0 2 2 1 0 7 9b5df51d-ca34-4b90-8e1d-af97028a8fb9 Shaded 1 255;201;201;201 255;191;191;191 637713001960324447 XHG.⠀⠀⠀⠀◯⠀∞⁂ᐃⵔ꞉ⵘ❋ⵔⵔ⁂❋❋ⵔ❋·⁂❋❋ⵈ⁂❋ⵔ⁂❋꞉ⵔⵔⵔ·⁂ⵔ꞉⁂ⵔᐃ··⁂⁂❋❋⠿ᐃⵔⵈⵔ∷ⵘ⁂⁂❋ⵘ꞉꞉ⵔ⠿ⵔ∷◌∷❋⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀❋∷◌∷ⵔ⠿ⵔ꞉꞉ⵘ❋⁂⁂ⵘ∷ⵔⵈⵔᐃ⠿❋❋⁂⁂··ᐃⵔ⁂꞉ⵔ⁂·ⵔⵔⵔ꞉❋⁂ⵔ❋⁂ⵈ❋❋⁂·❋ⵔ❋❋⁂ⵔⵔ❋ⵘ꞉ⵔᐃ⁂∞⠀◯⠀⠀⠀⠀.GHX 0 22 7 1 0 0 1 Firefly.X, Version=0.0.0.69, Culture=neutral, PublicKeyToken=null 0.0.0.69 Andrew Payne (LIFT architects) 1d3c103c-08ab-48f3-c5fd-624ad09a387e Firefly.X 1.0069 19 7580cce1-bebc-42be-8cfc-fdc7cfaaaaf7 1d3c103c-08ab-48f3-c5fd-624ad09a387e Tone Generator Create tones based on incoming frequencies 5beddbbe-4210-4306-9d7a-3359fa75354e Tone Generator Tone Generator 723 449 115 84 824 491 1 Audio Frequency for the Tone. Note: Typical frequency ranges vary from 27.5 Hz to 4100.0 Hz. 18abb4a0-eab0-432f-aa34-66a33d5dc3a9 Audio Frequency Audio Frequency false 4dc7629e-7cfd-4214-bc4f-a1d25ea600d1 1 725 451 84 20 768.5 461 Volume 8043853e-b056-4966-84d0-b71de5acfdbf Volume Volume false 0 725 471 84 20 768.5 481 1 1 {0} 0.037037037037037035 Duration to play tones in seconds 0b62e84d-7bb7-4cef-b46a-0f0f6033f85d Duration Duration false 80777d91-f0ee-4411-9947-f26dc0413e58 1 725 491 84 20 768.5 501 1 1 {0} 0.1 Repeat b88816cc-587c-4116-a303-2f834dc93f66 Repeat Repeat false 030e309f-a175-44c6-bb31-d11be27ff274 1 725 511 84 20 768.5 521 1 1 {0} false 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 7c4cecdc-d778-4e5f-b66d-d881878bfcfc Panel ◯人ᑐᑕИNᗱᗴᑎ¤ᗱᗴᴥΘ◯ᔓᔕ✤ᴥᗱᗴ옷◯⦿◯옷ᗱᗴᴥ✤ᔓᔕ◯Θᴥᗱᗴ¤ᑎᗱᗴИNᑐᑕ人◯ false 0 0 1/84.406022589954030768899117092091000289089388918088900852079*3^12 43 165 423 40 0 0 0 255;255;255;255 true true true false false true Microsoft Sans Serif 8 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 2487b408-7f3b-41fb-b6bf-1d8ebf6393c1 Panel ◯옷✤ᕤᕦИNᗱᗴᙁᗱᗴᗯᗩᗯ◯ᔓᔕᗝИNⓄᑐᑕᗱᗴᔓᔕ◯⦿◯ᔓᔕᗱᗴᑐᑕⓄИNᗝᔓᔕ◯ᗯᗩᗯᗱᗴᙁᗱᗴИNᕤᕦ✤옷◯ false 0 0 84.406022589954030768899117092091000289089388918088900852079 67 16 548 40 0 0 0 2 255;255;255;255 true true true true false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 4154b3e8-afab-4f1b-a5ae-1f34c9f9908e Panel ◯ᗝᗱᗴᑫᑭᔓᔕ◯✤옷ᕤᕦ⊙ᙁ◯ᗝИNⓄᑐᑕᗱᗴᔓᔕ◯ᴥᗱᗴᑫᑭ◯ᔓᔕᴥᗱᗴ✤ᗱᗴᙏ◯⦿◯ᙏᗱᗴ✤ᗱᗴᴥᔓᔕ◯ᑫᑭᗱᗴᴥ◯ᔓᔕᗱᗴᑐᑕⓄИNᗝ◯ᙁ⊙ᕤᕦ옷✤◯ᔓᔕᑫᑭᗱᗴᗝ◯ false 0 0 299792458 37 88 778 40 0 0 0 2 255;255;255;255 true true true true false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 80777d91-f0ee-4411-9947-f26dc0413e58 Panel Panel false 0 0 84.406022589954030768899117092091000289089388918088900852079/3^6 135 550 396 40 0 0 0 255;255;255;255 true true true false false true 2e78987b-9dfb-42a2-8b76-3923ac8bd91a Boolean Toggle Boolean (true/false) toggle 030e309f-a175-44c6-bb31-d11be27ff274 Boolean Toggle false 0 false 637 510 66 22 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values bfb18936-e50e-49d0-9a79-414cc50cd741 Panel ◯ᗱᗴᙏ⊙✤◯ᔓᔕᗝИNⓄᑐᑕᗱᗴᔓᔕ◯⦿◯ᔓᔕᗱᗴᑐᑕⓄИNᗝᔓᔕ◯✤⊙ᙏᗱᗴ◯ false 0 0 1/(1/84.406022589954030768899117092091000289089388918088900852079*3^12) 46 229 431 40 0 0 0 255;255;255;255 true true true false false true Microsoft Sans Serif 8 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values fc4cad0c-036d-4c3a-9868-80296790d781 Panel ◯ᗱᗴᕤᕦᗩᔓᔕᗩᑫᑭ◯✤옷ᕤᕦ⊙ᙁ◯ᔓᔕᴥᗱᗴ✤ᗱᗴᙏ◯⦿◯ᙏᗱᗴ✤ᗱᗴᴥᔓᔕ◯ᙁ⊙ᕤᕦ옷✤◯ᑫᑭᗩᔓᔕᗩᕤᕦᗱᗴ◯ false 0 0 299792458*(1/(1/84.406022589954030768899117092091000289089388918088900852079*3^12)) -13 296 545 40 0 0 0 255;255;255;255 true true true false false true Microsoft Sans Serif 8 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers 987ca887-ce6c-4286-af21-982e3c44663f Number Number false 7c4cecdc-d778-4e5f-b66d-d881878bfcfc 1 554 173 50 24 579 185 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 2b7533c9-2ad0-458c-809f-b2039141426b Panel Panel false 0 987ca887-ce6c-4286-af21-982e3c44663f 1 Double click to edit panel content… 663 163 154 64 0 0 0 255;255;255;255 true true true false false true 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers 2b9a0874-6b57-4987-a7e9-207f009e58a6 Number Number false bfb18936-e50e-49d0-9a79-414cc50cd741 1 558 257 50 24 583 269 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 5a04debe-8995-42b6-a073-f16989312c59 Panel false 0 2b9a0874-6b57-4987-a7e9-207f009e58a6 1 Double click to edit panel content… 667 248 154 63 0 0 0 255;255;255;255 true true true false false true 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers a2ce5203-7f3c-44cb-bc42-4bf04c1ca142 Number Number false fc4cad0c-036d-4c3a-9868-80296790d781 1 582 346 50 24 607 358 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 15b4dd64-6153-4307-bc38-78a34c07e819 Panel false 0 a2ce5203-7f3c-44cb-bc42-4bf04c1ca142 1 Double click to edit panel content… 669 336 154 63 0 0 0 255;255;255;255 true true true false false true e64c5fb1-845c-4ab1-8911-5f338516ba67 Series Create a series of numbers. 203a216b-c017-44f3-ab1f-66af69d69b69 Series Series 22 407 104 64 72 439 First number in the series e148f79b-6ec1-499c-8480-bf04fa9bd312 Start Start false 0 24 409 33 20 42 419 1 1 {0} 0 Step size for each successive number ad0cd72d-704b-41da-a348-8de02c20a1d0 Step Step false 0 24 429 33 20 42 439 1 1 {0} 1 Number of values in the series a869863e-ab53-4e21-bcae-3ed1321765b9 Count Count false 0 24 449 33 20 42 459 1 1 {0} 13 1 Series of numbers a75bbb50-340f-4ca9-9664-92de456f2795 Series Series false 0 87 409 37 60 105.5 439 78fed580-851b-46fe-af2f-6519a9d378e0 Power Raise a value to a power. cfe0561d-e8c5-45c2-b97b-58ebc32c785f Power Power 150 407 85 44 181 429 The item to be raised b2005173-4c4a-4302-ae8a-bf9e57d18c48 A A false 0 152 409 14 20 160.5 419 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 3 The exponent aad34702-e257-4fc5-9322-eb3eeb230643 B B false a75bbb50-340f-4ca9-9664-92de456f2795 1 152 429 14 20 160.5 439 A raised to the B power 98263f8e-9412-43cf-8aed-691fe752d0c5 Result Result false 0 196 409 37 40 214.5 429 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division 28f36bb0-cd9d-4c68-9131-184ff548b14a Division Division 309 368 85 44 340 390 Item to divide (dividend) bc6314e0-5a5a-4644-851e-8c36910292e4 A A false 98263f8e-9412-43cf-8aed-691fe752d0c5 1 311 370 14 20 319.5 380 Item to divide with (divisor) bfee2825-850b-4df5-b9cb-2b3c44610863 B B false 2487b408-7f3b-41fb-b6bf-1d8ebf6393c1 1 311 390 14 20 319.5 400 The result of the Division 4dc7629e-7cfd-4214-bc4f-a1d25ea600d1 Result Result false 0 355 370 37 40 373.5 390 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division 07b1d578-a2a4-440c-9d96-600ee132b290 Division Division 310 433 85 44 341 455 Item to divide (dividend) 229bb0a1-3d28-4487-a649-557843484a53 A A false 2487b408-7f3b-41fb-b6bf-1d8ebf6393c1 1 312 435 14 20 320.5 445 Item to divide with (divisor) 321ec014-c88c-4ba1-8aeb-9f230ced38d6 B B false 98263f8e-9412-43cf-8aed-691fe752d0c5 1 312 455 14 20 320.5 465 The result of the Division a56fb601-7826-4cf1-9596-f2fc990e85af Result Result false 0 356 435 37 40 374.5 455 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication 45c7bdca-8293-4671-8929-5aaee360b938 Multiplication Multiplication 419 486 85 44 450 508 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication b6835b28-78d8-4afd-9a59-f5439245af2d A A true a56fb601-7826-4cf1-9596-f2fc990e85af 1 421 488 14 20 429.5 498 Second item for multiplication 9750874f-7409-4b48-ab11-d4fe6e1ffebe B B true 4154b3e8-afab-4f1b-a5ae-1f34c9f9908e 1 421 508 14 20 429.5 518 Result of multiplication b54891c3-5678-46ea-9ee1-bb2b1e9f3999 Result Result false 0 465 488 37 40 483.5 508 iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAADBrSURBVHhe7Z33c1zJde/9Z/kX/+iyq2y5yn6qJ0ultZ+epWdb8lP5SRuUdldxlwGLnHOanHPGICeCRCJIAiByzgARSe6u3qfvAa+HwAAYgNglV97mcHBv3063T5/Tfb59+syf/dnX4U+gB/74dfjK9sDx8KP9zV+Hr2APQLhLkLClpaW1tbWtra2jo4Pvnp4eLjq1IH/a29uJ6ejgrwpyRUr9mgtKoAwtmSqEGJVdS6l/SxUqr/aUIqhaiiKeaz1eapMCeay3Rxog6Sldq7RVCtQfpbZKS6Vq7NLe4vilOjp4R/19KeENJPGlSejxeEKhUEFBARdVVdVul91kMRktRpvFZne64tGYxWxyOF0uj9vhdJrNZrfXl0g2BXw+q9UWjcfC4bDT5Q6HAk6H1WSxBUMhv8/vsNsD4YjT6SosLPB5PU6Xx+8P2KwWl9vr9boMRpMvGPZSn8dTW1trt9t9Pl8o6DUYGincYbdRHU1yON3eQLC4uNjU0GCz22PxRCgQCIVDdpvZbLW7vX6P2xmJRuLxmMvh9Pr8Tckmr8dtNlvcHg+ttVi4tIX9AYvdQfMMZoPJarI53VVVVTQiLy+PSgldXV3JZPKNImSmJKTdjE2abrPZHA5HVlaW1Wr9wQ/+j7GxvrK6rKK2uiy/MLuoKC87Nycnt7C4zOPzV1dV5uTk1dTVlZWXFBYW52Tn5OTnlVVU2B0uQ0NdJY+ryovKy6tKyrM+yckvLv7lr37985//vKGuprSyCjIXFxSUllVW19TW1FYVl5XT0RUVFb/61a8gksfjLi8tqa6trayqKCosLKuo8fo8JRXVNfWNv/jlLz987928ouLsnNyS8oqqiqrKmpqSspKKmjqn3VpOS4oKCguLCKUVZTXV1bm5eVU19T6vN/v27fzCktqKit/dvFFaXFZVU15WXVnXYPjB97/P+964cYP3ZfR0d3fTD28UFTMlIcLE6XS63e5oNJpIJJqampBmDMmWlmZ1p/4rGhPPZTweb21pbU42E5lUUU1K0PE0kUBwRiKR5mRSieSWlngsFovHkcJdnV3xWNzldJKLvLForLm5hZ5KNnGrpHc4FG5rbVPxyWa5pgEU3tKsKorHEySjaofdwW1Xl+romGqqamdbayuFU1dbawtN6mjvJDutIm9LM7kS6jvO3wRjFElLO+Wlmo/fkVxNvDiNRYpAS16cJqkGaO9HeI18mSkJaXR5eXlpaSnt5jUgA7JLArcS9Gue+v0+j8/DBdFON0zlsjvtdrfdardw60CWuZ3EBIJBn89jc9iIsTqtbq/b5XE5XDCqw+V2wm18m+0WmxNJqEpwepwer9uNlHY51MftIJJvypdcsCMl2J2IQFJ6eMSF9nEo2a7qdVjtVhLbmQJsJofbJe+iv0LqG6lXSnlHCNbQ0IAYuH//fp8W7t69yzfzJd3yugiZKQkZZQzD/v5+Mnx6Ufj88z+uLM/UOSq7hvuaOsONQWu1p97TEo51NwWafaaA2Rww1vvraz0NtqjNEnWGOyKWiKP1brs1YrMETGa/sd5XZwiZ+wZ7hx8MtNxpNjL0o3ZvS6AxZA63hWPtEUPYZo66Qx0xW8hS56k1hBwGn8EWs3ub3AZ3g8HX6GsJNHfEjAETJRuZN331dT6jJe41+ozWsD3YFnK3hCjZ0eQ5fPb8s4veSJ7z7mNjY9CU3hBZCi+yCIKQIyMjEPK1CNhLkBAxMj4+nqHu9Pz54fjc2Nr2xvL64uTizMT81OP5ydHpsdnluZnl6cnF6bnl2bmV2dmVmeml2dnVuYmFqScH+yR+NDs2sTA5uzyzsLb49NnTo6PD3f3duZW5idlxyplentnZ3VnbXJlYmJ5anB6ffTy1NDOzND25MD2xOEWy6aXpsblxStjY2dzaWX88PzG5SNUTM8szpJ+iJQuTNGBsZnx2dXHvcH9lcyXDN5JkS0tLTBOpYhOyIXaZIwcHB18LFS9BQtrKiKOhmYTh4fujj0YfjDx4+ODho4eP+IxqH3X7QN1ykXpNzMj9EWJGH45qT1UC5BVB4rVCVF7G+4MHPFaFqI9WmnykQCmBqklIjVJ1ajItjUpMySQbyuR9XqSBVKdZjRjYsbe3986dO1++4nEJEor0YAz+dw5pJzwiWSsQoOKbTsLXuO56w6tmOmTRztLmy58OL8eFb3g/vpbmQTMohw7DRAim8yaSUFOAUNWUGsRAU7faNZHarYqUtZmOgQkIJ5Eqg8KllG5HMUSSjDlVEK/UQGFShVIHk81SV2qQGikBbVMrmPJUM1TRWjiRg8R6m3mGCiuNVOk0HUCySBr1UvJuWiTqnpT54jVPthZATvoByiE/kaL37t2j2fKyWuPVf8FDjus92YcpZWpt0Be6lxqLF3AhlaC6NSXimsqeQIUioBSr20TMC3jW1AzsBEmIQjm2WCzBoD8ai3p9vs6urlgsEopEg8FgR1srC9pkU7KzSy0HAN7QtNHHRcVUWnWcZCEIDZpFn9zp7UGhRI0hFc+CoXA0EgFF8Pn97Z1dA/33opEw2ekydOuEBhDEoqh3ERA7blj3U2wgEGhONoWCAZRyFNQk+ruCApq5TjQlh4aGmhLRgFap3++nEO0VVMpQODIwMMiUT/Oak4lAIBhPoNpHlHKvLQTC0ZjJZFKKfXPz8NAQddMUamRxGo0n2tta/MFAJBr2BQJmk4k+FPU/FAy2tiRpFaVofQgcySvSuCiDkjYIsS9FPxKfR0KGGH1rtztqawDDqqorqm7euAnkVZSXV1JUVlFZfuPWzez8Qo/bU1JS8p3vfKfRYPjg/fcbG6pz8j/JLiwChKurq80vLnW5nHX1tUU5+b/+8Lc5BQW//NWHb7/9dk1VBY/AN7OzbgPIlVeUFQB9lZajtxfnZ9/+JDvnk0/KK6sLcnNu3shuMJocNktRUX5eYUFFRdmtrKyCvLzKmoZ33vv5z955u66qIju3oLqu+uPs3EaD2WQ0fPjhh++//z4tb6itKigpqqDlH39ssDje+qd/Ki7Izc3OLisrv3HzZlFpaQEAXWk5wFN1ZVl+Ti5wXEFezu2s3I8+vlFUXu20WYsK8/OLCsvKy27euFHXaDIaG0uq6opKSt9++ycfvP32zdzcnE9ySsrKC/KKnQ6b0dCQX1RKXFFxbnZhXlVdwwcffFBZWfnNb36TwQ2cW1yYT41FJUWFefmlReU1NVUf/eGj4vKK/IKSRoMREBiGvqwoPo+ElMVwVsNEDXDYhREabW1r7+wAzlfMBH8wThlWzAGMfflmFKkhl2zWUH8YMa50YYUpexn7jDJ6FtLChQxERi6YmaohBriVZIyrGsMhEFGiEEtsH3R2dlMevKGhZaBrQXA+lQGgWuNCRjQNQz7SMliZxLAyrK/VmyQ/aSLhCNwGRyPLVY2RiMvlCkfjYGRUCgf09HSzr9HT3ZtQzBfxeLxef5B0CnVTlYZiSAReRgMXQcmrq6t52trRTsl+f9APoh4OIU5B7yhHtUlhkG2xWJRuEVUyFAoqyUGbmpO8F32IIKbliJZwJOYPBJCltFmbR14K5/PlmSSkOF7yo48+opcZHXSKfLvdRKtAP6oYLZJb+SZGi1ZBEh5fuz3IW+2pmwu6TOJl/0FP8+ISMezjGYlT6zouHPGtFUVh2kfP7g74/AG/n5ZRPnsdoUBQmq23XBogtVIIf6W10ngyOl2geupWPX2Rl0rUdUpbuVWvoHpD5dfSqsdaGcc9c1yXFqn120tN1d/rRV2qCobdH/7wBwjG+hYVE45EDWWSOn+OPJOESFEGHRWvra2tr6/z/WaH1UR7uMZZYw3ZvXGPNeyItIatAavBbezuv7u1tfVmN161jk4G+mEjSIAC2UkVXZMV7zlr3fMEKTKEVdal8KfXmHh4bLB7uLPvYf/K5mrXYHvvSF/vgzut91pm1pZfY6suWzXrW0EPdEkqt+dQ8YK5kIEwNzc3/1UICwvzy0vLK8vLjOWlxaXl5eW1lVW+lxYXX7H59ADlEKQrVldXF6jsCwgzMzPwX9rlDELxLNzgAqWC4hCn/22DWvJHo8g0BBpLEvqBC25l7/CLCGlXLlCBSpkd01L3a3TmzOWe6P6sLBBuzCl0ItOKaMCXVd1eMT01MiOeNR1+TcI03SvzEAwH/ZhKZC+Ja1HSX5Eel81OjRDvHPT1axKe7FJhPrqMga/0Ww0CFSF2WaX7stQ6nZ4GMIbg/nOKyoiEqaiPho5qQVs1vcBL1a0OBmparQZf6ugo1ilaEv0RcukYcdWSSSDBi0gFP0pigVUFERWwkSjtkbpTbXgR5Kl09Is2qkamxp/TF0IkYTg6jslPug8muJD5TuvjqTHyFvoIOD+x3kKdfvpLpW38xSTk/VE5ySyGmrJZKLA12idYBjWBr4Du8RwwAiiSTVTgCToS4Ka9rRX7GZKj5iCaBgcHwDSBLtCeAwE/uAFiSkyqSAz90EQ1IIbsLcCYYsOZVHAiuZK0hM7AinRwoB9UE7ADSyegn6hqBm1R9kvd3T2QUkGrTGBapUAeNFJw5LOCPvMJ8/GOZMTQRGgpFl9n5YUk5CIx9E4T+u91dXXeu9cPmkpgfKRPRor+fn3CozpenJTn048mXQxzs+5C3wRFrKura0rEwMYq6hqNVTW/vXGzoqyiIC83OyffYXflZWfnFRRmZ31SWVl169btrJzcvJJSwI/KsmLAT0DOH/zrv3/0mw+AVgFcs3MLb2blAGNCsMbGRiDNX//615j4cctlZXlJfl4uRotYDv70nfd+9YufNTTU5hUoBNXjcuZ8knUz6yZQZFV5WW5eQW5edkVVnc1iz8vNzbr5yc0bt7Jy8zCJKigqdniD2LJSPu0HDTnLKuIE83FLP7JLj22AwPr0rAAlZ2HQZCHNWSS8PzxsMTXe/uR2RXV1dm5eU1snQzwtFcV0Q4aLCINU3j1rAF2sVMAimiFaGMAAsFEZ88XjoPYM+JCCIcOAkd3dvZ2Y9SWbAPnB4602G5AqICbXZGY+wTDRHwxFQ0G706GZ8gENsrkA6Kq4kC4WeIkhz3Id7JXywdecbg/JYErFgEm2KQI0A24DzLI7nbSDWngxdj+6OzpDwTBWxRHFmQkaprZBIlG4nwSAYfS+dM0JISbcKVZo8pQmbWxs0C9Egt3/1V/91cDAALdEqq0PTYafmBSFCymBfk8bGBPBYCAYDvOa7R2dJ1Jye6f3jmxaKZGTTAq6luHsex4J6VA69/bt27yVAjbpwkAw4Od/ENrwAZAkcOv3IRUDdJxGQnDqiJYsoAijZSFjROHA6qmYRfOUj2QnHvpJORqCGiBG+4AMq4SqEJIFQ1I78crmUVVHjMJFJZBYM/Rmf0lVreDHFzgn6W/dukV58AodJH3EN7cIN77pemgGH7DBsr29/fTp05/+9Ke8+/e///0f/vCHdBORGAQLqSCJyDcJ9Lva66iuxvS7Jl3ACB3rxfr6er5ra19KwSP2fNi7KK+s4JrSaE8ms6/OlBdsNvHm2DKDRwwO9YXjQYvH2NHX3drVZPJZDR6TJx4It0bcEafZa7H6zI2exjp7vSfqdYbdvoTfHnT4mwJmn9kZdFg8pkZ3g9FrSrTG2zqbfXGfwWexhRyemJcLd8QTTATMAbsl6Aw2h+1+a6OrwRJwWLxmS8DqibitHovJY7SHnZFE0Oq32oJOq8ds8jQavGZb2G318tQcTAYcEY8v4at3NXjjvmhLpK2rJdISGRkbBawBT2E4IgBkucT7y1QHPURYQUJuiUTwQi36BbvZP//zP/+Lv/gLCM/tzs4Oj+TMBrlkmUouromnEMhPDCwrQjXDMDJ83x903izLsgXc46PjjGRGnix/MgwXCFKEBi0j0bOjvfuPBqNd4cHHI/0P++J3WsNdsdaBzo7B7jsjfa39rck7yZa7zS13W5rvNvO079G9pr6WycW5vpHeSHe0qbep5W6ybaB9cWVxbX1ldmm2fbCTyPbBnub+9vuPRx6MDyfutjX3YyLX3dbfnrwTb+pTZXYwIoc6I53RRG/i3ujA2MRIHAFzty3WHafARG9T60BXojfZPtDedq+9837f7PJ8/2j//Nr87NrSp88OeoZ6DjT7TwJ9yuvIqkSwY5Gu3ApfipCExpjNYS8KN8C4mO5jesktlnNiik+QQgSGpticnBxw6cmJCTJOPJ6Qz9jo2PgYWR9z/Xj8MZ+JcblQT0exqdPC6OhoR1er1W9v6Wybn5tnNLC/yCjJkH4XL2dEr1xZWVldVWj6xsbmJv83tti52FjfIJ7xvbS8JPsA6/xbW9va3CINYCW8q7Ksb/Ct5VZgPEGu13i8ukIyLiSNSrQKqrlEZRR1vDmikqkcq2ta5Mt7JupWnkrGlRVpBiVLi2mb1njuV2AgCCYKu0gqbsWQ94TgEiyNBNAVJpPbE+ajwrsSWC6MjAxNzs0uLs0/mng49Ghw4MHg/NL81BxUGxt8MPhw4tHI2PDgo6FHkw/vjw4PPBhYXFl58iLs7e0fHR7t7+3v7e0xtk5XdD45L1YqaKKAgaJOpF6nt0Y8Tnic+kQaHVd8KT41y/kmjhemlHbK1/G1qpPpXJBi+kisEXReFAU081F/OiUq64OH/V0PhyZnRm0xV7DNX2QpGRi733YnbgqZrVGHMxnoGOy5e78P4WGJ2Or8DaPzM2k3MeDL6yfhq7zbm5D3hM4gshQZCPPBkaeXl1doM52+tLSwe7D//Nmz5fWlzSdbWKBv7WxtbG8cHB3s7O2sbqzs7O3uH+wtrS1t7e5sPdl6/kK8nyAkopgBd6k2XMyFIjHkzWW0quVACiAiEkVmYFkpHGMoL+ZkntJleuSx/dsLjEfHcV6gOXrZOupyDPSINZi0R6vuOIFs0LxYIv5X7VKgYPxCrVTmu0bAk05HbNOVz58fz7uX3SbU0w8PD18/F8qiWVQZpBD9iIqgnUnDaiuJ2oeiw+JM7ANYvGFZgyZJ72mDXZ3jZbxrp9ow8GqmF9mnQbNSljIxZfAiVmGitLEeg8CsKoBiZNyoOUm7QkHETKKLs7idnb09ypqGlCiRaH7oJlCIhmmk6lSa6HFQaA5LROQnCURjk2thzUsN9nMSp3YRHXVWkAZoEM3QWWnOQg/Oqf1iLmQs0wuyVmaMsORldV5bVX7rVlZdfX1BSXFuPgZsxd/+9rcx0gIEaairxkiroLi4vrGxNLfgdx9//NHHt3/+i19m3bqJVlRZZzA11N26nV1bX1dYlI8Rm9Vmxybxd7/7HcZenAS2Wy2VlWUFxUVVVZUYzHEcraa2urrBnJdf8N67b//h/fd/f+tWWVlFQ4OhrKy0sLgQEzrUHlr11ltvcRa3qrw4r7i4uqo663YWBz1pKlREOunt/4J2i4TF5TttYJhCHtkzOifZFQbWBSSEfiy3qJiBQy/wzWAXq0u/T9lnAkvDJYg0+pGWaZZeyqhSGQeho3v9oJecBCwuKcUED17DFlMzegui0/PGoqCz8pAztKA9lByJAnjGUdID/iA8qnZX4wmzxVpeVsrZ63A0ypFupdAHQnA12jvtgbFogJKlYLNtnCTFqgybsiiPZODTeLQjYC11QDUdwvLqHKnPNScuRFyJDKMWaJkm5Qtd5QoLqwtIyJC5ffuWiSN//oCy4XKrU/DgJuqbQJcDhdCbPj+QmIbahDHKIz4cAhdT8JvCcTDMVUCK+qin6kKhKgQshbEzI6OKpzxVAs8UoAMIR5lkV0WpMkBk6H8sFNWFwDeUTRoNtfFDaoGBGB38UXkDQc20TDUbtFas7kBYRIiJ24WzljO6pNU3GS7kD0HIBPRJDcTIuShJcOqpipAmycVlB9MFJGQma2w0YBLX3duebG9u6WgORPw2v61voC+c8Bt9VrPP6o0HIi1hm99q9dlMHnwYNDQ4jf64zxH2uiNuR9jjCjtJ5vTbwWjqXfXWgD3Z2pRsiztCTuAVV8TtDLu4CMT8wDQmn80e8foTAQ3QMdgCLqOr0c5J4aDT5rUa3QZfDLNLj9Vvs/ntNq8FHIcstpDb5DTYg05f3OuK+hxBe6PH6I15o82RZFvCn/D3DQwsLiygnoNypSIschbpBCH1dRDMzSCW8/WyHEvbv7JeQ41/yPG5R4/AAU4E9HfC6XgVQ7bRhy6nraq+/t7AEPiAHEnInJAXw9yUdbC/v7Y2Pzj+YGF5rm+ox9/mezQz1no3GelJBjqjzVgjDHZ3DXfHe+KJ3ngMLOZOMtodbrrX2THU0XSvY3J+Gmwl1BEmAfEdQ90ra8ur68sPJx/F7zQleuLtg93xviRKcfdQd7gn2XS3vfVee7IvGemKxHqSkc5I+1BHc18y1B6OdkdHJh7cG+6OdCei3fFoVwzAKNLdlOhrjYAW3WtN9rX2Phx8PDs2MD48ufB4Y38XLKj1btvCmqwYn4tDAB1hkQ1xWaaJgCUQeXR0xLFeZvdvfetb7KgAmRJkxX+acSmNhS/EQ2KTRh1/1AIUFaJKIJ7bETk1+V9hZGR4yGG3VtfX99y5C2pzzSTkrRDlExMT4PQAIAAe6xvrW9vbQDDbW9sb6+ubG5vYiS0uLQKBbHCvxXDxZOfJBsiJBstsEjY2FN6yvk456lZFqKDAmlWFnnCBtSffRAG2KNRGFaWVqH0p0EW7oGrJqAE9q+CZ22TUGkZRwDGUQ6AKypGUC4vzK6srXGCCdmItKrfwpUBuLNkw4YVToTf0eOedd37zm9/85V/+JZKZGBgR4JQ0IoQlrwRk4PT01Ozc/NTU5OzsLKwFtDY5OTnBH0A1ha+Ng9PCZNjWpRq1CvYkr8MFKNJl/aJcvCIVKsq6X4W4upZw1urrOL2e4+WUqfBLagmqwPOKfFG/lkwS87ZqF7BJP7ia4AgAcg9GkQZKXVjHS5POUrl0ukIbZmi2HegXbBm/+93v/sM//MM3vvENuIcYSgbDlJ0pgblFmaE6Nkd6ervGZub77vXd6b9n9yD/nc0dnc2xmMVq5XAMyzpvwG0wWbZ3D87RGuF1lnXXKUgzl8hfZkq6TNRNOTYtUvFEzNXaI30HheAY+IPjSz/60Y/Y64ZFFhcXWZLowpaU1CiKJov2/Px8ZMDWk11w36Wl5anp6ceTU2sbmwiIx1OP+TAVzs3PjU9NHD17fj4JOQTB2i3zzYqMuPBq3fFF5BKCCRPoyxBiZI+bPr3Covx0OylQsFwmRdlKlNsThZNMdEHN/07LlRGZ1IwHBwdySi3z8BIJ6RTl0kwL4oSsXZnLYL2i/JNhh6I9UI9keUZXiiTR0/NIsmtHL1t5QIxYOinTm/Y2NkwlgZ6LtnItCeRa1at9EykLDUkvLWGKQoQdp9TKHxxUe7aSgG+ycEHz9MYQqRerlSYvp5oqtei2Upl3nLC+bHSIPP/sRXgVWj579owyry5I0aLwcoUSbTQhtI31hgacKaFlmc0GPKzxlHNlZqMRp2j46gEwY58albykpLSutpr0ym+ZzR4MeM1KUXei3LldtvqGRkwwQM3MJgO+1YqKSzxOB/7OXG6PxWJsMFjkfBBFIbW4joYD9Q31oAG4WAuGY2zXBXweo8HA0Sh6nwKNZosdd2vq4BS+f+xMQkazwWAyGCyW7OxsAIHCwkJWH2iDNovZDtyDSY5y6uZl2xzvbhxAMlvMZGk0kcNcW1uvCvN4dAA2Eypq8J4yVBQXF0yxDIVrISFzoUC+mTRD0rzEhRxyrAK1KiqzWi2lFSWVNdXl5RVFBUWsdysrS/MLi+pq68uKS8rKavDDBnD13nvvsdvJIq2hvraxsaasqgLKg6FAwCq6xgZUVtlgbLzx8e9zC4qwVqprNP/H//1xVQXQWGl1da3Rai6pqHI4nKwAsYDCNR8HuOxWUw0nLRsa8nLybE7vv//wh8aGutLi0uysrD/cuNVgMFTVVBaXV7IKt1rMuE/DWKGxoaaksgx/TzRG8wz3AxA7jpmZjfUVpZUN9Y0VFZX4XWswGnDAVlJaUVPNvwpeqrG+7uOPbzcYzfjxEw6+sO8gnogfmE+wOmFHSPgqzKfnRZN5JRICeIh8B+nASxlNw/cjF3g145oLEUHdXd1yqEAJ0s6uYwM9UDZlmdjG0472DnWEU/lFU07O5CSnsiRtbunt6eUpmwyU2YagbW/X7ApxxsZpzRYAF+Vtsk3rSs0ZmxKkCDqtEDXDq0jlRw0sh3L4IA15JJE8VWB37x0yUlRPdw9Sv7tTiXqpnWYgR0mvUEq1oaiwLu2sdBT2hfDn6GQyDcuO8QmgnHjaJvg1AST5ygEgMHP+S8OFCAQ53g6EaXFYHG6n1WEx2cx4PiPG4bTbnFarw+r2uIDA8JeGLzQcnmmngMPKaxrOz1x2mwuLQLNytOZWbtLwr0ZiXKPZ8IvmcvAIh2ouhCkpncr1muY1zYkDNm5dXhfffKRkuwvrRuUsDZ9q4k1NfKcpp24eUlqV9zV8tlGReirflK6csSmXb1oVOFrDi5tFfczYz9ldNloOdscQlFMv/GHgw82IExTutEwApRkH+o5x2kVTqrL0KtevRELYGYHO98rqnC1qrnJVJXqagy1ed7PfFbeZQlZLyNI20D30cKC9r2Pg4QB2UA3umo6hO8muSH3QWuWux7FZtDsRbA2YgxbTsaO1envUZo44wp1RS9je3t9li9jMuBHwGxv89Y1B052B3pHR4fa7bUYcsEWs+E4zhC2h1lCiI6ocrcXcoc6YPWyt8+JozW5UjtZs3iZPowdHaw2eFn9LV8IUFEdrjQZ/fb3foByt+U2WsC3QFnI1hzr6O8wRK/Y4d0buTkyNNnVjbZFcWFFgTersBXoCSCvLk9ROFMnJnAf9rmvFe1kinZ/+pblQl8hPdrdmlmcXVue293Z397bGZ8eXNpYX1uZnVuYPnx092X2C9cyTvSeb2+v4Nlvf2VzfWsXuaGZpFj9nj2cfz3EAj8TLs4trC/KZWyFmYXppZvfgYG1zFado06r8+eX1ZRytPX16tHewh9O16YXJ6aU5XKlJ4dOc6FuZn5ibJPH86hz+27hQpa3O4VmN0tgf39ndUm7YlmenlqbnV+fnV0g2L+kn5ibm15b2Dw+2drcPnx48OVI69fTC1OTc5P7R0YmpC0hF1AYxStNRNFFXmD509f+sDj1rp+LCeBQTEcUyi104H59owEsk1O3mkOcP7o/gomwYwc41rsq0WyI1zH2ISP7gaO0B//ijLtRTUqYkPs4lGcXhGUbpJH5IsvvqKYKL0vgQJAGlYfgF/PuiXtI9mJ6cwqObVs6LlmgVqSlHa55UrTdSkkmMTE7qW9tyklyDp0wFhUjSOzAc38KRgvXIdn8qqHaiH8krFojsZ13WDpH0mLUyr8Pq9OorKRWvIsGvJa/YecIEgocJW3DLPHQt5Z9TiD69UTU1yt6QflJHNEiaIY0RVTKVipCQbRC2I8CyGX+yNZFhAEqNhny5hQWYoCMMGAqXAijeIHRGYA4Gvo6Z0XEMagEhr3f+SFuajq4J3k29LHagJer24eEhNqV/93d/h5rEup8Ympoq9MirOX9ks2JY20Aah36yO/Fim0nMUbX9JU3MiG0qcogtjdbmhNlqwSMxieRcTubv+6aQkC4QwaXTTyYhkV2Zv8/VUkql8JmOu1IO8hbTeahIHwF8/+xnP/vFL37x13/91zANMQaDAR1UTj4IQjsxPvZ4aprthsfjo/2DA+xNwFLsn8xMTeJXU9tjGnk0+kjzoXn/4RibUKMbG1sYk2InjgUpo2Rvb5dbZP6lXvmNICEtRmTJQUjpzVTzajmXc35AQmaOC58gsxBAoBbZx5dmEAlgBC/SRzz927/927/5m7/hiMXu7i4x4rlGHDtDSKPR2NvV1jv8cGriEY7KUFpwNBaLhu4N9NtsxkAo5Au4a+pqOJZidTjMKF1eH26hDw6engYEUJQZMecfpUt9hTeFhHSfDnbo54wE50QQiVw6KyCvkHuy4rhUkMEOAeRM6GkUm6eUjG8LtvFyc3P/8z//k+mZTShiaLDwH4OP7BymeTw+/mR3T7kx3tsHrd6FsQ4w0N7f3tle3VjDxn1re5ONVTZMt7Y22M44ODz6/PPPT5MQ/ob7efEM3+WNIKF22vR4DhfsA3oQyWAUObZ/cHg+fMUer9g1ZRhSJef5NokQSbYpoDRyAuaQ2xOyDoseNmxppLjwfpUgRwAyfBGSvX4S0heyvUBniQYG/eBIpg+kE1aETw/3l5ZXsYRQ5nGxGOsLUclTuwmnMLrXcyFPashEcmbeZWlT0mbsBGgSth2vQj/yMhd+xUgoPSJKFZSj9QxDMW6gX9ickh7BhIKNCMxYmCqODvcfqUXByPTsHIuLvYOjlZVlVoy66zJKYDWknNppvymkW6GJwi4g9fUudGm2kPDVuZAx+tUjIT0LF0JC+h1hJdaqCFI2P+nxT58/29reYXbBivD3v/892xGfffbpwcE+u+SY4mxv73A+gfmJ39AQygm8IuZ+crBdjlDLEknTo9U0dgUc5BxOpdPlbPCrcyEtvB4S6nOAfhbp/IvU1QQdlEkusojOAK+whKHdYnMsVrNcAD1jePLsaP/x5DS9gzHE1NQU1DotqTCMEJKcJUUZE4xuegeiSqAK6j3HlPRSolXeQsaQGIVeOVzWJj/NXEhreDFeUpaCyvpK00rPxxrkACavTV5eRky/xZL/rKDrsIIsI/FImWrVCe5MaWrZ9vLKjZgTATuXtMsZWTSKwicrXoGtBWcRBpXFsK7PXIpyqYkFh5PvVwknFkoXticNCelKjNvFR8DRoVocs5Q46zCVzhDwAZwHAVCYeA2V9+mzC5eREEltQHZ3062n4UExydUNL8R+Im1Iu0MkY/GEwic9IqTlm4wiveXQtpRz2U68sJe/0ARpSMgrMd/IanV1eQkQun9gYHVNzdXnBPgAErKCYE7C48XRwd7cwtLR06eYbtLpaZ1ikgUSihEYPQgt0wJLFyL9+q7CCZ6gwAsd/+i0VHvFmvcEGiPb918VQqYhISOXBTpr+rQEAwHiWPTpR2hF0pUINN0KgTUIFnx44ua3AT999nSM7Ybx8YUlNodm9w+P0AQ4iwSKCJSlwyKnB2wmAPeJmViWuIK2ZEgJoSXpGYXiFEZkQ9rx8YVy1WULT09CzIfoVp6pnbz9fRbKn2mzEagE9kicReM46/7+Pquvp8+efaqpaNPT06wYGb8wFt8sGslIwL6GnxqjR1hD7mxvARtiZrm6tv702XMWJtjLILGpS+BQ6S89yAQJJcgOc5wTlEGwBrVQArWLfnkpsFjvOKldVlgyU+pMmeFouCwNXjF9ekGKBiaCdGtjjS6mg1bWNrFohml++9vfYmf2/OnRyP0htW8IMj+iLJ1Z8aCZsfbBcoljgk8P90bHJ5hBEaQ8gsAvr0gUG8O4cJjMWBAJGJj+EttAsVvkKXqFGknPLphWwYilKNH5zuHpDPtLmJKpUVY9BC7EsuZN48s0JJQlifgq+eMfP4cF4cXPPvscwcIBA0SWICOfcioZ7vyMvwqPYLkPkkLvw8G85/kTpzxFFwY/0xcXEA8qCsDGYhUOwDixuLjk02dHU1MzVArYT1cieE9AMxQF0i+raGHH62IXIRgt5L1kpqQBujaSKjDOqVEKuULI8C3SkJAW07NgxxqFjnFYFvFMbBiln0UbWEpeSZbsYmwiE1LaoJ931dmCl2SYi/8eeWHWR4hlqRHrDGQ46AzA6f7e7uzM9GN+1075bV7afoI5xwE/E3uNx+dPMKtOS8ECBTEQMIiRDYH1o2updJW3IP3OzhMG2T5+SbTAekKB4IeHckvjX8Sz76QCCQAKRIBfKDbSC1JQeayxOTGEAOR4wNTU9MLCBU7KwfLpcX3Jnska5PRcRYtl10lWktyiaH3++We8LbusQGuIcYLaV9vZ5tjQzOwcXrjZGCABQp7ePMeK8MK+yCSBLkjF8p0adQxImi3bT0QKLI48w5UfvTw3N7u5uTU3M8s6gOYjtOhYrtlf5DwUJ8DYO0xlD4Zshu+ShoTkZDNT1ADkJH13eho7zYuiF2bSC+enkVEMIzLLsiGHqfhnz5+NPHiEPABckBXNaRySMc6gkV2qTEbuq7dT5L8euIWocqyAwSfeGSCnIqEDEn7OSb3lZcb5CmRD15KVHcRTzuCXlyHk3PxC6s4Tg/LqJBRhSPUCzRyjM7rVQPqzqmOseq62Akzbm0IG9BOmw0ymVcYsJBRk7ksj4emWn5gdZeGD7VUmr3AiDdL16iSUlslUlHm4wo7rhawg0yqzI2srsa7TjcMQEqgiLH8kHv5T2xqam8LXSMITbyQ4F4yYloR7uzvqJxPWVtkCFjdlorlJgIQZWuanX85c2LlfZoKzhpGYB8pT0ShkcZHhCvB6dyrSdgjjjy14rDfSkhDwch7HeXwWFhCw09MzrB0RJwxHVt1MDVdfznyZ5LlaXTJZCgn1EoiEBXl/xC+b+MwlBHoEnYfANeNaD9yy6pP57GptyCSXyFVBmzMJrOp/8pOf/Nu//iurbtYWGZ7Y/gpwYdopR84dphKAa9ndZWn66fMjMDzeTTML22OZfroHUS4zt0/JhGD6alzX/WmhcnSruTM9EfitcFY36BPihYAWolywcuS9sj7JQgP+b8GFsld1go3QaEFl1W+pHx6i1iJaudX4chMfD8w6MCL8SH+xrGXhjRC+sumb2CvzLViSLEdFa5TpGf4D7uB4/mkSPj06mJqcnJ2bw9gUc8SJqcm1daVUoH/LevuVVqSZj7jXmBLKiY8KOEn2SEVqcUFXsjumaUSfkQb/zHgPUi4x1lYww8elCLYa+EyhszA74wBp5uZ+qe8rDYBUEEzcUXNeTvtVU+WeFM6jWDk9SiMzkaKnV6R/OsuZswaKSE7mPx39kbMQhUVFz54e4qjn6fNPscAVkxwxbEkNTJCCBV5tIMJ84v+Zn+J6592f/eiH//bdt9763vf+F04yvve97/3zP/8TmwGkkd9vSE/Czz9j8kMeMOBkkk5Ndg1KxdVe7EvOJYtPIYNsDiMYy8rK6AswrAvHfoZLvrQvBXsJCUfHHv/4x//vX77/L+++++53vvOP//Hj//jg1x/+7++99e6778HiCADxYpMufI5bGpiYUz1AOpiCp6aBrgzQTFTtr+Ry5hy+5BFzG+gVm5HY2hDAdQlyrQcUMn5p7sosKAIAGBNWBijDNw3HLf4njqK+9a1vfvN//P3f/z23cCEtgQv5vnAwnU7AXPinL0jP4fiL7PePn19BZgjVBQIVvidIOSc2O4mXhZLscpwVBDI8/TRzjOL6ufAEyPRabjOkTWrbMskCkeTsjn5iVMgmNj4nQqrCejVrqEyaRJprJiEvIyux6w36PjBD+4so/0K7P0jFq8kO2qvvJ2dImwyTXScJGY+MUB3P1M8Mv+IFWxa4p2BoyEbEnb67lz1Ge2EDaPMJrCdVT4dmYgwgxhxXnkEzJMllk10nCcUQVCxurzGM3B/GjQU/W1VaUZX1SXZzR/f94QssVC9bu/IopSkkQiFdPMo0xiMILKrnZfv3S0h/bSRExHECFjwJ9y4CW+DeJeXD++O8RrmGES82eCfUn2oxWv9oF2qrW3t6HI/72dY2cRODO5uTufRkmqsayS6eblSJUqnWEr00uZZkBGX93tIChsKuggDlomtCObGxeGOJJ+Pj2kjIq7LXz+9m+UM+vC1DBKfHYXfbHbiY8TpsbqvmyMZuceJVy+TyunHGbMNBjNtuc9vMDjMeZ/AIw1Ory+r2ub1+r9VpMTnMNlWCyuXwOj0+j92DTxo713a3jQR2t6qCC3E9o9ziuGwqmSpWFc4jatGuOZhpcnrJrmox2s1UYXGYzA4LPo5YXzL+2FIQawGGo8yOb6DYPM3W10ZCisZIAu+yUYyn2sJ997sbg+Y6X6Mj6Qt3JeLdMUfMYQ1bTGFjnbfOFrMbQuZIT7M9Zk/290Q6wvyqijmAsxhTfbCxa6B79PHDwQf3cCtjClv8rUFrwuVu9nbd67Al3Iaoy98R8zS5TYEGQ8hijTjMYUugLWDG40zQZE84e+522MIWSwwf0I22sLkhYLAkfOaIHT84eCbGh073/Xu+pCvcER0YHWjqjo8tzNML7D6KdwYdqPsSZOC1VHGdJATyVb+ttLW6sbO1u/dkZXN1ZWOV30fhR7bmVxbXt9eW1pfWt9Y2ttfXt9fXttaXN1aW1pc3nzw5ONyfX11YXF9a3QLsXT88OnoGkv/0aHNngx9fmV9ZWN1c4zdXQKdJz/X88vzi2hIVrW6u4hBHu6CCRcrf2NlkW4lkS+vELC1vYj25ppqxvry2TcY54jGWerK7TUV7Rwf8gsvuoUK22KK7FsORa6HKpQq5ThIyfpXa1KcMgJT9LlZeWHrdvdfPgQX+9qlrFaFdy62K+a/E2q1mFqaOlvXekTTk5Vv0XymTAiXv6Q9ZXiQ7fqqMzfSPlpGCOOdOSk2j7qMi5r8MoZBLde6Xk/g6SSiTx9XU2Nee681cbWYyCK6ZhJlU+XWa6+2Br0l4vf35Gkp7iYRXANS/zvIm9MCffR3+BHrg/wNBrxzrUnAsNQAAAABJRU5ErkJggg==