB/80zEOSA/bCDiHJCXMYA4B0Qe5/HbpVDaO+KcsH8z0wr2/uaMaAH5RNon7WVvn4EzxpnlLpIfPacuXUPAPlJU4ZgStaMPCkngk0QboYNCodEBljynNFbCRJL6hUgD7MDncji3SaX6kvUuOtEDLWMdey64MemyYN6YFE1YJdovVcq+sWWbZvBG2r4hf8TdXhvZ3ifIgCq9eYalUsqzNh2nqsPSxX8tEDJrRaL54uDzd3k9BqwRL5Q775HHUwrypwZo/pTIheKm5LwfNOlarVVK6SrNmtGDjwjfW7sLxcl9wCoU5/Ae70Jxf8TH7Vo5Wt8i8dNV66+5Nhm4F4pDZgLhUAOt6T1WDbSD78VSKG6ewtpte+uzDNMmrVk4osJNB9dCcee6W0XP+B5tFlnsafzuj7izOIjkgCmS3HviZQ3yf8RVKI78l9P792P0zErdn5TFPhlyot1dHQ+EmteXUUujAX1ZPIXiYt88oB1S5lDiXs9dt6j38sMEKRTngKkG0Gmh2WMUCWX2IHahOM1A92Fh96LN42t2VNmnDl6Adnc4FYpTfIdVKE7xrZgKxZX137ap6f4Mo8h9Lht2WKlmSqRQHLXpG0d9jq7xrmtRTwy4aoNxKDZGeodVzyrrLYHSecVUKG6XpdNyw+Is4+B+u2qXXU0NFVOhuPPHx15y/FvP/JDU98o91zc8w8F2S95i2U6RSLYTqguDT6G4Po1J24dMu2pcFlSySOWUhiqBCsVVvMGswPiGOMYRS6E45OJP4oXieI4OtUxa2FvcC8X9WKH2XPt+vdXu76OsvC4985B4oTjFt1gKJLzhr0NGk1DWIb8rqLfr3vAZ3W4FGucHjCkfGXGrqxhBvW6qVRigXpRKFf6gntxFX7re6R3mUUnx04uLTQXLIxMO1OsCCoSKD91Wqfq/BfUK139bOWLeHfM0+5SXPx6oCT4gTnKgXq4KlsGiJGMwSYB6WxpU7xu43DLfNPjyvkfGkTNxBfWU6AVayRuLKUc7Obqf7DXzIw4jzRnTcFMlZLgOAfXSRve/8XlEd1oyzcHtHHOYYAW2jgb1eB4PFdQDBhA07Y4hoUy7vyGop74k68ALU5ZV4dvpfT3ciqXRbhknUM9DvgoD1BsrX/XvBvWqI/o+oKVxLcuSC2be3DxCHk9Qr2aqbOSTgp7Wx/O6PjtcY7ISB1DPGbQWKqgHWEs8oN75tLhnV0mTGEkquScSBpkYShLU40mACuoBEkA+YSyaTyAQqJeer0HdwNxtnGI24ttKkwwX8T/sEmlJyYF6Wd2rxAjquZgUVuYc6V71W4B649C6KmFyf+8NnWW7WvqL6foGnQ1l/fVscKJekP0fh+Rfmx5VGMm/Bj347mE84TVHTh84aT577a0NNprLaRHDdaVO3hzMwUHzLDkszWPk+JpPQNOc6KDe0UNyvk+YjSZ7H1gXKuTv+NahoN4/XEaggXpgRao6xSrRoF4ivaDy+1XFql+CehPRTPnbQWO7zx4fcmMIxzpCr3yRNGfJaglAYy9kqjCgsVwZocgXMaCxIl2dsUp9Q+g7j/h1G3b05kREnLp90Fi/LfWOR/fWMLYMp/5pyJiUhAM09giUGRUaA2SWIDSWfkjuz9kLR1pmK1TF0Pt/Fnz+pmShMZ5sqNAYIBvkEiahuQTCzKjIqQ8fgglpOhwmVF9ZrAnVXpYv+WTCS/486Vw010jfIkQ2OtZ89reZ+Ej+jjKgq1niBfOcm08DbqfMy8JBcoo0luRkab7kU9Ak/10ApbeXR38ifx5FPXrfIKssyHMrxn3iByhNBH0IKqBUL93eGa4tgJKG1GfN2/2VaMUrdrwuyghAUGvtApSQvR0HQMkAVA4VuZETXBvAMzvEBSg9WfPy71RbjmXa5vdRIyKquYQClOqlsdQqkO7QwP3vDCghl18SBpR4owCVypFDLN1+lYHQNkBp5OlwhTHuVmaHJy06cOz16xQJA0q8Lo4qRUHLRDWVhDJRERRQCtg22rFrbj5j/8MpW+4vCqV3EKA0sVcVBqBUryzi/OP/E1AKemY9hxt1xPJIPzXuLeYRIxwAJZwPSED0xqBXFQZ6I9erSsyAUtPQbkVZIbOsDy64yyisqwnGAVDqfG/bg/QiZYvCkc/W0n6MfYGDSkC3xlCpQLlNx0htA5SQp/USB5R4PQYVUAKUgvzpNDR/SmRAKXnD0BXDtm+nBvXR9byx9dlNMQBKCb2rMAAlSm+RaVuouYG/BpSmPj65wVjhJiN71PWYp/NkNuEOKCEzIHBgb2JAjVDZG7feqIv49gBKB6caa1/xozPyyxJTXvUyd8YVUCJP/KQzv9sHs2M+w+QuDfrDAweRKJgiqfcmXrYU/0dcgNJHeyd1zpt0ernlscPvhn5sIASgxOvLqEgO0JfFAyjtz/KoGsMqopReGt4vueiAF0EAJQqmGkCnhWaP6SSU2YPYgNJQucxxn17cY2w86f7m7OibTmIGlLapVWEASipqIsNE7QeUhqpe9luduMAy+NV9nbE1BUkSAZTmK4TadZd7a7rfzlrp/d9/bsQBcokC5UTlKJzVCJTGKCZA6VOXP8aF9XehbrHvZNL3z1U+YgKUKmpLghzsFakl49Jrax9LmeJgu6mYtlMhkO1IFPEASqumjPRX1fxkfTx+Id0jZu1IAgFKL1SxjHNKlUDGEQeghFz8SRxQ4jk6VDzHRq1ta5JWAEo34ueFaKg9pOyWoZJHx/knSBxQUsFUoE6Vvw6ZQUJZh7S55uHAlt4r/pqHSAoJVvMQmS4Nq3mIzC6D1TxE5rPBnjKIDErBnjKITAOCPWUQmUUCe8og8tQZ9pRB5HkR7CmDyGM62FMGkZFSoKkr1ITc7wNN3aAm5FIOaOpOEn2cCjT1gJoM/6rxZwbSzXfNq9z2o8gXfBxjT6ip88DwMfu221tFKfpWX8rxfAc0KUJNzx6dK+stlW0UpG9kmhrYeSjQpAQ17V00gaxx+gbj+OWBjDHPBy8HmpShpvJXnauNPp4zi+g+/o6UlfkcoKkX1PRmiwerSYpLiT8wcGNq3c44oEkFalK0G6Y3bedT481l0lmHTscOB5pUoaaeX33OvqLFW6cOm71IcXqjBdCkBjUtbXiZKztvu+m6coeDN7sVzweaepNEL8SE6mGqk1DqYa7oGW+aOCGeEqZbVjB1/tF9ONTDpKCNV8Kc8CM7D05pijgXr+I967gL1hF/Qhe+j6Siaf67QpzfbtQvu7FghuXG+Wbd12g2LRB937hAnFEGWBBnNwMxQJxhDvIZYVwuIzKsT//VoxUuExviDDbAQssWGPz/QpzRD6vTXRMaLA8klPW4MIAtiBpLDuIci2mwbpIxmCQgzvmD52bueHvUIn9Kt7JtSnWZuEKcQb2/b1ReWEnZneOvrBr2zAmHkfZoJJbhSkYSZ5OGO8TJftnfp/LUPGpY2dG4Ype3QRKFOHkeDxXiBAYQNO3SSCjT7m8IccrN1I69u9HVcm/AzdzYPzxKxQxxkrSxIM5qrX85xNmrxxbW+Wtz6Aeu6dVc61uMeLZl+yDOeX0uHLzmXEHZuqzu6N3YqaE4QJxNWlgQJ2At8UCcp1c7nt3obWOya6zCARfHg88lCXHyJECFOAEJIJ9giOYTCARxMoN7rNrA2MDYv+Od3vq3z76IH+JEWlJyEKfvMHFCnPuMCitNfYb9HhCnEVpXJcxOPaFQJ2zl3RSzJOXgkHXDch/gtFNH9n8cduoqelg79Q/D+O7BmPCaI6cPnDRfdrJivLK8qXlE4oxp8uf921tEF9Q8RgtLc+8Wl0xH05zoEOc4n/X+oUU7zbP0XeJ3Sp3tWIjzHy4j0CBO8GmLKSNQIM4bFgWVA3eP+DXEaYJmyt8O4qQw594/kGFmdYTTxeIT6e3WX98w7hCnxxAsiHPsEIJCnPssNb8kHlUxPPTiakn8ll47cIU4tw7fMdQuZx8tvOF6jt7yDB8cIE7nIVgQJyCzBCHOw3etE5Z0mU3faOlv5jp0kWCOkmQhTp5sqBAnIBvkEkzRXAJhZlTk1IcPUYg0HQ4T6tchWBPq7RbJzQgveUSPXs/tLo+x2H9DcbHr6Lc38JH8TURSTrr7QcaeuhLOwdRF5XgUohiMWYhiMF9yczTJfxeIc1Boqp+W81CT4pMp+55mz5zUIRBnriYWxLlAsyMhTvPJedqaE92sUhdutRkVlY44dWwXxIns7ThAnIc1sbDEYM0OhziLIg7bWT1YTCt5rFo778ltQSxb0hDnAky1xmr+B3G2EuJELr8kDHHyRgEquQiMAjFCnMNkQ6dtuUQ1PDyhIS45beETCUOcCzClALo4NFFZkFAmKoJCnAN29f46YF+kZeYSl05OOnMGY90WjhBniT4WxOms/x/ECdmnU0L12FmNn41yT4ZfP/J2aw8cIE6cD0hAPDFXHwtPjNIXN8TpcZKxTs/WxnTriwmGhRN0BMtJ/zOI01JL9Qjz/Rl6zLW8W/2WPLyMg0rOmCpN1RcjxIk8rZc4xMnrMagQJ6AU5E8ZaP6UyBDnX/ZaFhUsF+uSx8xJzxJfGgvfW7shTo0xWBDnqdF4Q5wBl0Kqmc6LGEGDy/Zrsz6p4Q5xIjMgcOATVcZg8YkvRosF4uxxaf9+W927RolRQ7/26voUUXm3nRDnrm/H79xf/8q4aJn9Tr2Lk+/gIBLQVTBESh5NvGwp/o+4IM6ZK+vfW/uup+xdMmq8fwT1PiEgTl5fRsUWgb4sHogzy5/pQHfdZLql760gDRUjwd4sOYiT12lR1QA6LTR7WJJQZg9iQ5yvV1RszWpIMNy33sK7ej9jjJghTvXRWBBnwigxQZxe5Tf7LX3iaJ1uXb9yS3CPPIlAnB9mfTkRGh5kuU752dmAp4X9cAABFUdjsWYNowiUxigmiNNuhekqjtIs82CtxvEG104L5i3gB3F2Ynj3Zn40ppW46meuulQv0rG00XYVo7Bsl0Ag28mJCeJUc8vYvCTUz/xIVeW1J/v2C3pGyUKc3pjGMSWQccQCcSIXfxKHOHmODhVhvDoKd4izr2nwQDtVL7NNI1nLgH2V4JNWJAFxJozCUmDBKP46xIqEsg5pM8Q5oKX3ih/iRFJIMIgTmS4NgziR2WUwiBOZzwaDOJFBKRjEiUwDgkGcyCwSGMSJPHWGQZzI8yIYxIk8poNBnMhIKQziRO73YRAncikHgziRx6kwiLNPjqJ22Isqw7AzU8Mq7pb6wCDOWb3P5Q75Fmicbb54/p68u3NhEOcI3eLYmDsDKaVLpPJmjFI+DIM4d7zpknTlrw9Wxwa+22QX564CgzgdDNRyC90eWe/Uckyxj7KvhUGcMQ7Z1pVjulmXch+s3Orp2BcGcc47LcU5OzOLkTPi8KJliwcEwCDOIY7VismZDZQD1RoG1+t6xMAgTuRqS4jUBJFOkUN/ovfy9LPdz5jH1266tTTkw04cSE1rtEFJmGN8ZA/BKRcR5yp+4Dk+GfMcn9Ryjm+DpvnvSmo+7G5w3YHlZ7LpVh7z0dg/NcVIagYzsEjNLgwxkJpzsr+uCj/+0qj8/ZcuFUrJL4lNaq5iYPFj9oz/X1KzYZnnuyGDF9KP6G6s2HClTyVBSM3hmAbrIhmDSYLUZKikJNT2LzQKn38xYJzu5sO4kppjZj9cuHXeDcN4yxFR6ybpZeMw0m5bYBku14I4OzHcSU3pcrnPb8PYxuWNSonqzLBBEiU1eR4PldQEBhA07c4koUy7vyGpucMz4bOUqrVF/All0tll+/eKmdTUoWGRmm+o/3JS0/LmscKKi2uMdtz5sUHj6UTEw03bR2rmHxu6RJrxh2luty9Z6tXfKnAgNck0LFITsJZ4SM1Dubpf6qfPtS4YMfgpxdu6WpKkJk8CVFITkADyCbZoPoFApOYMc997Dfs9qLm2wZvqj24ZJn5SE2lJyZCaNoWVpIN0cZKaCRaFlX/so/8epKYdWlclzE6d3DmS8X1SNiXM+9r252qNDTjt1JH9H4eduqkJ1k5dx4TvHuwJrzly+sBJ85dOUVPlC10tS3dusa71+vQMB829qVia27S45FlomhOd1JSbEkr5nK5ATRwlPe3U6k7jOpTU/IfLCCxSs8YMhdQ8b15QqXLO7Nek5mw0U/52pObWrj4P7zcoGR6WdfG/NvCWhQRIzQ8zsEjNkhkEJTX77tJaqqCTSY+eyLHqe88/EVdS0/Ez5yh1iT0j9dt8kweuZe3N4gVJzRczsEhNQGYJkppaKsmuR68EUYKnyFUM3TWSTSBSkycbKqkJyAa5hDloLoEwMypy6sMHG0SaDocJdRUFa0JdQOFL7kB4ya85T1/WQ0fNqrjfuHHHhxYp4yP594KQsMVDJhmmds2KN8zyHYfHunE65rpxOl/yuWiS/y6kZo8c6T92J3ygpyocNJD58+HmDiE1KTOwSM2G6R1JapoY7PuUWb/H/Ni5oDJGTa7gc93aR2oiezsOpObEGVjsoeKMDic1deqVJjZdC7aIMkzs73H7gjuhSM2G6VhqVUz/j9RsJamJXH5JmNTkjQJUPFFxhjhJzZAtJgtCmibRomp3DVNdsE2QxOl4UpPXxVGlqGiZqOaRUCYqgpKai7lymxklW803zSKnXUsbiXlbOJKaH8yxSM1k8/9ITcg+gWtlSYu9K82P7K4Y+uSM9m4cSE2cD0hABvGFORaDeMpc3KRm0NZbBiPWllmlHqzZZ5bEFnwY9T8jNd9779iZPy+PkvXu8pwfrwePwEGlZEyVfM3FSGoiT+slTmryegwqqQkoBfnT+Wj+lMikpnyZbWH/BV5Gm5uysx+5+n0SA6lpb41Fan61wpvUPLUq0GP73nCrOKleroMiDh3FndREZkDgACEyrLEgxCHWYiE1XQc79+j18qN5UN0qtU/3QhRxJTX7adldXBVx2TTzzbBbrxhWI3EQCegqGCJdtSJethT/R1yk5ntSgeGV66+MQ/vRV5SdfTqs3V0dDzaR15dR2USgL4uH1JyYvOQbLTXSvOQdqfJAl+9WBCE1eZ0WVQ2g00KzxwISyuxBbFKz8HN0stliBdMdL+1o9Nsne4qZ1LSxwiI1ayzFRGq+Yz8ztOq7knJ0y/pOe68FDpIIqamR5ZgWbn6CuumOvM3quIr+ONB+plZYQBlZQh61I0nN77IpFvoRo00zTPUTjbdNPCsmUlPNtjHs1eBCw3Lzcp+R+1w342C7Jkss2wFDgTC2UxQTqXnFrrMVxeuNcXBSd7kx2p/6EojUPIhpnCACGUcspCZy8SdxUpPn6FA5xW5WuJOaJj6zVZ7cPEcpC+2X4Dp+5EKJk5o1llgKbLPkr0MWklDWIYQmNZEUEozURKZLw0hNZHYZjNRE5rPBSE1kUApGaiLTgGCkJjKLBEZqIk+dYaQm8rwIRmoij+lgpCYyUgojNZH7fRipiVzKwUhN5HEqjNRcHFKdNLVTf+PIj1ImD84FXoGRmtp3UxuYhRMty/UvRt99NWEPjNT0O5sUPSvoreXhoV2d09Jkg2GkZkbVe+3ykPGM/Y2pS1JrTQpgpOYdqSdF7iNuUcMDNq3Y9nr8KBipmZmZMsOuxMN8faaCyc3ij3QYqWlbNII6XPGsZWhFsEaMf/8HMFIz5sf9Xs/OMQwj7l2NO/Ok0BhGaiJXW60nNbNGjdfy+LLCNO/lC+6jOxpnRQyUtpKai9AGJWGO8ZE9BKdcRJxL9YHn+BXTsM7xU6bxHeFiNM1/V1IT+WBcMZGaBcB0oqOMRmo25ACLIyWhbRrWgrB1pKbHU+vUoLyFFklU3VurXg4/1R5Ss53T7UFAAbIyGiDWBD5MSokoKGZE5nFVUhOpIvryIIWlP36IpPv4yyF8UMzht+Qd+g11M932OX1i4beQuQRAMUGD1ShhGeygZAwmMriYNUPwf4VRTCxj/RLF/PDJqadnUBGtpNPyKX8sM30q0ZUraJkgTMs4SMgyHcJaDlr5fCyrxME4Xe2Ee5pM3RmJsZZhOZBLE8laGjQ7dWjiXEL6l02cg39M2v5hd65p6V8X5Ted/fpYjCUOStywShxMdRNDiYOvI5Nkuo4PMNy5dcxVS9UpX4ld4iDXDQu8jnIjyryK9iO+edU/Tu10VuEjkwSqZvzcQw+2EGBe5ZUyxzTYVMkYTBIlDrISSJeGLDM1ijtkpqE495AeriUOdv51U6N/kZzZvgJHzuQRg9qb7wwaTgXTcC9c/8XT7oQ9TVM2O8ykZxdWZyT1fzxGYtMuWOKA5/FQSxwAAwiadpkklGn3NyxxcN9kW5bd2Qn0BINHz9KmnnQWc4mDIYuwShy8WPgvL3FQvSX202S5WqOQ+hia5bMJQ/EscbCz+62Lfnufm6U/LF1+ZLO2Dg4lDjQWYZU4AKwlnhIHS84M19Le706LeaZnH3nL2kWSJQ54EqCWOAAkgHyCI5pPIFCJg+p4oyEfFTpRco6dNt7wfJ2++EscIC0puRIH+xzFWeKgzKyw8nyq4+9R4sAJrasSJsSdOWnczcOh26xji9ykNumsGY5TiBvZ/3EIcS9xwgpxU5z47sGZ8Jojpw+cNC96W35t6SEuNXOojd/IUM/VOGieuxBL820tLpmFpjnRSxxIv1EdZHAqkhZGujoiRDmkL+r9iaPEwT9cRrRcTUSJg3MslBIHH0wLKgeeYf26xIELmil/uxIHxbTRdUrTuLT0PvFep6vltCVQ4uDNfKwSBwXzCVriYH3I7A89B1SbpjxsyLrwqJ8SItOlfSUOvH4k7NO8omO+JaCKMj61tr1gB1jioGE+VokDQGYJljjQfNh3zOE19qYpcw2aws5umk6gEgc82VBLHACyQS7BFc0lEGZGRU59+PD2SNPhMKEGLMCaUB0W8CV3I7zkZsW6KUOiJxju2dr9xKtgZj4+kv9ZWTvbesVdRhpVR8+7fs5WHCQ3mocl+ZB5fMnZaJL/LiUO/HaMs5xyk2qWtIgWfyhk7awOKXEwdT5WiYNH8zqyxEE9dbm8gkq88ZFURQf/ktFGOJY4QPZ2HEocjJ2PBe13m9/hJQ56J92tLB6dbJj5YUr8rsJZtYQqcfBoHpZaJfP+K3HQyhIHyOWXhEsc8EYBKtffbb44SxyULFqgymX2YWyuXxMzYcZ0RGGkDi9xwOviqFKUtExU7iSUiYqgJQ5GrzlnbHOj3jSXm02LaeqzsYNKHNS5YJU4CHL5r8QBZJ+Dd8zWv6h9aRospf4qrqRbVxxKHOB8QALC+zUuWPD+QRdxlziI0pzcmxyVbba3uF9tT/uGmTiUODBau+FZ+Hd/49SiOucbvVnOOKgUhKmSg4sYSxwgT+slXuKA12NQSxwASkH+dCmaPyVyiYPUvIsWwdV6ZkWTt8YoXHy4SgwlDkyXYpU4eOOOd4kD27CQFXWr/GjHiyf11wnWXYR7iQNkBgQO9D5lKRa9r75ULCUOKGaZZcNNjKy3msROTi3298S1xMGfxv10xmRNohcM9c3xYkRE4SAS0FUwRKp2J162FP9HXCUOJq+fO92U5ETP7Nq4wSVaK50QJQ54fRkV6gf6snhKHAwcPqhqwKwM+nb7wwvOPZfRIEiJA16nRVUD6LTQ7OFBQpk9iF3iIHrX4ZVLH1uZxOa9Jx86sclHzCUOGO5YJQ7OscVU4mCcafoIvdJEi0LbuojEcSrZEilxEGimc8EmeLP1xgs9XCkf5LNwwOSN3LFIbA0JedSOLHEQoPam8QbN0Thv7J2+evcz0sRU4iA1VXHqR/n+1KMyvS7367nqOg62+8DGsh0wFAhjOxUxlTiIU322wndOFn173d+qA0wVGglU4mAfpnFWEcg4YilxgFz8SbzEAc/RoQL+cu64lzhYOMnH8tPJM5RyrUeBvV9wDCRe4uAcG0uBGDZ/HeJJQlmHtLnEgUZL7xV/iQMkhQQrcYBMl4aVOEBml8FKHCDz2WAlDpBBKViJA2QaEKzEATKLBFbiAHnqDCtxgDwvgpU4QB7TwUocICOlsBIHyP0+rMQBcikHK3GAPE6FlTgweWGhG7xrMnWrn+7yzYuOnYeVOBhx1q6/555so+JpTgO+bR+iDitxsJB91MpaaZJ1qsMf6WmDqiJgJQ7+uK+W4fgl1KS0NNhittOihbASB5rydnJ6AyJNc65fVWUpk8xgJQ5sSIseWe+eZ5lupXRx/G5HRViJA+S6SahYAVjwQOQg5vYhB8S8HmkRvGtOeuczKgNxKFbAQRtehDmQR9oap6xCnKvVgifyJXOxTuST5/Jdmhea5r8rc5l76qTa9NcfTbJTDjWdsnvRT4zMJW09FnPZab0YmMuLdt66+ZpsqyhLWm+18AeOxGYup6/HIsGGrf//ZS6L3zkkz14ibbLuwP7L0Qn7pAjCXKphGqyTZAwmCebyzV7W+YsVb81yqJ2XXPlb2g9X5lLWaLPsjSZf46SYlVUq35do4zDSXq3DMtzNdcTZU+HOXJ5+6Tr8rft82lG1r5ozG3tnSJS55Hk8VOYSGEDQtOtNQpl2f0Pmci95WNOFwhzrrX/fUv/2YFaQmJnLqBVYzKX9in85c7ltzcl1p5njqXlVlERyifF3PJnLSSm1JRrLOhklpCQN3bVT0R0H5jJ4BRZzCVhLPMylzO3Xjdbvs2kHnsnMfLBw7wJJMpc8CVCZS0ACyCcsQ/MJBGIuafeusKNy7hivnyCfp/tGmSviVnBmLpGWlBxzWbJGnMxlpVlh5YLiNb8Hc8lF66qE2al3y381e2pnG8M4ZbvhMzYOjsNpp47s/3g8kXEt5hMZ1/Ldgw/hNUdOHzhpnid1+Uoq5xZ13eiuJrLyMhwcNK8JxNI8K5CvuS+a5kRnLjeMW9wl3CrROtR/fdylcA3DDmUu/+EyAou5fBeEwlz+ZVpQafs26NfMpR+aKX875nIVe8bEtZ5F9M0v7rEfdX5m+Osbxp257BaAxVxeXU5Q5tL18OFRFmdZFqUpRf5JDzJzcGUuv4/zdtid/J2xeWJ8Q8SnhzdxYC67BGAxl4DMEmQu8xyse1/dqE/Ze2taH9oFxwICMZc82VCZS0A2yCX4o7kEwsyoyKkPHwAQaTocJtRtAVgTqm8AX/LlhJdcc+LIHI3qcOMy9+kUu74Z2/GR/IbyOrtBM/eYlH09XUJJnhaAR60Of8xaHf58yQPQJP9dmMvtOY0nznX3oSUcOhRRMPOBMsZ94sdcOizHYi5J7Z7h2sJcVk9+2LQ6INMksUB2yMfsQYij1nYxl8jejgNzabMciyLUWd7hzKX954jtX0u/maenfc4qYGcKFviWNHNJwlSrzv8/5rKVzCVy+SVh5pI3ClBBQ53l4mQuObfmT89Tfm25feSgT+v6N16RMHNJwpSirmWiCiShTFQEZS6DmrxLr3VpMix9Mzvl4aHLyli3hSNzyV2HxVzS1/3HXEL2mVx43bh/fKr5uvVBDONiKX8cmEucD0hAmpCzDosmnLdO3MzllVmh1z9O0jWPkftiYDr+nWDQ7p8xlzKNJ3NpI08ZJZk7WFBWrMVDJTqmSqPXiZG5RJ7WS5y55PUYVOYSUArypyvQ/CmhmUuLHXEjF8sbJsvFTDMYs+6Z8L21m7nM34DFXEZswJu59Lj6eFCP0FeU8L8vZJkUzD6IO3OJzIDAASfM2YCFE+7aIBbmUttrJzfWea/RsS2HlP6mPh6NK3O5xb/rFOvBG4yS9BnGqz2NHuMgUgSmSP4biJctxf8RF3OpnvO2MNIxhF647vknn+/7ura7q+NBGfL6MiplCPRl8TCXsvPqbvTsfsLqYPLhfR4yxX8RhLmMwFQD6LTQ7LGShDJ7EJu5bJqr1dVZ1808pNSCNW3WNEe0u8OJuRy7AYu5/CCcAowPc2kQSH0bvVSdtmEt3bSL78U6iTCXZtpcqx7y/ahZ8d1d3YOfHMSB2zPYgMlcSsijdiRzqfXn3+7RJ/+kRpEabBo3e70VE3Pp9nzVuJlPelkVnHLfEPlAJREH28lh2u6DhHKHRdlOXUzMZaouqXrN0y+UHQesKbMOxlkQiLmsX48JxBLIOGJhLpGLP4kzlzxHh0ocKrdxTdIK5nJ6oWHj4Cfl9P3jw/oFni+skThz+WE9lgLXWjKlV5FQ1iGEfqw0kkKCMZfIdGkYc4nMLoMxl8h8NhhziQxKwZhLZBoQjLlEZpHAmEvkqTOMuUSeF8GYS+QxHYy5REZK4cwlYr8PYy6RSzkYc4k8ToUxl/Rhq2o31toabzvqEOy+6PR8GHOp5BNW5359skX5O9VR+ztdPwxjLt9bbYk8O2wofV3XjEenEl5cgzGXpff3r/4Qs968bJJW5gJrhfcw5vLw4AnHemp9M8oOj8zTC9VWgjGX5r0UT1rHz7Lav9b02PJnu6/DmEt/9QHyrOMvraJMQq69XdVVHfZY6Ut/XD54fkIQ5Wj/nbIr3qn/BXusNHK11frHSh+SXrLmo2uAWYl6lyPL4/bE40BqrkYblIQ5xkf2EJxyEXEuugee49f5YZ3jF/jxHeEaNM1/V1LT30kqNWvvHsv0R2506roHNaLvGxdS0y0Gi9TUiREDqWk+qmnatcZNptuiE16V9XxdRWxS0zkGix+zifn/JTUNKkcvce6ebbFz3VLqIbc+kwhCak7FNJiOZAwmCVKzPGPxix1XtWi5x8dX7vfQ3di+hS1ipN3dOrR2fJU1I/tO6OSgJYWD8Hg6JqbhSBIyXIeQmleMVUe6pOy1WJeYNlB9yN1qiZKaPI+HSmoCAwiadteSUKbd35DU1Mp8YDJpRqNREWv8ViU1qaliJjV1IrFIzW6R/3JSM3DizkyX852NSu8GFoYdUT6OJ6mpuJv83Ds0kFoy7KbZzOKq4TiQmkMisUhNwFriITXVHUY8c/IztCi9r+L4TuuevCRJTZ4EqKQmIAHkE4LQfAKBSM3pMyb2khuWaXF4TI+snndzj4u4FZxJTaQlJUdqukWLk9SMNC2sPO8a/XuQmuvQuiphduoD7GuTXI8GU/NfKS1PHz57IU47dWT/x4MajMbaqVdE893DesJrjpw+cNK84pTK96Tx8Wb5+Ss1w9cu3YOD5n9GYGleFMHXfAOa5kQnNTu91ja8cv+9SXBY6dej0efpHUpq/sNlBBqpaQosFL5uQiE1T5gUVPr/venXpGYwmil/O1Lz0jkfXbNjzvR9B47kN3xX9f/1DeNOaqpHYJGaX8MJSmpyfBeP/DH5u2GYfpacfwF3LK6kZqDsTdmkT5om265Q+jIuHbfEgdRUicAiNQGZJUhqqt9/qfH3qC8m2VWFPWbFlZgSiNTkyYZKagKyQS5hI5pLIMyMipz68MEGkabDYUJdgDmhMlom1BDCS17senOQ49FH1B3h8r221mTtwEfyD9f3bYl5cMA0/8C3kBr31wk4SE4Lx5J8dEsvD0WT/HchNaMG5N6T/XbfPH+Z26vtl74ndQipWRaORWpuafcM1xZSU8lo3FPWsG0WKXUnXs+5fUowmNE+UhPZ23EgNYvCsdjD/eEdTmo62SQp3Dgx3GTPLfLpH97bBOszSJrU3IKp1prw/0jNVpKayOWXhElN3ihAxRP3h4uT1JQbcy5sS0qdcf4EZWvW89tuEiY1t2BKsaZlogojoUxUBCU1DS82aXudmWe9Y9w5RyWtD506iNRcvxmL1Jy9+T9SE7JPVZZ6Utz9DSbJg+6tMclTEXwq3T8jNXE+IAEZxDWbsRhE983iJjV17TWdbWk+RvF3vMsWLqMIlrT7Z6Tmzd2jjXWMPSkHNe0fzqv64YuDSrMxVaJtFiOpiTytlzipyesxqKQmoBTkT8PR/CmRSc3vuZPTX606Qc9etqnnumtlVDGQmtWxWKRmcizepKbFcvseI7RXWOYkl4yYmXBeMEEBD1ITmQGBA4R4KhYLQsyKFQupuSd1jt3r81csdlqvodeE1ggmErSX1BwcF8f6WBtkltKb5PT4xrBLOIiUjClSWCzxsqX4P+IiNTeOKLbpY+9ukpHjo11W8wen3V0dDzaR15dR2USgL4uH1DyvqppS6HeDuvnrdvexiz8JelnJkZrJmGoAnRaaPSJIKLMHsUnNvJRtlv7BB+ip13f1mBm276uYSU16LBapKSM8l+BDana9F1l5Z/oxi9iYim3q0+8MkwipucJj8BF/dx3jMoUTV+cu/qKBA+1Hi8UCyvQl5FE7ktS8ZbSZ8vykvsX2dyMd9V9H9xUTqRlXuz3mGem1UXnkvVVFFnsacbBdX0zbyRDIdhpiIjWDOhffyjy0mxIf/+MZaXyNYAhKsqTmuxgs49wlUH6wWEhN5OJP4qQmz9GhcopD2rgmaQWpOTqMuavTrt1m4e8D558/2ilB4qSmDKYCDS2Z0pEklHUIoUlNJIUEIzWR6dIwUhOZXQYjNZH5bDBSExmUgpGayDQgGKmJzCKBkZrIU2cYqYk8L4KRmshjOhipiYyUwkhN5H4fRmoil3IwUhN5nAojNW/c4fq8jp9odND9b2pZWed4GKk5xvHsg4L8Y7TtjcMvjpk55hCM1DxundLN8QzdKGvR/v1Pv+RrwEhNt7TBqTX+7tYx8wLnv9/j9BBGamaMuVusqENhxFO1Ag4odkuHkZqjV17hXDmXSikfEd+YsrReE0Zq1hzobp4esIGxNeNLN/3YczYwUnNyj7pJ4W/dzOIPG51+QLUcCSM1kaut1pOa0UUxabuPjTJMNn54sdZpfZyIgdJWUjMKbVAS5hgf2UNwykXEuVQfeI7/PQzrHP9VGN8RRqNpLm8X77/fz90o82UTawL50DuBr9oT2ltZAn9w2UwP4V2ZLIrUffm7Mg7Z2pvFMWGQPaFrtG4nlr/3uNvN3gxKiltud5mFel6YtyVkC+Qb2pA1lVBWCSgE7MlqhA5IAEGbSiqRezKs1V//5pkB9Pi+bs3pe34+LLKTG5PDYYk+rk8xrulupXHOLFjZasjq8if9Bb64rFHzFYS+cEsD3pMtmM0QBkoSJGr5dxDogRPLKiWx/JN2AqRtmXM/f/78oy28JVnQMD7eLCc/DyaX7MZ2dfMAE/BF2maY93ybCutE6qHvi3pusj8mmN0jZwddRDhA1dIiDus0lGJZJ6GUANYBZoAfbdk0DTT2ZPv4gBmETgJm4rsQ0UdRl5a++v5ir2XaPbW9NYfPzxE0TvMVRUSAf7aIwzimmMYBvInkjQPaB26czr8wzgSqJ/greTYBY43AR1kcp0CyjoG+AXka2cubucyPNZw8ivevn+8QPaI2z7l6l3POk57/8NJRvb9t8gWza+xh1xfOrhFoFYfxDpZgGc9BMsYTue2tnwG3YJdfWHDaTwv6uLE5gRxg6QSYDzAXx4sDmg74m4fXcl4j+E8DsMmTGdD8gugSd/qf9/W9Z2id0Dc1zGpjcDGisoCbKI4WelkclpPDtFxBsaQtB34IzGtoU7BCuflUmM1xxXaEtupGTIOVm0y3fQku6uY3f4mgI0RdM/1swT2ElAutIcB1arXQsiqX5wihdeomEso6tU+XlXYniz9Yl8tlPtYev1IQD+ph2Iwi2nBZ/mzWcmG8GQ2xGEoFM/59YDgjewXsmIrs3XxBn55mHCcPP2eWGceWxYG2/+iL18Mjsitd53pTkocebSxRPrcf616Fc3sE23vMBv7w9uL60tkevs2/WNQWCxUrB0ZDUzmgfYKoI+uJwJLWtFxoScvfVoncQ/FP28AcSkieVq3oJ6/Vc1p3rAc9d2j05PqB9k/bf7qH2F3pvDPor8W6bp2g4VA6ZEb2lXburtTBtRWonMgzWrCCS4Kgcr8K46vaw5YwZC9/FpfLdhbtTp+cpX6u+UQyi5GPHjrG3YfU/iGM0ArpI3DQyhRTq6aO3SXwSVxZaMsFvglc7NxJufNDjgWt+Pgv0gxoP6R5cxtyVpXjbwz4bwX/txt82SP4iZYQx2Y0N9bmuGML9NcBcUfkphsWd0S6NKEAEvhtRfZl/ZfbwiO2h1ts/6H8peeQC4txCCDFoKlL0GAGY6esekBflvWhk6wblZ/Up3ZYMKPpM1Yww+GTuIMZ07tNk6UFGNHzxxe6zJAfPJwAwYyGz5jb5c8E2JG9efOmA4IZf6h9zLul52N1IPrvxkdpVCYhghmmmNZp+kQA63RIMKPTeJeq3XvPmhVbv313UnNRCCGCGQc/Ye6HiWAckiSDGRcjH5dOtsw03Fi/0ebLwV10QgUz5DCNV/BR0ltiAgUzFspYzFOYk0lLu/fqafiWkfESDma4fcSynLrELSfWYIZfVVJ+1ZqRhnspfntnqiy4R4hgBm8NgRrMABwhtE6NJf0LghkP08a/HfxkADWVu9PhpWz5CgkHMxq+YAUzJn7pmGDGBkO9vGmvMq0iUgaQPFb17IZ7MIP8l9P792P0zErdn5TFPhlyAocNet0XrA162BdxBTO+DGuc5aNea7jLK4g5fEHhQNyDGUgfgYNWEzG1amj6vwpmbEFzY4QOZiA33bBgBtKltT6YYbXh3SCzuGKzwljLOQpn1D7hEMzYiqYuQYMZnQeGj9m33d4qStG3+lKOJ/Zt4RnMCOpThRHMyFIXypbHOZjxWDV5m3L9BOP1p+7Iv/9xaQIBghkBoCSoS0ObPhJJzBXckTU0NHRAMCNmrT39U0NPSqTX4MpYrV4hhAhm6GBah0QE63RIMKNmvt/ZyuGdGQc9VuQxLh+1J0Qwo04dyziAN5G8cUiSDGZsPTalP5VEsTxk3/WErYfBE0IFM8IwjbdEMsYjZjBjdUoUZ+ecw8bRk1Yvv372j28SDmZMxLScosQtJ9ZgxpbKWyPqDNNN04/89bXguz6dEMEM3hoCNZgBOEJonbqN9C8IZjx7dK6st1S2UZC+kWlqYOehEg5mrOpbhRHMGNIXtU4YrsGMm9c8X7zaoUk7wO3b9P7zoI+4BzM+2jupc96k08stjx1+N/RjAw4bdN++aPQ8uEFn9G1TiYE2BDNsFDLfy6bMoBWqhZ621Lezwz2YgfQROGg1BFOrrx27DpV0MCMOzY0ROpiB3HTDghlIl9b6YMbeRRPIGqdvMI5fHsgY83zwchyCGdvR1CVoMKNPjqJ22Isqw7AzU8Mq7pb6dFgwo9s4rGDG1LHiDmZMs6je3n3hRMbOIQkRw++t+EiAYEaXcVhLw9tjCbAjq6+v74BgxvzPmh9LzxfQY/+4p7dbblQ0IYIZuWOxrBNFBOt0SDBj6KAjMtPG5ZqF7/MdObJTbwYhghnOmMaZSgTjkCQZzDg5eDS7snYgpWC/j+KA4uRuhApmqGAa78UYSW+JCRTMqKue9PLRlQaTsJc3rbtFflOXcDDj1BgsyyVL3HJiDWb8dYxzcctwjmXasohsSmrkcUIEM3hrCNRgBuAIoXVqPOlfEMyY1ftc7pBvgcbZ5ovn78m7O1fCwYxu47GCGbnjOiaYYZztuNH3q7PhsUmb5F+91Wx/vUTkBn3myvr31r7rKXuXjBrvH0G9j8MGvct4rA367XHiCmZcrWBuPTTsnWV86aDXL54yzuMezED6CBy0yh2HpVXUuP+rYEYCmhsjdDADuemGBTOQLq31wYwRusWxMXcGUkqXSOXNGKV8GIdgxg40dQkazFgcUp00tVN/48iPUiYPzgVe6bBgxsSZWMEMNxtxBzNO9aB1S2drGO092lmugLPNnADBDIOZWEtDuZkE2JHduHGjA4IZ6rl7Fp77qGRRMjno+cqtzomECGbU22BZp8CGANbpkGBGcYX7i+KVD40KVvrPne8QmUGIYEYMpnHciGAckiSDGY9pFZXbPb4abpv6Ykm/zrpKhApmUDCNpy4Z4xEzmGEelGeqkyJnuiNcsWds7dD3Eg5mvLHGsly1taQtJ9ZghuGMgSe0jXdRihUuq0aXDyAGZsJbQ6AGMwBHCK1TE0n/gmCG9t3UBmbhRMty/YvRd19N2CPhYIaBLVYwo25mxwQzHl+6tfqlnCtje8IF1pju74fiHsx4TyowvHL9lXFoP/qKsrNPh+GwQdexxdqgk2zFFczov+Be7r5De0yCp/prqVxfjX/NDKSPwAPJmYmlVVbH7hIkHcxIQnNjhA5mIDfdsGAG0qW1PpjhdzYpelbQW8vDQ7s6p6XJBuMQzEhGU5egwYz8ZO3bo9JsDTfcun52qXNftw4LZkz1xApmeHiIO5hh7/igs93mztScqT2cxgTbLCFAMGOsJ9bSsJsnAXZkly5d6oBgRnr8pLWKsb2NonYc8LMrkc4lRDDjkQeWdUo8CGCdDglmTHSZw114hEaJevLnTrnRSVxCBDO2YRrHgwjGIUkymCE3rHGa3AySReSUkZGGvXTvECqYYYRpPA3JGI+YwYzRA2KWuo8eS9khtar6quqLaAkHMz4sxbLcuaWStpxYgxkjT7y+skSql3HYjgpT+2z9U4QIZvDWEKjBDMARQuvUnaR/QTAjnPb1KXtQJ/Njrg5baSNjT0g4mDGWgxXMuO3ZMcGMdbG3XmygP7UuS16qW7LO+zTuwYzJ6+dONyU50TO7Nm5widZKx2GDPpyDtUHvwhFXMGNqyV8TH88PsN6jdGFGpkMdC/dgBtJH4KDVbU8srXI7dpcg6WDGLjQ3RuhgBnLTDQtmIF1a64MZJi8sdIN3TaZu9dNdvnnRsfM4BDN2o6lL0GAGfdiq2o21tsbbjjoEuy86Pb/DghlHg7GCGfRgcQcz+ps8X9Dlpi1jw6Wzh4vj994kQDAjPRhrabg9mAA7sjNnznRAMIO5zGnMnR4+Zse09R8wNxXTCRHMWI9pHQ4RrNMhwYysWwxZZ7NnZjkL7IpvLcjvRIhgxjxM49CJYBySJIMZ647+r70zgYeqe+P4oIRK2qRNk8qrSOsr7WZsg5khW7TaJpSdpF2FKBURKjshhGxZCilSWrVQadOmnVYp9b93zMjcmXvj7c7c+/q/fd7386l7zHXv73nOc57znO85Q9E6dS9ILTtomOjmYUPzcFXMmI5oPFlsjIfPYobjjrEi2yT3ae1ymJNhNXa3I8bFDAlEy33egbXl+FrMMPaLH9+cN0T3kGJx4OKx9+bhopjBzCFgixlAIGTlqbGEHlDMGOjuX7e6do5e6fuh05KEa9MxLmYo+SIVMwi+gilmDCZsuL3mjal++rWD4/923aSJejFDJru5cLeVn1bhtlef3X8k9kWDzPBFmqAP8eVXMcOPPLNx/uxSmvfrx9PsXuZsR72YAY0RKGhFQNTqtWBHS6yLGXFwYQzXxQzopLtTMQMa0rpezPhA37+7etJfWtv6pj05G/H6FgrFjHg4dXFazIB+R7LAihmiIUjFjOj9/C5mnDt9mDFeX5gSuq3KKmHA8204KGYIhyClhm/342BGVl5eLoBihtGgC9efzounBPlffiw63EIMF8WMO/uRrFOJB+sIpJgxfd6YlrkP32v6n3ojpLT90hRcFDOyEY0TjQfjELAsZmwSX+j5XnOfTtHYwZKn958/hKtixi5E43liYzx8FjP6/J1xc5JKMz00itLsR5b8G+NihhWi5eiYW46vxYxJ+ZsWXjUgaCSKq/y8rREUhItiBjOHgC1mAIGQlacmEHpAMWOGVXVDQX4OOeyl0pUZi2YcxbiYsT0EqZhhGiKYYsYp72D50YNk9HPNRku0WC2IRL2Y4Tu52GC48WrttGx3+ZKrZ5xQmKBvCUGaoK8O4VcxQ2344fs6Lnd1/I+qMHa3Pv+KejEDGiNQ0MoUUStyyP9VMSMRLozhupgBnXR3KmZAQ1rXixkn9GP7WZ3X0shakZT0/Gv+KBSKGUfg1D1/2JLaNnuY9vYk2T4vx20s4ew3VEBTopEGlbuK0Rumy5LZVQyiA/hZd4atI+C9RBvGKuCfNkSr9UTgfd08iC7O9k4eSkTg3W3BdksnG6IDw8nWw055c5di404dc4vFfiVaux5dsElP2def93Nz93d2Sxe7KdgRY6OBbnqSDKZHkG7qDwzEFtFcgwFSSJNiPkAnDXi+nXXzdvFJ0cc0849q/kx/FzgXkhyCn+aRHDIv//bQZ5+2we/oFvRD+4PtKe5a3/4wjlHAE9VAgabyimMRwGjpH41J7iih7gx0f3snwBnBn5tBgP/TnTKIDNN+bLdVsLF3A3oX0D6R95er19+qUDat04+9/r5CqtEqk8OO4hrsD3PZslMT2qklaDAPRINZYGMwUU/gjdsn2dzGalrIy1jCv+lsfZnGao8rPO0Tn2O61GHESY30KfIjco0zOM9sEKUyP8hlHPb13/U084EZ5K0HxtPDV+SHzV7jIoFCT6MiGk4VI8Pxml83LezWTK0ftdNowdNUC78r9Q21HqaX6/TU4IrFMU5csReV13S5/SraHUghlxXxskgEggt0SLiaw+xArGE3iQAz7IY1foqabBJILbygf1r7Z6wcx9tIaHoB0wRmwsU9L4PzdWlNT0uHtawFBEbHDTrdi/2TA7X0DWkkYwW5jVPnGG6WU9Kf2KURV1T4x0q64S6tjIVNw2MNz0XDPTKXGTq1dVHiqwUVhA0HAYlV1IGcEurqDwFXX3Gwsr8B6F8MIH1ne3ovljwSOmBw4PLkPszLOjbs/hnR5l0UF2ymk598lK72VPFuX32mq3J9Tqz9+q8PmttU7RUqFdcoejuM1l9x8NX238d8HAIrIsHOBX9pQfS0BCYeVg685zNW3/a1eFjHap34mGDw6sc6zi9nkjBlfZSoz6W2kD6XxwtBAtPczUNS0iI09ZNrV43bcKJK5Q8DUxlgLU/QWlOBDlEGtVZoAdNaLHE7REIKBkPayzZg9v3LkXmq1P/LFcaG4H7q21qeF5Qtcl7BGb/bb8OtEBH1mGCRw5KgTI2HBJQcpgSsmJAMFxMOFTw03/mkRaeoIK/o+JpHnEdY9zawdGI4cE904MKBAonoAn6iU52G6OQMvAYz1fZgeHkQwXjBcOd97gpF7uhM8Srt7NGDzuyudDnD41G4ZyC8VLV2c3ZwMLQErkOHB4hPQi0J55NiJu4MN2Pg8dm/doKG81qwJ1g7AM8DVlgYNvYerHe3BtQCxpMG7ySIHdmTXa4xtrCCUHQYsKOpOsF7p7oEzdLN1t6JyljF4RR92y8bgqtena+Lt183dnbpfJXTGaZpF1Z4Fx6uHMAU0cDNGZhXeti3P1Uf9lPxmqW6Wa7TcbKxt27/UWa3FgcvgsNzp0s0sN7pwJqYtwdzcC3N3tJB3dnm12eBXMUDmKg5dvy712I3S5dfAaPdVVPgXJVoOy7ff08AOeRMOvXg18KNnP5hyHCwXM/pquz6mCjJGngDd7Y+cN47mERcB2TARDfwTqxpN09Hdbiz5XaRrBE1pGFgHrFWTYrHg3Sp/0PPFIH4/x9GyAggdSNGssq53tDw0AKMZ1KR7PBwFPeaQ4cPlDSPrtWWkswNpQSMyOxzIeXyMBQ0H3EQSXOJjpCcCqe5a6m9oj09Vf1Eib7D8ydL33G8at9Fa8GQow10HDuYChSn8nDj3XgNe3cXUHRLIANmDnvrJ7cHZ6Il8B/RFvwNPE0RcTPn6bdFZynxNnskpD7ZbYV9Pi6DcDRymUbcyNnNQ79z9YyHwf5hGtFxN2jsBRIFehRgMGl18H9Og9loFVRMpEVV9jdiOAAGY9gAsZDhxXG7dlOmwZmSfGPYPc9ZOWrHlq6Q2W16inN0HQJ6rQe4fA5SIQywTslw5y56wa2JTFF3dgSSm/a+w7yNza/bMEdgsBzmzjStDZCsdinfNlAXGT8q8QgtasCDcvctMfK/f2AuI/P8qS72n6oTFQS7CMAcjWQeObgBOBmNgF0G6aLjk6idRAHHbnA0BKcwQHas0D6rdCcC6jELZcy/tdcIgE4BLkIxbHhXXca9P9h22dZWe19T9IfqKb69ObNCU2bP4p7Vs67/LkzZnbH+oia1kJKvu/LL31PNmv4wTIEAlQ0ocy8yj8xx5gmmzFxT6T7d03lCJ/MTrRge6xgMJzA5cmdYr2W6hz0wpeedCW7KjAk7VZRM239tjuXeCetUOSPMr/vacEeYzo1oJ9xNeSzZlvGSbUgeUzZWSEiHCwm4GVGhQ19XRlQe6TbEU6GmQ2FATY9AGlAjOyQ/hnvJrc6OYhCMI9V8osguc5rNtqIj+fbYq59kZILUoi1vU0KDT79FQfL94UiSbw9nS54BJ3m15LgP01ScaX7v3+kpX9/KicT3N2QAmYc1g0hf6+DAY8SDW+aZzP6cE/g5MDLbOwEpi71NeyhfZ+9hR3T2sGO4dX28WzEnpvLlRDN6JmnxnciyW6IIz8llGc7mbmAvkqBDt/Ba6FcA1G0I/9MRThoslrqDQxvwMB7MVABUjKcA4sKLlEzFMunehlJrb9Fzizhdknkj7kWf9su/80uot/+pX4K7n0DlfHiVooPA3U/hsAv9XVRuZIdybhyuBroWT/kkt8TTnXfLUVI/m1zTkX+ZxAnGsRwELC9zq8jZivZYBarVEI6k1uVwgRbu2Q8qZrzehdFZh3GdFruV9RhuTgwHZfBn3JW1KSt1nDwYtgw3CJMF/vnT9ESamQaChgVuQbR0Wt9uap5WhqZff9JJ/tCuVbmsXtBE4mFXg1xmL+DQhr24CCeEDJ2pLZgRMzMytuvb8JTizeNZGZblY6hR+heTU1YYenJKwXwrbinaL/NDCqaLw0pxuWOgyiTADFT0E1qXzxPOqnsvGT7X/qUu52KcJLOw5eJgbw0WE524Ryq4jGAkDegGDEfgU9aWDkRHjrt0aVxqrTH7EjyVSI2pJ7jWHpbfgvRY3GgaZ3sX5ZQCIsZVcCocyGtkAhcCE6N4rH+wp6g81j+YK6WQ9Q/oMga7XQimXRDrI6O17N2AWAB6P3Ow5LQXT/uMTRyj/01SSXdbDWGI6XO7uxz2ESJxl6JIgl4gIQDmvBjFWiDh6h03wK+2iKrsJJLQb0SSNWIAkzebbqmUsVM8LDTnu/6RO2JL3vXLn8+pEplbJfJvVVo+tfArUdZWLXR1Ls3fQl0MBZUSEVUKiurWMpLMr2WkLggEXa3v0lIS+zrq/G8ey2NaSGDyD9HCIY+pFCueZsHF0yujX734vJ9G88kIk5ts8WkN54o5zdmT0fV8fxJz64ADWJtRcAQ+ORFcZW6fXhEtHZydbImWrNpM1zarRb9a5aY+ylQ9WW75wZXzXtpyPxv3aj54tavlAcCXZGIB/b7zCqAEcKtoDE9sC86X+pMt3RkdkDPvrcd2Cw9c6mdNOrV20V43ycO+f0zrQvsblID4w/72EPyO01g4ApUIbraN7RatO4jtI8zFbaYz8BTKlbrHtfSdCjnWU7x0xjOdFM6eRnPmOZCyr/9uplOxeMMI05px5IT6wMXnRWZpoCAS4CoIItXF4I+WYv8Zr9YtCGdwRye3QXb1O1uDxuY2pGrmtdba3A6cuOaPXf1P42VsHsuXKbzMVJfL9OVupeLtWgCDq2O7P4NlDN47F3yL9mmKm9D9A/VHGSeshSB+HXfhRvx+NfFDDabTwqoBOC1r9DhOgBk90pQLTcde+6Ieet2hruneyzoIgML0PqKZ+RLuMUQURlL5DjS43XeJq9ycHYkbvdZv2Ey0dnZ0cXYCp99dGz+CpRg/68UXUKP33Gg+q/+yFu7puGGkX21dVLMF6ORhoJoD1HkgwARwPwj3WCJGgI+TQ1iPsNGr03vzfMvvmffM3S730SserOB84eYYjUHgHNwN8BRuqEt4shlnad7s1725S/OdG38XUW+3rL0ulqdO9x032FRpSO2ffhdJIyDnflDOeF7OaQMMzVswiqg8McbS7oyAHZZd/zvLTh96bM+uCEu1JGEj84lulzjP3uhrjmQ7827YzkBKYSZFNV0jgJowMKZVNAYF261GtJ0pjmxHVOvODuoO2234ne3GnC06uWa6l3aEnIWu3j2vt5y2W4JkuyVItvvTOQNgHDKicZRxZJxu7uSUYlkHXLT0cFsLs6gDTf4gC7/MW/BY+G2/jvoonMsKdGJksC4GsYcM0OoR072cpD9LBASgfeyyLBHZD3Npcasfiimt+Gb6Z0A7CgqYIiqg2pGHZBNg8pBub/+S7fBe/m//gu5C6rT9C4pLA03CBN50GdAkwmqC8mxAUy8C76IU0NSb1QTFgIAmUVYTlCIBmvoQeANXQJMYgfd6EdAkzmqCLtMBTRKsJmilFGjqy/5dkPk+0NSP1QRN5YCm/gTey6lAkySr6S8p8pd1ChM1juYUNL6d+/4a0DSA1VQV1XArRzFLPUL9kmmkNKMFaJJiNT34cG3o1UF62hHSBgnht7/UA00DWU2rogyHBBwdTtm3IPLjki0FsUDTIFaTas6W6ieE9eo74mqqxmY3HgGaBrOa7t6fNz333n2N9DG1zXr6ay4CTUNYTZbX9azNGUPV90g8lD0oM04GaBrKatp36cL0pzL3aYdO0sPzd5R8B5qkCbyzLa5dg8MIMLsGde/UnVjyZaS+35z52dcffYrn0VG6u2swB65T4mYZH+ohKLGIUjHEVy4715NOTrqjs6i4UgmFdXw64jr+go7lkVw4zXF67BS0Iwrs2CnTOKRjp97G8vvYqYkDFzi3+ClrRJj5RK5JHcfJK2Bz7JRhHNIhHgvicHB2TlFRkQCOnZp8mrH33SAiJabIaHzYYVHOpUSsjp2ahGgdaTxYRyDHThXeDl5gdXyDnv+Iqc/fut3nrP9ideyUMKJxgGiCvXEIWB47pTq1SuVc42j9cJ2FOvSLepwHLGJ97NSdWMQD3bAxHj6PnRp2USLpcf0Y9Zxs8XmR44UgWaLAj53KRrRcNOaWAz/Et2Onrt4tXqo2uVD7ZBbBM3OTLmdGh9WxU8wcAvbYKSAQsvLUPAJMnvpvOnYKOlXE+NipmjikY6eS4gRz7NRkPYK3EGkYPfSlrKvnTPmrqB87BV0+ROEopctxSEcpFcXx69ipb9MaehvuVNMNmPtg48ravNuoHzsFjREoaJWEqNV+weahWB87lQ8XxnB97BSP6he77ggNaV0/dgpaHEOhgHQCTl3TMcJrQo9LkQvjHN7N3SxG4awadBxl0V6Y7noxo1Do1ykYwDDhBkxMLD3AvzLcwBsQV1kyC+jtxJK9hzv7zCnWL2K1uxOtLZ2IVsBsc62Li4M9eGyVM9AIfL79lmudwI+C++idQD7AgTkSMS8qE9XtwKOBmJOgpfTlRBc2o8ncAuBsa+vA6NiABf6MxzpnoiO4MbtrxZaNLxY1TwuU10ghzHjbu2inH6Js3MUWyA90YyegzJmK9mIL1wJ4CjAyyZRXdAemGqjOlBHcq896IN77IXJ/zHsztlrdD/AcuRUqnEd89WbegwffzLz8u6iq8H7q6AmMWv2IUWanxi88fh2FTXxioEJmvKLqQxDw5FTod1UPOQ5/ZCU9oGYsweAgxlFng1wCE+K0M4SnpW8/9lQV0+UfUBW7ciRVAL/BzcysaWF3Ch8zdVYRjd3A6TPYizmtZe/eOS4wZ9tbwFk2782qoWKq+TMOD6NnzLUlKMqROSdkEvSOG3GTLJ3a+GG6qtNIpvM6jYnp+lg5OzswLDuFye5MzEYbgBuJwSGBXUu0XwWGd4QF1ZtDp/TWi8rUDAj8fLdu9+gCyEko4P24g1D7ZdRPbstjRRmeWJd3LjPKdGtBWd6YdY4dC8jqjjDxORGMMN9k+pFXY4ZEu9E4T/bvw7oxd/mb3cAPcZjBBlYcGYg4wr8R56/2UerXCN4ddQamnI8Nnn5KM+7l+Qixv304aXLxjp0b3FTgryZ+KMTs07AKAX2albcVEGDyNk3SJMWf82+QUu7LHq2JfjeDk31h4mkuziBByp2zicHo/PevBSj7X5+3YQ14HnZA3mlrR+w4GqP9LICupUtSssnnC/U+knwfZqTO21A/E/ZpuUmdTo1d5QQBfb0qAX0bAH1ToGmSFKCvQgVXmtTN7aRDfj0WCKW2a8Hz1TPPuyyIaTtCOSD6d67Q2BbOrzoXMwUPHeJ1YsSvlt+lUNDA+KdoGdh/QfXm8fJOJTDJrOxWCtWvvfvaMGzdGLzzS33/hJbiPFNS1INpY9ZQgxI4kyUN5ge5kyXWdX7s+KiqQHp/rwqsk6UOz+xGogQ+sr2zjb11e3/m/UVkkQyfLWvy9Q4PN7z7yaNKm9NX2Tfg9tWOFn4YQwHRGHVncZH+ELqzHqSs5+TsAQxfltZgZVph6nxgygry50rEafOt7ZzdbJSI0+e7u7p5MP/BO1vVObTIsCSjkOT95sYduRu+nJshxcFfYOSx3oG723Rq4oex/M8iGUsVG2NBeg6z7tKdbHXor2UEp7VuVu4IPejiI+Ngc5U2jSM+gx9d3zqn+k+myn9ojqwcViCXAcxxlQv6y6kwaavoXpbKiuQI2ZZE44tvN88N196h8/jLzVDDeEynvaAAERUsAep4CACGlm5louyhzNkRSKh4fy31dVJw+GtxzUTD7RYKnu6FkKGM+UEeQ1n7dX4IUHYWQYBUw7PsRLOQ8O+inVSCTNR2DnynHyWe6Wo5t3C0wGinqRcqEGinoCquzBJl2sl+iGrVZvt+Osl33obSZv0ciAPaiQhKArt2fPU8JkGfE9m4f/++AGgn+6Kv2o1L02iJEpS5xd+cTHBBO3mfR7LOVDxYRyC00yPZfb0+HzpIjr/tGtKyZMZbXNBOD6uQjANEE+yNQ8CSdvKubTudoVpL9dcNvqNav3U2rmgnNUTjNZ3DOtnFEe30bq5oc1z0Wv3IW2luC103vsSYdoo9h2Q5A8wtx1fa6XxK3VvTjHpq8bDSMWpOcxpxQTsxcwhY2gkIhKw8tYjQA2gnjVHjM8dK9tIsOmsVkvN24yuMaSfixQoE2smlGrZYiirtlGS+efT+2cqUbc8mCJ0c+MwAddoJOjdHgeCRApWDJXjKqrkKpSjRTrKPVHYaCqVopJvIqb2f8SoSddoJGiNQ0ArwIwStiNUCjblY007FcGEM17QTdNLdiXaChrSu007XMm8GhJy6RD0cPkokxqrmJwq000k4df+jnf4R7XS4qK3h6MEj5HxH0b2HUt8rC4x28v6ORDt5f+MH7eQp1nft63NjNHPzRnouHrg1BkXaidhq/eHDDEWdU6uflQQ/G38aBdrJ5TsSHEL8LhDaqZeMcNoTVyotaVCZcx+RO5WY005XvyGpAvgNbmZmWNFOyx69WtBW0KKXkZYsmmptjx/aaSqi6R624mK5j++0k2GrBs1H25W+u+kN5dTrow8wpp2YUQYWVwGijMBopxtiG0ZMUV9DPzRmYiGl/E4wDmgnZrCBFQcINoKjnZ5sFHntVZikEWx6++GP4c2iOKGdpiIqBPRpVt52itAjaKcZNQzq/EXi2j75R/wnbBoRzXfaqewnEu3k8kNwtJPHq14uq5rHqqWWa2RR7LfGok47QQMjCrRT1k8kZsHiJ8q0U+2AI4skd6vSExpmKJoUx2dgTjtJIb5/2Q+skyV+0U59Uz1aj40jkIPvB2/5YCh3EBe0E9BZEYxBxMYYmNNOZefqNU/mVqoVqVq9v3CjLg4ntNPVNiRjebfhoefwk3Ya98JRbVXFFlJo8SHpvwjjoV98IGjaiRnIYWknzZ9o004W+1/G1a8YpZfUb9yyvnpzjmNOOz38gUQ7AaEFZdrJX1NfIWDcNXpI+NxBls90J2JOO4khCZB6qI2daJYQ/l20k9vt8JSiQbP1j3w8/c188rEnAqOdLgohne30ncDvs52aWyfu825bpuNdbKvgWjL8DQ5op7NCSCdlRArh4ICaW7duCYB2sml6NjBb/zA51ML0zo35BeK4oJ08EK1DxYN1BEI7rZ+8fsdQk0TStgoTr3lVG6m4oJ3GIxoHiCbYG4eAJe20bzG5VY9QrR2/THLY9IlxV3BFO90gIBkvHRvj4ZN2cqhRF538Ikr/cGS06xNPEaxpJx9Eyy3D3HJ8pZ3sln4aOkUvSLskeEWTnWLWW1zQTswcApZ2AgIhK08tJfQA2mnJNqd8pd2H6RFkq0PZP9/3wZh2OiuMdLaTg7BgznZyJ3usb01UphydL/2tIffSSdRpJ+jcHAWC56Qw0nlFocL8OtvJ/p6R7sxhPqSiIJFrkfWSIqjTTtAYgYJWDohaaQj/X53tVAYXxnBNO0En3Z1oJ2hI6zrtpOEywTBfwkj3wOW6Rl/6bAUUaKfTcOr+Rzv9I9qp9K1Ilcanizq7+qvcE6LrLhYY7XRxZCUC7UQd2a0vyusi7aRdQZ5iHfyeVDi5sHQU6eA5FGmnT8bWMk5NqVqltJz09399+lOGFCxHnQUVgoVDIkdyjUD8oJ3Mvp25/OyxJzk8/EVuzpFhbZjTTh6IqgB+g5uZGVa0k+sDtYGnZbT0smdY3feKOZOAG9ppPKLpvo/AxHQCp53yvaVHt9SP1Nm+6eAV0o7paRjTTswoA4urAFFGYLSTxT6xj2Gb5DWjxywJKHikMAsHtJMHojhUiDh8pZ3uHS4/NavqEdXfK6uu1JashBPaaTyiQkCfZuVt5YQeQTs17XdgtAi5qYUnj/GNq4s6wHfayWF0JQLtdHYU7AQeddqp6YZyfM1EKa3gz+7Zl4bRpqFOO0EDIwq0kw2oHiyzMG90t1Ko39NOa1Z/nVVUbal24I3ceaWILUcwp52GIL7/61FYJ0v8op3Wyq8v83x/neT30chDROJvJ1zQTkBnRTBGJDbGwJx2MjWZSVW8G6lxVD5bcROtZTVOaCcPRGNRcdFz+Ek79TOr29Frhbza4fOJW3+U9B+KMe3EDORwtFOa8ujuZam/p53OzRgoJeqeqJZtvNLDd+aXCMxpp++jKhFoJyC0oEw7VQS0rHFoMyRnJ79RFJ1yZh3mtFMQkgCm5qPYieYZwr+LdpIymqQ4P+q55r6S3llHzwUrCYx2MhuDRDv5y/Kbdhp2nHqqSuEdLfmc3N4NAdc/44B2MhiDtHasMAYHyMaVK1cEQDutPV0dlrjYnJaecfXLCK+V+KCdCIjWqZPFgXUEQjtd/Hqj7W3haL0UkS9n3J6Z1eCCdsqSRTKOPx6MQ8CSdjqeR35yQ8NDI3iNyIKNFospuKKdLBCNp4qN8fBJO5n5tfZN2K5JP15MFm9xeNyCMe0khWi5xtFYW46vtFM/u0F/ranfoRE1tvySjuLCQ7ignZg5BCztBARCVp56ltADaKcB392r35LD9eMmma6QWvBSD2PayYCIRDu1jBEM7TR2hfApN+nx6id+9PPXurGuHHXaCTo3R4HgoRCRCB4ikV+0E7W4/+KRFiK6aZ8Dt4XmRDxCnXaCxggUtGoZg6TVVcHOErCmnSrgwhiuaSfopLsT7QQNaV2nndY0vsntsySMsq3ULOVOv+KlKNBOlXDq/kc7/SPa6WBTr8PXWz/Sc8a832t0YPUQgdFOZrOQaKc6FX7QTkefejpEf6app/seeZGr8WwFirTToo0PP+h7bFdLsJim4rmL9AgF2slgFhIcojBLILTTtIozE/vKSqsH+k+1eLhe5gfmtBMBURXAb3AzM8OKdprS/8q2v18nkPyr9sSHfLGXww3tlKWCZDp/bEwncNpJIj0zQ2Vmm77fgx0vcox6LcOYdmJGGVhcBYgyAqOdsmq2aU1gvNA8ltPa/86dzHAc0E4ERHGAYCM42qm5j6pdoN47zeI5elcdI8wu4YR2YvZpWIWAPs3K284RegTtZDZVOrfQ7ol+1ASrWONA45t8p51aVJFoJwNVwdFOM8RqTF1e+tLSDgklP+lb3Yg67QQNjCjQTk2qSMxClSrKtJPJ3cUyRyrG60YZRB3NWrr1Jua0Uyzi+3upYp0s8Yt2MmrVq1SYW0OJXcOY2dc+uAIXtJMBojEUsDEG5rTTK/MJdx9fCaXvcvLw7TXx8Qyc0E4ERGPVzcJDz+En7aS3SOze+IyxlKwrEyWfOb5Txph2YgZyWNqpSBVt2inYKzV7kEGCXnHz1AFFfs2OmNNO/mwBeNJOBqpo005FZRuv7aBL6ASsjGjTULohjTntNApJANOns9iJZhXh30U7BZkd16+Y0U//lFvDxhBHqxECo52ezEGinYbM4TftRDygqlUcvJmUGxmtn3V28w8c0E71c5DWjnPn4ADZOHfunABop8o9j1sGLZuin0V59kl1/3MKLminQETr2ODBOgKhnZKvmSiaaG3VjOodWLlMqX89LmineYjGGYIH4xCwpJ22HtKsdB8crh8i8SCn8Wv2FlzRTq9nIxnv7Gysk10c0U52F1/89cInRHv7osWer8Y6GWFMO0UiWs4Dc8vxlXaKr338MX3hKcpRvYxJokOm3MUF7cTMIWBpJyAQsvLU84QeQDstOSfkVL0oi5o9OX2F60pZL4xpp/q5SLSTz1zB0E6nqCn9xHs91N8j+Ub65CPz6ajTTtC5OQoEz425SARP+lx+0U6bRe2rtvWZopsZS5qifG6JBeq0EzRGoKCVD6JWy+b+X9FOF+DCGK5pJ+iku/PZTpCQ1nXaabxVlVRkZqNactWoqbV1kkEo0E7VcOr+Rzv9I9oprfKDfKmfCjXpZZxF3E3tAoHRTi5GSLRTkyE/aCfTxAFpV5IT6ZnirsP793EioUg7fSAUqF+vfau5c6TWhpLq55NQoJ3sjJDgEDUjgdBOJd/2iGf59tEqTuqzJPqR+wvMaScZRFUAv8HNzAwr2sll04aNha6B2ocdkg///Tk3ADe0U5UhkulisTGdwGmnKV7hl90jDSmn3p3WCEuijceYdmJGGVhcBYgyAqOd3r0YHL1imRP5UEyj7KRBg3VxQDvJIIoDBBvB0U6iJ3vnRmdM1DvhHZ5f3qB7DCe0E7NPwyoE9GlW3naR0CNop3tCz4pWT75LCvDauyH0nco0vtNOUiZItJOdseBop4A+iiN8dsVrhCkr+O1cK2eKOu0EDYwo0E5iJkjMwkNjlGmntTbvT821rqbsLc9el9ki54Y57VRgjPT+QcZYJ0v8op0sXr9Y4TwlUzvjr5mBK44/8sQF7WSHaAw1bIyBOe2kOGVQ0bIEG1JUZOMG5d5OyTihnWQQjdVkhIeew0/a6VbKeLGS2mpKplzIacsfL+kY007MQA5LO9UYo007xfTu11f1YpLakTEtgQfHXDyJOe0Ua4xEO9kZo007LWrdSEis2UwJU763WPbqp2TMaaeZSAKYthmxE81LhH8X7ZSZGbvQ6KSD7vZMCe07xZ+0BEY7fTdFop2UTPlNOznZHJy3YOp5cvKkhk3ZcZPW4IB2+miKtHZ80RQHyEZpaakAaCepMUtTNv9VTwuLXimndtxvOy5op0RE62zCg3UEQjv9EHpWoV65Q2/f7vV9pn03jMIF7WSMaBwlPBiHgCXtZE2IGa0zIpqSslTt+qpD5pK4op16IRqv3gTrZBdHtNOG6ALLqOof2vmVF2K/xE/5jjHtlGuCZLlAzC3HV9qJcNtpUk2mHdn/VYbiID9Fe1zQTswcApZ2AgIhK0+9TOgBtJNh0WSSklQ1bWeZz6ggz9ENGNNOHxcj0U6RiwVDO0mHiC68N2qyfoh8VR9CUKYJ6rQTdG6OAsHzejESwXN2Mb9oJwVDs/1jc5NpOW6XqpYIj3ZBnXaCxggUtIpE1Mpj8f8V7XQFLozhmnaCTro70U7QkNZ12ino56PBLy5S1Xc9uHHg/LNCTRRop6uoqdtPgOpusl+outWxSGvf6wf2T0ReqHdSN0+o5nqc013Stul9tfuIizoBTcKspnGqU7JHVQVolqxeoGY0Ii0MaBJhNYVlvzx9sb87OeLo0V0FixoGAU29WE23B20zGrsoXrvk+7mTapHzueG03nDm2j7prFK81CPN7ZvOSKmsSn2GgrmuwZnrPzjtH8Fpk6uNRjvGH9conm8t2xY2XkZgcJqPMxKc1suZH3Ca69P+FvOPuOqG51I/rt5s+QpFOG3OdvMFFIK1VmbflztW7ZmQigKctskZieUxdhYInLZS2kh248sIcr5YdHp6A7UYczhNCVEVwG9wM5HGCk4r1s7KKX4ZSouepbpw9d62ZtzAafVOSKbLdcLF6izf4bR7Ec3rr21coB2dRtts+f79fozhNGaUgaWLgCgjMDjtcpD4XTERa/IBQ5IeWb2AM7nDBk5TQhSnl7MA4bTZLuJ7c/aVq+3zXnWjfo6yOU7gNGafhlUI6NOsvK2G0CPgtOX2GXT9gbP148zOpB4ZW7mL73CakisSnObjIjg47XqWe/mQgGD1FG/zk4ekcjmTeTTgNGhgRAFOG++KhJh8d0EZTqvW6DdKbkmQXm7unkwvz1fDMIfTbrggvX+6C9bJEr/gtEPTzNc/Pa6tF2idlJdQtoLzu5exgtN8EI2xDBtjYA6n5elfTU7bFqedGTt93rnYvqo4gdNmIhqrHy56Dj/htPqkH8uTD7Wpxc5ImZS5NDf5T6bKKKBJzEAOC6e9dUEbTnudV3JVJOsNJTJ3SnXCtoIkzOG0ky5IcJqPC9pw2rTNUhcnbS0h+UkuTCBXqULm/RjAaQZIApgOd2EnmtcJ/y447cwj6TSrrzu1T53y0TO1XrFcYHCajDsSnEZx4zectkV+eWbg9zukXY6X8z8XLNyEAzhNyh1pqb/RDQeETUFBgQDgtO233likvDpPC+nzOf2VZCzn12thBaeVuSFZJwIP1hEInKajbBSyQURZw1+lbLwqXf0MLuA0F0TjUPBgHAKWcNqXG6tKvW40qgfMPPip94ovH3AFpxERjdfiinWyiyM47Z7oGtKty9H6cY/pqUSJQs6zYwQPp111RbJcCuaW4yuc9nzZRLEUS1FyxMOxySqie5P+nGxBAU5j5hCwcBoQCFl56g1CD4DTxokbiSnK7qZk194YyhhE0MEYTpPyQILTCtwFA6eRH7s+Wqyarldc9DHKbplVNupwGnRujgJwJeaBBFw9dOcXnNZ3Uj+S9uE6zTyRrHI7tZj7qMNp0BiBglYF7khaBbn/X8FpN+HCGK7hNOikuxM+BQ1pXYfTDAgrnujHLKGl0gdeUYmxkkKBdroFp+5/tNM/op1OPUra/DFou27J7AmZy/QlPgiMdrrhi0Q7hfryg3aqGPF8i7iICS1u3Z0F68TlJ6FIO8lkNxfutvLTKtz26rP7j8S+KNBOV32R4JCTvgKhncqlJV2OlvSi+n+c/mO4pO9QzGmnFERVAL/BzcwMK9ppkvDlH8tbC8n5j+eVKJxYX4Mb2skb0XQO2JhO4LRTlqubZ9RNMWr2h/C+9z/o0jCmnZhRBhZXAaKMwGinH6XhTxctv6ufX+z7ctOpPtE4oJ1SEMUJ9RUg7fSGsdpri0ke2d/rKymlz9eNOKGdvBEVAvo0K2+rJfQI2ildblbOgAltGscDducp7pQfyHfaKcUPiXYy9hMc7RSvNdUq4I0PJYYccqS6VksRddoJGhhRoJ0S/RCPovJDmXba+lpv6+1TqpSUV0sLjzrNwP4ork2I72/nh3WyxC/aSefj61miJ5brnlii5qSRKn4PF7STMaIx1LAxBua00xbHwRbVl5q009LMVEYuH/AFJ7STEqKxZHDRc/hJO92f0bh9VmGcbr4OvbowapgPxrQTM5DD0U4mAX5o006M64q1GcLrqAm9ex8Rcc8Wxpx2cmELwJN2MvZDm3a6Yb5sYdnqC9onDIYYWok9UcScdpqDJECqrB870awj/LtoJ93BUuX64Sb0pK2UnHUvYmoFRjtF70SinVR28pt2WmIoeUY9ajg5KHunPON9ThwOaKdDO5HWjv124gDZyMrKEgDtNMpHtk7W25Qa42kW3VYeUYEL2skN0Tor8GAdgdBOMY43+3ywdtRLkJ1oc9xRuxQXtJMuonFU8GAcApa0054FzbsSZ1tp+e+urDnXNjISV7STHKLxJLExHj5pp3FNCc0elYbkA3OVqsvET77HmHZq9UOy3DNcTFP4Rjs5LHXSf2BqrJn8cOqk+g0TXuKCdmLmELC0ExAIWXnqbUIPoJ08ZWTFGSfe0AO1/W41b+orgzHtNMIfiXZ6y53S8oV2si89/2Pnq7W0kr2Dtr1KHfUEddoJOjdHgeCR9kcieIT9+UU7XSQqlR4791p9f8ibOMobhfGo007QGIGCVm93Iml1R7CjJda00x24MIZr2gk66e5EO0FDWtdpp2tnalIuzfJWyxgd1WfDe5lWFGinu3Dq/kc7/SPaye6IXNxVz9X6QUvWL/0Qb/1YYLSTfCgS7fQshB+0U/8zdw+8DiygR+vHpwUd2RSEIu3kO7nYYLjxau20bHf5kqtnnFCgneRCkeAQyVCB0E4xF3rv8Hy9iB4V2av5uJOcJ+a0U2sIkiqA3+BmZoYV7TRiuN7CqP3G2oeXv71iGHDaATe0Uw2i6UqwMZ3AaaclwqFVAw4J0w+989sSot1MxZh2YkYZWFwFiDICo532BAzsR9kgr+sfEalLj7/wBQe0EzPYwIoDBBvB0U4XBrz+LFFRSMovSvWZ8dfWTJzQTjWICgF9mpW31RN6BO2UNuN+sZSCGjWcNMErWapfKt9pp9ZQJNopKVRwtBPp4O4HhRH7SQf6tjKmTZ5YjjrtBA2MKNBOn0ORmIWG7qVQv6edHlNvuvRNuUgLjfu8VWzZuzmY006XEd+/KBTrZIlftNOp0ySCzO5H6ruWNAyPOZ19ARe0UxKiMfZjYwzMaSd7VWrcgb/faAdUzPnydnb8apzQTlsQjbUaFz2Hn7STlThtyzKFe9Sg6WV3SzUXbsOYdmIGclja6W43s9Tf006ni48ITUuW0Du+bSzph1ipNua0UzlbAJ60U1Io2rSTyauF5wLu2+iUHli7WG1saRHmtFMgkgCpLqHsRPMe4d9FO03feN3p+sU4tdLJ4S9j1zwcJzDaqekAEu3kf4DftJPSY+ux8bG9dOKOb2/9uVpbAwe00+sDSGvHdQdwgGykpKQIgHY6uFepSWuWodo++b2epAUhp3BBO51FtE4WHqwjENqpz2HaWKXomTo+znJfrfcu3YAL2ikS0Tj+eDAOAUvaqb58acrPnbb0+I1Bz7ecG/8KV7STB6LxLLAxHj5pp4bomGMWqm/UYk/cDJMM13bDmHaiIlpOFXPL8ZV2+t5aZj9OI0gzWrL/ZOPBRedwQTsxcwhY2gkIhKw89T6hB9BOV5P766Z67aCGpH3tpxx80QBj2skhDIl2UgsTDO3kNkHuhEmSt258UMls8YnbnqJOO0Hn5igQPHZhSASPcRi/aKe5cy9u3trrpVbIsb9c24Tuu6JOO0FjBApaqSFqpRT2f0U7PYALY7imnaCT7k60EzSkdZ12miNZNzug2U4nPF3jXAOJNgUF2ukhnLr/0U7/iHZaFWU4JODocMq+BZEfl2wpiBUY7bQhHol2mhPPD9pJNezhZ33SFNqugOMFy8SOG6FIO93ZGjQ2tyFVM6+11uZ24MQ1KNBOnvFIcIhVvEBopya/1WI+B76o5ziUbrpSZj8Bc9qJjqgK4De4mZlhRTtpTLxal7l5JiXXOXGP2/Z1a3BDO8kjmm4QNqYTOO00f84KoqXsQp2QtSsXJcxgHMCYdmJGGVhcBYgyAqOdJk24OXLZICHtErJMfvkY8lcc0E50RHHmxAuQdrI8nH65aOwC6jEf3QlfGmuIOKGd5BEVAvo0K297ROgRtJNqzpbqJ4T16jviaqrGZjce4TvtRE9Aop1audMkvtFONXvTfJeucaIdCG0tWLZfRwp12gkaGFGgnXQTkJgFlQSUaSd/832kgcpraIezQ0c/CvkqhDntJIf4/pIJWCdL/KKdPk8pJ24epUFNaDRufvrgqQ8uaKfWeCRjPMNH+iNw2kn/x4onlD0DNNP0KdtOmB/ZiBPaqQbRWCWYTzP4TTud3ZttJDdMjRYvKm3k/nqYPca0EzOQw9JOUxLQpp0WKxhHiwQUax5vLG/wclvqizntJM0WgCft1NrNTPT3tFPU8/o+puaplLAPuU6TSbf+wpx2ehiPRDud7Ug0Gwj/Ltrp7v1503Pv3ddIH1PbrKe/5qLAaCeNRCTaqT6B37RT7prLsifLDquHfy+cuiSseQMOaCe1RKS1Y6VEHCAbcXFxAqCdqPJidZ80lukFyQ3u9eZQeDEuaCcZROv0woN1BEI7lddIvtO8oqEduWrFg4Sixx64oJ2aEpCMU4/NTANHtJNXIz3qXsNNjT2quSuXhw6k4op2qkI0Xi7m00Qc0U6+t3Iq6bL1Osnz/XQMtpnGY0w7xSJaLhBzy/GVdiIXry87p/xUe691iGdTxLxMXNBOzBwClnYCAiErT31M6AG0k+V1PWtzxlD1PRIPZQ/KjMP6bKeyRCTaKTRRMLTTqh+ZRcsX3iDtaBjzJP3k9mmo007QuTkKBM/JRCSCJyWRX7ST+sVP2hpNcbQdZk31J0b+1Rt12gkaI1DQKhRRK2/B5qFY005P4MIYrmkn6KS7E+0EDWldp532Xbow/anMfdqhk/Tw/B0l31GgnZ7CqUu0HZfvvyeAHHImnXrwayFn1bS3IcPBcj2nujDLQnBdeDCJuM7ejUF0A+/EEpD3HviWNieZxRM1o28FPpvqJi3H40G4X/r3Ee781QMhfjl6h966ZtW5J4/8w14bAfRLu3cV7eOyN7TXgstsCu8qWJI/w73kSyV2GvUXa6YkGekP/PDtgi9uJacOrUSQXGkoOxV6jnvJP5p8Pb0zwJu2bdCLaq/nhSNxK/nFqUiSp09lS96Ie8lHZVkdCdA9Tdp7T9xg84Gy0biVXIyGJHkjlS35C9xLvl5H4bKBzz5938uStmofxbNwK/l3OyTJ6+3Ykr/EveQ68m50SfGRpKzw/rarfZ6l4FbywO1Ikm/azpb8Fe4l3+Agd8xztYJmicTpG+Yrv47CreSJQUiShwaxJX+Ne8lvt6y9LpanTvcdN9hUaUjtJNxK3hSNJPnDaLbkb+Akn5FLJ89RNKeUZHrTdjVl1kIKIoDYbs4ORCbN6c69xtgbRmgVTS9gKmbdTguyVu5Zt2oHtphbB9Y4OQN/A+Y+rI0KXVt/dFFblLdnf5lGcsn4S8fLmpqRnphHCYejvYtKewOT6CwzIB0/S+aB/xPBreumFXzA/63m5y6ZJfdKM+yZUZz1SkYSivj/a2/bLxapRygnRB9q2IkGC/2hL7oACgWBCjWRgH9AFWppV4irpsqWqIvo31h1Th9irT3RQf+aDGI8yjxVXKMdke8sJa15qkqSdPtyqSYnGQDjKOzraFdcy/JYQhF51WOIQGvT4gouNqSbQo1YzABXSpkKcfY73gote7+y2WipiVbiI7f16TF+JZwr26ybca9ssxv4oZHBYiSNoM4k/A80YqJgLOob0Ol3XtR6vaFI73orOWLjsykl1ZU/OfsieDNuhViX+aGPlCmSPi4m7OrAW7jAP7FtmEwGUUQzj9z0jSFryxn4+1Lt3T1gt57BlexH0xiW7mvd2rd+tbNK7dHdAbhb14K78sDh7xJKx1HzlEhzSmyWXYB9Km5cuVNjF3X0AgmKpYCO5YCOD6E6uoDnJizhCuvdxJXFyZbuDKYAPN/3hN7EjwfPntHezVgw6t5wUc6v5OsFvhLXi7Zf/V18hwa9P4zvdoBURFCqCCC+l0GlGnWCKRVsfOfJcdOZa26gg9h7MBzdwb2FVJ4auZavezqtQp4cEtOboSJm7jOISYAD767p5eLG6KgXMyvNZpM5Vy8ETb5J5bN0AncYcOnkn8fUidU137G6ElfX7DXtI0ny3FVKgorKHaHMcWdEqPZW7La4xqhRK6eZUjNF99n/aJTghJBYlFw7n931fkvUZrRnau2kOBFMSRjdzst81EUK0sY5k9Kua466djpOCv7JuIGBzq3dyDhijQClT/LqvKAdygy7lZMRO3IyW95y8D4p4IYrqY3srnkwytngFnXuHx2yx98UzQIQzNuIlaJxuWZju2DdWvYergHxF1A0eEJ3+uVVj8poATrhMsYpRvnKTphuNsjKY6khxaujgmMooAarozYRYMbQsMZPUZNNAqmFF/RPa/+M5VxLkPgVnrhXveFmqNK/Nm87ERkdN5DgDnW9SZPJitO61DOV5GfKnKPJaMUyypc53iCdhHtM7v2Vv9q6gXgQVwKy1vFa1KaATra8on/HDi/2aiM7OknogD2Va/WqD/Oyjg27Z0S0eRfFBZvp5Ccfpas9VbzLbheCae+rz/Rnrp4j1n79143Nbar2CpWKaxS9HUbrrzj4avvzMB/3d+Fj8C+tgA7hZm9p5cC7G7Q239+ta1ihE1WlkjH7gTtnBJcwZX2USOKyhhCJqxcIQUIGdKj80woDYE0CaM2pJB6JpgM46q+o6KSREFoaDVN96/tXvzi9vSK7eol8TsiC0YjMrRH5txpBwxAKGgE+jaARcXkFywE7HAkpqg5ph4nAePorAPAOqDfDhkzRnEA9qOsrlmWcw3nEn2j7bbgDKus62gHVII/lKy0kcGIC0eFGLlMlVkBthguo0g17NAbNuaIe9/fj0syqdZwHSgqRea+/D2zHcnhISZBob+Io07EoHq7yHc8FeiMGMH+2YWaoTBLJEcS8XBzsreEPIAjKTo7wlt5HDb6l5v100p19kHfoist21RYd/BrEFsSiCoJMcgVYiQEHN5bq7/+R6u3JisCV/4v1C93BJNTZwQF4fjBqAJ3ClgE8BXszHe+dn9dNVeyJaYmaRw8FHkn5mq4igL1AcKYoAwkbGtQUH/6RKfqaA1I4ujg7MZw8BG6QIabtpZKN6zf/egqe6pvdW7+e5hVITiONOSRUPXcp7Dtwz+E7N6JtCbHiCsLUAsASJZ0t8bEnh6Ljt/eHjvPxJSeOP3OgfutuFYxCEeEl1P8/9WT/v3Ri5jWrb4q6R4V+VMTX7niBI/93aYb6/+ee7P8iD0IbUosG6RVOebGV/HPma4z8v3FQJcT/v/Rk/y+7edLbzFiKdPLv1Js3nwpRcOT/GtKVEP9v6cn+T5sw9Jjlh/NaQbfy7o60eFyDkf87KEP9/2tP9n9hqsswy0+a5JO2ypmbrj0k4Mj/q6ZB/b+1J/v/B5eDUflL8tSy3tcs/vlObjJG/p+oC/X/bz3Z/6UNX/q/lStUL9UtdZ+SaLsPR/5PoEP9/3tP9n+NrTteBPzw1IwrqrO5PYxhg5H/+6+C+n9bT/b/uDipeZ/ER5MyRAfXjBywqRZH/v/dHur/P3qy/4u+LM8lTzmrcVjXTE9tw9bVGPm/7jao///syf5v92rT34ueDaYXnF29Y3fDkEM48v9+O6D+D8rWY/3/Tsx0TQVNR7WUccaPl1T+9MDI/5fsg/q/0D9S/V/i/wduhgW9ILzTKN39YFORXvxLHPm/bDDU/4V7sv8vn1r4lShrqxa6Opfmb6EuhpH/p0RB/V+kJ/u/gZTCTIpqukYANWFgTKtoDI783ykG6v+9/pEl2jc8C9wGg34xc+4MW0cG3MmnK3OovSm+z9W3TVQsnTNwfg2PZ+ex/sW8jLbqIFcUa91R//8f + + + + iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvwAADr8BOAVTJAAAAJhJREFUSEvdk4EKgCAMRPfF9gn9WX9Wq5MtEmdKbQQ9GClud4cY/Q6WbwgQ13LnKh5mAsKEle8MeCLm1C9pb2I2QHxNtKC2RLNVeiYjTWyDIxkEZPuKykDTj6QboTZwTA8KA+/0oDRwTg9OgwhxUBh4Xo2SDaLSg5waBrJ3J//uL66mG4zxNGX9BMzezmuDR4UQKg5CxQ2IduVGkrvn0vkHAAAAAElFTkSuQmCC + + 7a79adc7-72ae-46b0-89d1-0d7c27485b7f + DIFERENCE CURWATURE LINEAR GRAPH + DIFERENCE CURWATURE LINEAR GRAPH + true + + + + + 20 + 14679402-b72a-4ad2-9f68-a6c0cd5198db + 1ad300f9-25cc-4f0d-9df5-1a184f55ee87 + 1afb9ce7-bab4-4278-8768-18616caf7412 + 225817fa-31b3-46fc-af73-ad1cf4cf3a29 + 4b3c853f-0e70-4511-bcfb-fa488944f91a + 57014ce6-0b16-4557-a459-363b68df79b0 + 5dbed678-e1f0-47b2-ab5b-7d564e67d149 + 60b6e664-6dfe-4c05-a8f3-8e5d2d331a70 + 7dcdbf99-9851-46d1-bb6a-5efdfe64857f + 8b025cb0-35f8-4d07-b162-2a8dcf56f30e + 94294c1e-d8bc-4f8e-ad38-88bd70aa7022 + a096998a-6360-464a-8fc9-30ca988b5c46 + a3b8dfd6-6830-44ea-aacc-1b070cbc6d44 + b1777aa9-7d12-4a17-b1ef-e0f649917e24 + bfaecc51-7527-45a3-aa3a-ce297d97da26 + c0ad88f5-83d4-41b4-a330-b847a1378401 + c9a38c70-c330-4159-a2bf-918d499eef91 + d4be6a2a-28d0-485a-a4a1-5a281e3dd78b + f5a21887-cfc3-4a0b-b524-44283d4f606e + f6ed359e-c452-4fd9-acd6-48313360e55b + 45329fda-4528-406d-a823-54e35ac6ff74 + 357ceb68-e651-4e13-b8c4-6a838be2149a + 3c10a1a1-09f5-411d-ae06-13d21b0f7cd7 + 88ea5216-22ee-43b9-bf4a-bf732fa4678f + 9096d595-00e9-44ef-bf8b-df7cba4ba2ea + 17704c02-f561-4245-bc67-2eaf7cd1e000 + e294df03-baaa-4b12-b92f-e97f42ff34ec + 34281050-3848-44ac-894c-a3119ffa069f + 9492d9b1-8423-4285-a424-c395dc7f8b36 + 054cb35f-8548-43e7-8129-2bbf3a113dd2 + d134b7cd-fb62-4a2b-a901-fec5a2d783e9 + 98a7b290-1680-4c8f-91d6-4080e52ada8f + 9d9970f3-5ab6-40b5-b0f2-d257ffef222d + b4c2ea06-2f42-44c4-9b4a-584b407a7f6a + ad15254d-f361-46c9-90d6-b5db1b60e3d2 + f9b9305d-1e20-4067-946a-b44d88604308 + 7979dd58-784d-428c-ab41-1f9a01cb3b5b + 80bcd5c0-5458-4110-bc35-aad5d5e50148 + e9837f44-fe89-4576-a1ba-d864d9176564 + 693656d3-ab20-45a4-a99a-8ca5a8f9ac36 + + + + + + 1733 + 4965 + 110 + 404 + + + 1829 + 5167 + + + + + + 20 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 2e3ab970-8545-46bb-836c-1c11e5610bce + d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 + 0 + + + + + Vector {y} component + 60b6e664-6dfe-4c05-a8f3-8e5d2d331a70 + Y component + Y component + true + 0 + + + + + + 1735 + 4967 + 82 + 20 + + + 1776 + 4977 + + + + + + 1 + + + + + 1 + {0} + + + + + 8 + + + + + + + + + + + Second item for multiplication + c0ad88f5-83d4-41b4-a330-b847a1378401 + B + B + true + 64c76e08-bd85-4d09-a143-3a38170cdfe1 + 1 + + + + + + 1735 + 4987 + 82 + 20 + + + 1776 + 4997 + + + + + + + + Vector {y} component + 4b3c853f-0e70-4511-bcfb-fa488944f91a + Y component + Y component + true + 0 + + + + + + 1735 + 5007 + 82 + 20 + + + 1776 + 5017 + + + + + + 1 + + + + + 1 + {0} + + + + + 7 + + + + + + + + + + + Second item for multiplication + 14679402-b72a-4ad2-9f68-a6c0cd5198db + B + B + true + 64c76e08-bd85-4d09-a143-3a38170cdfe1 + 1 + + + + + + 1735 + 5027 + 82 + 20 + + + 1776 + 5037 + + + + + + + + Vector {y} component + 1ad300f9-25cc-4f0d-9df5-1a184f55ee87 + Y component + Y component + true + 0 + + + + + + 1735 + 5047 + 82 + 20 + + + 1776 + 5057 + + + + + + 1 + + + + + 1 + {0} + + + + + 6 + + + + + + + + + + + Second item for multiplication + b1777aa9-7d12-4a17-b1ef-e0f649917e24 + B + B + true + 64c76e08-bd85-4d09-a143-3a38170cdfe1 + 1 + + + + + + 1735 + 5067 + 82 + 20 + + + 1776 + 5077 + + + + + + + + Vector {y} component + 1afb9ce7-bab4-4278-8768-18616caf7412 + Y component + Y component + true + 0 + + + + + + 1735 + 5087 + 82 + 20 + + + 1776 + 5097 + + + + + + 1 + + + + + 1 + {0} + + + + + 5 + + + + + + + + + + + Second item for multiplication + f5a21887-cfc3-4a0b-b524-44283d4f606e + B + B + true + 64c76e08-bd85-4d09-a143-3a38170cdfe1 + 1 + + + + + + 1735 + 5107 + 82 + 20 + + + 1776 + 5117 + + + + + + + + Vector {y} component + 225817fa-31b3-46fc-af73-ad1cf4cf3a29 + Y component + Y component + true + 0 + + + + + + 1735 + 5127 + 82 + 20 + + + 1776 + 5137 + + + + + + 1 + + + + + 1 + {0} + + + + + 4 + + + + + + + + + + + Second item for multiplication + a3b8dfd6-6830-44ea-aacc-1b070cbc6d44 + B + B + true + 64c76e08-bd85-4d09-a143-3a38170cdfe1 + 1 + + + + + + 1735 + 5147 + 82 + 20 + + + 1776 + 5157 + + + + + + + + Vector {y} component + 57014ce6-0b16-4557-a459-363b68df79b0 + Y component + Y component + true + 0 + + + + + + 1735 + 5167 + 82 + 20 + + + 1776 + 5177 + + + + + + 1 + + + + + 1 + {0} + + + + + 3 + + + + + + + + + + + Second item for multiplication + bfaecc51-7527-45a3-aa3a-ce297d97da26 + B + B + true + 64c76e08-bd85-4d09-a143-3a38170cdfe1 + 1 + + + + + + 1735 + 5187 + 82 + 20 + + + 1776 + 5197 + + + + + + + + Vector {y} component + d4be6a2a-28d0-485a-a4a1-5a281e3dd78b + Y component + Y component + true + 0 + + + + + + 1735 + 5207 + 82 + 20 + + + 1776 + 5217 + + + + + + 1 + + + + + 1 + {0} + + + + + 2 + + + + + + + + + + + Second item for multiplication + 5dbed678-e1f0-47b2-ab5b-7d564e67d149 + B + B + true + 64c76e08-bd85-4d09-a143-3a38170cdfe1 + 1 + + + + + + 1735 + 5227 + 82 + 20 + + + 1776 + 5237 + + + + + + + + Vector {y} component + 94294c1e-d8bc-4f8e-ad38-88bd70aa7022 + Y component + Y component + true + 0 + + + + + + 1735 + 5247 + 82 + 20 + + + 1776 + 5257 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Second item for multiplication + 7dcdbf99-9851-46d1-bb6a-5efdfe64857f + B + B + true + 64c76e08-bd85-4d09-a143-3a38170cdfe1 + 1 + + + + + + 1735 + 5267 + 82 + 20 + + + 1776 + 5277 + + + + + + + + Vector {y} component + c9a38c70-c330-4159-a2bf-918d499eef91 + Y component + Y component + true + 0 + + + + + + 1735 + 5287 + 82 + 20 + + + 1776 + 5297 + + + + + + 1 + + + + + 1 + {0} + + + + + 0 + + + + + + + + + + + Second item for multiplication + a096998a-6360-464a-8fc9-30ca988b5c46 + B + B + true + 64c76e08-bd85-4d09-a143-3a38170cdfe1 + 1 + + + + + + 1735 + 5307 + 82 + 20 + + + 1776 + 5317 + + + + + + + + Number of segments + 8b025cb0-35f8-4d07-b162-2a8dcf56f30e + Count + Count + true + 72713788-9a21-48b2-80ba-d8d582f5c87b + 1 + + + + + + 1735 + 5327 + 82 + 20 + + + 1776 + 5337 + + + + + + 1 + + + + + 1 + {0} + + + + + 10 + + + + + + + + + + + Contains a collection of generic curves + true + f6ed359e-c452-4fd9-acd6-48313360e55b + Curve + Curve + true + 0e0d5017-4f0f-4bab-986c-96ea91bffc65 + 1 + + + + + + 1735 + 5347 + 82 + 20 + + + 1776 + 5357 + + + + + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 0e0d5017-4f0f-4bab-986c-96ea91bffc65 + Relay + + false + ee4ecbe2-4fbf-4854-bfd4-5d67e8d925cb + 1 + + + + + + 1518 + 5404 + 40 + 16 + + + 1538 + 5412 + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 72713788-9a21-48b2-80ba-d8d582f5c87b + Relay + + false + 53dfe8d4-944d-46bf-8495-cdb43c7556b1 + 1 + + + + + + 1500 + 5342 + 40 + 16 + + + 1520 + 5350 + + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Panel + + + + + A panel for custom notes and text values + 778435a9-4a09-40c9-a8d3-b6ca4d0b2811 + Panel + + false + 0 + 0 + 0.0003845696719497810789 + + + + + + -143 + 5173 + 160 + 84 + + 0 + 0 + 0 + + -142.4984 + 5173.155 + + + + + + 2 + + 255;255;255;255 + + true + true + true + false + false + true + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 2bd646c3-138b-4490-8085-395d24c3f8e8 + Relay + + false + 44bc53b6-00e2-489b-a5dc-407425442819 + 1 + + + + + + -183 + 4935 + 40 + 16 + + + -163 + 4943 + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + a09d3489-b53b-4397-8222-838de26f6b45 + Relay + + false + 1bd4238d-59e3-4478-af43-8dbfe4dda340 + 1 + + + + + + -185 + 5037 + 40 + 16 + + + -165 + 5045 + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 83ed3584-92a2-46a9-a2f5-4ea9d7c017a4 + Relay + + false + 2f6a5a53-3d55-41a3-aff0-e99afa30befd + 1 + + + + + + -187 + 5087 + 40 + 16 + + + -167 + 5095 + + + + + + + + + + 758d91a0-4aec-47f8-9671-16739a8a2c5d + Format + + + + + Format some data using placeholders and formatting tags + true + 12c4a8f8-eb0e-4c23-9e31-db676262a272 + Format + Format + + + + + + -129 + 4899 + 130 + 64 + + + -37 + 4931 + + + + + + 3 + 3ede854e-c753-40eb-84cb-b48008f14fd4 + 7fa15783-70da-485c-98c0-a099e6988c3e + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 3ede854e-c753-40eb-84cb-b48008f14fd4 + + + + + Text format + 28fb2c13-7520-4ab7-b732-ed1139ded84b + Format + Format + false + 0 + + + + + + -127 + 4901 + 78 + 20 + + + -88 + 4911 + + + + + + 1 + + + + + 1 + {0} + + + + + false + {0:R} + + + + + + + + + + + Formatting culture + 72db5d47-eb7d-4255-990d-0ec64b4e2aef + Culture + Culture + false + 0 + + + + + + -127 + 4921 + 78 + 20 + + + -88 + 4931 + + + + + + 1 + + + + + 1 + {0} + + + + + 127 + + + + + + + + + + + Data to insert at {0} placeholders + 9a1df9df-53e0-43bd-843c-1ab2324510d4 + false + Data 0 + 0 + true + 2bd646c3-138b-4490-8085-395d24c3f8e8 + 1 + + + + + + -127 + 4941 + 78 + 20 + + + -88 + 4951 + + + + + + + + Formatted text + 68c4ecd4-8214-404d-ae51-7077c9a01211 + Text + Text + false + 0 + + + + + + -25 + 4901 + 24 + 60 + + + -13 + 4931 + + + + + + + + + + + + + + 758d91a0-4aec-47f8-9671-16739a8a2c5d + Format + + + + + Format some data using placeholders and formatting tags + true + 65270bbe-3414-4860-81af-770ba43c1cdb + Format + Format + + + + + + -129 + 4983 + 130 + 64 + + + -37 + 5015 + + + + + + 3 + 3ede854e-c753-40eb-84cb-b48008f14fd4 + 7fa15783-70da-485c-98c0-a099e6988c3e + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 3ede854e-c753-40eb-84cb-b48008f14fd4 + + + + + Text format + 718156d1-1bc7-48c4-8ab1-cad81a3cf9d0 + Format + Format + false + 0 + + + + + + -127 + 4985 + 78 + 20 + + + -88 + 4995 + + + + + + 1 + + + + + 1 + {0} + + + + + false + {0:R} + + + + + + + + + + + Formatting culture + c59d5187-58ba-4eb8-ba3a-cce2b9be8998 + Culture + Culture + false + 0 + + + + + + -127 + 5005 + 78 + 20 + + + -88 + 5015 + + + + + + 1 + + + + + 1 + {0} + + + + + 127 + + + + + + + + + + + Data to insert at {0} placeholders + ffd3ed7e-91bb-4d86-92d0-9c2bceabeec0 + false + Data 0 + 0 + true + a09d3489-b53b-4397-8222-838de26f6b45 + 1 + + + + + + -127 + 5025 + 78 + 20 + + + -88 + 5035 + + + + + + + + Formatted text + d2feb401-36df-4805-af94-8e108f24e9dd + Text + Text + false + 0 + + + + + + -25 + 4985 + 24 + 60 + + + -13 + 5015 + + + + + + + + + + + + + + 758d91a0-4aec-47f8-9671-16739a8a2c5d + Format + + + + + Format some data using placeholders and formatting tags + true + 7cafc645-fb57-44e8-bd89-b177fc3b564f + Format + Format + + + + + + -128 + 5066 + 130 + 64 + + + -36 + 5098 + + + + + + 3 + 3ede854e-c753-40eb-84cb-b48008f14fd4 + 7fa15783-70da-485c-98c0-a099e6988c3e + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 3ede854e-c753-40eb-84cb-b48008f14fd4 + + + + + Text format + b2d99be3-9d7e-4eb9-af2f-d4ea50055fa9 + Format + Format + false + 0 + + + + + + -126 + 5068 + 78 + 20 + + + -87 + 5078 + + + + + + 1 + + + + + 1 + {0} + + + + + false + {0:R} + + + + + + + + + + + Formatting culture + 33a32ff1-3d1c-45ec-a3b6-0c24d1d51fbc + Culture + Culture + false + 0 + + + + + + -126 + 5088 + 78 + 20 + + + -87 + 5098 + + + + + + 1 + + + + + 1 + {0} + + + + + 127 + + + + + + + + + + + Data to insert at {0} placeholders + ed7c0f88-8e16-4415-9bae-ced65f520a3c + false + Data 0 + 0 + true + 83ed3584-92a2-46a9-a2f5-4ea9d7c017a4 + 1 + + + + + + -126 + 5108 + 78 + 20 + + + -87 + 5118 + + + + + + + + Formatted text + f2e126e1-a59b-4fae-8f48-32341df4b306 + Text + Text + false + 0 + + + + + + -24 + 5068 + 24 + 60 + + + -12 + 5098 + + + + + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + afcc5191-a0bd-476c-9768-591ad0f7378c + Relay + + false + c2429a84-5049-49fc-9a38-42778a26f71d + 1 + + + + + + 259 + 5107 + 40 + 16 + + + 279 + 5115 + + + + + + + + + + 290f418a-65ee-406a-a9d0-35699815b512 + Scale NU + + + + + Scale an object with non-uniform factors. + true + a0c1250a-0597-4569-9f33-9ab63d5b8065 + Scale NU + Scale NU + + + + + + 459 + 4864 + 226 + 121 + + + 621 + 4925 + + + + + + Base geometry + 654843b6-c012-4edc-a2a7-f285f6f8d025 + Geometry + Geometry + true + ddf12dcc-4532-4f5f-9017-ca2181ae4120 + 1 + + + + + + 461 + 4866 + 148 + 20 + + + 543 + 4876 + + + + + + + + Base plane + 9fc4cd47-7135-4ba4-9fca-12bb61107c40 + Plane + Plane + false + 0 + + + + + + 461 + 4886 + 148 + 37 + + + 543 + 4904.5 + + + + + + 1 + + + + + 1 + {0} + + + + + + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 1 + 0 + + + + + + + + + + + + Scaling factor in {x} direction + 01caad73-e8c3-480c-94d8-6aaf2d86dde3 + 1/X + Scale X + Scale X + false + 44bc53b6-00e2-489b-a5dc-407425442819 + 1 + + + + + + 461 + 4923 + 148 + 20 + + + 543 + 4933 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Scaling factor in {y} direction + fd670a22-a3e0-4288-8e39-88c566557d2c + 1/X + Scale Y + Scale Y + false + 2f6a5a53-3d55-41a3-aff0-e99afa30befd + 1 + + + + + + 461 + 4943 + 148 + 20 + + + 543 + 4953 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Scaling factor in {z} direction + de6449f5-cc7d-4dab-97b7-f94c56833cef + Scale Z + Scale Z + false + 0 + + + + + + 461 + 4963 + 148 + 20 + + + 543 + 4973 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Scaled geometry + 065f686a-4028-4e05-b353-3c9ef8ca5da0 + Geometry + Geometry + false + 0 + + + + + + 633 + 4866 + 50 + 58 + + + 658 + 4895.25 + + + + + + + + Transformation data + e6c37588-8d61-476f-98b4-879bcbd8ff43 + Transform + Transform + false + 0 + + + + + + 633 + 4924 + 50 + 59 + + + 658 + 4953.75 + + + + + + + + + + + + 310f9597-267e-4471-a7d7-048725557528 + 08bdcae0-d034-48dd-a145-24a9fcf3d3ff + GraphMapper+ + + + + + External Graph mapper +You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode. + true + 9458f1e4-5dcf-4329-ae9a-248ba54fda4d + GraphMapper+ + GraphMapper+ + + + + + true + + + + + + 958 + 4652 + 114 + 104 + + + 1019 + 4704 + + + + + + External curve as a graph + b2c57c52-3939-4f33-b9ab-436fd1ebbfe1 + Curve + Curve + false + 22dbbbf7-d064-42aa-b6ff-7919cb335e9d + 1 + + + + + + 960 + 4654 + 47 + 20 + + + 983.5 + 4664 + + + + + + + + Optional Rectangle boundary. If omitted the curve's would be landed + 68babcf3-de1b-4aad-a440-d0902f9dc7bb + Boundary + Boundary + true + 88860703-c3a2-44da-9f68-b7f61777e56c + 1 + + + + + + 960 + 4674 + 47 + 20 + + + 983.5 + 4684 + + + + + + + + 1 + List of input numbers + 271151c2-8cab-443c-b33d-53f4e3b46f96 + Numbers + Numbers + false + d082c31a-7d28-4f27-855d-7007967854d7 + 1 + + + + + + 960 + 4694 + 47 + 20 + + + 983.5 + 4704 + + + + + + 1 + + + + + 9 + {0} + + + + + 0.1 + + + + + 0.2 + + + + + 0.3 + + + + + 0.4 + + + + + 0.5 + + + + + 0.6 + + + + + 0.7 + + + + + 0.8 + + + + + 0.9 + + + + + + + + + + + (Optional) Input Domain +if omitted, it would be 0-1 in "Normalize" mode by default + or be the interval of the input list in case of selecting "AutoDomain" mode + d9999967-c06b-46f5-9548-ee85878e5e3f + Input + Input + true + 6662ae79-7937-416d-a1d8-3b9c21175ff3 + 1 + + + + + + 960 + 4714 + 47 + 20 + + + 983.5 + 4724 + + + + + + + + (Optional) Output Domain + if omitted, it would be 0-1 in "Normalize" mode by default + or be the interval of the input list in case of selecting "AutoDomain" mode + e29e445c-b82b-418d-86e8-57ff247ac464 + Output + Output + true + 6662ae79-7937-416d-a1d8-3b9c21175ff3 + 1 + + + + + + 960 + 4734 + 47 + 20 + + + 983.5 + 4744 + + + + + + + + 1 + Output Numbers + 89bcc9ed-3adc-47f4-a7f5-021fdf009bd8 + Number + Number + false + 0 + + + + + + 1031 + 4654 + 39 + 100 + + + 1050.5 + 4704 + + + + + + + + + + + + 11bbd48b-bb0a-4f1b-8167-fa297590390d + End Points + + + + + Extract the end points of a curve. + true + cdd22be9-92c3-4cbe-8b1a-39742554035d + End Points + End Points + + + + + + 402 + 4551 + 84 + 44 + + + 446 + 4573 + + + + + + Curve to evaluate + a4b435ea-afbf-41ff-852e-938e38fc482f + Curve + Curve + false + 22dbbbf7-d064-42aa-b6ff-7919cb335e9d + 1 + + + + + + 404 + 4553 + 30 + 40 + + + 419 + 4573 + + + + + + + + Curve start point + 99e1eab1-8fcb-4ec6-a7d6-8461b6db7ba3 + Start + Start + false + 0 + + + + + + 458 + 4553 + 26 + 20 + + + 471 + 4563 + + + + + + + + Curve end point + 9cf4e70c-1977-4c9c-8d41-3c777e6c6336 + End + End + false + 0 + + + + + + 458 + 4573 + 26 + 20 + + + 471 + 4583 + + + + + + + + + + + + 575660b1-8c79-4b8d-9222-7ab4a6ddb359 + Rectangle 2Pt + + + + + Create a rectangle from a base plane and two points + true + d4b63f37-7307-406f-b3f5-3121871ed53b + Rectangle 2Pt + Rectangle 2Pt + + + + + + 537 + 4560 + 198 + 101 + + + 673 + 4611 + + + + + + Rectangle base plane + 5a79d744-c4d6-4c77-8e96-8f4b499eb7a2 + Plane + Plane + false + 0 + + + + + + 539 + 4562 + 122 + 37 + + + 600 + 4580.5 + + + + + + 1 + + + + + 1 + {0} + + + + + + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 1 + 0 + + + + + + + + + + + + First corner point. + 8fd6a73b-4768-42e9-a050-4db35290ee9a + Point A + Point A + false + 99e1eab1-8fcb-4ec6-a7d6-8461b6db7ba3 + 1 + + + + + + 539 + 4599 + 122 + 20 + + + 600 + 4609 + + + + + + 1 + + + + + 1 + {0} + + + + + + + 0 + 0 + 0 + + + + + + + + + + + + Second corner point. + b0023087-1c11-47ca-8da1-b9733170a79e + Point B + Point B + false + 9cf4e70c-1977-4c9c-8d41-3c777e6c6336 + 1 + + + + + + 539 + 4619 + 122 + 20 + + + 600 + 4629 + + + + + + 1 + + + + + 1 + {0} + + + + + + + 10 + 5 + 0 + + + + + + + + + + + + Rectangle corner fillet radius + 01c6a537-4c1a-425a-9fce-5c2d4c05aeee + Radius + Radius + false + 0 + + + + + + 539 + 4639 + 122 + 20 + + + 600 + 4649 + + + + + + 1 + + + + + 1 + {0} + + + + + 0 + + + + + + + + + + + Rectangle defined by P, A and B + 88860703-c3a2-44da-9f68-b7f61777e56c + Rectangle + Rectangle + false + 0 + + + + + + 685 + 4562 + 48 + 48 + + + 709 + 4586.25 + + + + + + + + Length of rectangle curve + 6f9007af-2f2d-4473-9abb-f5d7287847b0 + Length + Length + false + 0 + + + + + + 685 + 4610 + 48 + 49 + + + 709 + 4634.75 + + + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 1709c4d6-73a6-453f-8c4e-ef2b381b40e1 + Relay + + false + 277e686f-fcb5-4411-b782-b0d4e125e2c1 + 1 + + + + + + 949 + 5180 + 40 + 16 + + + 969 + 5188 + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 7eca8f17-b48d-4b73-ada0-90a22d3fe212 + Relay + + false + 8f5ab813-3691-4499-bab5-66b32b35b891 + 1 + + + + + + 1051 + 5172 + 40 + 16 + + + 1071 + 5180 + + + + + + + + + + f44b92b0-3b5b-493a-86f4-fd7408c3daf3 + Bounds + + + + + Create a numeric domain which encompasses a list of numbers. + true + 0e4926b2-68c5-4fb5-9406-5ed5323d25c5 + Bounds + Bounds + + + + + + 788 + 4797 + 110 + 28 + + + 846 + 4811 + + + + + + 1 + Numbers to include in Bounds + f8364432-34aa-4b91-b0e1-9fb5df31bd3e + Numbers + Numbers + false + d082c31a-7d28-4f27-855d-7007967854d7 + 1 + + + + + + 790 + 4799 + 44 + 24 + + + 812 + 4811 + + + + + + + + Numeric Domain between the lowest and highest numbers in {N} + 6662ae79-7937-416d-a1d8-3b9c21175ff3 + Domain + Domain + false + 0 + + + + + + 858 + 4799 + 38 + 24 + + + 877 + 4811 + + + + + + + + + + + + ce46b74e-00c9-43c4-805a-193b69ea4a11 + Multiplication + + + + + Mathematical multiplication + true + 481d2e17-3a5e-4c66-b2f6-96c2454e0f20 + Multiplication + Multiplication + + + + + + 606 + 4698 + 65 + 44 + + + 626 + 4720 + + + + + + 2 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + First item for multiplication + e3fe9b62-e6d7-4e08-a179-1752afe14e7c + A + + true + 1709c4d6-73a6-453f-8c4e-ef2b381b40e1 + 1 + + + + + + 608 + 4700 + 6 + 20 + + + 611 + 4710 + + + + + + + + Second item for multiplication + 6621c64a-0d85-41a5-9157-bf80f968c97b + B + + true + ac864993-ecc7-4645-ae0f-6a08f6579f35 + 1 + + + + + + 608 + 4720 + 6 + 20 + + + 611 + 4730 + + + + + + 1 + + + + + 1 + {0} + + + + + Grasshopper.Kernel.Types.GH_Integer + 65536 + + + + + + + + + + + Result of multiplication + 9c3c1611-96aa-4d1e-a87a-e922ccd0280c + Result + Result + false + 0 + + + + + + 638 + 4700 + 31 + 40 + + + 653.5 + 4720 + + + + + + + + + + + + + + 9c85271f-89fa-4e9f-9f4a-d75802120ccc + Division + + + + + Mathematical division + true + b9b2cd39-0a19-48b3-96da-98d6516509a6 + Division + Division + + + + + + 1127 + 4762 + 40 + 44 + + + 1147 + 4784 + + + + + + Item to divide (dividend) + b6fa3e91-d883-437e-9e09-353a29b328bb + A + + false + 89bcc9ed-3adc-47f4-a7f5-021fdf009bd8 + 1 + + + + + + 1129 + 4764 + 6 + 20 + + + 1132 + 4774 + + + + + + + + Item to divide with (divisor) + 6c5f1a49-f196-4546-b9e5-a31f4d8ee704 + B + + false + ac864993-ecc7-4645-ae0f-6a08f6579f35 + 1 + + + + + + 1129 + 4784 + 6 + 20 + + + 1132 + 4794 + + + + + + 1 + + + + + 1 + {0} + + + + + Grasshopper.Kernel.Types.GH_Integer + 65536 + + + + + + + + + + + The result of the Division + 8f5ab813-3691-4499-bab5-66b32b35b891 + Result + + false + 0 + + + + + + 1159 + 4764 + 6 + 40 + + + 1162 + 4784 + + + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + d082c31a-7d28-4f27-855d-7007967854d7 + Relay + + false + 9c3c1611-96aa-4d1e-a87a-e922ccd0280c + 1 + + + + + + 708 + 4712 + 40 + 16 + + + 728 + 4720 + + + + + + + + + + cae9fe53-6d63-44ed-9d6d-13180fbf6f89 + 1c9de8a1-315f-4c56-af06-8f69fee80a7a + Curve Graph Mapper + + + + + Remap values with a custom graph using input curves. + true + 1b15e5d7-b70d-40c0-bfb7-a3c51df6fc06 + true + Curve Graph Mapper + Curve Graph Mapper + + + + + + 918 + 4306 + 181 + 224 + + + 1013 + 4418 + + + + + + 1 + One or multiple graph curves to graph map values with + 47d711a0-7060-4d1b-bad2-c959a00717d5 + true + Curves + Curves + false + 22dbbbf7-d064-42aa-b6ff-7919cb335e9d + 1 + + + + + + 920 + 4308 + 81 + 27 + + + 960.5 + 4321.75 + + + + + + + + Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary + 6263c084-69a7-485e-b3a1-322d0d30d4bd + true + Rectangle + Rectangle + false + 88860703-c3a2-44da-9f68-b7f61777e56c + 1 + + + + + + 920 + 4335 + 81 + 28 + + + 960.5 + 4349.25 + + + + + + + + 1 + Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis + b246c3b1-0383-40df-a21c-b9274e81e7c9 + true + Values + Values + false + d082c31a-7d28-4f27-855d-7007967854d7 + 1 + + + + + + 920 + 4363 + 81 + 27 + + + 960.5 + 4376.75 + + + + + + + + Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used) + 32dc76c2-1d1d-490b-9dee-886be569c4e3 + true + X Axis + X Axis + true + 6662ae79-7937-416d-a1d8-3b9c21175ff3 + 1 + + + + + + 920 + 4390 + 81 + 28 + + + 960.5 + 4404.25 + + + + + + + + Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used) + fb3d9ec5-c5dd-4452-b9ed-63bf580c10b8 + true + Y Axis + Y Axis + true + 6662ae79-7937-416d-a1d8-3b9c21175ff3 + 1 + + + + + + 920 + 4418 + 81 + 27 + + + 960.5 + 4431.75 + + + + + + + + Flip the graphs X Axis from the bottom of the graph to the top of the graph + 1cf007db-993a-4878-a634-f7a46e41c0e8 + true + Flip + Flip + false + 0 + + + + + + 920 + 4445 + 81 + 28 + + + 960.5 + 4459.25 + + + + + + 1 + + + + + 1 + {0} + + + + + false + + + + + + + + + + + Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle + 8eddb96d-8ebc-47f7-83f3-f3158c04cd9a + true + Snap + Snap + false + 0 + + + + + + 920 + 4473 + 81 + 27 + + + 960.5 + 4486.75 + + + + + + 1 + + + + + 1 + {0} + + + + + false + + + + + + + + + + + Size of the graph labels + 377f3048-7eac-459f-ab33-2cf99fd856ef + true + Text Size + Text Size + false + 0 + + + + + + 920 + 4500 + 81 + 28 + + + 960.5 + 4514.25 + + + + + + 1 + + + + + 1 + {0} + + + + + 0.0625 + + + + + + + + + + + 1 + Resulting graph mapped values, mapped on the Y Axis + 4d507023-5f74-4ea9-90d5-c49f4efde4c4 + true + Mapped + Mapped + false + 0 + + + + + + 1025 + 4308 + 72 + 20 + + + 1061 + 4318 + + + + + + + + 1 + The graph curves inside the boundary of the graph + 69566f84-31c7-4b60-a265-958649cc95b8 + true + Graph Curves + Graph Curves + false + 0 + + + + + + 1025 + 4328 + 72 + 20 + + + 1061 + 4338 + + + + + + + + 1 + The points on the graph curves where the X Axis input values intersected + true + 7e15eda7-e3db-46d6-b32c-07f93d04e5e0 + true + Graph Points + Graph Points + false + 0 + + + + + + 1025 + 4348 + 72 + 20 + + + 1061 + 4358 + + + + + + + + 1 + The lines from the X Axis input values to the graph curves + true + 2d35311d-b2fc-4e4a-89b9-f8415c329480 + true + Value Lines + Value Lines + false + 0 + + + + + + 1025 + 4368 + 72 + 20 + + + 1061 + 4378 + + + + + + + + 1 + The points plotted on the X Axis which represent the input values + true + 3dcf8fc7-f872-4db6-964c-02491ea708e8 + true + Value Points + Value Points + false + 0 + + + + + + 1025 + 4388 + 72 + 20 + + + 1061 + 4398 + + + + + + + + 1 + The lines from the graph curves to the Y Axis graph mapped values + true + a619b0f9-cb90-4576-a02e-d14af52404e7 + true + Mapped Lines + Mapped Lines + false + 0 + + + + + + 1025 + 4408 + 72 + 20 + + + 1061 + 4418 + + + + + + + + 1 + The points mapped on the Y Axis which represent the graph mapped values + true + 1bed34b2-cb00-432f-81b2-6a7dbf48a2e2 + true + Mapped Points + Mapped Points + false + 0 + + + + + + 1025 + 4428 + 72 + 20 + + + 1061 + 4438 + + + + + + + + The graph boundary background as a surface + c2408f6a-8cd8-4da3-bab3-ad2d2fa5fd12 + true + Boundary + Boundary + false + 0 + + + + + + 1025 + 4448 + 72 + 20 + + + 1061 + 4458 + + + + + + + + 1 + The graph labels as curve outlines + a4312d00-9ac4-4615-b68d-4a4a0e2fdfc1 + true + Labels + Labels + false + 0 + + + + + + 1025 + 4468 + 72 + 20 + + + 1061 + 4478 + + + + + + + + 1 + True for input values outside of the X Axis domain bounds +False for input values inside of the X Axis domain bounds + 22d0b470-534d-45c7-88b1-74c65784c17e + true + Out Of Bounds + Out Of Bounds + false + 0 + + + + + + 1025 + 4488 + 72 + 20 + + + 1061 + 4498 + + + + + + + + 1 + True for input values on the X Axis which intersect a graph curve +False for input values on the X Axis which do not intersect a graph curve + 016fc1ef-f251-44ce-b2ef-78713b34bdb8 + true + Intersected + Intersected + false + 0 + + + + + + 1025 + 4508 + 72 + 20 + + + 1061 + 4518 + + + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + 22dbbbf7-d064-42aa-b6ff-7919cb335e9d + Relay + + false + bea7057d-410e-465d-a4c2-343e236993d1 + 1 + + + + + + 446 + 4420 + 40 + 16 + + + 466 + 4428 + + + + + + + + + + 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 + Scale + + + + + Scale an object uniformly in all directions. + true + d966a5ed-ebea-462a-a91a-ca140d1f1cc4 + Scale + Scale + + + + + + 192 + 4373 + 201 + 64 + + + 329 + 4405 + + + + + + Base geometry + 5de50612-e493-4e3d-b481-d84f1f959b89 + Geometry + Geometry + true + f95021e8-3298-4a32-aa51-3b43667757bd + 1 + + + + + + 194 + 4375 + 123 + 20 + + + 255.5 + 4385 + + + + + + + + Center of scaling + e329f2e2-8288-48fb-a898-3564a1c888b0 + Center + Center + false + 0 + + + + + + 194 + 4395 + 123 + 20 + + + 255.5 + 4405 + + + + + + 1 + + + + + 1 + {0} + + + + + + + 0 + 0 + 0 + + + + + + + + + + + + Scaling factor + 632b3e96-d6eb-4512-8ce4-83fe43ac13a4 + Factor + Factor + false + ac864993-ecc7-4645-ae0f-6a08f6579f35 + 1 + + + + + + 194 + 4415 + 123 + 20 + + + 255.5 + 4425 + + + + + + 1 + + + + + 1 + {0} + + + + + 65536 + + + + + + + + + + + Scaled geometry + bea7057d-410e-465d-a4c2-343e236993d1 + Geometry + Geometry + false + 0 + + + + + + 341 + 4375 + 50 + 30 + + + 366 + 4390 + + + + + + + + Transformation data + 6849d363-c208-438c-a436-54d8075fb9a3 + Transform + Transform + false + 0 + + + + + + 341 + 4405 + 50 + 30 + + + 366 + 4420 + + + + + + + + + + + + b6236720-8d88-4289-93c3-ac4c99f9b97b + Relay + + + + + 2 + A wire relay object + f95021e8-3298-4a32-aa51-3b43667757bd + Relay + + false + 650d961c-ef6f-4573-ade0-97f698f6a536 + 1 + + + + + + 103 + 4387 + 40 + 16 + + + 123 + 4395 + + + + + + + + + + 9c85271f-89fa-4e9f-9f4a-d75802120ccc + Division + + + + + Mathematical division + true + 35f29d0e-4815-42cf-ab22-85354efcb3ea + Division + Division + + + + + + 1496 + 5266 + 85 + 44 + + + 1536 + 5288 + + + + + + Item to divide (dividend) + 282f9873-f0b4-4058-ae02-3fa37ecbeb08 + A + A + false + 72713788-9a21-48b2-80ba-d8d582f5c87b + 1 + + + + + + 1498 + 5268 + 26 + 20 + + + 1511 + 5278 + + + + + + + + Item to divide with (divisor) + d96e021c-87ee-46bb-84de-cb2a4be07b14 + B + B + false + 0 + + + + + + 1498 + 5288 + 26 + 20 + + + 1511 + 5298 + + + + + + 1 + + + + + 1 + {0} + + + + + Grasshopper.Kernel.Types.GH_String + false + 1 + + + + + + + + + + + The result of the Division + 7e4e6adc-a4d1-47ab-a4c6-c48fb8239b6b + Result + Result + false + 0 + + + + + + 1548 + 5268 + 31 + 40 + + + 1563.5 + 5288 + + + + + + + + + + + + + + + + + iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACI0SURBVHhe7d3Lr13FlQbw/EuZRZ0/IMogPepJSxk2UkaRutM96WSAFCkdKeqgKFKEOnRswNjG+B3wAz+Aa2NfbOO3jQ2YVzAYjAPYQGxsoH9nf3Xq7PM+90VDdL9Bpap27VVrrW+tVbXv5TrfWcXfA75axbcWPQrfXghef/310nv77TfeeMNQ++677169erXMLhyERM4777zzlyGURavox1IpRNibb7752muv8ftSyIOISjRcuXLlb3/725dfftmJsa++unv37vXr1996662ydBUt8M+SKAT81f7SgcJXX331kUce+eKLLz766KNEBt1u3ryZ1CzrVtHFkijk3GRMmVoOSDUyz5w5Q5+DBw/+4he/ePzxx2XhuXPnjh49+t5775V1q+hikRTKBvnB3a+88or+EktoG0SRfOnSJVX0/Pnzv/nNb375y1/euXPnxIkT+/btU07LulV0MYlCdxMuu3bt2jBDaJMrKp7Taxn5g2T22rVrU0iluF3QeePGDdSWRatooY9CXuOs2p46dYorOfSzzz5TykwGHn3wwQfyz6Pl5S8g86WXXrp9+zaVApsqoasUjgT/9Ch0X3j//felnfavf/3rW2++eezZufUPPfzi8ROGJvlRarorHj9+fM+ePStX1vJx0oZwKc9W0Y8+Ch05nzfQuXfv3vMnT6597fSa1w+dOHdS5tVHcuLChQvz8/MrfblQrkFH/q1Qxv8doI9C6VWheF597725v7wy9/aFq9feMSwPmkeSUqLEvyuNpKCr0yqFI9FHITe1wWHXr757/WrnOlOmuvh6yAvs5dOzDFYxhD4Ky9w3CaLHpXe1ik7At4BCKSjvy3gVQ/imU7haRafim07h6l10KpaTQp+V6fB4RWYWB6+jcLWKTsZiKAw3bZjE38svv3zr1i0fjj48bt++rQN37971ibkU+AylG3zyySc1SlZRwTM9CkPGAJxGQfM18Zb7IUiOQJULPFqzZs3Nmzc//fRTb/lq5G4CP/7448b/iwSBvkE//PDDjz76yBZ79ux5//33o9gqAl7qUdimBNwjoAxaCHkQOhtmO7Xu3LlzEqXx/CJRE65CEouJzz77TCuMtm/fvvr7pgHwUo/CkAFJOyirWmgKZw9ltimkFy5c4GhyZF5qqRYHHSpmwJUrV+bm5i5evDjuFdLsKIba+66CZ3oUlrlFQXKsXbv2xo0b5Fy7dg2jQkE5nb2QvvDCC6+88oq8f+mllzZt2vTBBx+UB10oqvhL3pddV7GMFCY/koWLg0Pu0qVLr7766pYtWxRM+OKLL/JrE7SRj90NGzZcv37dRmXXVSwjhdJufn4ehcDpMsYFhLvbv/abClmrnD722GNbt27dvXu3ozEXWmehltjjx48jFaNO4tVyGvDb8lDIs1zv6uhDwh0Sfyqh6sr7DTszwUF49uxZ9Ps+kYJltguSCXRCJ+NXy2nAM8tDIbfCyJxDJ2rxitR8IYC+g9MjyKRhjs/yWnN/+fzzzyUiYNQyHOfTEJHqarZeKKJqGUzDyDvdNwoc1aNwdsOGwfVPP/205Ag9RPG1Qqow7tix49ChQ4cPHz569Ohzzz2XVkk8cuTIM88849GLL76oPX/+vFT2ZVIPVJUzcsgnlqh169YRbmiec5VTLbRv0WBYv3bayCQ5SeLMVAwMA3tJ/ejwzQRH9Sik8aJZRCGqWCt1fB3eunVLeimJ/PL8888rj+6ZlxvoQG4uyPOIT0+fPu066hUUjqu9ntYspKddsKWfWNG3u3mwUhxY0AaVxAE987Gblbk8B4Zp00mfMvv27VPY6yNoLP6mgGd6FHIljy9aRUbyUXOh6SDf41gkFj28gD+dQN8MFkHHjNaXJf/6DvEWjw9AIbVF3SvxYb1cNBR/Nf/whM4BhC3W2cVeWaytHe0wcP/kk0+KMFYA7sk3bz01GkI7iFb/L+ijkFo8EuUWB7axsA0zHDo7uAOp5eV+EFW2aXynbbL6soRGCSQs0jE5gLpS3ivaWRbk6TDM2xT93JLKYdKLAo6SGE1C023ZGR0XUkF7TR+F9jZFs6z4+kEB7pjxg4EBHW81v81IZ0YIlKTjLLCRllsqzZW/NjrFpJkcmab6QdSegCygoXuA0wGc/QNw74tMa2AwC4FHaBMltLPD9ktHLhplMAMYY/2MrC8FmKtZGLZAFgZhDnTMZ0Gdz3/857quLKc/gHz+WmAjBV+dsJeh76ic4loHU1pid+3adeDAAZKx1kchShUNLSlahCcQZkSiG/GxeRHwLv3KYGYgb6HELxS2ECXtRKz82Rp0OpReucKt8UD0cevevn17HO2i51H6bVjJ4bawYPPmzSS42z/77LN4xRki+JZj81XmonDq1CkX+DNnzjjUI6FHIT3sQaGTJ0/m0u96kkWzwHpfDoKgsXrBYAPtF5dPUbsMVga2qMdnpbChrwN9yoP5pKA+Q/Sdu8VBYyDVkCfVpJ3PLe9KBoSVx0NAre3o4OKdmR6FMtoXNJAlYUE/i2bB/Pz8Ev/4iGaLS6aF0r/QKLFeooQhFKaWVgrt65Fh1b9yydEWxD9KpSt6+uOQc04y+LgqU/2wYJjdHoUSVtomc0HaCgcwg5ipYKTFKSOLgBe5oAwWBc6avDtf86xd2pVwKoi1nk8VJyVOfyARidWiDX8mQSesI2PLli1xtFSjQ/oVX375JadhBWSOb2hrnHMvvPBCWdEPeUVOGXTRo9DGbXAHtYSSVr/MjkfjpUWCwXZZXBWtoCRXTpDAFueHzwN8XLx4sfkZwyDMDwBhHIqJbdu2/f73v0ebLBxIxChvGEdhMX7LfBw9Dk4ruSUH5Ojjjz9OBzljcvgX4IH57ILOzPQoLIa2wB1RqIxXEhyx9DjgL14bySLh3CTY+Ut+5LKmBS7TepoyNRIOHunCv8hLLR1IRIivDOM3j0RMvXTkFwDpj0QyklbuMtJRtt28edMMEGienjR0kbFg//79lMmLkygEL3MKbdJnPFN1BEJiYSoiZzKIyhZLBw+SVgYtsMIFj5kckeHp06fdNbTubtzB1+4UjU/GwnlmZSiEmogJnWytn1pqI+m7devWvKtO8l76beAp3w/uKZIeYW4V+Ttnk/k5lzUYBfcVGynp+ZFkJEyhEBDWBFknyujNbDHLHSTaezJsX6SMR5WvU6aWAEomD8q4C5a7kbug8RSt4jLASiAJSm8MvMuhaPN1wQ88WBOR8jbN1lpEmgf7jqStDaoCCVy6bt06Rd4r4/I1mngqHSmfyekUgu8SSj/88MNPPPHEgw8+aBshJiIiYgKYXURMBC+wvAyWhrhjWJoZZosqrQXi/UQDieIiLfDzRSQuuXIk8KecCoVaSNGZRKwsIk+rTw19uVIvJiTLsPRHAjeCg6ufeuopypTZfnA7lEEXUyiMKtQSU0zNH4fK67w8FdQqgsaDfC4og2UChUuvi0qhFNQR6fkxm0cUAJ38h1sWjIRHKLQSbfVSqq+1HWCXIRakYwsVb9euXXGFiK9fcm3Ua4uOGPLW2bNnCc/kLBhLYSWPNnQy1Ke6DeILLpCOzobJ6VjEjQGxYjZhW6aWDKIoPCDTTCJPPjkI1CJPmQD6boAW4Ikfx8G7FvAJyaEwKdipmF0WBUpYBJP2tVfjhtEg1r50sF6WOzhJJkS+qpNqGN/Wmq+vda/xrQL4jpARFLKNRAqFPDP2oPef/vSnDRs2/O53v8Oc91Whmzc/Pn/+wqc3P/nqy68e/J8/ftK6DthYyovrXH8ieSTsMlz3lgg7xqFl3KKQSrzAR/aNjYaURAknRvlxQGFkKqTQplCHi7Rcpw0NXOTqWN/1KP02sJJri9ZVk6t379598OBBQ6raiy2UT4KKNrVQITx27Fj9uU8fhcPktb1Pade2Q4cOKSnWU1Gtv3Dh/NFzn/34x/f/+0/ue+9657JnM6GH5oceeshX6pNPPkkgzSJkADG4DJYVMaTqz6fsF8icpYNOZY2PoHZ4uXMHG4P4lBwy6SxdUkX10wKnaW1nay0vY6Xxc+daQH76IyEjKcarxNqizA6B5u6raiGXZqaPwnHkpe9Nxd3Jb6jyOOdSXl6+dW3jf/3LV+++Z0xLlYrBRLn44FtM4V6EJn4HxJqH9uRygUyGQITbXWChwYzizwVqkVtDbjT5urBs8nWGi0Ohth6HPMZYneq9sKjNpo2fO4i72jBDmoMpuu3du5dY6hFSVvSDGsNx0KOQQpQgETo+6LpbOJOIBoV048aNDzzwgIuTIplcLLh7596QaByLeklJCAmxEGEE1i1MGqa/EqjyeVPYNWdK76OChhWGtJ0AC2QAOZEsV2ottQuERWCsvronOP785z/HGzYdSYzMpphiLkR27NhhjRvQc889Vx73w0oogy56FFLO9lwcFTOMfvF7QGnG5GXi+ogcQv2oaAKjU6WJikzyDXWyYIUQK2zNNflyl0nZ99SpU3LRoQIOGBk59dOesaGQQIa0aymB2nTAdlnw4osv5l0Jxxvpj4QFEiNemnwJSqmrOd2j0Mv0o1DuWvSIl6Oxfv1YES9CLD+nUH8MMz8M0d14sgeitCwkPyFcJ1cCJHOl7egv3jmRSlyQsw2kV/roabJxLLzLcaEw4CioFNooiWgYCg2dbdUVI8PdSRx9JIarhhNObCnsJq2XJGJOS3krBRm3S9Onn37aLpHQo7DqQcvooRPnas2sX7+eHlbajzghLP1tNiF4RUqsHQCBkB3TxjUms8CQF8ah/TRBNhmR78hBGAMVQGeBU1CKyD8d0anoiUte65x7oyBSuTJ6QvQfoBAM0yKP8PqbCpRQNf02LEMbQ2zx6KOPEuU66g7B1XakMwodRhxud2s43Ckucy5evBgJPQprwgV0rc7NjAUOgxrC+COIO8g1ORIexeBhkEY+sfoM0AfGG3Il1UVGHKe1r47Pbh3xqDUJ1qg5vDCBSFvEFjKpzRe5oHNcdk/LHJJRaKORSE60KdRnfqUwLGrNeKQFC+LoqZDlWCGKOZQss0NAbdxVM6dHYTRrg5ZZTS0+itIVhvGFNUpimR1CkdUP73YitnsXTWtxJl0BbMdfnO544FwmufkLRHoqODbNPDNsvW/fPsNG8GiQz5tEqApaL5JsPsp76nX7IsmCCUDkgEXESkQuipeif2VR0aNe4+eO2iIv/TbqxSL3Bvz5DnHzz+QAxCvNy6CLSRRCnBsiKVdn2jCTBWU8G6wfTh2iJIeLGUWTEMzG0507tx/83+0//Kd/2757TgZmPknDR+7iWCkixoCG8WDqEk/xsknHuY4ZrbLR+GQsbNemMIa3a2llMdb5AGv/ytf69CuERbyqVVRc+L2YT52yoh+pf2XQxRQKg9BGPxuwIcM2zFDCgjKeBuYRVQb9IIp/GRz9Ki5cevMf//k//+GHPz11uvwGLkAw1svL40Ftae0s5CksorPJ7M5fdAgXLYgMDuKmkfBI0AxkIUPEUKWww15ze9Ka1FpTFB0DyScRI995TIjaQBnzZUU/LLZXzq/MzERhwLk0tgcME2lontID88OwoGPomJX427BhA+dGP363TJboX375yoN/3GhG3TOTWur82L59uwpT3h8DClvDU+TLm3za+5w4cOBAfsXqU0woCJ3OGTsKCObZAQpjNRZDYTwQCq20i+tCDLE1hdMfCRmZs2P//v1zc3NKguhEJ9iFpV6nAIGqDp1HXGeKUtNAHBWjMUYHaDDv6cDkMCzzbhm04EXzzjYui34JUuZlWJFbfs52VziMFhFjwKEcRJRXeEfI60jKyDGfj3ftBMjdAQrBzACFYdEjWbVt27YobMfhrz12WRZ6RE/+tMhB6BD1lD7eAgpHAapykYs0ImV5hCyYQghDIZK6dSYgetjONpDkxTLoRx6JO1YxGFLltHUYmASW14vlZNA2VziL42ufX77DHFfHjx/Xl5o5LCdg4CysoPPwcWhHSP2YAFopOUzDk3Lim4ETGFge9yMh6BUlvUwtjsIgjqMx1emaoZaR7BmZZGBBLMz6NsyQFlGETADhJIh9MBwWNQximZ2ESxYGWAEdCREHWTMOaoPtisQu7E54TcRYB5Q8c+aML7w42qYWpy+5HMjO4c9bPxWhQGLUhVwhLbP9ENmQ/qXLLzs/dXoUOiQS1PaGxldTEAMsDpFmDEHHsDFwBDzyik6zT2HaWxzhkU5mRiJPOcjKGjezgEq8oxZ5110A1Csuln+qli99XpMx6GwOvhHAgVIcqwfAiuEsNEm4Q6FxeCeBUgbAoXp269Z927ZdPnToo48/dsoSboGLqLfo4/WsnIBjx4/fObNTp0chDfIDnqibIJ0MFS8cVNogRIaPWNiGp4zMW/YCnQwn5G5Qd2FhhpmfBV5EIZ3RkH3tBWgT11paTf60n0AhTbxO/w6BrUS0WGI1Du/DnU8+Ob15846HHrp6/vz15hdMVnL7+vXrBRMJFKOqktC5CjeX1UAIUtXZP3f4yP5Nf7xxsZPiPQp9wfzhD3/I1YC4Zq8pkLXVpDiU3jTIZPrNwx48woHbVK3mOvmpxISsMs8qa0BnQeQFhDvqFENhhwngOOSRhk6GmOcs1WwCEFntHYD5gUQ06d6xe/fumCkCrEn/5rvvXty79/jhw1fPns0M0I0EcbZr1y4sIEzW4gKIEgq0dWrKbAXj5KnTh57Z/2bzE7seharKzp07bd8InAmhMA6lvfMgZ4mWyxQr0obdzWtizWVE6QAdpWOca/I6jzBvQZVzAN5NHdOhNjnuL9QTPdGTVhiKXeMgR8fpCYSEQtqClefOnXNdyrvcgpX0nXv533vNnVNw6FuQF0lAWxYMg5KKJXxwo/xXbj0KEWBLtglGQepCbHjr1qRLGl+wHKjOxZxCjwQsVfBkvnJckWFeDOrkAEx6PX7JMPOLADmM4i/ZIB2VGYzqaPVVAk9zfDSlawQ8smwchXQTHFEVQoaZSgafiNf027DG6xZTY+PGjZwml3BRHveDAsMFskfhpk2bfvvb3/qulLOy1ccjxd54rXOurnlkHUc36wuskT2y3jzywpO+NggxlYA8aoydCZHgxZFBsAgQQluEJZt9V/mclyLPPPOMcucqz14VdcJ1RvgzeRyFQGHaxl6UmGl/F7YLaRuoFffNV9/n9FHP9+zZU++xA+j8PGnoJ+A9CtUT9hChT+OzZ8+ev3Dm2NkP//U/Hvvxj3701l86qufWywUbNmxQshV6u5qnHLAhLXRsapgAkwyLVTOSYQu+zivLAjrIM3nAU8iQVTrJOa157WRYP/LTvoJpFA6FwAQppZI1fp4OXPJt47CrYqXMjgJDLHBaZdijUP4KTMXQCsFohtBr926v+e+f3Dl53JDlqM3F7NFHH0WhyBXCtI/S48AwUBxAp9IMMT6I9ibzVmbyaOngUMqzgluJFR8+KnJWyRVVR6fesMZh8lkICdaYnCg0k3d5fPis5WH2KrbuVhyb/1TMp4UiYWg9UqUNSD59Gro3SNP8jVWE9Ch84oknfv3rXx84cMAJ12fMF3fuDdVfCoFYiJeHfd0QVD4uGRMwjFX21jY0depkDVvQ91Sb9XkdIq2IbmDHNsrseJDGKC6TT7yT5EsboIdFatoE8CllisQxiCEs1T969Gj9mwryzaTfBmXElqygzFNPPeVFiXHkyBHbJVuQ5y7qCKA/BVAo5uSbTiT0KOQIEVpLbXIu/XHIjbTRfAri6AAZsbOyokN1OWqSQO42hCyraJMdZFlDd+G7Q3U/2YFzThQz6vLly14UKMnC/CSaR9zxHCIcbc1IcGgN2XHwlCbRk2KpOsVZ0yC8yPciIcMHXgVq81FLn8z0KGSh1grE2NgJz8IcjeMwO4XDiKla2nTY6F55BlBWN+iQ0yBsdXgbRTaxQRk3/xWrGoUk55mIZpTCRU62SMe8kOeXwtgQZKrttk/7Z21Jy9YWSwmbxle2HnnCKZK5FVvgVKKYG+WxY8fK435wOD3LoIsehfbWotChHRc0Lhr9HzQGS6GQ17QqqmuUvRpnTq+HA8hbQZnqgjkQsuMXu7AuVPGmSVwaogTHnC4FpcIEWLl3797JFNIkIWV3Fa/+cwnq5Mh84EPzFouS9evXS9zUyfK4H2hW7cugix6FslAM5ngQF755RZCMZtg4ZO+i+0IQO6nrdftqU3PK4xUAkviImfq8ZkehY1NQVNHM3iyYACYjPgIngDThgkUWjaRtJISXhPF6ar5hedAPOjgFQ01mehSyqpN6zU+wyNLaPgqNgzWNzgtD3tJyJfft3LlTLmav+nTZQVvJJzrVGPcChUuYpoIZcodWBFsgiEfCI2vIKRInAnlWOomkVBwd+tNvg2SJJcVx5pzmE7dNX3fW244o4U5Ubq2qriPch8Pc3Fwt0T0KszpFQIcrUw30G62WB1GIBsn1n/3sZz/4wQ/uu+++zgX33r3Dhw9n97J6+WDTXGd8P/CUk95ejhwudgPMP84o/DkOqSPhXeW3xt8EWCAH7EimS2YcrQaKofQrMJfMY7UtHnnkEYqByPaUQ3ywakMzpJgzATAVIX0UAvcRSmKGOlRZdhbXrl2LQkXse9/73s9//vPvfve7HCQM16xZQ3uuLEuXD6zgwXjEXnbPZz6kk9b8OHgq5hQMKZsh8CnXaTMMyLedeqYdvn0Mw+u08qLrMYdzi1wsz/qRYiDObFGmhimEJEoqqj6hSF1GFokSQdxB6V/96lff//73t2zZoi8M5YdHy7hXBRPIZ6YYN8SEQFboXAJzb1Sd1NjGJ2PBdxKFKMpnRl6SNuBxfOSWQLjv7Eyq0mbSHwlEqpMEujwrDGW2HxZMupE2lhZwov0SR/E4lGfLgcgHxY1aDOZTsGNZsdzgd0cLNwlkIcyh+NDitZM4TepIRJVgAqxRfr0Y34EL5/333797924WsQIBzFHrXIDVElFS/8AFr7ZLv4I+POyQ8zrhyJOC/EDhsmIGjKawQgomLdrVdVlApjZiAZ3aREwWLC9IzlnIRzblJl/0kg9y9zbk+tSokUCAEiplhQKnz8/PuxkePHhQIXnggQdMehogcuPGjTa1UTtBEVZ6LSSkvK7j4KRYfvmVWi3CZHx211KPIe47kpvHIqFHoalYW8GbQI+wGC9r9cuKRSGvkynnIlDAhsslSp6AUMgRWm41QwGTWgqA3R2WEyj0CD1OcdnmEoRLr/iAc3hzerwZyObE4okTJ6b+cVobiiTd5LQbKSEKu1hJTc4jCpCZH007EfJWj0LGALXSqaANXwNB+sKEKvFLGzSuKFND8IgQMknT6tfFkZ/+SoDOPCIPpBoW+YJH+CWlz4yOwFctrRkHNODMMot10o8fy4oGJjnKjo52vs4CUEtLrwuL6dPJ3OaKdOTIEdHgRSqVFUOQrMQKoLqmR2GxtQFvAj0qyFWCEKzD3Yhs+B2Ep0F5rfXtqON173pq2HBdkBd1snIlQH7uIJLGRhRTBvkiGpqhW+47E4DCjrrNf5qsJVaKKCEDyBpGkSyN6hGrMLpz+pKxV5HY/ERFJFkm0Tdt2kQ9nyIYKo/7genhO9doCgcQnXTszWZaNnyVCw5Fgw5j/b+XSAdtOaWBhLwLeQqe5t0iqD8ds3tFmV0gCM+nPU/hMkeLFm31vPEUhPlIeOTEIoe0aBhbMhxAVHVebtu2Tbpj2krmu7A4dGWb/AsBFTj2itxy1Lkel9l+0HORFLbROL/8i+ZsMGPjPKpo9O+AwdbUzAtiZIexBjW5I3kcOlQ3KK+N4RvK3l1k0nrxjicxLv98TuTTfm5uLkeLlq8rqcPwrvpJTgQC4WGx7jKAVLw4GkPiAH+2NlkptKM0VWOBK5iD7+EfAkzAgimkLqWprmO/nGFtG9Lna48gNo800qRlERWUB110+GnQYaxBQ+IUsoOshLxohl+UMv7CR7IqbYWnpTcKnsoAotq66WSvYeXNoERhdA/yrr1szc/6jec7QGQEcgKt1q1b5yyUgr5GyooG3sWrEJSjKkGZ7WLBFALlKG3XDHXo0WGgRV4mDTM5DlbGETMiu1SU2S7iVvsGHQIb8LIixkdSwR3Ei4b5tJeUWskBFsQp44CMaKt1egX65NtuQB9Od3HdvHmzPMuBJ4mLoCFQDMFUIs2n5MAfp3mqBlAPBFOZ7WIxFAJ1bRYC9GvUh7xMlqVjYIGVXpy6ctEguYKL5RBf5BREhtDWBvySUmbBOMgYHqRzLkFxH+Q3HgxPrLRhsr1yMsjHNFVXvJAOgEkhjxkwC3kB21hYBisP20kCLFKShlrp6Ite4Os4CwU+D6ITwSOBe56NpVr1MOVRqcQWwyuyo+uClZI7QWNrnTi9Am1E4cxia1x2DPfv3+++U1Y0EGHWOKolfe7VbfQonNH1FdZTF4VsUJfMcJNhnk6GdxOhC9100QiF7Pc94EQxw+/8RWGPkjGOmakURmeG66QlaqQVnO66tGPHDjT7GPDu8GUSxIFNKaaDQs5UfsVWedxFigTUe1BFj0L2JIKmutUCqjM+1cNMfBHbTGonCPGori9TKw878iD78cebfCqo9YV/rEYtJ6ZgjgMiw9lUVBfpyyHnXIBOMBOkb1+PEIl166Ua3ZSENsRfUMZdDFLYqd9NbI7kMsMB8jKpDSuddc0lxXDg9TZCcxl8LaCPkwxDji4OYoUjTd+39snmH9k93/xTL52oHg8U0nyCXW3EGxbbK2ByEF8RBfrlcSs4rClT00CrHoUhLw/07ZEhiVHaMLu2Jyuiq6e21/c6IQNrYMKjFQXdhLCQx1OOpYpkRi41kOEwPPJiNX8y2GhZtTGdSl47T5aIPgpJJJqK2b7u1yGt+1esZvKmp8PIvGXkpANZXxGadSzQz0bpzAjrlZqIakTOBIuVHfXTSZPk82k/Pz+/b98+WUgliUgsRpur+whIQUFADp8UoaOArTCkM465+mjp6KNQeQk8CAfZKdtDZvLmBFjjgHG05Ed/VVSechYvGBL4UgMHOJ/OCItVvJ07d7pDkhCZs8CmCMipgycppZOrhNY1QY3VafJwNDyVheGDUUwAQ5Khuks/T9OhpHbZmavoo5C7ndg6ikZO9eGzfWDGMGgPvU5IBS5lcAxINMQSfXduYKp+DI6pOnk0DKIuXbp0qPl/HbWs2DEDSJZJ1PO6CBNJviXkouHF5t/pPnr0KGqL0mOAb3pSPgFNAdblWkGmoUkaxkxDi20de6PGsoNWPQrFOBV1wkHur2zW12m3YD7DoD3MsZG+SdozjEkM4zh9G2vNJ+nNs1Z6mdHhUxez5v48GlUlG0XaLLCLbwbv4qnzidB8JLjK55aIXf0IHwc7eiusxCJhFI+BEm3IwDZzzc4rC1v3KEwMxjWMUTRYpfhQjqK0z2+WzbuUu47zvgWqpRf1zeioNtwhXcKcxb51nDoWmGRhDKsUSn3kgS8hMxacO3fOZMcr08D7s1PIrXKFbhydYNJRxh2EcpEC+hbE0pFgXb4Li8TmnyRlPhuBzvKPCVAefy3ghx6FLtkI0wmFoK9NSqWjFY94Ah5MCJvUMZOnlhlmUkC4JihZXMZCEQo25giRQexSYMeYMQsqhTTJtyB99CV9ncHQgijElqGAgARlefA1gh96FIqpJCLXdDy0WGCu9Bowm23CPIeEFhjMoQjGdFm3cIgVNszoOFunkNpX9MgbZUPIplUP6qf9OLQL6TcH/NCjcBXfUhQKV/Etxne+83+quyI8YMhiIAAAAABJRU5ErkJggg== + + + + + \ No newline at end of file