From 9b729e6ee04068328d58a351bed092ce2529b0ed Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E2=A0=80?= Date: Tue, 28 Nov 2023 03:41:18 +0000 Subject: [PATCH] =?UTF-8?q?=E1=97=BA=D0=98.=E2=9A=AA=E1=97=9D=E2=9A=AA?= =?UTF-8?q?=EA=96=B4=E2=9A=AA=E2=93=84=E2=9A=AA=EC=98=B7=E2=9A=AA=E2=9C=A4?= =?UTF-8?q?=E2=9A=AA=E2=93=84=E2=9A=AA=E1=99=81=E2=9A=AA=E1=91=90=E1=91=95?= =?UTF-8?q?=E2=9A=AA=E2=93=84=E2=9A=AA=E1=99=8F=E2=9A=AA=E1=95=A4=E1=95=A6?= =?UTF-8?q?=E2=9A=AA=EA=96=B4=E2=9A=AA=E1=94=93=E1=94=95=E2=9A=AA?= =?UTF-8?q?=F0=96=A1=BC=E2=9A=AA=F0=96=A1=BC=E2=9A=AA=F0=96=A1=BC=E2=9A=AA?= =?UTF-8?q?=F0=96=A1=BC=E2=9A=AA=F0=96=A1=BC=E2=9A=AA=F0=96=A1=BC=E2=9A=AA?= =?UTF-8?q?=E1=94=93=E1=94=95=E2=9A=AA=EA=96=B4=E2=9A=AA=E1=95=A4=E1=95=A6?= =?UTF-8?q?=E2=9A=AA=E1=99=8F=E2=9A=AA=E2=93=84=E2=9A=AA=E1=91=90=E1=91=95?= =?UTF-8?q?=E2=9A=AA=E1=99=81=E2=9A=AA=E2=93=84=E2=9A=AA=E2=9C=A4=E2=9A=AA?= =?UTF-8?q?=EC=98=B7=E2=9A=AA=E2=93=84=E2=9A=AA=EA=96=B4=E2=9A=AA=E1=97=9D?= =?UTF-8?q?=E2=9A=AA.NB?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../⚪ᗩ⚪ᑐᑕ⚪ꖴ⚪✤⚪ᗩ⚪ᙏ⚪ᗱᗴ⚪옷⚪✤⚪ᗩ⚪ᙏ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᙏ⚪ᗩ⚪✤⚪옷⚪ᗱᗴ⚪ᙏ⚪ᗩ⚪✤⚪ꖴ⚪ᑐᑕ⚪ᗩ⚪/ᗺИ.⚪ᗝ⚪ꖴ⚪Ⓞ⚪옷⚪✤⚪Ⓞ⚪ᙁ⚪ᑐᑕ⚪Ⓞ⚪ᙏ⚪ᕤᕦ⚪ꖴ⚪ᔓᔕ⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪ᔓᔕ⚪ꖴ⚪ᕤᕦ⚪ᙏ⚪Ⓞ⚪ᑐᑕ⚪ᙁ⚪Ⓞ⚪✤⚪옷⚪Ⓞ⚪ꖴ⚪ᗝ⚪.NB | 1318 +++++++++++++++++ 1 file changed, 1318 insertions(+) create mode 100644 ⚪∣❁∣⚪ᙁ⚪ᑐᑕ⚪∣⚪옷⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪옷⚪∣⚪ᑐᑕ⚪ᙁ⚪∣❁∣⚪/⚪ᕤᕦ⚪ИN⚪ꖴ⚪✤⚪ᑎ⚪ߦ⚪ᙏ⚪Ⓞ⚪ᑐᑕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᑐᑕ⚪Ⓞ⚪ᙏ⚪ߦ⚪ᑎ⚪✤⚪ꖴ⚪ИN⚪ᕤᕦ⚪/⚪ᗱᗴ⚪ᴥ⚪ᗩ⚪ᗯ⚪✤⚪ꗳ⚪Ⓞ⚪ᔓᔕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᔓᔕ⚪Ⓞ⚪ꗳ⚪✤⚪ᗯ⚪ᗩ⚪ᴥ⚪ᗱᗴ⚪/⚪ᙏ⚪ᗩ⚪ᴥ⚪ꗳ⚪ᙁ⚪Ⓞ⚪ᗯ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᗯ⚪Ⓞ⚪ᙁ⚪ꗳ⚪ᴥ⚪ᗩ⚪ᙏ⚪/⚪ᗩ⚪ᑐᑕ⚪ꖴ⚪✤⚪ᗩ⚪ᙏ⚪ᗱᗴ⚪옷⚪✤⚪ᗩ⚪ᙏ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᙏ⚪ᗩ⚪✤⚪옷⚪ᗱᗴ⚪ᙏ⚪ᗩ⚪✤⚪ꖴ⚪ᑐᑕ⚪ᗩ⚪/ᗺИ.⚪ᗝ⚪ꖴ⚪Ⓞ⚪옷⚪✤⚪Ⓞ⚪ᙁ⚪ᑐᑕ⚪Ⓞ⚪ᙏ⚪ᕤᕦ⚪ꖴ⚪ᔓᔕ⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪ᔓᔕ⚪ꖴ⚪ᕤᕦ⚪ᙏ⚪Ⓞ⚪ᑐᑕ⚪ᙁ⚪Ⓞ⚪✤⚪옷⚪Ⓞ⚪ꖴ⚪ᗝ⚪.NB diff --git a/⚪∣❁∣⚪ᙁ⚪ᑐᑕ⚪∣⚪옷⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪옷⚪∣⚪ᑐᑕ⚪ᙁ⚪∣❁∣⚪/⚪ᕤᕦ⚪ИN⚪ꖴ⚪✤⚪ᑎ⚪ߦ⚪ᙏ⚪Ⓞ⚪ᑐᑕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᑐᑕ⚪Ⓞ⚪ᙏ⚪ߦ⚪ᑎ⚪✤⚪ꖴ⚪ИN⚪ᕤᕦ⚪/⚪ᗱᗴ⚪ᴥ⚪ᗩ⚪ᗯ⚪✤⚪ꗳ⚪Ⓞ⚪ᔓᔕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᔓᔕ⚪Ⓞ⚪ꗳ⚪✤⚪ᗯ⚪ᗩ⚪ᴥ⚪ᗱᗴ⚪/⚪ᙏ⚪ᗩ⚪ᴥ⚪ꗳ⚪ᙁ⚪Ⓞ⚪ᗯ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᗯ⚪Ⓞ⚪ᙁ⚪ꗳ⚪ᴥ⚪ᗩ⚪ᙏ⚪/⚪ᗩ⚪ᑐᑕ⚪ꖴ⚪✤⚪ᗩ⚪ᙏ⚪ᗱᗴ⚪옷⚪✤⚪ᗩ⚪ᙏ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᙏ⚪ᗩ⚪✤⚪옷⚪ᗱᗴ⚪ᙏ⚪ᗩ⚪✤⚪ꖴ⚪ᑐᑕ⚪ᗩ⚪/ᗺИ.⚪ᗝ⚪ꖴ⚪Ⓞ⚪옷⚪✤⚪Ⓞ⚪ᙁ⚪ᑐᑕ⚪Ⓞ⚪ᙏ⚪ᕤᕦ⚪ꖴ⚪ᔓᔕ⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪ᔓᔕ⚪ꖴ⚪ᕤᕦ⚪ᙏ⚪Ⓞ⚪ᑐᑕ⚪ᙁ⚪Ⓞ⚪✤⚪옷⚪Ⓞ⚪ꖴ⚪ᗝ⚪.NB b/⚪∣❁∣⚪ᙁ⚪ᑐᑕ⚪∣⚪옷⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪옷⚪∣⚪ᑐᑕ⚪ᙁ⚪∣❁∣⚪/⚪ᕤᕦ⚪ИN⚪ꖴ⚪✤⚪ᑎ⚪ߦ⚪ᙏ⚪Ⓞ⚪ᑐᑕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᑐᑕ⚪Ⓞ⚪ᙏ⚪ߦ⚪ᑎ⚪✤⚪ꖴ⚪ИN⚪ᕤᕦ⚪/⚪ᗱᗴ⚪ᴥ⚪ᗩ⚪ᗯ⚪✤⚪ꗳ⚪Ⓞ⚪ᔓᔕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᔓᔕ⚪Ⓞ⚪ꗳ⚪✤⚪ᗯ⚪ᗩ⚪ᴥ⚪ᗱᗴ⚪/⚪ᙏ⚪ᗩ⚪ᴥ⚪ꗳ⚪ᙁ⚪Ⓞ⚪ᗯ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᗯ⚪Ⓞ⚪ᙁ⚪ꗳ⚪ᴥ⚪ᗩ⚪ᙏ⚪/⚪ᗩ⚪ᑐᑕ⚪ꖴ⚪✤⚪ᗩ⚪ᙏ⚪ᗱᗴ⚪옷⚪✤⚪ᗩ⚪ᙏ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᙏ⚪ᗩ⚪✤⚪옷⚪ᗱᗴ⚪ᙏ⚪ᗩ⚪✤⚪ꖴ⚪ᑐᑕ⚪ᗩ⚪/ᗺИ.⚪ᗝ⚪ꖴ⚪Ⓞ⚪옷⚪✤⚪Ⓞ⚪ᙁ⚪ᑐᑕ⚪Ⓞ⚪ᙏ⚪ᕤᕦ⚪ꖴ⚪ᔓᔕ⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪ᔓᔕ⚪ꖴ⚪ᕤᕦ⚪ᙏ⚪Ⓞ⚪ᑐᑕ⚪ᙁ⚪Ⓞ⚪✤⚪옷⚪Ⓞ⚪ꖴ⚪ᗝ⚪.NB new file mode 100644 index 00000000..8e3b798d --- /dev/null +++ b/⚪∣❁∣⚪ᙁ⚪ᑐᑕ⚪∣⚪옷⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪옷⚪∣⚪ᑐᑕ⚪ᙁ⚪∣❁∣⚪/⚪ᕤᕦ⚪ИN⚪ꖴ⚪✤⚪ᑎ⚪ߦ⚪ᙏ⚪Ⓞ⚪ᑐᑕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᑐᑕ⚪Ⓞ⚪ᙏ⚪ߦ⚪ᑎ⚪✤⚪ꖴ⚪ИN⚪ᕤᕦ⚪/⚪ᗱᗴ⚪ᴥ⚪ᗩ⚪ᗯ⚪✤⚪ꗳ⚪Ⓞ⚪ᔓᔕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᔓᔕ⚪Ⓞ⚪ꗳ⚪✤⚪ᗯ⚪ᗩ⚪ᴥ⚪ᗱᗴ⚪/⚪ᙏ⚪ᗩ⚪ᴥ⚪ꗳ⚪ᙁ⚪Ⓞ⚪ᗯ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᗯ⚪Ⓞ⚪ᙁ⚪ꗳ⚪ᴥ⚪ᗩ⚪ᙏ⚪/⚪ᗩ⚪ᑐᑕ⚪ꖴ⚪✤⚪ᗩ⚪ᙏ⚪ᗱᗴ⚪옷⚪✤⚪ᗩ⚪ᙏ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᙏ⚪ᗩ⚪✤⚪옷⚪ᗱᗴ⚪ᙏ⚪ᗩ⚪✤⚪ꖴ⚪ᑐᑕ⚪ᗩ⚪/ᗺИ.⚪ᗝ⚪ꖴ⚪Ⓞ⚪옷⚪✤⚪Ⓞ⚪ᙁ⚪ᑐᑕ⚪Ⓞ⚪ᙏ⚪ᕤᕦ⚪ꖴ⚪ᔓᔕ⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪ᔓᔕ⚪ꖴ⚪ᕤᕦ⚪ᙏ⚪Ⓞ⚪ᑐᑕ⚪ᙁ⚪Ⓞ⚪✤⚪옷⚪Ⓞ⚪ꖴ⚪ᗝ⚪.NB @@ -0,0 +1,1318 @@ +(* Content-type: application/vnd.wolfram.mathematica *) + +(*** Wolfram Notebook File ***) +(* http://www.wolfram.com/nb *) + +(* CreatedBy='Mathematica 12.2' *) + +(*CacheID: 234*) +(* Internal cache information: +NotebookFileLineBreakTest +NotebookFileLineBreakTest +NotebookDataPosition[ 158, 7] +NotebookDataLength[ 54075, 1310] +NotebookOptionsPosition[ 52452, 1276] +NotebookOutlinePosition[ 53270, 1300] +CellTagsIndexPosition[ 53227, 1297] +WindowFrame->Normal*) + +(* Beginning of Notebook Content *) +Notebook[{ +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"ariasD", "[", "0", "]"}], " ", "=", " ", "1"}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"ariasD", "[", + RowBox[{"n_Integer", "?", "Positive"}], "]"}], " ", ":=", " ", + RowBox[{ + RowBox[{"ariasD", "[", "n", "]"}], " ", "=", " ", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"2", "^", + RowBox[{"(", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"k", " ", + RowBox[{"(", + RowBox[{"k", " ", "-", " ", "1"}], ")"}]}], " ", "-", " ", + RowBox[{"n", " ", + RowBox[{"(", + RowBox[{"n", " ", "-", " ", "1"}], ")"}]}]}], ")"}], "/", + "2"}], ")"}]}], " ", + RowBox[{ + RowBox[{"ariasD", "[", "k", "]"}], "/", + RowBox[{ + RowBox[{"(", + RowBox[{"n", " ", "-", " ", "k", " ", "+", " ", "1"}], ")"}], + "!"}]}]}], ",", " ", + RowBox[{"{", + RowBox[{"k", ",", " ", "0", ",", " ", + RowBox[{"n", " ", "-", " ", "1"}]}], "}"}]}], "]"}], "/", + RowBox[{"(", + RowBox[{ + RowBox[{"2", "^", "n"}], " ", "-", " ", "1"}], ")"}]}]}]}], + ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"iFabiusF", "[", "x_", "]"}], ":=", + RowBox[{"Module", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"prec", "=", + RowBox[{"Precision", "[", "x", "]"}]}], ",", "n", ",", "p", ",", "q", + ",", "s", ",", "tol", ",", "w", ",", "y", ",", "z"}], "}"}], ",", + RowBox[{ + RowBox[{"If", "[", + RowBox[{ + RowBox[{"x", "<", "0"}], ",", + RowBox[{"Return", "[", + RowBox[{"0", ",", "Module"}], "]"}]}], "]"}], ";", + RowBox[{"tol", "=", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "prec"}], ")"}]}]}], ";", "\n", + RowBox[{"z", "=", + RowBox[{"SetPrecision", "[", + RowBox[{"x", ",", "Infinity"}], "]"}]}], ";", + RowBox[{"s", "=", "1"}], ";", + RowBox[{"y", "=", "0"}], ";", "\n", + RowBox[{"z", "=", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"0", "\[LessEqual]", "z", "\[LessEqual]", "2"}], ",", + RowBox[{"1", "-", + RowBox[{"Abs", "[", + RowBox[{"1", "-", "z"}], "]"}]}], ",", + RowBox[{ + RowBox[{"q", "=", + RowBox[{"Quotient", "[", + RowBox[{"z", ",", "2"}], "]"}]}], ";", "\n", + RowBox[{"If", "[", + RowBox[{ + RowBox[{ + RowBox[{"ThueMorse", "[", "q", "]"}], "==", "1"}], ",", + RowBox[{"s", "=", + RowBox[{"-", "1"}]}]}], "]"}], ";", "\n", + RowBox[{"1", "-", + RowBox[{"Abs", "[", + RowBox[{"1", "-", "z", "+", + RowBox[{"2", " ", "q"}]}], "]"}]}]}]}], "]"}]}], ";", "\n", + RowBox[{"While", "[", + RowBox[{ + RowBox[{"z", ">", "0"}], ",", + RowBox[{ + RowBox[{"n", "=", + RowBox[{"-", + RowBox[{"Floor", "[", + RowBox[{"RealExponent", "[", + RowBox[{"z", ",", "2"}], "]"}], "]"}]}]}], ";", + RowBox[{"p", "=", + RowBox[{"2", "^", "n"}]}], ";", "\n", + RowBox[{"z", "-=", + RowBox[{"1", "/", "p"}]}], ";", + RowBox[{"w", "=", "1"}], ";", "\n", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"w", "=", + RowBox[{ + RowBox[{"ariasD", "[", "m", "]"}], "+", + RowBox[{"p", " ", "z", " ", + RowBox[{"w", "/", + RowBox[{"(", + RowBox[{"n", "-", "m", "+", "1"}], ")"}]}]}]}]}], ";", + RowBox[{"p", "/=", "2"}]}], ",", + RowBox[{"{", + RowBox[{"m", ",", "n"}], "}"}]}], "]"}], ";", "\n", + RowBox[{"y", "=", + RowBox[{"w", "-", "y"}]}], ";", "\n", + RowBox[{"If", "[", + RowBox[{ + RowBox[{ + RowBox[{"Abs", "[", "w", "]"}], "<", + RowBox[{ + RowBox[{"Abs", "[", "y", "]"}], " ", "tol"}]}], ",", + RowBox[{"Break", "[", "]"}]}], "]"}]}]}], "]"}], ";", "\n", + RowBox[{"SetPrecision", "[", + RowBox[{ + RowBox[{"s", " ", + RowBox[{"Abs", "[", "y", "]"}]}], ",", "prec"}], "]"}]}]}], "]"}]}], + ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"FabiusF", "[", "Infinity", "]"}], " ", "=", " ", + RowBox[{"Interval", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1"}], ",", " ", "1"}], "}"}], "]"}]}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"FabiusF", "[", + RowBox[{"x_", "?", "NumberQ"}], "]"}], " ", "/;", " ", + RowBox[{"If", "[", + RowBox[{ + RowBox[{ + RowBox[{"Im", "[", "x", "]"}], " ", "==", " ", "0"}], ",", " ", + RowBox[{"TrueQ", "[", + RowBox[{ + RowBox[{ + RowBox[{"Composition", "[", + RowBox[{ + RowBox[{ + RowBox[{"BitAnd", "[", + RowBox[{"#", ",", " ", + RowBox[{"#", " ", "-", " ", "1"}]}], "]"}], " ", "&"}], ",", + " ", "Denominator"}], "]"}], "[", "x", "]"}], " ", "==", " ", + "0"}], "]"}], ",", " ", "False"}], "]"}]}], " ", ":=", " ", + RowBox[{"iFabiusF", "[", "x", "]"}]}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Derivative", "[", "n_Integer", "]"}], "[", "FabiusF", "]"}], " ", + ":=", " ", + RowBox[{ + RowBox[{ + RowBox[{"2", "^", + RowBox[{"(", + RowBox[{"n", " ", + RowBox[{ + RowBox[{"(", + RowBox[{"n", " ", "+", " ", "1"}], ")"}], "/", "2"}]}], ")"}]}], + " ", + RowBox[{"FabiusF", "[", + RowBox[{ + RowBox[{"2", "^", "n"}], " ", "#"}], "]"}]}], " ", "&"}]}], + ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"SetAttributes", "[", + RowBox[{"FabiusF", ",", " ", + RowBox[{"{", + RowBox[{"NumericFunction", ",", " ", "Listable"}], "}"}]}], "]"}], + ";"}], "//", "Timing"}], "//", "AbsoluteTiming"}], ";"}]}], "Input", + CellFrame->0, + CellDingbat->None, + TextAlignment->Center, + FontFamily->"Segoe UI Emoji", + FontSize->12, + FontWeight->"Plain", + CellLabel-> + "11/28/23 03:35:17 \ +In[41]:=",ExpressionUUID->"49e27e26-aae4-40b5-bafd-eccd5a46860c"], + +Cell[BoxData[{ + RowBox[{"ClearAll", "[", + RowBox[{"iCurvaturePlotHelper", ",", "CurvaturePlot"}], "]"}], "\n", + RowBox[{ + RowBox[{"iCurvaturePlotHelper", "[", + RowBox[{ + RowBox[{"f_", "?", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"Head", "[", "#", "]"}], "=!=", "List"}], "&"}], ")"}]}], ",", + RowBox[{"{", + RowBox[{"t_", ",", "tmin_", ",", "tmax_"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"x0_", ",", "y0_"}], "}"}], ",", "\[Theta]0_"}], "}"}], ",", + RowBox[{"opts", ":", + RowBox[{"OptionsPattern", "[", "]"}]}]}], "]"}], ":=", + RowBox[{"Module", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"sol", ",", "\[Theta]", ",", "x", ",", "y", ",", "if"}], "}"}], + ",", + RowBox[{ + RowBox[{"sol", "=", + RowBox[{"NDSolve", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"\[Theta]", "'"}], "[", "t", "]"}], "\[Equal]", "f"}], + ",", + RowBox[{ + RowBox[{ + RowBox[{"x", "'"}], "[", "t", "]"}], "\[Equal]", + RowBox[{"Cos", "[", + RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}], ",", + RowBox[{ + RowBox[{ + RowBox[{"y", "'"}], "[", "t", "]"}], "\[Equal]", + RowBox[{"Sin", "[", + RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}], ",", + RowBox[{ + RowBox[{"\[Theta]", "[", "tmin", "]"}], "\[Equal]", "\[Theta]0"}], + ",", + RowBox[{ + RowBox[{"x", "[", "tmin", "]"}], "\[Equal]", "x0"}], ",", + RowBox[{ + RowBox[{"y", "[", "tmin", "]"}], "\[Equal]", "y0"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"x", ",", "y"}], "}"}], ",", + RowBox[{"{", + RowBox[{"t", ",", "tmin", ",", "tmax"}], "}"}], ",", "opts"}], + "]"}]}], ";", "\[IndentingNewLine]", + RowBox[{"if", "=", + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"x", "[", "#", "]"}], ",", + RowBox[{"y", "[", "#", "]"}]}], "}"}], "&"}], "/.", + RowBox[{"First", "[", "sol", "]"}]}]}], ";", "\[IndentingNewLine]", + "if"}]}], "]"}]}], "\n", + RowBox[{ + RowBox[{"CurvaturePlot", "[", + RowBox[{"f_", ",", + RowBox[{"{", + RowBox[{"t_", ",", "tmin_", ",", "tmax_"}], "}"}], ",", + RowBox[{"opts", ":", + RowBox[{"OptionsPattern", "[", "]"}]}]}], "]"}], ":=", + RowBox[{"CurvaturePlot", "[", + RowBox[{"f", ",", + RowBox[{"{", + RowBox[{"t", ",", "tmin", ",", "tmax"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", "0"}], "}"}], ",", "opts"}], + "]"}]}], "\n", + RowBox[{ + RowBox[{"CurvaturePlot", "[", + RowBox[{"f_", ",", + RowBox[{"{", + RowBox[{"t_", ",", "tmin_", ",", "tmax_"}], "}"}], ",", + RowBox[{"p", ":", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"x0_", ",", "y0_"}], "}"}], ",", "\[Theta]0_"}], "}"}]}], ",", + RowBox[{"opts", ":", + RowBox[{"OptionsPattern", "[", "]"}]}]}], "]"}], ":=", + RowBox[{"Module", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "\[Theta]", ",", "x", ",", "y", ",", "sol", ",", "rlsplot", ",", + "rlsndsolve", ",", "if", ",", "ifs"}], "}"}], ",", + RowBox[{ + RowBox[{"rlsplot", "=", + RowBox[{"FilterRules", "[", + RowBox[{ + RowBox[{"{", "opts", "}"}], ",", + RowBox[{"Options", "[", "ParametricPlot", "]"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"rlsndsolve", "=", + RowBox[{"FilterRules", "[", + RowBox[{ + RowBox[{"{", "opts", "}"}], ",", + RowBox[{"Options", "[", "NDSolve", "]"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"If", "[", + RowBox[{ + RowBox[{ + RowBox[{"Head", "[", "f", "]"}], "===", "List"}], ",", + RowBox[{ + RowBox[{"ifs", "=", + RowBox[{ + RowBox[{ + RowBox[{"iCurvaturePlotHelper", "[", + RowBox[{"#", ",", + RowBox[{"{", + RowBox[{"t", ",", "tmin", ",", "tmax"}], "}"}], ",", "p", ",", + RowBox[{"Evaluate", "@", + RowBox[{"(", + RowBox[{"Sequence", "@@", "rlsndsolve"}], ")"}]}]}], "]"}], + "&"}], "/@", "f"}]}], ";", "\[IndentingNewLine]", + RowBox[{"ParametricPlot", "[", + RowBox[{ + RowBox[{"Evaluate", "[", + RowBox[{ + RowBox[{ + RowBox[{"#", "[", "tplot", "]"}], "&"}], "/@", "ifs"}], "]"}], + ",", + RowBox[{"{", + RowBox[{"tplot", ",", "tmin", ",", "tmax"}], "}"}], ",", + RowBox[{"Evaluate", "@", + RowBox[{"(", + RowBox[{"Sequence", "@@", "rlsplot"}], ")"}]}]}], "]"}]}], ",", + RowBox[{ + RowBox[{"if", "=", + RowBox[{"iCurvaturePlotHelper", "[", + RowBox[{"f", ",", + RowBox[{"{", + RowBox[{"t", ",", "tmin", ",", "tmax"}], "}"}], ",", "p", ",", + RowBox[{"Evaluate", "@", + RowBox[{"(", + RowBox[{"Sequence", "@@", "rlsndsolve"}], ")"}]}]}], "]"}]}], + ";", "\[IndentingNewLine]", + RowBox[{"ParametricPlot", "[", + RowBox[{ + RowBox[{"Evaluate", "[", + RowBox[{"if", "[", "tplot", "]"}], "]"}], ",", + RowBox[{"{", + RowBox[{"tplot", ",", "tmin", ",", "tmax"}], "}"}], ",", + RowBox[{"Evaluate", "@", + RowBox[{"(", + RowBox[{"Sequence", "@@", "rlsplot"}], ")"}]}]}], "]"}]}]}], + "]"}]}]}], "]"}]}]}], "Input", + FontFamily->"Segoe UI Emoji", + FontSize->12, + FontWeight->"Plain", + CellLabel-> + "11/28/23 03:35:17 \ +In[48]:=",ExpressionUUID->"9b9d9fed-f6b7-4b00-b1f1-f2b74b7eebba"], + +Cell[BoxData[ + RowBox[{"(*", + RowBox[{ + RowBox[{"\:1513\:1515", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"MaxRecursion", "\[Rule]", "0"}], ",", + RowBox[{"PlotPoints", "\[Rule]", + RowBox[{"1", "+", + RowBox[{"2", "^", "8"}]}]}], ",", + RowBox[{"Ticks", "\[Rule]", + RowBox[{"{", + RowBox[{"Automatic", ",", "Automatic"}], "}"}]}], ",", + RowBox[{"ImageSize", "\[Rule]", "Full"}], ",", + RowBox[{"PlotRange", "\[Rule]", "Full"}]}], "}"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"Show", "[", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"CurvaturePlot", "[", + RowBox[{ + RowBox[{"Cos", "[", "X", "]"}], ",", + RowBox[{"{", + RowBox[{"X", ",", "0", ",", + RowBox[{"4", " ", "\[Pi]"}]}], "}"}], ",", + RowBox[{"Evaluate", "[", "\:1513\:1515", "]"}]}], "]"}], + "\[IndentingNewLine]", ",", "\[IndentingNewLine]", + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", + RowBox[{"Cos", "[", + RowBox[{"X", "*", + RowBox[{"Pi", "/", "2.4039598877241946"}]}], "]"}]}], "/", + "2"}], "+", ".5"}], ")"}], "*", "1.7867179537183144"}], ",", + RowBox[{"{", + RowBox[{"X", ",", "0", ",", + RowBox[{"4", "*", + RowBox[{"\[Pi]", "/", "Pi"}], "*", "2.4039598877241946"}]}], "}"}], + ",", + RowBox[{"Evaluate", "[", "\:1513\:1515", "]"}]}], "]"}], + "\[IndentingNewLine]", ",", "\[IndentingNewLine]", + RowBox[{"Evaluate", "[", "\:1513\:1515", "]"}]}], "\[IndentingNewLine]", + "]"}]}], "*)"}]], "Input", + FontFamily->"Segoe UI Emoji", + FontSize->12, + FontWeight->"Plain", + CellLabel-> + "11/28/23 03:35:17 \ +In[52]:=",ExpressionUUID->"1d82449f-143c-48c0-b41d-e1be57059f1b"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"\:146b\:146d", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"MaxRecursion", "\[Rule]", "0"}], ",", + RowBox[{"PlotPoints", "\[Rule]", + RowBox[{"1", "+", + RowBox[{"2", "^", "0"}]}]}]}], "}"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"\:1513\:1515", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"MaxRecursion", "\[Rule]", "0"}], ",", + RowBox[{"PlotPoints", "\[Rule]", + RowBox[{"1", "+", + RowBox[{"2", "^", "8"}]}]}], ",", + RowBox[{"Ticks", "\[Rule]", + RowBox[{"{", + RowBox[{"Automatic", ",", "Automatic"}], "}"}]}], ",", + RowBox[{"ImageSize", "\[Rule]", "512"}], ",", + RowBox[{"PlotRange", "\[Rule]", "Full"}], ",", + RowBox[{"AspectRatio", "\[Rule]", "1"}]}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"\:1586\:1587", "=", + RowBox[{"4", "*", + RowBox[{"ArcTan", "[", "1", "]"}], "*", "1"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"\:15e9", "=", + RowBox[{"{", + RowBox[{"X", ",", "0", ",", "Pi"}], "}"}]}], ";"}], + "\[IndentingNewLine]", + RowBox[{"(*", + RowBox[{ + RowBox[{"\:a5f3", "=", + RowBox[{ + RowBox[{"-", + RowBox[{"TriangleWave", "[", + RowBox[{ + RowBox[{ + RowBox[{"X", "/", "\:1586\:1587"}], "*", ".5"}], "-", ".25"}], + "]"}]}], "/", "1"}]}], ";"}], "*)"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"\:a5f3", "=", + RowBox[{ + RowBox[{"-", + RowBox[{"(", + RowBox[{"X", "-", + RowBox[{"(", + RowBox[{"Pi", "/", "2"}], ")"}]}], ")"}]}], "/", + RowBox[{"(", + RowBox[{"Pi", "/", "2"}], ")"}]}]}], ";"}], "\[IndentingNewLine]", + RowBox[{"Show", "[", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"CurvaturePlot", "[", + RowBox[{ + RowBox[{"Evaluate", "[", "\:a5f3", "]"}], ",", + RowBox[{"Evaluate", "[", "\:15e9", "]"}], ",", + RowBox[{"Evaluate", "[", "\:1513\:1515", "]"}]}], "]"}], + "\[IndentingNewLine]", ",", "\[IndentingNewLine]", + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"Evaluate", "[", "\:a5f3", "]"}], ",", + RowBox[{"Evaluate", "[", "\:15e9", "]"}], ",", + RowBox[{"Evaluate", "[", "\:1513\:1515", "]"}]}], "]"}], + "\[IndentingNewLine]", ",", "\[IndentingNewLine]", + RowBox[{"Evaluate", "[", "\:1513\:1515", "]"}]}], "\[IndentingNewLine]", + "]"}], "\[IndentingNewLine]", + RowBox[{"DecimalForm", "[", + RowBox[{ + RowBox[{"N", "[", + RowBox[{"TableForm", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"Flatten", "[", + RowBox[{"DecimalForm", "[", + RowBox[{ + RowBox[{"N", "[", + RowBox[{ + RowBox[{"Cases", "[", + RowBox[{ + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"Evaluate", "[", "\:a5f3", "]"}], ",", + RowBox[{"Evaluate", "[", "\:15e9", "]"}], ",", + RowBox[{"Evaluate", "[", "\:146b\:146d", "]"}]}], "]"}], ",", + RowBox[{ + RowBox[{"Line", "[", "X__", "]"}], "\[Rule]", "X"}], ",", + "Infinity"}], "]"}], ",", "1"}], "]"}], ",", "256"}], "]"}], + "]"}], "\[IndentingNewLine]", ",", "\[IndentingNewLine]", + RowBox[{"Flatten", "[", + RowBox[{"DecimalForm", "[", + RowBox[{ + RowBox[{"N", "[", + RowBox[{ + RowBox[{"Cases", "[", + RowBox[{ + RowBox[{"CurvaturePlot", "[", + RowBox[{ + RowBox[{"Evaluate", "[", "\:a5f3", "]"}], ",", + RowBox[{"Evaluate", "[", "\:15e9", "]"}], ",", + RowBox[{"Evaluate", "[", "\:146b\:146d", "]"}]}], "]"}], ",", + RowBox[{ + RowBox[{"Line", "[", "X__", "]"}], "\[Rule]", "X"}], ",", + "Infinity"}], "]"}], ",", "1"}], "]"}], ",", "256"}], "]"}], + "]"}]}], "\[IndentingNewLine]", "}"}], "]"}], "]"}], ",", "256"}], + "]"}]}], "Input", + FontFamily->"Segoe UI Emoji", + FontSize->12, + FontWeight->"Plain", + CellLabel-> + "11/28/23 03:52:52 \ +In[394]:=",ExpressionUUID->"148f4d9e-62d6-414f-9bd8-79eeac336b4b"], + +Cell[BoxData[ + GraphicsBox[{{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], + Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" +1:eJxd1nc41f/7B/BzHCshEcouI0UqKg16vhVNkgaplIgUklChQUmixafSMFpK +SMpMREj23iPj2Pvs41hfv39/9z+v63m9/rzv63E9l9u5HXLgI5FIZDKJ9H/v +/5/fTwwmJbWD4Dbun86vL4lcs9v2TWtfQipuTfqLH3r4flh8kWHqO/xQLNls +lWaCx+NaJRuTY3EgJP+/0K5DGHHccdJI9yvKzgYXsRaeQsvyxIaIN99RWrq9 +eNTWAbvGpOIPDqRiwSup1Gw/V3x49FmjU/kH7qievix60gMylPeChHIW/NSn +BLo3XMNzi9aAY6dy8HD3NiNl8ZsI/Tt+5bnub8RR/5jdEr6NIkPP4uYveZh+ +7P9yn8FddFv+aUnbU4BLbzXdzs4GQffTvnj3v38gcu7CRHj+A1yivZl+4vAX +Ttb0bxahT1Dy/SLVYqoI7L7bNmKtYfivo9N0yrMEPmJaGTcVn+HhG8eUbLEy +WErRN79KDoegQ02ba3A5MhLPkJoMX+GKm2MHT70S2VeaurSWR8JJZqQx4GQV +lD4/1e0RfYOIizFnJJZWQ29rpCD/rbe46PTtUVd3NYYzAu3qVd6jTNr0dHZ0 +DQIsXvmYpH3AuGiI67ljtWCAZMWw+AiJhFNyOip1ULwUo2WiEosbzwLEpVrq +sO7UuKTJv8/YstjcnfGuHnnn16w/XB0PZeZMXPC5Bmi6dnmNlHxBdvDCRiul +RuyRuupslvQV9ylvBFjURqz819qV15eE0lmPnXWvm7BV86AnMfQNFfZu6bfN +m3FiUMttduw7XGyPaTcsbsHVdElfpkQK/Btjx+8VtkAkwvMkSSMV+/9JiGTd +b4WGpyr1iHUahL32wQZt+HlCyLb4ZjquXjpiVTPRhpUpDJ73hwwYKYQaRCW1 +46Dnwf6YwR9Q9g0t49j9g1bZ+/rtyj8R4JKXFaDagc6ew6EHvLJgMMtSqO3o +wKntmbIJpdmoDPc+en53J5qWbFpUKpEDFUmh/JGYTniYFWTmbMuF6BMhgZqZ +TmjsX85c2JcLhXV9V+MOd0HKXOTB28e/4UwcmriU1AU1brtx4L489OyL+xMv +2I2DIh0rX03lgesX65pv343nero6F37lI8HnVk/hr270BL4tuOdXAH5yaOYh +KSqk/vjIyGz+A9NPwkIfL1Jx5aaBUyu5EIrGO7pC8qkI2yoclJhbiOden5dq +KveApkOJkA/7C+dxw7b0az34yF9lftquCEMKK1XGS3sg7KCxdk6jGH8L9xoX +qfdiFatrd+xsMVxXxWUc9u6FAk/okEVJCWbD3lsPlPSiqrTbaenTUhROzcos +VO1Doq2GzQH3Mvims5uZnn1w46udohqVIy2II2hT3odek3dPDTQqIBMlnlWs +2o/wNRHVScKVmPXOoEp69iNdYZXEYHsl9tq1+P0t6Uff5H6/N/ZVmBKue2Uv +P4DEodvcu9VVSCE/vSp3YQC7upKsNLdX4zzz7gqtnAHsZPIx+VOrEZ0aYrRZ +fBBDm7aG1KvV4F7TFuoT+0FsDuYRlPk7Z36fVKd9n88zFoFzi2vBcr3RcIU0 +hIA4Jd6DO7XwyW+5r39kCNFOYxURc7UQr+0NWfJuCIL3qtW2edZhgM/OUZk9 +hNHiJ/k+jDqkRZUnmO0ZRp2AWMFu93rkr04W//J0GCVSvRcd+utR5/RldnX/ +MARkiHMmTg0oSd7b16M3gooxvpajXQ0QdY2gNN0cQVLTJ8vkY41QYHt2tlaO +oH6TKXOipRFUgz/n18qPglXYG6p5tAkGRSpeQS6jqHssXnSspQmxvrnSclmj +YD7K/1tl04wIxZBiccExLLd/pi/e3IxEP9716aNj0HTfW2dzugVGK2Y+WL0Z +w9/dsmVW7S3o5dvBRxocww9SvaK9dSs2JF0/9lx/HMblzbbhna1ID1ygl+A3 +jsavbvp7TrfBKqSO/KlyHIs8DUI3DLahtZF375noBEz2psUHXGjHY2mdjjvr +JvD9V6lp4WA7VAsqeKetJnCeX/7LUc9/CClR2HrfdwJK0kShMvsf7tTq3Yt4 +N4Girz3Du+50QF4zX6m9aAIhvLSt2kKdSD8WpO4xMoGPr9wmtu/pxDIjYc9x +SRp8zIpchR53ot3+dcifTTTYaf17a17dib3fg95XW9PgpCDw6JpkFx6rxdbl +3qLBYDxF0ca6C1MxilqL39NQtUY1N+l1F4R+iCzfUUzDuls7eAXULrRJhqXE +jdHg/D42OXV1N1p2efr5LqajXTWSJ+DajfLPObmr9emo6TvRI5fajcu3VNgm +x+ngHeaq3uN2o+xoer+hHx2MA0H6P42oWNzo7+IRQ4fEB7Lpr/tUBNVc1JQv +okPaeNxkYTkV/6xc/aJG6biU9VtyhUwP1mT1uIVLMNBU5Jvie7wHQ75qKXW6 +DFRL5a15HtmDHN64+KgVA0EF1ta+fT24clBpl58PY35/NJsXq3vx89nKNWPR +DLRRr2X7efZCLvbM3LsCBuLEbtiqZfdip/DrG419DBy5Mz7MIvWBt5Cq3b+Q +Ces/pMTQfX0guUlqeuswIeNCEbV83IeHccEHrA4yYWN5eGFpTR+ou63TF3sx +8cbFaImwQj9ko6S2HQpnwndsSMjRth9b3A0G3bKY6J6BdnBcP0zDAlukO5gI ++9bZUTLeD27BM1NRMgsFJnc8k/UGcLR7aqZLnQXbhhdip24MwH1TWfuOPSxw +iyPPKOcNYIGMZGaAKwvNy/IMo0UHsTbL7aVcGAsNPFVOztFB6GzLpGxPYWHs +1Zqv9JeDIP4rCTNpZsEs5dGrduogDsRJC7ZNsfD7tkpVo+YQXPZHry9WZIO+ +wtzL1WUIBjPtalE72PAmDwqkpA5B9NBiK4oDGzolPBUh3hCeRIsfOBzMRnou +XUzAeBiBkQuHZxLZyIgbPPP8wXwWzQvYUs3Gw+uI1q0axgr1ibCzbDZaU/ol +Ly0bwdiDryuWL+PgllfIwXSbEQQ1S3KrtnMgvG98IvzTCJ4rmGt12HNwLq9/ +G//ECEb+MD/eDOQg8XThax+9UQyFkqVlEzj4lTh7/eb1UTiqnSgkKjn48eXI +hge5o/h9wqu6iMZBmkWknDplDKPJ9rXmslyIJ5rGbd8/hi7jff2OW7lQPDm4 ++uyjMYRf5Qz523IRP7g9fa5hDP6Gd/7N3eWiO/anm4LSOJh8FUqin7n4FVYU +vcd2HMvSFjirVnKRb9V9t/XTOE4IrJUronORQFgp3RoaR73RK3KF9CQy7ooT +tdLzDjw8vLZv2yRuU6KFJbdMIKFh/VjQ6UlYpbQltlpPYP/M96GdgZMwNPj4 +cu+NCbhmWNWcTZjE+vDot4zoCQhMZXSIVk3ig3pvuVbuvAPquFTPnoSepNqH +2e4JRPA67qnK80Cr/qNyhkKDcQOz8cUOHiLOWl231KDhbOyWHK/zPOj+3Gh6 +dw8NR5YZD9c+5KF6sa7qHicavuaMXrZL5cFlbCkrLJiGJd9C5txaeKjjqqV4 +xNHgf+5KducsD1m3PQtC511IDlKsDtaYgv/iDGgP03CUMRKVuH8Kj3rlfpwR +oSNb54SmlOcUFhXtlhLRpuOjDe9rx+spaHH6HwyY0rE/2EJW5fcUJlRcp885 +07HS+D/l+MEpyN5rX2v2gI6BpfHqnxZN4+QVj40NcXT4h/acE9g4jR7GyKLX +804oKPocybCZhja1QDdjgD7fH0Z66u9Mo3FpnaqfIAMbPNTsDn6Zhow/Vf+Z +BgMeBwoVdOumMZAV6H7MmIG/MYn6XrxprOMOuFqeYUDMe7+DstoMXJz5Dof5 +MSDo1mO8av8MnJ6mbA6IZCDdMC/ondcMmi7re33KYkBYKvKzf/QMDiTLfZxu +YcAySsA7o3AGodwv+RKc+ZZoa+l7njaDIteKNSbSTAxxGldeXDaLyJs72wzW +M8Gwzv5cRczCbWR8tZspE2vHdq7OcJ4Fy/ve6aTzTPT3VC4d/m/+36mj5VcA +ExuP8Abjc2YhnGVILX/LBEc+UqtyaBY6Zbcp4r+YkF25qXKD1BzeHJc9ptHE +hEh6rroe5uCotfq1FpMJtfs7SW5Oc4hxVTQXF2fhUTdVyfTZHMRXb54rX8VC +v9I+r6Dfc/AlL7yWbczCEU+bB9yhOfwqcot9bsOCnYu5tYgoiXA25LrqX2Oh +XvBizdrlJCK4U4z+98m8K4wB+txGEmFxfXrP01gWOGZKTvGmJCKsdekVyTwW +jBZLXh48QyJsotQrH847JB6Wri3kTSIUoqylPtNZoH9qO139mEQsH/NtZIqw +0dlBIa2KIRH77vhZmy5nY/pk0QWHLBIhSo98p7WFjVqloMvaNSQi/kFJvqI5 +G5s2Sli+6icRipPGTw6cZYOo7yuhzZKImy9mo8Z82HCvcnxXsYRMxOwRW/Ht +MRtNNw5wXmiTiRd33JMrYtgoeOY61LuDTHwoXh8vk8nG2d3PDzUeIxPStH2f +osrZeCD3tjfzEpmI65OwPdfNhs3lJTT5e2RCyMwu05nFRkKeY/vlaDLhFigr +/noBB2+nAkTd0smEcGqezowCZ763L5OllpOJX44v/b7ocOb3s1PYoo9MdDVF +05yNOOD7cpyqN0MmrAjHYv9DHKjuOq2YJsVHmMUL1LfZcaClwZnaqM1HbI2u +o2p6clATMnhffScfIXFKSrLzDgfruV7l0if5CLnB0L2XnnIgKH/kW4wnH6Ga +oBal/4GDzzrlcm9C+IjT71dY3vrOQZCoVVjUBz7CJnPO1+83B5Uaa8P4s/iI +JV0m4aLzjubUmJ3gr+UjfnoX0ntaOSg6ue2HyAgfUfE2YM5ykIMsTTF3DwqF ++Bo5anuBxZn3n1rWo0Ah+jRdDs6QufiYwv2euoFCNNyvkzQU40KmeUuugimF +eNyVQy+bd3jWPND5kQOFkM889DtzBRdf/cNox29QCKXc296u2lxIcVfF6YVT +iHMvtNztNnHx5eh7y7dJFKK07+zCF+BCdvvGBQ5FFILIuO6UsJuLYONvKRu7 +KURzWLhIhzkXl6/ZZljzKETMVJ3rjCUXN8/usRCT5Cf+8JKcr9hwUfps57oK +LX4i/lZb6qA9F8MxKdv/7eQnThWsf2F/notnES/Kpmz4iS958qsyL3KxX1f2 +58er/ETCUw+bEx5cOEYFt0Y85idC0ullyle5SLawvhv9mZ8oXjmR9sqHiw0Z +A4LDv/mJXsE42903uPAz0lu5o42fSAloSA+5xYWRVvat5Wx+om2A9lLFnwvh +u9Jmu8QFCDOD6CyB21wIOUScsdUUIIxEJjOOz+f/AWZ8DJY= + "]]}, + Annotation[#, "Charting`Private`Tag$13624#1"]& ]}, {}}, {{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], + Opacity[1.], LineBox[CompressedData[" +1:eJwt13k0FO73B/BZ7ENFZSuJtChKSVniPiiaVm0UhXwi0YKUGLKrlGinHVmz +hEJZnkxJ9n3fhsHYhrEvg/n2O+f31z33vO4573PuOfePq2Bz46QtiUAgEIkE +wv9VL1ef2gDzQ3oyBhVcHm8UspRPXdRRuQ9ZjtOlzvRRIN+ly3upRUCeYZlc +pvco4NU+ptTMKPjz30Cwnf4oXKFTBt98i4f34bKM43yjEKSi9Wf53lTopM1l +UugjYOeZezb1UzpsiJNPUA8YAUP9ZBfWyDeo8JlYu11/BKScV938pfwdqDda +71zksYFXzccVVc2FPzEiHAKdDZHiRpsvO2NICmb1u3izQUX//jUpKIBnWZRF +E302kFPjtcvz6HB4znDuMh8b9jwaO0e58BscBpTdTtCHYZLI2+fDKIQQBbMV +cQHDsJy128UroAikhHZtq9Qfhhhi7Ouy9cXgTFbYrkYYhsKvrUEnI0ug3Mjs +yCJ9CAwatQqtDcrgqabO8FufITj09HxRTFE5nHOxi4s3GILU3Lg1N69Vwn1z +6AniDYLxslc7iwOr4J6ZivD7vEHwDN63d9KoGu6/taYq+AyCtd607X/SNTAe +akBx0x2EB3pPp9mtNWBZ6tivyRsAp+ZSn8g3tRCxJiFZnT4A/EkyuyMc62Cf +7PNJgs8AdJZQqUmq9dBt/cdU22AA7BUe3yMTGoBzJlbbiNcPKRJO2L+iASqs +Xgs8zOsHbZPd5+RDGyE1rZ6t49MProWia3lWTTCdlm+KdfthIqgIzSs2g/78 +SEsKjwVqTHmrdd3NYGGmbtxIZ8Eat0exQWkt0G6zUaPGhwWHzVqPi9xsBZtM +Sz0tQxZsvaGnWLO/DU5kHyh2IbDgWK2/6TehdgCS6w1peh+o1dgFFPxtB551 +5uJ0QB/8FLJsFY/ogE3XY8XiDfrgxcO9z70sOsHkV7tmIV8fiEZL5EhKMYD5 +h977taAXko42bfG/y4D9nTke7d69cGNdqPFiBwPiYWGri0EvCFOqPCKMu+D2 +scHzzbwe+CNHsjJM6IL9MfKJSQU90LVI+kkU7gbmiiud2QE9UDcXotHt1A0D +W61fvjLogYE1Iuerqrth/NF7+26+Hqg/t+IVQ5sJl94F5/IKmLDetvcYfxQT +YujBs2d8mPD45eesvaQe6N9Rc1zakAm1TO7uRw498Oxw0ZZkAhN0zHT/Gynt +Af1UslwKvRs8+oRiXTR64WwB+6mvdzdIG0bbUt71gm7/ECdEtxuaCrc3pC32 +wkaznQ4ChG5wurTfwsOuD267KtmeyOuCrcqHn5j87YPiZkuakHcXGOas36+z +hQVDp5LdZ/W7QP2KD+VgGAtueSbM/eAxwEi32t9mjAUk9vDzgQIGqKkmrfhg +3g+zlI60wX97dB88I8sp6IdcYGYq6TKgp5xTd0xxAATdrFJe8Dphc/nqT5XB +A2BXemo8yKMTHo1vU7IcHoCS1IarJksdYNK7QoF4ZBBK83yzHgZ0wNCE964/ +GYPwYct9/quEDkjYwpgMXzUEtzfIBSsFtoOee0lpiNcQyNPEJPx4bTA9GnMq +rHMIym0eVWX5tYHobpOzcTAMMq7qVlZCbTD/LMCZETcMe7o1xj77t4KIbKLO +ZmE2nGX8+V4l2ArjOedkw1zYcEgnI/C1bwtobmu6JdbChlZcpNCw2AyRP439 +wrVHwLnOYXLArxm6nPWjD0SPQNOBKyVRi02wn6pyi8A/CobG0w3qvk0gMNL7 +q/LSKBxx+ZyxR7AJPqQoby4oG4XN8znPOvwaIeVQqhxDkgN8EhaJloKNMFO6 +LN3pMAcyg8789vf9d3cZ9QEU73++8U6K7FI9zG9fraaaygGzU8qVD/zrgZMV +0WvF5ACtQ2Pi3VIdzNS+vCmzagw+zVUdDfarg2RTLrQbjsE1ved3+oXq4Djr +k2S62xjwM9JjhwJqgUQpKhSLH4NocWtKkXAtRO7b7u3RNgYSH+1vGgfUwAni +MvHrYuMQmM8T/yhYA2kqZ7ocdcfhhQD2cQiphgXbrhwP53G487l5vFmoGs7u +6ru+ImocLjL83iiEVMFHUTWVrIZxkHW5Z7xMsApeHe3abC8yAUxz+3vNApXw +UYGy8EF7AsLHOoaNxCvgOdmjpf/6BEzoi55bEiiH13cuPsn+MAGn00132S0r +g+OnvwQ9rfznt8Y+p8mWAkd3f5AXeRLUJwxUjCVKIOqHieWo+iR4haXJhKwp +BnQgCrnYT4I9q0FMbsVfCNljcZH3ZhKePDkSFSZcBEM/HpmvLJuEQovO6K+r +/oDGUbKlJmEKIjq3JClSCiHMZVyrR20K3P1DFfRX/obGmE3rI22nYJaR9C5B +4BeUA32/fcQUZD2R/TG1VAD1Vxv0M4unwMMmxnBcqAD+xu2grl6agr/N5XHO +CxjKbhGVudun4cv2h1FWIvngk6htPGQ5DSJbB9pXKeaCPDv7xvDTfx7+dZPl +ih9QRU91cv01DTbGP6hCitlwNXaIJjY7DZZXVD2MRDIhm/O48Mu2GajYqT90 +eCEDVlckslosZuCkduiedPF0sPxOWSUZNgNqV1+sO8dNhey9vdJNP2egj+kT +sFw2CQrWbjr/iTMDL+KTHU8fiYfM5UkJvkqzUHTq27WCbZ8g90ViZe/pWVDy +3qnEOfERUpRHeOYPZkFAUXwo5FA4pJkkCpn9mAVZo/jp/LthcKmj/PiFwVlg +CwYIy371BZLHnkjXdXNwlLFT4sqUPqTFS5VKHJ+D2y8bt5Z99cRHenV5Bf5z +cEM21MRPPhS/ul/qTMuaA8E3poa7Sl/hifzq3BzWHPjHe07Ju3/A2mQ5CbG1 +82DvOp1t2ReNn7UwoPfIPLiv+kF3LI7Db6RFk4o85yHs8r7Dg+GfceglT8Wc +L/OgVMfMRjmp+LmhrbNG1zwYW1O+O5Sm4UC1ZyU/V3NB57+9QpHdGXhjwBYb +UyoX0jFdcgXnG25w2FPj4s6FVW0rD69rycI3rR4c+ZjMhd2BM87h7O9YgXX6 +w+kOLsDIx/y09hyc42m7ILNyAYR72hb3zORhPvf2VwNGC/BZZt9dD/JPbCVU +QUFuC3Ak8uqKhLmfOCaGHBz3eQGMb/S9CeGj44X6NMaLtgXQlDP8UbBIx+Rr +Rbceiy4Cx+24psT4Lzwtrrg6HC2CgExMqjT3N56nTj3a4rwIK1+3f78+XogH +QsWWl8QsgvtFqzyPpT/4/r6QylvNixBbH7Y+mv8v1vQMtI8XXoJi5RjJNdy/ +uK6YThnWXYJDv0kCVP4S7Jt4517m9SWg6xne/7NYgtvHXug/fL8EXFt1B+ux +UrzReJbfuWYJntVePfBlrgzf3VEb1U7iwXqFBxnHOeX418YJqsVeHoh9G5GN +4VbgLD+PHUwHHnTME50pxCqc5+LBHnvNA3XKktxVWhVOccLfxCt58DX/fdFm +QjVOI3qZZvP+efcXbYpnNTapwgRNWQLqjr+cSCXVYPla1ynp3QQ0dmCaKhlU +g2/L25nqHiGguZPT6SLEWvxr3H2fgx0BqZHfSJsH1eKI5SWPW+4S0KUNacbV +pDpc1HmUUPWSgBZkPsQ2eNbhwT2T0+VfCCg/YydpL7Eev2xsOLe8mIDu5mls +xp71WJPXqn+OSUDXHDoORpEa8K6WVdQtiwT0k235emVQA/669CBXezURUbpM +viURGrFKosK3MzuIKNCNVfYxsBGrfpiS+WpMRIteo8m5xCYcaLz47pUVEdWa +V+bb0Zpw7e3Ncf7uRNTccqrMkdeEE0dD1mY8IaK2Emp0uEczdhuVlBr6TETL +LHturye04DLNNi+730SkdZGzssqzBbtr1JMvtxFRkXYdQ2ymBa/9zlnmNP0v +P+t8YiytFRsHHQzKXUZCOp9MdS/PtGL7FrqfuDIJrd89Vebn1Ya7upzeDxmQ +0JXXjo9UiO2Yuctik7AFCaU6nVq9RGvHLSL26jtu/Zsf7Hy9ldiBzVXSksJD +SOhxbfvAXa8OvIu4/cC9GBKyfpZhf3GmAxMulNvcxSR0cVq15z2tE5uSEoaz +G0nIvFhGmW+mE0dtj+Nyx0ioQP6Mho0eAxsta1b+TSEjQSPh68I+DOyy1/h3 +5QYyOqR0++H+PAZ+zmpkMnXJSOm0xuZkHgND16cbOqZktKCTHJeg24UZF5/7 +vHEio2u33GJrfbpw04usLz7BZCT6WjXvN70Ln1spdTQhiow+336bTSV04yqp +iOstuWTU9enCrgWDblxpa7ZwrJ6MVj5sDDPw7cabLlMTDrLJyO28rqBJfje+ +OXqh9ZAgH3LxnuIGE5iYWpDiHibPh66Z29Wf02PiVbKK7zq0+NBCkLKqqS8T +791U3Jl2ig/lvW96K/OLiZm0pMd/HfmQ13U05kTowYFn0+msQD5UHzr/a8qg +B6fenbQ59J4PKV+5Rlvm24N3nnVQ3JXJh1JUyw6N5PXghGzSZcUqPlRm6BXO +5f3rbRqlTPv5UK84q+Stbi/+8Kzi6FMSP3q5M5rm6NOL1y0jccTX8CMjYWnx +ivxePKlzJU1SnR9tLLuTP8PtxT854zMbjvKjt4xtg8f0+vDq0exEV1t+JJ78 +al7Lsw9bu0Z2l3vzo3WlZx6cxH2YlJynlRTBjyzqeDt2EVlYdYfkYnnav7wX +Njkxeix8TPPJgdlSfnQlXqrQyJeFZ4MPztv28CPtm4EZNMzCc2HqFWcX+JGO +cud3twUW5sjpbz4tKYBq1R7qRer1Y6fJ4OGn2wWQA2c0ztKzH/edmNnTclAA +RRDjQqm4H2fYvPoYayOAZhapoVzCABbOu3k700MAnU6PuamvN4DPvHeprngu +gA5mn2r46jOAlYuTw7cmCyCt2z/kcvP/edxab0qhALKQF/MK5g5gN9GUwckO +AbRaNt08SHcQK+TQ6AozAqi0bLmcJG0QF3Ac5c3EBZFMNb5QmzeIB2+E91cq +CyK7kC3+SguD2DFqtqpcXxD17Pb6uU9rCHdZ0PTqLATRrKqSpx9tCDMstaXX +uQoikU7/tee/D+H6/jVuTo8F0dcuDZ3/Foaw4qadU8bxgiisstZ5p94wnkny +67T5KYgu39oa8ow2jOk/po8FtQiixqu1mzbkD2NJibit7HFBdGCtRozRwjAu +WPtwY7OIEGJm+uns1GJjm5QnMeVKQkg6WtGESmPjRw/qnvDrCqEjxjTqVDYb +Jw1pkY3MhJCU7qaCCi4bbyDWPqM4CyGJdXkmN3RH8Abr+LBVD4SQaJZoYbTH +CJYx+iixKVoIvYtMyeLPG8GvbtURaDlCaOt+4VDu/AimqGxzbaoXQsc1M3vW +6Y3ixhffBHJGhVCs1PGTwj6jWIXqyd8lKIwWUj5+upc3iksD3p/kKgij//// +8f8A5xYj/A== + "]]}, + Annotation[#, "Charting`Private`Tag$13657#1"]& ]}, {}}}, + MaxRecursion -> 0, + PlotPoints -> 257, + AspectRatio->1, + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 0}, + DisplayFunction->Identity, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->All, + ImageSize->512, + Method->{ + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, "ScalingFunctions" -> + None}, + PlotRange->Full, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.05], + Scaled[0.05]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + FontSize->12, + FontWeight->"Plain", + CellLabel-> + "11/28/23 03:52:52 \ +Out[399]=",ExpressionUUID->"6ad981a0-60d8-4ad7-bc69-c7a1d08db158"], + +Cell[BoxData[ + TagBox[ + TagBox[ + TagBox[GridBox[{ + { + TagBox[ + RowBox[{"{", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + InterpretationBox[ + StyleBox["\<\"0.000003141592653589793\"\>", + ShowStringCharacters->False], + 3.141592653589793*^-6, + AutoDelete->True], ",", + InterpretationBox[ + StyleBox["\<\"0.999998\"\>", + ShowStringCharacters->False], + 0.999998, + AutoDelete->True]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + InterpretationBox[ + StyleBox["\<\"3.14158951199714\"\>", + ShowStringCharacters->False], + 3.1415895119971395`, + AutoDelete->True], ",", + InterpretationBox[ + StyleBox["\<\"-0.999998\"\>", + ShowStringCharacters->False], + -0.999998, + AutoDelete->True]}], "}"}]}], "}"}], "}"}], + DecimalForm[#, 256]& ]}, + { + TagBox[ + RowBox[{"{", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + InterpretationBox[ + StyleBox["\<\"0.\"\>", + ShowStringCharacters->False], + 0., + AutoDelete->True], ",", + InterpretationBox[ + StyleBox["\<\"0.\"\>", + ShowStringCharacters->False], + 0., + AutoDelete->True]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + InterpretationBox[ + StyleBox["\<\"2.644715082726751\"\>", + ShowStringCharacters->False], + 2.644715082726751, + AutoDelete->True], ",", + InterpretationBox[ + StyleBox["\<\"1.531824801015901\"\>", + ShowStringCharacters->False], + 1.5318248010159012`, + AutoDelete->True]}], "}"}]}], "}"}], "}"}], + DecimalForm[#, 256]& ]} + }, + GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.5599999999999999]}, + Offset[0.27999999999999997`]}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}}], + Column], + Function[BoxForm`e$, + TableForm[BoxForm`e$]]], + DecimalForm[#, 256]& ]], "Output", + FontSize->12, + FontWeight->"Plain", + CellLabel-> + "11/28/23 03:52:52 \ +Out[400]//DecimalForm=",ExpressionUUID->"400fe22f-5fdd-42d7-a1bb-\ +2bf2e3b699ed"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"\:146b\:146d", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"MaxRecursion", "\[Rule]", "0"}], ",", + RowBox[{"PlotPoints", "\[Rule]", + RowBox[{"1", "+", + RowBox[{"2", "^", "0"}]}]}]}], "}"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"\:1513\:1515", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"MaxRecursion", "\[Rule]", "0"}], ",", + RowBox[{"PlotPoints", "\[Rule]", + RowBox[{"1", "+", + RowBox[{"2", "^", "8"}]}]}], ",", + RowBox[{"Ticks", "\[Rule]", + RowBox[{"{", + RowBox[{"Automatic", ",", "Automatic"}], "}"}]}], ",", + RowBox[{"ImageSize", "\[Rule]", "176"}], ",", + RowBox[{"PlotRange", "\[Rule]", "Full"}], ",", + RowBox[{"AspectRatio", "\[Rule]", "4"}]}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"\:1586\:1587", "=", + RowBox[{"{", + RowBox[{"X", ",", "0", ",", + RowBox[{"Pi", "/", + RowBox[{"(", "2.088976311546913772239187217936", ")"}]}]}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"\:a5f3", "=", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"(", + RowBox[{"Pi", "/", "2"}], ")"}], "-", + RowBox[{"X", "*", + RowBox[{"(", "2.088976311546913772239187217936", ")"}]}]}], ")"}], + "/", + RowBox[{"(", + RowBox[{"Pi", "/", "2"}], ")"}]}], "*", "1.4910479522822721"}], ")"}], + "*", + RowBox[{"(", "2.088976311546913772239187217936", ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{"Show", "[", " ", + RowBox[{ + RowBox[{"CurvaturePlot", "[", + RowBox[{ + RowBox[{"Evaluate", "[", "\:a5f3", "]"}], ",", + RowBox[{"Evaluate", "[", "\:1586\:1587", "]"}], ",", + RowBox[{"Evaluate", "[", "\:1513\:1515", "]"}]}], "]"}], " ", ",", + " ", + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"Evaluate", "[", "\:a5f3", "]"}], ",", + RowBox[{"Evaluate", "[", "\:1586\:1587", "]"}], ",", + RowBox[{"Evaluate", "[", "\:1513\:1515", "]"}]}], "]"}], " ", ",", + " ", + RowBox[{"Evaluate", "[", "\:1513\:1515", "]"}]}], " ", + "]"}], "\[IndentingNewLine]", + RowBox[{"TableForm", "[", + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Flatten", "[", + RowBox[{"DecimalForm", "[", + RowBox[{ + RowBox[{"N", "[", + RowBox[{ + RowBox[{"Cases", "[", + RowBox[{ + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"Evaluate", "[", "\:a5f3", "]"}], ",", + RowBox[{"Evaluate", "[", "\:1586\:1587", "]"}], ",", + RowBox[{"Evaluate", "[", "\:146b\:146d", "]"}]}], "]"}], ",", + RowBox[{ + RowBox[{"Line", "[", "X__", "]"}], "\[Rule]", "X"}], ",", + "Infinity"}], "]"}], ",", "1"}], "]"}], ",", "256"}], "]"}], "]"}], + "\[IndentingNewLine]", ",", "\[IndentingNewLine]", + RowBox[{"Flatten", "[", + RowBox[{"DecimalForm", "[", + RowBox[{ + RowBox[{"N", "[", + RowBox[{ + RowBox[{"Cases", "[", + RowBox[{ + RowBox[{"CurvaturePlot", "[", + RowBox[{ + RowBox[{"Evaluate", "[", "\:a5f3", "]"}], ",", + RowBox[{"Evaluate", "[", "\:1586\:1587", "]"}], ",", + RowBox[{"Evaluate", "[", "\:146b\:146d", "]"}]}], "]"}], ",", + RowBox[{ + RowBox[{"Line", "[", "X__", "]"}], "\[Rule]", "X"}], ",", + "Infinity"}], "]"}], ",", "1"}], "]"}], ",", "256"}], "]"}], + "]"}]}], "\[IndentingNewLine]", "}"}], "]"}]}], "Input", + FontFamily->"Segoe UI Emoji", + FontSize->12, + FontWeight->"Plain", + CellLabel-> + "11/28/23 06:21:12 \ +In[2805]:=",ExpressionUUID->"ac10700d-8814-4f2c-9e28-65b26f1985ed"], + +Cell[BoxData[ + GraphicsBox[{{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], + Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" +1:eJxdl2k0FXzU9pHIUBRlrFSi1C1NIsMVDTIkmZKQlAaplNuUWcqQMpQhUoZC +JZShKPNMxmPmOCPHwTmnJOFGj/ddz6dnf9nrt/b6773Wvq4P/73F4bapIw8X +Fxc3NxfX/8v/N3g89ILM5D2wQ5MRdIpLEL8yk+vcZEMRmuheOau4G++DdVfz +jUUjbIuHbvqiNvpZLzLE0uNRdyzwrfeUAUoj16h59iWDWTVko+tiAdamIfdv +7akQj8s0qwiww1v+mYSSn68R2xzwWlTIEXe//HxgzZOF+zdltc6/uIFdF4z3 +ew69A92EOsijeweCzff1+KY+wP+MK2vqhhtGf/BFul7Lw4Jb6nnWJy9YKVOc +w9o+YkOovuzYET/ciTvxtcksHwanqX0HvwciZys9sfBbAXbnd7oWeAXjDuNz +1HndIvgFXM+gPA3B6B7GrX3ln8EndYf4vDMcCVm09Ca5YjhBQdmU7wl6nmko ++L8sgW20xEFGbxRSPwwf4eL+hstWzX+602OQcdRBSc6/FBujrgUa5DyD+5DF +cZXpMvDIee9BfRzChNft2aZYAcs7D2qNOxJwbHv5iixKBSIsaRn8m5IQwuZ/ +WPakEquCfPZ8tEqGmPMOS6dDVbDioSs/THoF1bP7GIdZVRjwLWy9vi4VkoKH +U+piq1FUb5ekZZiG/TL3S/cZ1sBWVyp2KCsd6xevfOBdqMHNySbXl4JvYNws +6Fbzqhb83k7TrbYZiOgVShE0qYNfQQF/eG8mvOalt537VQe3VvmuEzpvkaQY +3KMTU4/aWfsjRtnvsO9B808rrQbEKBoKuCMbzZZThPzBBih8+uMnX/EBp4Oy +H808aMQ1YvUzPadc+Ds0aSVva4Lc31NUo4A8JKp/ucz81oTQl03ks4YfkTTn +6FJzsRnHlvorCLs+gfrnIENvvhnM/Ub7wZ2PcGMHD7GX32Hx0l/402Q+eIvM +TC5qteD1xfTNi70FCGov9E1tb4FjBNle8nMhLj4qrmm71Yq4tZRDpOwivH1K +C5XgbsNdI35XSuxnbIrbLL8nsg1LGpEl0b5f0Ec728wRa8fwg3e6932KsTU4 +L8Hbuh3KHOF7eTdLEE+KGVPJaIfN2TNhz92/ItCHMVfOaUddXYTiFr9v2NER +SXu/vwNqyUUBbPdSbFgrqR7v0wELk+PaiyFlKJ75Wztd3oEO0q3xjrByuAs4 +kPas6oSVrX3WTtMKBCW2CFgad0IySCbJcbgCJHGnA1KRndic1dX6zKESv4fl +n0V3dcJNp8zQ/FclLg3I65SKE6AneU6yxbsKXDotSVxmBNBDtHe28FRjw8e9 +WZ2xBPS/PjETFVcNnx/WCCIQwOfTYpC9pQb780caUtd3YZfQtbii4hoQRUW6 +2i268IWr8qS2SS2OD//IWhXdBSn9flQQa3GgMyX9UXsXaAKGPHaedYj8/FdE +WagbK9e6d9UK1ON2npzm6mPdiP0h96/B83rY60q8Wh+4zAEGXmKqDTghUHbi +anE3ZA5Y/7RobMCLcSm7ut/d2FAgL7x0vREz7yY0HvzTg11XpE2nuZrg/9dX +OP5SD0ZFS960xzbhyPD8hvjkHlgrVf48oNaMjdqbZOQIPdAcrBp/1d4MnaDa +QV/hXvSprRPPdf+OyH93qu461gt917irz6VbIMQrnBfu0YsUf/EPJwpa8E7j +8K60nF784VLULTzfCrMzRr6BlF6oWQhsrJltRd70Qsfguj7UfDiXeO1pG6TK +L1EJen1YMLcl/drYjpO5ejIlnn1YYkokjDq341CkUfqOD304+yZCtKOqHT5M +s89ryX1Yx7V6b6DEsi8sTu4XEenHi+Lb7xuvdCBs1dFuX51+yOe55ImXdqBe +hTMu7tIPS+W9O8dXdyKP3+a9cXI/NnA9cr9u2wnloto0eks/anZUa0/ndyL9 +gE5n7Xw/ZCfCQ6d4CThtstt2SmkAsk5E9gpbArwD/sD37ACaVlSM+OQSYBC4 +JbgyaADno63VIrm6cMvAnoaPA3il2cX+atUFjwqno1pDA5hv+uel5vsuzHF3 +Zl4RHIQ37XUikbcb/ZfzVE8dGoTofzKCYrbdkLe+b9dpPwjBP0MHwnO70cIs +eeb2eBB8CqmyigI9KFvcpdJQNIjz3ld8F2x6MOfLjpgbHoTIzNdPZrk9SNru +7qwlOAT+Y5nC3at6ofrmcprRviGImb/q97fphZC059xl2yE4nsyxtfrciyt8 +hAMOIUM4u7FXLEe0DxLdhHvHc4bQmnIufvPlPtzWq5va2TeENNnzjZVlfUh4 +pJ/F83cI20W3fPYU60exRuipnh1EHDW5+dnhdj9c18hmvDlDRLJIvGBZYz+m +qk83BngQEWzq/XTrpgH4L4l/NE0hYiFI0/ar1zJXSQhq1RHRKeHidbZtAD78 +szaaE0Rsu3lr0Wrb8h7saLEqYsMgZ4YZR/oN4mG5Je8ZtWGIyfWNlxMGMaa+ +xLxsPwymHaFku8oQ2jJiouNDhrG3y/LQZPgQ6pRbXFZlD4OL7Et7TRqC3/SZ +/FuEYdjpGn6L1iBiesumX7KzyyyoFe4cTYTAc7fgRRkSSi70BrwaIaJxHK69 +uiT4vGoh8eoMw0n0zRP+qyRItlWvNY0bhqvuyWsHnpDQe/3W7vap4WXdo+6V +fyIh6K5j1j59En4ml/M97iGB8NvPdjSZhBebc9deWCSB0nCusH6OhFItd4kW +UTK0minONYpklHxasdVFngziU+Kdw5ZkeKw6wyk5RMZcJtGk5z4Zvo803pfp +kzF7a0rdPoeM1Is/a0/ZkmHe1rvRd4gME9JFs4TbZBSbJy895KdAcPF4dmQg +GV0/s58W7KUg8ypHTiqWDBUqS/XuBQrEI/aG2WeSUcZ7KU8mnAIp3Q9p+EpG +golUnekXCs5yvSR2tpIhzFN85t0IBQMzSx7bKWRMBCTxs0SoeP59V5jkbzIe +uKT4F2sts/i6P83Lc9cJ78h2uUaFS8wst6IsBaLhq71y4qgQV7quoKVCwdOb +zo8FaqjQErXUFDtKAY3idPo0m4o5ZavwpLMUVGvX5G6QpeHfnLAWmhMF/i47 +gxtO0MDuEFVl+FKgKJmoFO9CQ8ndEKWsGAriE6f/UpJp4LUjMBUyKDB5PLEo +0UDDukr/aOevFBjfvpFd+5uG67lOq9zbKSivu0N4tJUOSf6ZaXU6Ba6be29q +G9Fx78uiYuccBSsOl6xz8KKDoa2tvW0NFZ2q8rfuptPBZeEvfnArFawP86NJ +3+lQiJ3+u0ONil36jEXlOTr2LxV9bDeiInqrcHTe1hGUFZYMO16iokKY9Sr2 +9AhOfh9n1XhR0X3/o+kT7xEY5PV6dTyhIisxnsfz9QjuOH2yGXxDRaiapuu3 +9hGIeHvURn6loqd4x/zU3Aha0yz0jAlUWKom/vFRGEXwp3pG/zgVPo6/IGE6 +it2SAXX83DTEv3d+m3FvFOnevTMmUjTUWkS1+WWMYqtY8kU1leV6ndP1U22j +IFJEGPTlvSoq8vxQ/jOKi6EiV8ou0OB59cv8qa0MMH2IUbs9aNh2+Mq7qwYM +kE69OdoTRcPSiEJSoRsDU57Oi8bvaKhYWbpKJIWBj0HcfmeqlnVoM1lxrZ6B +rlzrxrQhGo75XGpl/GRArLIRnss6LKWyJa9LjWFTqXPC2jV0FCj/1z6HMRwy +/cu7eicd89V9gunXx3AfFUYBunR8HTG8bxY1BrHTMRGOdnQIylvmiJaMYY0H +weGbJx2vhikDveQx5FrfXNETQ8fmibDp93xMFLooGLrn0mG2m/jOZw8T/4Wo +2t9rouPCG3s3OwsmNj8Xer1+jI54X4tVe/yYsO7bruC7cgRhXOrfuTOYyPij +x62+ZQRHpum3WU1MEIkn/FIxgkSfkKiCKSZO+K15bmkzgh8POrQTJMbxxHm1 +X4PnCB719/77QGMcoy9mfRfil/tJ+B067DAOTv73zTcLR3D0xviK9Q/HMdF6 +9MHH7hEYbTIgZWSP4/WBgNmvv0egkF04d7BzHId31bn+FBuF+eCG0N/T47hM +uvFQ9OAoVPO/F5hLTyAg19PrjPkoWopFNjM1J7CxpjjysfsozpyfkRR0mICo +tlJqeMIommODWNseTsBqn0t33JdRVLgUXvHPnIDp7I3IgsFRDC8FW59qnsCi +Cv9078IoWu+sn3SYnIC/RJbt240MKOs4qPkKTyLAVEgoTYeBiHohFlt5EuWp +Mk0RlxiQ/mjOV2Q8CR4Dx77cUAZeVkk1lrpM4halLSjkAwM2LTkzxdGTmK3F +Q812BtIdFvhl8iZxsOLeKswwoJqcUp/cPgmZfU/NxKXHUPL4/WQEe5lT70iH +aY2hmqLn5S/EgvUHJp/95TE0lvMtuSqxID+iEf47dFl3gt290RMsUGs13i3m +jSG7U/L+EUcW7hmcq/zSM4Z1MSem5QJZ4D4aWi2wMIYb+blXVrxgQfhl6RhJ +nol7OtyC776w8KddxNLMkIlATWrbeCcLSj3d0ufdmGBXyqR1slnQCQ31XnjJ +hH6p+ViWABtmhvpXttcxsb+ixmbPVjbsFJq6pn8wsbKn7O1BTTa4XkpGHpEa +x6airpEZMzZukG7OrdEZx9WC0KWvTmxUyFxqeuo8DssY2bK+IDYCKuQS/WLH +saRNsm9IYIOy4R+Z3VXLvpjve8jOZWPN9xs3bNjjIE4r7FtRx8YuqnHGkMQE +jgX6Hl45wIbQgrnuP8cnoBcWHLCWw0asQINR1e0JrLwUpiLJw8EEQVCp+vkE +jNSNPBXFOegyVW5JqZ9Y/qdvEhNX5KDyVMvxnKllH4RMvpdQ42B+Tb506pZJ +xNU5vCHoc/DaqP7651OT+Pcv5VzhOQ7CxNy3KXlNwmUDt0XateX39NnBsKxJ +7Psj0yjhyUH75cNvZ7smwaIJNnU+4MAurivLeiULFdIvWtlPOXBmWcyLHWTB +LSUtYimFg4uQlGu8yIL6gbv67tnL9fn28+4xLMSWJPHIfOGgRNlLQ7yChf8C +bUTUqzi4KlFh/WuSheBMK4+bzRyU+6ufbd7IRmLnbuWkLg4ep12rDTRk49vO +IqWrQxy8MRZJ2+vLBkflwi9uOgeGvH6/JHPYOLZirXbSOAe/uKIOtQ6yYctr +ZD7P4SBq0ycfr9UcaGRGMH9McyA9+6hgTIMDQfWWhMpZDioy8yf1b3GwPZz2 +fvE/Dr6vPri25RUH4Zfqw7DEgfDP0ZCVrRwYL6hmPPzLwT///+r/gTX/m/8H +eyMafQ== + "]]}, + Annotation[#, "Charting`Private`Tag$123711#1"]& ]}, {}}, {{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], + Opacity[1.], LineBox[CompressedData[" +1:eJwtV2k01P//HcyMqWxFm+xCZIvkm+31KRSilLRYWlTaUCHt+yJEUkhKUUnR +JhTS+xPZt6yDbGMMM1lmn2GQX/9z/o/uued1H9wn99zX1Q44se2QNIFAkJIi +EP4PrXRC0g1t1zps2WnkPmeEgpUFV+a8Xn4Gbm43j1YtpmAkwuknLep3wG19 +X7puJAUzHsx4jf25D/6+Vq5pOyiY69gaJ9OsZLhK63kkZ0DB5ALj7HMHnsLq +XWaloXxZbHVjRlJgZzpYSQwuuJXJYla6/XZo9iVU3q2WV70ni31w/ex0YHEW +HLlb4tLjK4uJthRUNk++hZ1fdikvMJbFlBSWnYtVfQ/U5idfHCbI2HQbtXnO +jY/wcumdke5KMmasMJYSyv0EV+vLK0MekbENOpYThCufYexUzqWJg/+4/nwV +ITcPstbZlPFXkzEzslalws0CEEidGhgikLHtjZNGDQpfYYuZ5E19PQnbd+e4 +O/9yIYgjjaT000jYDnUFkoNCMZg3yVhEHCNhFhkuF8avf4Mvzjd51jYkbEI6 +787PRd+h8e27u1wSCZO4/9mAvUAgumjYmNZMxE45+tHio3E4ft49vSSDiPk0 +/D6m4vUDTh5Z4tEaQsTWbDVocVMohbJrMXf8HIjYR5cO5dbyUtCjbA3qUCBi +mu+1tTh3y2DJFWTo/lsGuzbPeh7a8BN8tNsiVmXLYB3tgz+0lMrBKO/BU4Uz +Mlj9ognPtrZykMt7GdTnKIPlb6Z+t4urgLV9frXaKjJYgmDzxJodlTAhKZHx +65fGAhISlAaVqoC8vqJW9qM01vTSVmqwsgq0RVp2r69KY6v1LpVExFVDw+Pl +tx08pLGYp9G7vm2sgcpjjXs3qktj7TfM0UOlWvBaqavswpLCVAIyiFp1tWC8 +WGNH0VcpjJt3TufvjTpYePL4Oq0oKaz0NGveiU31EFu4n3zZWwqLNNVrTSA1 +gJfprI+HnhSGeU8edm1sgOwHzlEqXAL2iGPRui2xEZQCe/c2lhAw7ron92QN +fkHFAY2KqVgCFr9+RNUs5hfM3SZL1vIhYIbwfOFH5i94ejy5Ld+QgM0XRV70 +cWqCS4P8x5cFs8Cn27o2vG4CevNch2uxs9BY730rldgMg4tPEg6bzMKrcVsD +i6PNIOtgEGFX/hdqqrdb8WqbwcXhht3knr/Aet6SO29FCyxPNNFJmZ0B6Q8a +SeMxLaBTb1i84tEMLCxsZBqxWqDYNzws1XoGdCTu6eabWyGiVqlvpmEaLgun +y/d+agXPhdtSNx6ZhtbRBT5M+Tb4mU+LCKdMw/JlQi+b0DbwtS4j3X8+BSHO +9iWMxja4q8j/HA9TIGv0NaFoZTv8/lGZe6ZfAqnOs/W77rXDJu/xg5vPSWCF +f85Zz9F22AkH1lCWSuBDtl7U/K1UiJxrVPzp4yTczmsiTX+mQsuHxPj1bpOw +o5DOBaUOKMrecqvgzwRoC384eoR3QNkdXxPVGxPAMCaT8po64PC3fME+nQmY +0Lhk4WTSCUY1eXL3ysRAdsHLn8Z3gkIhqSPHTwzywUerPMc6Ifbvy9J30yJQ +rO41r9/aBWZ6SfvSHopgrnYR5cWHLgjKaFMPtRTBdssq94x5v6FysnClSasQ +Ui5miI6d+A2OFpxRapAQqD8GFGPrfoPvj/D6Q3JCUHJgx51d1Q2Jqzbtp78Q +wKNw0/OxD7th7EKFs4u9AJa+bmmd4nRDv1q8a3wPHxKVnBMtvXtAmJZNqDrN +h7kRauU/c3vg1ZmF1AEVPjQk6u+/otALYUbL/w7m8yB2dDpAJrQXDny/2dG+ +mQfOsLa1v6EX2FmWzdnjXJioWpcdadkHqeGrr5y8zQWJ3KXxnUl9EKjadVFN +iwtCd430a7w+aFjUkJKNc0BEK/ezWdkP3gLlY0a7ORCS+uF5/+5+GPP0/LyE +ywb53NzHqZH9cCq41DLbkg2Gg6kbbQv7wda9Q1U9cBzWq/yXEzncD2s7ojHv +zDHo2FtU9nUpDS7r0+qC2kfh+Bt2QpILDUTarcluKqOg7+mwJCqCBq+blIhi +7xHYsyDMc18WDZ45ctuvR/6BB80+2GA7DWoCQpitFSxwfr+C7j5nAOyc7u0j +i5igOaxoV2MzAMOdk+fIhkwQqr91FxwZgAY1qea6o8PgctJISSZ1AMTaOfGh +j4fgEe4f8716ALa38mN7OxigFPL2W5x4AMZtbhkvXcYAknXPc0dDOtQeKFpl +6TEI4plSu1c76dC39u5p5Vg6BPbHxYxE0cGmWUqr5dsAzGiGx28opkO1xo/j ++zk0iPeX89jMokPiEnVR/ioapBdEf7NZNggvWtWGWQH98F7+G73FdRCaLoSa +VDn2wdqrLSVbLw7CQDNv94X0HhjZQtw8+G4QghPI1bXkbniszkzU7R6EvTle ++VmRXVBBzo3fqMCAXjdmiBOzA9hjpo5L7BlQ71jwKuggFcCiPHvmGANMXi3W +tGC2gXzCusrKJwxQjsEPFWxqBSr75GOHWgacqM0wrKxpBs2jt7UezzDALb6u +KMmwCeIg32+u2RC4X1BWl9VqBIlysqeB/xC0RBPQpG4d0GX2ilfcG4JDLy5O +HR2ugmpupze1ZAjaTh634NPKod0u5NjjkSGwVrw2XjBSCvtfMFetVx8G9+BN +0ZyjCJiyiz4lbRoGht5541fHCmEs0pDeeGkYkjgVMt5/cmGcxKnLzxkGkhvv +WfDHN7CY1hj0sWsYto7RU9YkpEIJNRHdk2PCVfbXW6NiX9hXp1CzzJYJnBXJ +Vqd8ktDV7uDIu8FMmKm9Y2Zjl4WqXIck858xYXpvG3VFZC6Sz5+v71TPBHsO +4YX09a+o0VaX6DvLhMAQhbW0me8oFh9O0TBlgc+6ZWMVt0pRWEY5Q+TLgrTz +d74GXCpH7c+iBj/HsqDibSDran4VWpNKSFX/xgIt/WbN2wW1SDnXnxg0zoIT +j94Xy080oCX6rbqNmn+AoWZx1GRhE1J9NCPp9fgDxg+8zlQmNKMUPflbLVf+ +3W+afM0wb0ULPzVWhL//A9ZqDRe4uW1IYdfZYkn/H5gyNQi95k1Fpn42gYkL +RmBD56heOKcDbdrzoaobGwFtw3N+XSe6EOPC3F5K2AicEZSUX1PsRheTl2TT +0v/l6lD1pycPepCtEmba2DgCv4PX+aoq9aEzLz0OpkuNAm3ia2rQjn70cY3C +Ni3zUciMXV1LWkxDgYN5vBsBo6C5T+4hGqYhR3a46/SDUdh7+XHx27wBpD4x +vFO7dBSOsmNeNobRUbjauqUrBaOwMq1Tf6HjIKpy8Eig6YxB4bPoYw+JDOT0 +PfRHjucYzBvjyjmXMpD97ssv/K6PgcbZfJdF8UPIkmdnX/hxDETe3c7ansMo +M5MWJRkYg5hTe7vdtZgI+/rsrqfKOAx0PGp6M8pE1EqljV7rx0H2gdUdLJuF +RniH82zCx6E/2rRDfO4Pml4W2tmQMQ7RbdEsps0Iit4X8Glj2ziw/B0fSuaN +Ikw6CNrIbFCxyH1q3zmK+OkrbilasWHu7ptHih6NIV3/2kumh9lQUJJbt/PI +OPJcpG0qSWSD6WknnqkRG700jn/YVcaGwLN3I6yZbHR6D+PdMyEbPvktcTP3 +5SCdyghEWcCBBP0nhfuLOahqNFhq9UoObFVsOP1Cl4ukf5xKYzlyQKDuS5uJ +4iIblS3JQh8OTLalmJxmcdGq089Y/DAO0HJuV0x78pC+d3WySwwHjEz0sPRP +PPSBPvvcIIMD21s0ju5R4iPRlTcyk0Uc8HtU0bvyDB/ZpRqXajVzoIasZbWI +ykfYT50umxEOLH5o0KEEAuQYxPPIluZCRU2/74rnAtRZ2qCWuZQLuwyEcbtm +BcjUQMP5gQUXajK+KKQECtG1uRur21258LRy5QlRhRA9mBrIlDvAhS3zNqsd +NBOhtakxfXUXuMAIrz37J1GEegrlw+kJXOiJlOTHCkUIG5IOGM3mwpdCKqzz +F6P0+03Zm8q4IHgY+Hb+dzFKGsnxtOrigkqS50+J2gRy85raPJ/PBeUCppHg +xgSaXqv7xnEuD8KvWITOHZxAwabf/Y7o8iDvsBF5lfskOtV06PhiOx5QT19y +PZk7icL5Q21qXjzwM7keXDdfgqx0f6eoBPEAl7Hq/e+cBAmbsgoDbvAg5kaK +WWmnBIXFsSxePOGBpU5Ove/6KXRrco1syL+e/Ta0dJnCmymUSPe3vlfHg9fb +17r2UKbRwd9iPIPxzw+N/PPbyWm0atvxTLkZHrxYfFuzsGkaJZwZGSL86+0v +YfuMGsxnUO7b3qvDxnzIGmde4yfPoF9+2RHLnfgwvUC3yGpiBr1TGyn38ueD +5Y55cGffX6QRY31SPoIPrmhzGL/iL4o96x+hHsuH8ibHOxf0Z1FxmKhNM5MP +WjLDLOW4WTQ8duT+2RI+9PTYGlePz6LXi5ivfVv5AGxhXK0+Adfz6Fq8aowP +M3+Xv7fxIeAZ0pl0P6IATtBz7P+LJuA95YOUC+oC8KTG8O2/E/DFlJko9moB +0J+VLW0eJ+CMCe3A8U0CODKVlRyqIYWfEhem9h0UgE8gw3bZNil8OnylicFF +Acy+Ou+57boU7kxQWrI/UQAqwsCY+wVSuI6N1B699wJQpRI0elhS+AyvdhbK +BfArlq/1Zak0nlw4Z8q9VwBiL3u3FA9p3GxWa9tHoQCaxvvocy5L4758J2La +v78qVc287fY7aXyD8LfiZT0htO6mjs6j/dNHuJ/JsxMCfpwarjlfBqcSzf/r +8RaCWqyprq2zDL5gvdb2+BAhHF5naXjgrAzu/pdVm3JLCIdq4p8tzZLBnar0 +nyamCaEpwNmu47cMbjvfvmY4Xwicxm2uenJEvIKyb9vPOiFI/5J/f9mWiCsq +iCwfMIRwvU9zbX8IEd+ZcOjU12khfC6LXv0rjYj7L3eh/Foogh1f3HdUNRPx +ACvilL2JCN5cOczcLEPCJYI6lzVOIhjtMmumWZDwraUUjpa/CNKdtwxcDCTh +mQoa/P3hIiDeqgzITCLhRUcytyTGiqCzJWlORw0JDzhlK+uVKYLn+cqURX9J +OGXyjerhEhEsCWJFDJiQ8eC4mMjgdhFIWSyS+7KfjP/K2OBZMyaClLrU+aoJ +ZLzykEL4J6IY9CQNIVE/yPjFNa7caHUxaFrv5hGEZNz8tn9N0Wox1LrYDZH1 +ZPEM+uB0t4cYGEcjCAt3y+JZ7LPRUYFi4KjvCTW7K4u/Oz8UdveSGD5kpm3v +KJbFTypXFlxLEkOPwxr/KLYsbrHymnf9OzF8z9Zvr9Kk4Lme7z3mVYpBbkXI +aaXtFLxiOfN5S58Y3K0PBB2MpOAdZ6a28ERicFj2qWXDFwp+eVL3L1txAv5/ +/+P/Aw60Nek= + "]]}, + Annotation[#, "Charting`Private`Tag$123744#1"]& ]}, {}}}, + MaxRecursion -> 0, + PlotPoints -> 257, + AspectRatio->4, + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 0}, + DisplayFunction->Identity, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->All, + ImageSize->176, + Method->{ + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, "ScalingFunctions" -> + None}, + PlotRange->Full, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.05], + Scaled[0.05]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + FontSize->12, + CellLabel-> + "11/28/23 06:21:12 \ +Out[2809]=",ExpressionUUID->"e2e63318-abe3-4707-ab3f-c9e90cd69beb"], + +Cell[BoxData[ + TagBox[ + TagBox[GridBox[{ + { + TagBox[ + RowBox[{"{", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + InterpretationBox[ + StyleBox["\<\"0.00000150389099015843\"\>", + ShowStringCharacters->False], + 1.50389099015843*^-6, + AutoDelete->True], ",", + InterpretationBox[ + StyleBox["\<\"3.114757622170496\"\>", + ShowStringCharacters->False], + 3.1147576221704965`, + AutoDelete->True]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + InterpretationBox[ + StyleBox["\<\"1.50388948626744\"\>", + ShowStringCharacters->False], + 1.50388948626744, + AutoDelete->True], ",", + InterpretationBox[ + StyleBox["\<\"-3.114757622170496\"\>", + ShowStringCharacters->False], + -3.1147576221704965`, + AutoDelete->True]}], "}"}]}], "}"}], "}"}], + DecimalForm[#, 256]& ]}, + { + TagBox[ + RowBox[{"{", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + InterpretationBox[ + StyleBox["\<\"0.\"\>", + ShowStringCharacters->False], + 0., + AutoDelete->True], ",", + InterpretationBox[ + StyleBox["\<\"0.\"\>", + ShowStringCharacters->False], + 0., + AutoDelete->True]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + InterpretationBox[ + StyleBox["\<\"1.00000000000001\"\>", + ShowStringCharacters->False], + 1.00000000000001, + AutoDelete->True], ",", + InterpretationBox[ + StyleBox["\<\"1.000000000000003\"\>", + ShowStringCharacters->False], + 1.000000000000003, + AutoDelete->True]}], "}"}]}], "}"}], "}"}], + DecimalForm[#, 256]& ]} + }, + GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.5599999999999999]}, + Offset[0.27999999999999997`]}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}}], + Column], + Function[BoxForm`e$, + TableForm[BoxForm`e$]]]], "Output", + FontSize->12, + CellLabel-> + "11/28/23 06:21:12 \ +Out[2810]//TableForm=",ExpressionUUID->"c9202dfa-1aff-4a2a-9312-e9e6c0e1c6a8"] +}, Open ]] +}, +WindowSize->{1680, 984}, +WindowMargins->{{-4, Automatic}, {Automatic, -4}}, +FrontEndVersion->"12.2 for Microsoft Windows (64-bit) (December 12, 2020)", +StyleDefinitions->Notebook[{ + Cell[ + StyleData[All], TextAlignment -> Center, FontFamily -> "Segoe UI Emoji", + FontSize -> 12, FontWeight -> "Normal", FontSlant -> "Plain", + FontTracking -> "Plain", + FontVariations -> {"StrikeThrough" -> False, "Underline" -> False}]}, + Visible -> False, FrontEndVersion -> + "12.2 for Microsoft Windows (64-bit) (December 12, 2020)", StyleDefinitions -> + "PrivateStylesheetFormatting.nb"], +ExpressionUUID->"76429be3-0840-4e9e-952e-ad7486bc4b7c" +] +(* End of Notebook Content *) + +(* Internal cache information *) +(*CellTagsOutline +CellTagsIndex->{} +*) +(*CellTagsIndex +CellTagsIndex->{} +*) +(*NotebookFileOutline +Notebook[{ +Cell[558, 20, 6342, 189, 355, "Input",ExpressionUUID->"49e27e26-aae4-40b5-bafd-eccd5a46860c"], +Cell[6903, 211, 5839, 165, 214, "Input",ExpressionUUID->"9b9d9fed-f6b7-4b00-b1f1-f2b74b7eebba"], +Cell[12745, 378, 1858, 51, 179, "Input",ExpressionUUID->"1d82449f-143c-48c0-b41d-e1be57059f1b"], +Cell[CellGroupData[{ +Cell[14628, 433, 4152, 115, 349, "Input",ExpressionUUID->"148f4d9e-62d6-414f-9bd8-79eeac336b4b"], +Cell[18783, 550, 12353, 224, 543, "Output",ExpressionUUID->"6ad981a0-60d8-4ad7-bc69-c7a1d08db158"], +Cell[31139, 776, 2642, 82, 62, "Output",ExpressionUUID->"400fe22f-5fdd-42d7-a1bb-2bf2e3b699ed"] +}, Open ]], +Cell[CellGroupData[{ +Cell[33818, 863, 3779, 105, 216, "Input",ExpressionUUID->"ac10700d-8814-4f2c-9e28-65b26f1985ed"], +Cell[37600, 970, 12294, 223, 700, "Output",ExpressionUUID->"e2e63318-abe3-4707-ab3f-c9e90cd69beb"], +Cell[49897, 1195, 2539, 78, 62, "Output",ExpressionUUID->"c9202dfa-1aff-4a2a-9312-e9e6c0e1c6a8"] +}, Open ]] +} +] +*) +