-
0
2
2
-
1
0
7
- a61aec93-d774-48cf-8598-6718e7650341
- Shaded
- 1
-
127;201;201;201
-
127;176;176;176
- 633740217794324378
- XHG.⠀⠀⠀⠀◯⠀ᗱᗴᙁ✤ᴥᑎ✤⠀◯⠀ᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕ⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀ᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴ⠀◯⠀✤ᑎᴥ✤ᙁᗱᗴ⠀◯⠀⠀⠀⠀.GHX
- 0
-
-51
-176
- 1.27364814
- 0
- 0
- 17
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
- A VB.NET scriptable component
- f8463a6a-537d-44ae-a102-2cbf6773c33a
- DotNET VB Script (LEGACY)
- Turtle
- 0
- Dim i As Integer
Dim dir As New On3dVector(1, 0, 0)
Dim pos As New On3dVector(0, 0, 0)
Dim axis As New On3dVector(0, 0, 1)
Dim pnts As New List(Of On3dVector)
pnts.Add(pos)
For i = 0 To Forward.Count() - 1
Dim P As New On3dVector
dir.Rotate(Left(i), axis)
P = dir * Forward(i) + pnts(i)
pnts.Add(P)
Next
Points = pnts
-
1006
154
115
44
-
1067
176
- 1
- 1
- 2
- Script Variable Forward
- Script Variable Left
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- true
- true
- Forward
- Left
- true
- true
- 2
- Print, Reflect and Error streams
- Output parameter Points
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- true
- true
- Output
- Points
- false
- false
- 1
- false
- Script Variable Forward
- ce1f978e-a982-441e-8781-42beeed9349f
- Forward
- Forward
- true
- 1
- true
- 11d6ae9c-db85-41da-a72e-197fbac37970
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
1008
156
44
20
-
1031.5
166
- 1
- false
- Script Variable Left
- 57e2c9a0-b37d-4c4b-9e2b-b0e17a521d43
- Left
- Left
- true
- 1
- true
- 34b6e5a6-a1ba-4214-b996-0fa3a932cd38
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
1008
176
44
20
-
1031.5
186
- Print, Reflect and Error streams
- 33dd288d-3d90-4a29-8ab3-866accaf2be0
- Output
- out
- false
- 0
-
1082
156
37
20
-
1100.5
166
- Output parameter Points
- a7101779-445c-4899-9b31-ce0a4803f08d
- Points
- Points
- false
- 0
-
1082
176
37
20
-
1100.5
186
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- 3091dae8-d5dc-4fac-a891-c5a5c7118bd1
- Series
- Series
-
356
212
64
64
-
387
244
- First number in the series
- bfe8e6e2-eddc-4584-8ce4-005a112f16fc
- Start
- S
- false
- 0
-
358
214
14
20
-
366.5
224
- 1
- 1
- {0}
- 0
- Step size for each successive number
- 3ef6124c-d6dc-426b-a979-0ad9d65d59da
- Step
- N
- false
- b98b460b-b34c-4630-a9e6-46b9f7e61199
- 1
-
358
234
14
20
-
366.5
244
- 1
- 1
- {0}
- 1
- Number of values in the series
- 41382c6d-efca-4f46-89a4-f4a83cdfe7f4
- Count
- C
- false
- e74e53ff-b630-4451-9456-73dd0e08e175
- 1
-
358
254
14
20
-
366.5
264
- 1
- 1
- {0}
- 500
- 1
- Series of numbers
- 4a521433-15f9-4232-bbd6-a4193c7aaecc
- Series
- S
- false
- 0
-
402
214
16
60
-
410
244
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
- Duplicate data a predefined number of times.
- b15849e1-cdad-4c2e-becd-859af856d608
- Duplicate Data
- Dup
-
358
134
65
64
-
389
166
- 1
- Data to duplicate
- 907f9087-e15f-4411-b460-551d6e02779d
- Data
- D
- false
- 3ed422ef-592e-4146-bc60-bd3416d61dbd
- 1
-
360
136
14
20
-
368.5
146
- Number of duplicates
- 4af8efc9-5fa2-429a-bc4a-bc67bfcdce44
- Number
- N
- false
- e74e53ff-b630-4451-9456-73dd0e08e175
- 1
-
360
156
14
20
-
368.5
166
- 1
- 1
- {0}
- 500
- Retain list order
- 96c94299-014f-4d47-a2bf-e758b61acfb5
- Order
- O
- false
- 0
-
360
176
14
20
-
368.5
186
- 1
- 1
- {0}
- true
- 1
- Duplicated data
- 11d6ae9c-db85-41da-a72e-197fbac37970
- Data
- D
- false
- 0
-
404
136
17
60
-
412.5
166
- f5ea9d41-f062-487e-8dbf-7666ca53fbcd
- Interpolate
- Create an interpolated curve through a set of points.
- 6264624f-4741-4ad5-b390-ffeaf96b650b
- Interpolate
- IntCrv
-
1151
155
65
64
-
1182
187
- 1
- Interpolation points
- 9fa61b9f-3d6a-4de9-b3cf-891575df3642
- Vertices
- V
- false
- a7101779-445c-4899-9b31-ce0a4803f08d
- 1
-
1153
157
14
20
-
1161.5
167
- Curve degree
- 45884fa8-c111-46db-9464-f554212d0881
- Degree
- D
- false
- 0
-
1153
177
14
20
-
1161.5
187
- 1
- 1
- {0}
- 3
- Periodic curve
- 39a08521-0941-45d2-b08b-e760b22d1cfd
- Periodic
- P
- false
- 0
-
1153
197
14
20
-
1161.5
207
- 1
- 1
- {0}
- false
- Resulting nurbs curve
- fbac77a5-b15a-4a25-8bf0-69012470613a
- Curve
- C
- false
- 0
-
1197
157
17
20
-
1205.5
167
- Curve length
- 9e8512d8-16fc-432e-836f-b8d89a934da4
- Length
- L
- false
- 0
-
1197
177
17
20
-
1205.5
187
- Curve domain
- 0b6cb763-0a93-4ae2-96a2-fdcd7eb5bc57
- Domain
- D
- false
- 0
-
1197
197
17
20
-
1205.5
207
- bc984576-7aa6-491f-a91d-e444c33675a7
- Graph Mapper
- Represents a numeric mapping function
Sine wave distribution
- 12324cf9-85ea-4ccf-8d27-ca279182d95e
- Graph Mapper
- Graph
- false
- 4a521433-15f9-4232-bbd6-a4193c7aaecc
- 1
-
531
194
100
100
-
531.7399
194.8842
- false
- 0
- 0.0625
- 0
- 0.0625
- 7d54f77a-a866-49ed-95eb-b1f9fb25a1f1
- Sine
- 0
- 0.28596219420433044
- 0
- 1
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
- Numeric slider for single values
- 3ed422ef-592e-4146-bc60-bd3416d61dbd
- Number Slider
- Forward
- false
- 0
-
97
166
170
20
-
97.3
166.6
- 4
- 1
- 0
- 1
- 0
- 0
- 1
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
- Numeric slider for single values
- b98b460b-b34c-4630-a9e6-46b9f7e61199
- Number Slider
- Left
- false
- 0
-
119
264
150
20
-
119.5
264.96
- 6
- 1
- 0
- 0.003906
- 0
- 0
- 0.000711
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
- Numeric slider for single values
- e74e53ff-b630-4451-9456-73dd0e08e175
- Number Slider
- Number Slider
- false
- 0
-
76
214
198
20
-
76.52596
214.57
- 3
- 1
- 1
- 1000
- 0
- 0
- 256
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- (O_EZIS_O_SIZE_O^O_REWOP_O_POWER_O-abs(X-1)^O_REWOP_O_POWER_O)^(1/O_REWOP_TOOR_O_ROOT_POWER_O)
- 8763ca8a-5eda-4215-b1b6-6bf027e56362
- Expression
- Expression
-
422
332
1010
84
-
1013
374
- 4
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 6f4478b4-8c39-4912-b676-863469bfc82c
- Variable u
- X
- true
- 4a521433-15f9-4232-bbd6-a4193c7aaecc
- 1
-
424
334
188
20
-
519.5
344
- Expression variable
- c0769443-461d-4126-a64c-6247b39f222a
- Variable O_EZIS_O_SIZE_O
- O_EZIS_O_SIZE_O
- true
- 85dbb32d-f196-4d16-97b1-99cd389fad94
- 1
-
424
354
188
20
-
519.5
364
- Expression variable
- 2148e6a1-a572-410c-b12c-b29e37906877
- Variable O_REWOP_TOOR_O_ROOT_POWER_O
- O_REWOP_TOOR_O_ROOT_POWER_O
- true
- 7ea2aa6e-1723-4ee7-bc68-38b1f5deba9c
- 1
-
424
374
188
20
-
519.5
384
- Expression variable
- 37614104-e34b-4a95-b9e4-2f987743f51d
- Variable O_REWOP_O_POWER_O
- O_REWOP_O_POWER_O
- true
- ede642c9-e41e-43f5-a264-51551af1dc77
- 1
-
424
394
188
20
-
519.5
404
- Result of expression
- 660e66b2-db6b-4f9a-8b80-838ce371dd29
- Result
- R
- false
- 0
-
1414
334
16
80
-
1422
374
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
- Filters a collection of input streams
- f485a3d6-fb5f-4a4e-8821-7994b356eb8e
- Stream Filter
- Stream Filter
-
892
232
113
64
-
958
264
- 3
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Index of Gate stream
- 847151af-072a-4900-879d-0fe8241f89ca
- Gate
- Gate
- false
- 157984a7-9801-4f81-8fee-03a54f140df5
- 1
-
894
234
49
20
-
920
244
- 1
- 1
- {0}
- 0
- 2
- Input stream at index 0
- 883bcf08-8a23-46f2-949b-114847055ec4
- false
- Stream 0
- Stream 0
- true
- 12324cf9-85ea-4ccf-8d27-ca279182d95e
- 1
-
894
254
49
20
-
920
264
- 2
- Input stream at index 1
- da7a30e8-0b2e-44d7-b1f2-d66b32e249dd
- false
- Stream 1
- Stream 1
- true
- 660e66b2-db6b-4f9a-8b80-838ce371dd29
- 1
-
894
274
49
20
-
920
284
- 2
- Filtered stream
- 34b6e5a6-a1ba-4214-b996-0fa3a932cd38
- false
- Stream
- S(0)
- false
- 0
-
973
234
30
60
-
988
264
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
- Numeric slider for single values
- 157984a7-9801-4f81-8fee-03a54f140df5
- Number Slider
- Number Slider
- false
- 0
-
673
206
198
20
-
673.4595
206.6984
- 3
- 1
- 1
- 1
- 0
- 0
- 0
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
- Numeric slider for single values
- 85dbb32d-f196-4d16-97b1-99cd389fad94
- Number Slider
- Number Slider
- false
- 0
-
71
354
198
20
-
71.3008
354.9987
- 6
- 1
- 0
- 2
- 0
- 0
- 1
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 7ea2aa6e-1723-4ee7-bc68-38b1f5deba9c
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 10
- 2.00
-
59
381
250
20
-
59.10295
381.6854
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- ede642c9-e41e-43f5-a264-51551af1dc77
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 10
- 2.00
-
77
415
250
20
-
77.16033
415.3006
- 7376fe41-74ec-497e-b367-1ffe5072608b
- Curvature Graph
- Draws Rhino Curvature Graphs.
- 5cbda035-78a6-49e1-bc63-6d8b78998d5b
- Curvature Graph
- Curvature Graph
-
418
447
71
64
-
475
479
- Curve for Curvature graph display
- true
- a0ca1a0e-cbeb-422d-97ac-6bb51c73d82b
- Curve
- Curve
- false
- fbac77a5-b15a-4a25-8bf0-69012470613a
- 1
-
420
449
40
20
-
441.5
459
- Sampling density of the Graph
- 82986a14-b7f4-46a2-923a-d5796d52aa6c
- Density
- Density
- false
- 2ed8c8dd-941d-4a82-94b4-f7caa47c54dc
- 1
-
420
469
40
20
-
441.5
479
- 1
- 1
- {0}
- 5
- Scale of graph
- 059120bb-9495-4b12-b0f3-464a2d863378
- Scale
- Scale
- false
- 2c06d309-f709-40d2-8d29-6efcd7715943
- 1
-
420
489
40
20
-
441.5
499
- 1
- 1
- {0}
- 105
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
- Numeric slider for single values
- 2c06d309-f709-40d2-8d29-6efcd7715943
- Number Slider
- Number Slider
- false
- 0
-
109
483
198
20
-
109.0637
483.0717
- 3
- 1
- 1
- 200
- 0
- 0
- 106
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
- Numeric slider for single values
- 2ed8c8dd-941d-4a82-94b4-f7caa47c54dc
- Number Slider
- Number Slider
- false
- 0
-
94
463
198
20
-
94.93105
463.8649
- 3
- 1
- 1
- 10
- 1
- 0
- 1
-
iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACa4SURBVHhe7d3pcxXXmT/wVM38GVM1VZP38yaVqvGbX6ri1NiV2I5TmYmTipfYeMMLmMVY7ALMIgQCCa2gFSGxm10sZjFmMwixmR3MbrBNnBi8xklmfh/dx+m59wotSLKNZJ+61TrdfbrVfb7Pfp5z+gc/+L70gx743+9Ln+2Br8jP879xJ5U333xz7969tosXLy4oKBg7duyYMWN+9rOfzZ0794MPPti4cWNVVdXbb7996dKl8+2XixcvnjhxYuXKle5zJ71cbz4L4O44CLdv3w68zZs3z5w5c/DgwcOHD582bRrAIDFv3jy7Fy5cOHfu3JkzZyCkkiB4+cqVd69eTQf0ewh7k1i6eK89e/bs3Llz1qxZzz777MSJE1esWLF7926I2u7YsUNl1apVx48fD5zeeeeds2fPvvvuu9fee+/9Dz883NKye+tWBwNXFdtjx459z4Vd7PyeNoPQvn37Fi1a9MILL4wePbqpqckuOJP7btu2DcBr166FCuTgZIsX6xcsqK6snPTUU/f98IeDHnjACeBpY6scOXJk3bp1sHd/d+t/JUOQbt26xU+XEWJberW4oeLOhGRbqB2Eln84fvz45557bsGCBVnguWTXrl0HDhxYunTp0KFD6b9ly5aRro7Qi//90EMP3Hvv//vnfx784IM73ngDA2pcXl7uKoIUy7pk/vz5aGJNfywZEG7YsBHBMh9e71aBAZy2Zpa4k+ObNm1av349VkgghByegJYjRUVFzzzzTF5engZYLR1mIlRpaGiYPn36PffcU1ZWRhfCA6e6/Pr16/c/8MAP/+3f7v3Xf/33f/qnGUOHXr56lfEyZ84c/5QgPXXqlPpPfvITQD7fH0sGhMyI5uZj27Ztv3nzxp9T5aPOyp/+9KdocuPGDTrpww8/RPjpJe7z/vvv//Wvf9WnuAHrEGtvvfUWCDET2EJyrl69GpxZbOrIkiVLXnrppSFDhgAP0sOGDSMk8ZZy9OhR/6u4uDhx6u75l39hprJCm5ubbRWC1LXa+F+kdP8rGRAOGjSypmbFsmUrWXxeXgedPHnSVl2vKcludJ9dHRS9qQ2ewC74mLjCJZSWyuHDh3EnG0RLDZ544olJkyZNnToVZnpWIQ+BB9R0tRci10F2De6sra3FmlAHzPLly/fv3x8oQsszOH7//ff/x113/fy++5Y2Njrl2WydtUUEbCKXkK7B0P2sZECYmzuzrGxhQ8PikydPeP9Dhw4BINl2vKtlC4Nw925CDBjkoaLuOCDZhHpQXz/++OM5OTklJSVQcVzLMDSyFCT8NH711VfxHytGXYOoBLN6PKiAylPZsmtgefr06ROnTvmPSdHMJVBv+y96an3dMddnQFhS0jBzZlVlZd3x48cwze0W/aU32xaSE1RMR3YKtXTw4EHdGk5Ce/0AJAKW9gJ8wp0qhKGD/hGaKC0thXSgCDNPGwSXXhzEvt8hCGfMmJOXVzh7dpF3Zvv1VtHvr732GpXmtpDrlHzxpRDMwIEDMXE6zNiO4BWpIR49W2FhIUMJnEikvQJOROABvitcSFZt374tnIpeL7q7Paciy/6kOAcMGECbZuGNnyorKwcNGgRLhVyFXNTbKxqgg16HEPcrHiC9xNtlHex4l4fV88jfnRVgC7bjGlZXV+NF75+ObujCxsZGzUhjHEb7dly00a3cpF7kQv9dhJYk35Aq69e3/hQHER8Hiu8UB5NfNGtqSp356nhrxU386SGKdxaEVCDvXlwtnMW2xdvizoULFxKkJHOnRTONXdLDbkp/En7vmjVrL158d+/eln37Drz11v7du/cdPnxsxoyC3/72dytWrGFgOZg62xJtNNi//1BzM8Ij9o+0tBxW2b//4OXL1wBJPt0y4tGpxokGdxCEYBNS4SMyWzrocad4KV2PPWjci/jpsk2bNm7Zsq25+dDq1Wt4UBDl72C+KVOmzJ49u65uPlS2bt0WbNfUtEEzwmX+/Prm5pZNmzY/+uhjDz/8yJYtW5uaNm7fvnvXrj1NTes6gLDTh78jICQhiU0cQwUSLAyQDgjQ23qrrpeeEPgtH+P11zdt3LiZNySqwDu9du09gQsVUvHy5SsQFbylgznKFy5cdITB9cUXf9m3r1lfL1mylG23cuWq5ctfu3nzk9df9+pveuX2HtJx7jU/KvxsFQShJHX7WdGZ0NNf9VEXGfl2m7V9XPjxvnn9BCNtl6UC0+8POXbWV+/RhYCn6MLtPl6n7QkADLR1686LFy8ZIPnjHz8UxWppOcCl+eyzzzz8qVOnr1//oyggCD/55FMo3rz58RtvvPnZZ1/k5IwUKTl+/OSoUaPPn7/U1CT0iF9vDaGOokRXrVrb0nJs82ajNP7DabQhsLFrV8vhwzzgU3YzIKSNkZIt619vkhLQvmWJ+IuiTRBIF4veFyxNjAsVARdRN/ixU9qaMFkdGnooFSTYt2ePcYzdHf72bN++w+v0LiNu3vz6unW63ZDANoNaJ06ctE3FjFpU9AcWMN4FSD9nbXmtZO+lS1eHDXv55s1Pb9z4ZPToMXv27F23rpWh2TrtRf8J7erqxtLSxv/6r4cHDBCGnPL88yOGDRv37LPc47FPP/3ShAkFGRDu3//24cMnW1qOGvbZuXPXjRsfGQdQhJKT8kdUlyqGC5CZuOjly5dJkvQ2t6zHrURTCUwocgMoP/CzX7iAuDBCMB0UAnbFClJo7eXL19966+CBA4acLp8+fbH93yUNiKwO2LpTnmvbAIQIGCkC8uDBI2yWnTv3PPPMwJYWEYa3a2vnDx8+4uTJMylbZn9zM3unmeVy4cLldes2TJz46scff37jxqf5+TOrq2ubmrY0NW3Cau1BSGiXlFSXljaMHTt98OBRIqCjRk2ZOHHWsGHjhw4d98ILr+Tnl2dACGHtZs+urql5jX6+cuWKqJUisBJbESxdjxUIehyTspVbiyBIhLgMCySN1dN3XWL32rVrQmtPPvmkEfmRI0eiJZFr4pEL2HFHa0OCPfPM03Pn1q5du2Po0DG5ufkrV25bunRjB7/ly19vbFz05pu3GOHqBnhxCUm+cuWa117z1sc/+uiTP//54z17midNmvzll/9z/fqfT548m5Mz6ubNzz744E/vv/+hI++9h+xvfPLJFyUl5QsWNN68+bmrli1bMWHCpPXrt61Zs37jxo4gzM8vLilpLC9fVFGxxLasbFFp6ULb8vLFFRWLncqAEH4vvTRmzpz5xcX1q1evBUYSKWUORxALA+EYXnb4cDHAxDlzKiJbmkXjtrvuBkV3+PnPfy4w/etf/1oWRV1dnVt1yoLMVMLqyScHLF26pqGhaeLEAr+GhnXz569q71dXt7K+fnV9PT+yNyHctm3rggWLi4tr33hD1PDihQtXKyqqZsyY/e67148eRcEXBw0asm/foRMnDDufPn78rIMnT8ofeDcnZ/TatRvPnr10+vT5LVu2P/XUM/PmNdbXL8Vq7Yl6T15WNm/y5IJp0wrb+2VACFg4Fxc3zJhRuXz5CjyXBDyT8D+oaC+jBDF2gbeinh4a7WAXs85w98pKNhu2q6+vN2TBlxdRg2LHDji6mTXLy8xetGhDQ8Paxsb/ww9UCxasjV+CaEA4f35Dr0NYU9NAgm3duuPUKcrk2rhxExsalp479y41dOnS+6NHj1u5sol4R7HHjp05cuQkOJ168cUhzc2H1Y8ePe3Uww8/OnlyUU3Nwg4gDOtSgw5+GRD+A+eiiRPzS0rKmHMYLquEvdP2eBeP4CR3CJ4L+RmDQUYkyFWP27FHsWPHdu88fz7A1oCqtnaFX6qysqiocvbs8pKSOrv19WuARx04jgt7MTSTEqXbamsXgnDLFhAaUr4wePCwgPPw4RMXL75XUFCEdSAKvKNHzwDPqc2btw8Z8vLp0xdSoEL+6uOPDyD2cCHl2rHB9ZWf0M6fDAjZP6nfBlslbM5eL/og64nBhsMMHGJHYla9rV50ieOUb1HR3BRgtRUVC6url0Nr3rwlFEZu7oSiolnTpxc6W1hYQxekIFxBAxlgJjnQjTv0sLAABDZLSubl51eIGYBw794DL7ww+PBhwujsoUPHycmGhiX4EkgQxW0OvvPO5fr6hbm5k86du0KuOn7p0nujRo0dMGDQvHn1OAwdpz9YMqKpZ2KsJsbvEH2CY6LLMyDM8pc7Br/bZ29pR7ibXjYu/9RTT/FYEu8wBhS9EhsK9w8c+OyMGcVVVct/85tHBw4chh3nzKkdNWpyff18wnnmTEK6GISDB49keRu+1mDkyLGDBr1okMvNa2pqNCO0JTN2r8iFfP755yZNml5QMI9reP78FY7Byy/nAOnEibNHjjDZ6Lk3Bw8eCsuUID3tIJs9P39WSUkFCI8fb5WiVGNt7YLBg0cXFlaw0TyMO4sMK4wD+kWiiQQDrh0DnpQKLw5fsTxawwFvvhkj2IC/I6IzCaiIkb3KRzS2wCbylF7AwOGIESPYroaLH3nk4UWLVlLY48bljxw5GZajRuUWFRVOmTKZmnzllbH5+WXV1a8Zu2Z8V1YumzdvaW1t/V13/cePfvSju+6666GHHnIfNpRt9wo58cAD9zc2Lps6tdjQy/nzV8vLqyZPzjtzphWwAweOEpK8soEDX9i7l2V3ws9BzcC8bNmqlBQ9cfCgjILT27btnDBh5pIlq3/zm/8WlvJUkV9iazRGEWt8MVWiIqXWWXknr7zyCgNC8oNkIvb8nQUhLPEcfSlNCUPJ4PbQKkLVHBhEN3163rhxU4BUVbUMfnzesWMnrF27iss8bNiY/Py5YCsvX0i0VlYuhbRmQ4eOqK2tQcgGGuVwyARAxV0PsWa1JC3KykpHjsydMaMCF1679qE0kpqaBSA8frzVZpEfiSOHDRuxYQPX6xxdCFRn8eWePdIMzoQu1Nju9OmlubnTCA+PFGMdtriNnxZpK+wGQ60RrBcAwanCyAZK8/PzQSi9HXHfWRDqIBB6E87+j3/8Y/iRrjFsG2qAOigpqZIdUlHBT+IhNY4e/WpOzpjhw8dIOUgdafArK2tM/RrmzKER6/fvbwY/z4cgdWcCORJEulE8A5VaVbXg1VcLN23ahr1gw1Vgufi1tIiNnOBXTJw4ubKy9uTJcxQhntuzp+X5519kiB44oMHxFLOeFOPmF1VUzKfsQs9FiZyVJOs11GFox0RfqkefwP7WMdJu67lOL+zAoY7HwivUIZXgHXJzc8kT1Bd53MQszZ+XV4S9WBPTp9NujcyWgoLqoqL5kCspWZD1c5zTxhTwf6lVdE0SouiuJA+0/6jbystrQMgKBdJzz70IGJAwZ+CHyWhB+E2ZkseiARteXL16PUHKWNXAkWi8a9c+EKLITi3SjoP+GRCG8Rkhlwh+9mJxw/biuREpJT9J/FGjRpFd4SPawo/SogYmT55cUVHBlMjNzcNwYkuTJhUCDITJT1Ai6zd7di37PiBEwsKwICSdsrLlbjNSs620tGrixNmbN5tqs4u3B6T9+2XuCECLbxyH0KpV6196adjJk+cPHpTbd664uOLVV/PeeeeKBpgymPWNN3bn5s6YM6eyJxB68gwIhYx37Ni1atVqoozYQfVJEVeLIyq6Oz3RIdlVSb8kq+5sRHPC84vxEN2qGXQnTJhgEgVBZzfdjQsBQpNJBAUwc6a6emFhYd3w4bnjx88AXlFRXQe/goKq0tK5JFVAyG9hC7T1am4XwpKSSoFKacyLFi0fP34S717AFnul7JRWnwFULBoHmS1nz17hY9TVNdKIGgAYzBqztZldRUXzehNCQfGdOw9u2PCGaOenn34qli0qLZFXmu/Vq1fFIVScUhd7U0TLRHAUUxcMngl837x5Myt5OC6PjGFbGaQxWQKEkGPi08lhvCTJhm07FNPgSAGdqVOnMFtwIdhmz67p9JefP2/OnPLwrEhRihArZ2WL3yZ+ra59cXGlIYKUPUISVlB+wYUQYtFQdVx4Anb16g2sG5iBk2vPlsF/hw612qgpXbgHFRYWzu1NCB97bOCsWTXl5QsQPlTEOUU1RdT0XWqwcTW+IQy5JgynSPlVwVghl3BPktjJBolrVcTbbIXigK0HH3zwQaYm8ch6Zhw74g4xlbDj3kzFbnYKGE6eXDp1allXfrm5hUVFpZRssKD/6OE7/Uedgbptzpy548fPpMxY+GwZ+g820NI3vLjly1dt2rRV4HvmzNnr17++aBGreHjKtVsvuu2suvEWYSOeTy9DOGtWFROusLBaZ8kGjszM2AKMIYd7yMMQmInYjKB25COlp+Fm1aErgEFg8my4fQgi2C4i5p312lfnGW4LFy6GCu3ShV95cXE56zxSAlhJjPJO4+mdPonoTFFRRW5uAYX3/PODUpx3IiCEzZEjx+ijCxcuoX9++blzF86fvygJw3iTAUJ9YHzKYOeBA4fOnHln7Ni8mTPLepMLaY6ZM6uJiLVr14EkUWbQ0gv6OhRhKL9k27EKTL8JZmVEhnrDst0biU2l/TOyu/oLCRHucLf/aTquASEfdNo0nmuucAzByPfh7a1a1STy7wENrMEMtZ09K1izVYL73r3NZgFB0SDiqVNn5dGcPn0GhPn5JTKButcV8VQZ5gzjrby8cs6cUgGeLqaIdZpDlt5AxIgc6+2gcydsg+1E1zj1Mdu0UybrtAEHVc70Y489+5//ec/atRu4BxQbv8IQBC68dOnKBx+0jot/9NFNcKF2ocEPPzQx6Dqr4P33P/DTwBFD/AJM06cXG6/rNQgjporAg1q74fl2eklPnrXTzm3bILLxn376aQZtz0Vo3F8XDR2a88QTTz7xxIDx46fn5c2ZNm3O1KmFeXnF48YJtZQaM6HheAsFBWU5OblTp84uLq5ypLBwnh8T1NbZVGh+lrPmdPakW+6s6Ew3QOrgklCxL7/8Ml8zgju9cn8QCkH/7nd/+MMfnpk0aRbfLn7jx+dz1W3HjZvuJ1UidaS1gXocTH6pI/lOVVbWhNva7dKfIcR2Yj3czYiodbuP2l7IqmJF857XrJET2M0fg46p1XPa6rcQEqHy8FmhnJbeEqHpWCaRzB5Wek5Y/RNC3cqI4L2MGzeORdpbIrTn3f113KF/QojtTA8WiyGpOs7k+Dr69Bu+Zz+EEGYC2bwIPujXIUK/YYQ6/Xf9E0LjugzRSFDotAv6eoP+BmEq43tFDHp8F1gwOzrT1+nR8zNEzRAz3M/o799WTAJWv+LCyBngyMsLSkaUHGGdxvJFd1rpFZ7pbxCGLyGcFvOE4Qc2I5R3CHgxfyEKqpICIhxtIZCelH4FIcx4gTJujEvoo1hqyDCZ4ei///3vX3yr5S9/+YvZh19++eXnn3+ubi0s0W6PZ56QqWE9Kf0NwjBnJF4aUrYwjQFCw7wSDGQgmEH3LRaDF5IcZCFDq3WoIrVrVByon/Ss9DcIMaJwqAHySJP56U9/ysGQEaLjUtNuv7Vipp8hcVQlhyF4zpA4LpSYEjMvu10yIEwP93U6bNS9Br2iwDu9SawGxy+kYyTmSBjQg98aejFlO7WAsW3kGQWEFLZ8oh7KhuyJ2oL6X1MRMRGb77T3e7EBW0Yf+ac6q+MlvDtY3TvrVNCBg4GKklBGHIyzST1pE0diarS6Cqb0eLFMZE9KBoSxJMr69ZtQMWKRrRQ5ajFf95YlVuftoEFyyn2k4RigCXO/06ThnjcIN1G+ls4KJuhh0fWxDnEsDu6N5PPFOtKOOxtdESBFz2igomWsNR1ngx2lthjWp6Tf61nJgNCk0xUrtixb1kTyuDVjScKSR4x1sghuqaRJ7gwKigYqiEg9nkQla5eUb10++9o1FQksZu58M6Fnop45ypzRWTpOV/akBFRsJekjAOCoSCzG4hwYiR3m1Hl3/47olqvnP5r8QCVrzEkl2JzlUZj0AzaXg1OvojDrEkjq7EnJgFASolkKZlnqYtQWK0FG4mFM1LCN/O5I9wZnzBhF75HoFqls6pHWluyqeDEk6Q3vvvtuAUw9+3UXU0buvfde00cgB4DIfe1hMQYpwRyJywkSw0OOdmPijjvHwZhNZ/KKoUqJsqLtEpE8A7xNNNC36Mnz4AcQIusgfRVUHrTOXnUEunHcFlcEJyhRh7q6UxkQSrE1XWHWrHmE2KlTrYvJQjHJJYy1LdNTCxlXXGlYxqKgGrdXYo1XLKtbjaTLPo3E1K+1IDVdLAMfPYVe6EmJpR+8oLshayBFhm28uIqugIr+ARLDUMX7Op6cJcl0FCzdytYuCKEVssG1WBN+eB3nuBaHIHp3iAV83QdsIfncPBjXI2VN1C6dNq1MZtzSpcuow1jFrwP7IoYCIiOt0xUAtYEcOiV40+fv9HDUu4PL/Rf/i5zAFpF7Hgt4REnfbVuPI1mXxKq1SnR6MLTdqMSR9LPJqeRsLAcS9/Fs6IDCikkKsUw59tJGyhaQ2A2oxClb9KED4UcIR2PNIjiQAeGiRYv9GhsXStXt4tz5rjczT05j/J2sGZze+zEXudcD0/oI3YBQ/yJkkMTaKXqQVIie1aHqYZvEYtGxqHWsFhHYhxbIukPSJrgklgLXPpoForHktV0V2zil7m5YDRi4EPVDwta/Jjz9X4LNWRDi1LCr4ae7QtLiXXVYkqhOZUC4enWrQ0G4oVzdbdtByWpwy93kYFRsAYnEkIiiEnUHY7frwwuRI+lNYp6+F4ZTrNpuN5mNJ8wmZKqDNDYZ2lb3WfKGojITWnxSuISwpckcpLFoKUaKmI6zKowRpgqDBR74gGJDZzraxGNtXEW1a0PnsVxc66Bpty503L9zPCaF2xKSiEkDDww/uHpOd6PMSM7wN6ALKpJTPVmiPryXcFfi1cIniZfKFqTtreQcafkxQcI/CCMlDJa2u9qkn43VZ5KkfRI/VjrXI66NGaDWqJGyXlpaq9NickXWHMmYHRk4BfGGWEYTOktPGWASjmG5WEvKPBuLZwjNqPzyl780BcB7sr90Lur231kf1svU0eARu4kudhBZAFj0GX7QsoA428SkOM28O8p2h5jTA0KJHc46EhTgmXEYayXIwj0tjOiebBm7gjLujETi0wugwvcxxxNXJYAlrkjWVwaS3fh4SoAaX8pRz+BC85JuWT7++GNBBCyPzcludVI4jsRiXrHrrCPpZ7N2wwfyqkFxIa/iiHmsc+cuHjFiVH7+dAZ6rAaHL1mAOlTX6At2kA6V0RRT7w0Kmp9uaAlI8IOiNsiciahPXQjgWCAa6roswknhJoIBTQR5BTmH+QBjp/AZOGM5WuAhO8dj2m2QDtp10BFUGJOB4BH0EZwUM0wUxKee3EHjmC3kklAcwkbp0YMkMtCVaEM0zoCwPe8kzCS0HDPQBIdcaRu7EXGI3QgdJWeTXQ8adYLea3vPmDYVHhs7l9lUUFBZV9dw332/4HKQfnBSMBOQwBarA6BicIKHhxO5/ZDIEqExszk0LjzQvp6KlY3CYNaDSSXqToWkibPqjkRHJw2iWWyTg0mb5J6uRS6JPMsy1J0Kk959ImU+C8KuIJfVJgPCDjzfYOEINISBHs5WV3aZaemNI1aAVD1KGBRewxeGTDR54YWXqqoqUW6ough1Zqk6RwKertg+sMQ0bhUrkd1Wib6O6VoBm3osdRVT7+KecTzZJmdjday4PKtluM6R14OsexgzyoCwK0viL168hOmBD6KxXR5I2u7izLOaLYvFU1KNW88q9Ac9oRKnGDqlpWWvvDJxwYKFokBJ+K0b8VL9ArbQmliQmRd5UOHDdbGELg+rRO/TglaYoHGJdDEXYoCsVnEwBDLNpw0jhdymHV3lBdW1URJdSNKqRxgEtB7Vg5FhwR7dLhkQdt1D6HlLUZ2sm7CHA7xuIBfrKYQLwaBgcNKayq9+9StCmIoKhdT1ApvAQAWdGUY2PxkwvpPCllFhN7FU0UQYSkCFCrMF0raOmAbLViL51dGrlmjCg1EBIPQ8XpNNR7/0JOzn2nYHm74+jzuxNnvuF8IbbHgOEzB2Im7HHGUN6jsdHd9B1EyXRXS3i0WPR9IGb4F55SrdTYDjOfWYKuyeEXqMj8yhSG8EHmQUq4vEGlYh+Z2NfItYpgAxuaGzvQxh975357HSL+zGrpeJpJK4j7+iPbHcWHscqQfjS0FwYvJYSQFsyNzlYeDovrAGOZ0hu7ooRZNm6aHERNslDlJ4VqHqkrhjOF0hJ6Mk9bhb8hhh7nLew8HoScngwo59+VueRVwcAIGXOBu7iUfveIe7r8UCR7xj/gMJo31ETQWQFy5ckmWzeGdHQs+hdF6EVWn4FXw4IJF4tGCgHs1i+J4AhG6EDkIT3wkl/CWigvfZw5IBITcuouA8vI7zACKUHmH1qNhGEFZRSXbTzybHk7NEOXsMSUYcKyxsXwFduNAqJTUlJa3KJmEpYgdxeGGiEttxz3VEiKxADmuG+GI40EDkKowpJNoxtZ7OV2sYh/T71ovnEUYgpXtYsnUhA8w4cjjs7RXOu46OwY4Y9YgxwhgHCZxiNwZQ0s8mu9BCBwRLErfU+xRDykU7NH/+kqqqxbxyDiJ3kO1AWtJzPHrIsQlJXdAmKwDhP7sOsia0hFzEX0AbZk5M4+uXJQNCOpaflx6gay/Sg2lwTwR7wq2JMbD03Qj/ADuOxzaGtpNd/AdCMjDiy9qk4vjHrdJZVlZv6Up4QEXMhbDFSYnlGU4VSEJgEkpglrgmqGZYNT58kcjVbpi4feiSDAh1YjiznZZoRsqFPo9IqW164DR2Q4EnYdWs3XB+iUcWTTK6JgYye3bF6NHTGOSuDZAiopgYOMFetgCOoWN6hXUQPNc9z6QPwZb+qBkQVlfX3ObPWvpxSVTi7//ttu6k7Wad/ap1TQ1viS+Fe5L75OUJELcOC9wSjIjxc8tkp9GLIqLhzgdrftdKBoRZX1L+xnYDp/R/h98E0W6JHz4jVAM87Bts912DrV0uvPM7Av8ZjvCZC7EuGjQxZ9p7ckRAL96uv4uY+pAo7kvZ3ACL6bsAw3ydElyEV7ib8aFBmpL5HvWOC7tJy76CYl+CkDnK6xcwE5GBX/j4+DIZWooRwfAcNCBgOX9sYPMWTEkxH4W/ZErK3/72N7NSFBULPjqVVcyfwbtQ7JRK7oQGfQlC/QUtIxucRYvM8h9EnFmksdwYdGMNeWIz8rI4+IaFOS0cWeBB1FmuThjSimhnRDDSk6l5q9weYZ0+yYXtZKG1Kganvg7rphtDE5EsAx62rtC2IXvpxQaH4arEuvcqBop/8YtfCK1FWoqAA4BF+wwpcD94/UYPlEhLyRo3N4YXEZM+gWIGF+oX+kIayz8+adf68TsLPBvUU/FKsYR7UrmlRmn9SEmqWccl2vhH3UAxoqAxRpHIUt0ds3ndNpQZ7mS4cnZjWpO4AfeU9ykuEbviGOn4QTrYkbeKp/sEfroiA8I9ew4YWjE8sm+f9MXWjxz6wqH4iWnrseIviWQrSCaIGgsGd7vErfSmyEsMnCaZZ+mZE4l661TrhAqM9lGgy+sQckomVCSAxQyHiBxF2EjAT2yPQEYBII8AZp9AMQNC38mRk//II8/4Tt6TTw56+unB1k+qrl5RV7dE0IsKQdqoOGbPRipmZEVGYmTs6oj03TgbQyqRqJlkVMasEULP6CgLxdh3pLgb9eatG09gf2JTXUmMp7NdkmmYbshkxT/DnIFEZElH4k+SzedI4Oq4ukQst3r5lVeG5ORMmT49Rur7BH7ZXGi18hEjJo4c+aoFhy2V6TuHPu3lgyvl5XUCauiaLonEr+Rrd0l2SXolPeskGXWLUFxSRNoig82A+O9//3spaIKcsFToNoPj1JuBJADHJ1IMOzhoCN5YPBUYX++BtOHAWF+a/xApz8GLIIG9C/1f8BuQQn9hrzoVYhxRgtAArKXaXxo+fKQ1Ex94oGjoUPOOmLJ9lAvrfNIwNTPGNx9aK8XFC3wkuqCg9ctVaBPzpXKwMmZWpANzW3U31KcgjHGGJJE3JGoERePLLngRVJGkK64macVABLCBCtr0D/gE6uBHB8wZI02YDB6ucgnbRwwPuSACUT12DfkJXSlyE3JyJvz0p77js99w/KFDvf752E4VQbcbZAhSC7/7Lln8Uh9lMWJntW5LoJZSKvHhCokkTBsV3dq2xKSnMGTaa5NcpYEBvzA9onFWkDNdvfHrgRomTJITHDkNXp4j4SYx/SpyULGmzBdzYpAdXkcWyIvwQDdoRfwdcWBcECKIEaNGjbn77o11de9cu2byi08yRpJjt7v1m7wwA0KvFt8Ysp69D3tKCjFVw0ekfEGKUdPcjAvfNoHUmG5Ybm2HhY0Rho5B++rJR31vOYDsDpwwBpGtFQP0MsGox8OcCT0X+YbpDnvb3klHOj0fJzKXHIkE+JhalXw2M6ZAcBNF5p98+OGZv/3t0ZQ61wbGiKBP6sIXX8wZMmSMrzWXlrZ+k+jRR58dMOBFuYFPPTXI4KslbH0sUI4EO44tE+8fny6IGUCQQ+aIl6bBXpE5Yhf5x8yumCsU18YwfRS9xggEoQ+IEW6xCEtkZLsPyyI0U7j2SWpMDEJlYZze75FEGtnWkbcSCcGBU8AZg18mS+JlicBJCi9W7pNcOGLEhCFDxrJCfQvJVzLBmZPjo1aTfbwZuqlUSlMgF3h3HREBjiTzPEYKQRjjBt4fP+k+EthuJAhlNU7PEQKks+SeL9/RWEYhYl5EGDWJw25XUIZW45XLwDA+BWbdHRhHeDoy5yEdSaT+eyTyeh6iFajOBpFpHHRm9pFvFCQJS14hJmF9k/Kw2/8rQ5DGd5r9cEJMF/XNZp8pU3HQkcLC+WVl1ZHYHhTdtgSBh+BSSDPb9honx7Em2QU8HZ0+OymGDGFD1VFv/DZeB3PURCSmCosGzOkYq4NNYbtKInXDGHBWiEdqT7yGaeNCJOJsUGF6clvsgpB+7Xa3fpMXZk0RbfezzfGZX8u55+XNvK084Ehr60oBzy3HeBNVF+yVNcsp8mICYwYRqet/xReDsansG2fDC+I8BCqRwBkqNo6nFxD6jwzgvjKAnAFhx19u/sfZ1ghWr5dIqO1er7U1Z8IOwtCGFQnYmH+jxKyX9BLH0wu8IYqeuj7Z8Zvkubb/KwPCrADHN7/bu32BIOg8ZtHtZpDGuEfvPszXd7c+Nth0ux0BRVwY3mrXCxnTV2yZ7ADb7XZQn2jfPVnSJ14tHrKfc2EfQqLbj5oBoZ3vS1/sgR98X/pBD/x/gBaUxQpQ5WcAAAAASUVORK5CYII=