OO/ⵙ∣❁∣ⵙᙁⵙᑐᑕⵙIⵙ옷ⵙ◯ⵙ◯ⵙ옷ⵙIⵙᑐᑕⵙᙁⵙ.../⚪ᕤᕦ⚪ИN⚪ꖴ⚪✤⚪ᑎ⚪ߦ⚪ᙏ⚪Ⓞ⚪ᑐᑕ⚪◌⚪◌⚪◌.../⚪ᗱᗴ⚪ᴥ⚪ᗩ⚪ᗯ⚪✤⚪ꗳ⚪Ⓞ⚪ᔓᔕ⚪◌⚪◌⚪◌⚪◌⚪.../⚪ᙏ⚪ᗩ⚪ᴥ⚪ꗳ⚪ᙁ⚪Ⓞ⚪ᗯ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪.../⚪ᗩ⚪ᑐᑕ⚪ꖴ⚪✤⚪ᗩ⚪ᙏ⚪ᗱᗴ⚪옷⚪✤⚪ᗩ⚪ᙏ⚪◌⚪.../⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪.../BИ..⚪✤⚪Ⓞ⚪ᙁ⚪ߦ⚪◯⚪ᔓᔕ⚪ᴥ⚪ᗱᗴ⚪ИN⚪ᴥ...

2260 lines
119 KiB
Mathematica

(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 13.3' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 121730, 2250]
NotebookOptionsPosition[ 121094, 2232]
NotebookOutlinePosition[ 121451, 2247]
CellTagsIndexPosition[ 121408, 2244]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"ariasD", "[", "0", "]"}], " ", "=", " ", "1"}], ";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"ariasD", "[",
RowBox[{"n_Integer", "?", "Positive"}], "]"}], " ", ":=", " ",
RowBox[{
RowBox[{"ariasD", "[", "n", "]"}], " ", "=", " ",
RowBox[{
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{"2", "^",
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"k", " ",
RowBox[{"(",
RowBox[{"k", " ", "-", " ", "1"}], ")"}]}], " ", "-", " ",
RowBox[{"n", " ",
RowBox[{"(",
RowBox[{"n", " ", "-", " ", "1"}], ")"}]}]}], ")"}], "/",
"2"}], ")"}]}], " ",
RowBox[{
RowBox[{"ariasD", "[", "k", "]"}], "/",
RowBox[{
RowBox[{"(",
RowBox[{"n", " ", "-", " ", "k", " ", "+", " ", "1"}], ")"}],
"!"}]}]}], ",", " ",
RowBox[{"{",
RowBox[{"k", ",", " ", "0", ",", " ",
RowBox[{"n", " ", "-", " ", "1"}]}], "}"}]}], "]"}], "/",
RowBox[{"(",
RowBox[{
RowBox[{"2", "^", "n"}], " ", "-", " ", "1"}], ")"}]}]}]}],
";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"iFabiusF", "[", "x_", "]"}], ":=",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"prec", "=",
RowBox[{"Precision", "[", "x", "]"}]}], ",", "n", ",", "p", ",", "q",
",", "s", ",", "tol", ",", "w", ",", "y", ",", "z"}], "}"}], ",",
RowBox[{
RowBox[{"If", "[",
RowBox[{
RowBox[{"x", "<", "0"}], ",",
RowBox[{"Return", "[",
RowBox[{"0", ",", "Module"}], "]"}]}], "]"}], ";",
RowBox[{"tol", "=",
RowBox[{"10", "^",
RowBox[{"(",
RowBox[{"-", "prec"}], ")"}]}]}], ";", "\n",
RowBox[{"z", "=",
RowBox[{"SetPrecision", "[",
RowBox[{"x", ",", "Infinity"}], "]"}]}], ";",
RowBox[{"s", "=", "1"}], ";",
RowBox[{"y", "=", "0"}], ";", "\n",
RowBox[{"z", "=",
RowBox[{"If", "[",
RowBox[{
RowBox[{"0", "\[LessEqual]", "z", "\[LessEqual]", "2"}], ",",
RowBox[{"1", "-",
RowBox[{"Abs", "[",
RowBox[{"1", "-", "z"}], "]"}]}], ",",
RowBox[{
RowBox[{"q", "=",
RowBox[{"Quotient", "[",
RowBox[{"z", ",", "2"}], "]"}]}], ";", "\n",
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"ThueMorse", "[", "q", "]"}], "==", "1"}], ",",
RowBox[{"s", "=",
RowBox[{"-", "1"}]}]}], "]"}], ";", "\n",
RowBox[{"1", "-",
RowBox[{"Abs", "[",
RowBox[{"1", "-", "z", "+",
RowBox[{"2", " ", "q"}]}], "]"}]}]}]}], "]"}]}], ";", "\n",
RowBox[{"While", "[",
RowBox[{
RowBox[{"z", ">", "0"}], ",",
RowBox[{
RowBox[{"n", "=",
RowBox[{"-",
RowBox[{"Floor", "[",
RowBox[{"RealExponent", "[",
RowBox[{"z", ",", "2"}], "]"}], "]"}]}]}], ";",
RowBox[{"p", "=",
RowBox[{"2", "^", "n"}]}], ";", "\n",
RowBox[{"z", "-=",
RowBox[{"1", "/", "p"}]}], ";",
RowBox[{"w", "=", "1"}], ";", "\n",
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"w", "=",
RowBox[{
RowBox[{"ariasD", "[", "m", "]"}], "+",
RowBox[{"p", " ", "z", " ",
RowBox[{"w", "/",
RowBox[{"(",
RowBox[{"n", "-", "m", "+", "1"}], ")"}]}]}]}]}], ";",
RowBox[{"p", "/=", "2"}]}], ",",
RowBox[{"{",
RowBox[{"m", ",", "n"}], "}"}]}], "]"}], ";", "\n",
RowBox[{"y", "=",
RowBox[{"w", "-", "y"}]}], ";", "\n",
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"Abs", "[", "w", "]"}], "<",
RowBox[{
RowBox[{"Abs", "[", "y", "]"}], " ", "tol"}]}], ",",
RowBox[{"Break", "[", "]"}]}], "]"}]}]}], "]"}], ";", "\n",
RowBox[{"SetPrecision", "[",
RowBox[{
RowBox[{"s", " ",
RowBox[{"Abs", "[", "y", "]"}]}], ",", "prec"}], "]"}]}]}], "]"}]}],
";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"FabiusF", "[", "Infinity", "]"}], " ", "=", " ",
RowBox[{"Interval", "[",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", " ", "1"}], "}"}], "]"}]}], ";"}], "\n",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"FabiusF", "[",
RowBox[{"x_", "?", "NumberQ"}], "]"}], " ", "/;", " ",
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"Im", "[", "x", "]"}], " ", "==", " ", "0"}], ",", " ",
RowBox[{"TrueQ", "[",
RowBox[{
RowBox[{
RowBox[{"Composition", "[",
RowBox[{
RowBox[{
RowBox[{"BitAnd", "[",
RowBox[{"#", ",", " ",
RowBox[{"#", " ", "-", " ", "1"}]}], "]"}], " ", "&"}], ",",
" ", "Denominator"}], "]"}], "[", "x", "]"}], " ", "==", " ",
"0"}], "]"}], ",", " ", "False"}], "]"}]}], " ", ":=", " ",
RowBox[{"iFabiusF", "[", "x", "]"}]}], ";"}], "\n",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Derivative", "[", "n_Integer", "]"}], "[", "FabiusF", "]"}], " ",
":=", " ",
RowBox[{
RowBox[{
RowBox[{"2", "^",
RowBox[{"(",
RowBox[{"n", " ",
RowBox[{
RowBox[{"(",
RowBox[{"n", " ", "+", " ", "1"}], ")"}], "/", "2"}]}], ")"}]}],
" ",
RowBox[{"FabiusF", "[",
RowBox[{
RowBox[{"2", "^", "n"}], " ", "#"}], "]"}]}], " ", "&"}]}],
";"}], "\n",
RowBox[{
RowBox[{"SetAttributes", "[",
RowBox[{"FabiusF", ",", " ",
RowBox[{"{",
RowBox[{"NumericFunction", ",", " ", "Listable"}], "}"}]}], "]"}],
";"}]}], "Input",
CellFrame->0,
CellDingbat->None,
TextAlignment->Center,
TextJustification->0,
FontFamily->"Source Sans Pro",
FontSize->8,
FontWeight->Plain,
CellLabel->
"In[116]:= ",ExpressionUUID->"a68001d4-5f1e-4b83-8af8-5ffeaf0911a7"],
Cell[BoxData[{
RowBox[{"ClearAll", "[",
RowBox[{"iCurvaturePlotHelper", ",", " ", "CurvaturePlot"}], "]"}], "\n",
RowBox[{
RowBox[{"iCurvaturePlotHelper", "[",
RowBox[{
RowBox[{"f_", "?",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"Head", "[", "#", "]"}], " ", "=!=", " ", "List"}], " ",
"&"}], ")"}]}], ",", " ",
RowBox[{"{",
RowBox[{"t_", ",", " ", "tmin_", ",", " ", "tmax_"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"x0_", ",", " ", "y0_"}], "}"}], ",", " ", "\[Theta]0_"}],
"}"}], ",", " ",
RowBox[{"opts", " ", ":", " ",
RowBox[{"OptionsPattern", "[", "]"}]}]}], "]"}], " ", ":=", " ",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{
"sol", ",", " ", "\[Theta]", ",", " ", "x", ",", " ", "y", ",", " ",
"if"}], "}"}], ",", "\n", " ",
RowBox[{
RowBox[{"sol", " ", "=", " ",
RowBox[{"NDSolve", "[",
RowBox[{
RowBox[{"{", "\n", " ",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Theta]", "'"}], "[", "t", "]"}], " ", "==", " ", "f"}],
",", "\n", " ",
RowBox[{
RowBox[{
RowBox[{"x", "'"}], "[", "t", "]"}], " ", "==", " ",
RowBox[{"Cos", "[",
RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}], ",", "\n", " ",
RowBox[{
RowBox[{
RowBox[{"y", "'"}], "[", "t", "]"}], " ", "==", " ",
RowBox[{"Sin", "[",
RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}], ",", "\n", " ",
RowBox[{
RowBox[{"\[Theta]", "[", "tmin", "]"}], " ", "==", " ",
"\[Theta]0"}], ",", "\n", " ",
RowBox[{
RowBox[{"x", "[", "tmin", "]"}], " ", "==", " ", "x0"}], ",", "\n",
" ",
RowBox[{
RowBox[{"y", "[", "tmin", "]"}], " ", "==", " ", "y0"}]}], "\n",
" ", "}"}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", " ", "y"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"t", ",", " ", "tmin", ",", " ", "tmax"}], "}"}], ",", " ",
"opts"}], "]"}]}], ";", "\n", " ",
RowBox[{"if", " ", "=", " ",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"x", "[", "#", "]"}], ",", " ",
RowBox[{"y", "[", "#", "]"}]}], "}"}], " ", "&"}], " ", "/.", " ",
RowBox[{"First", "[", "sol", "]"}]}]}], ";", "\n", " ", "if"}]}],
"]"}]}], "\n",
RowBox[{
RowBox[{"CurvaturePlot", "[",
RowBox[{"f_", ",", " ",
RowBox[{"{",
RowBox[{"t_", ",", " ", "tmin_", ",", " ", "tmax_"}], "}"}], ",", " ",
RowBox[{"opts", " ", ":", " ",
RowBox[{"OptionsPattern", "[", "]"}]}]}], "]"}], " ", ":=", " ",
RowBox[{"CurvaturePlot", "[",
RowBox[{"f", ",", " ",
RowBox[{"{",
RowBox[{"t", ",", " ", "tmin", ",", " ", "tmax"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", " ", "0"}], "}"}], ",", " ", "0"}], "}"}], ",", " ",
"opts"}], "]"}]}], "\n",
RowBox[{
RowBox[{
RowBox[{"CurvaturePlot", "[",
RowBox[{"f_", ",", " ",
RowBox[{"{",
RowBox[{"t_", ",", " ", "tmin_", ",", " ", "tmax_"}], "}"}], ",", " ",
RowBox[{"p", " ", ":", " ",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"x0_", ",", " ", "y0_"}], "}"}], ",", " ", "\[Theta]0_"}],
"}"}]}], ",", " ",
RowBox[{"opts", " ", ":", " ",
RowBox[{"OptionsPattern", "[", "]"}]}]}], "]"}], " ", ":=", " ",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{
"\[Theta]", ",", " ", "x", ",", " ", "y", ",", " ", "sol", ",", " ",
"rlsplot", ",", " ", "rlsndsolve", ",", " ", "if", ",", " ", "ifs"}],
"}"}], ",", "\n", " ",
RowBox[{
RowBox[{"rlsplot", " ", "=", " ",
RowBox[{"FilterRules", "[",
RowBox[{
RowBox[{"{", "opts", "}"}], ",", " ",
RowBox[{"Options", "[", "ParametricPlot", "]"}]}], "]"}]}], ";",
RowBox[{"rlsndsolve", " ", "=", " ",
RowBox[{"FilterRules", "[",
RowBox[{
RowBox[{"{", "opts", "}"}], ",", " ",
RowBox[{"Options", "[", "NDSolve", "]"}]}], "]"}]}], ";", "\n", " ",
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"Head", "[", "f", "]"}], " ", "===", " ", "List"}], ",",
"\n", " ",
RowBox[{
RowBox[{"ifs", " ", "=", " ",
RowBox[{
RowBox[{
RowBox[{"iCurvaturePlotHelper", "[",
RowBox[{"#", ",", " ",
RowBox[{"{",
RowBox[{"t", ",", " ", "tmin", ",", " ", "tmax"}], "}"}], ",",
" ", "p", ",", " ",
RowBox[{"Evaluate", "@",
RowBox[{"(",
RowBox[{"Sequence", " ", "@@", " ", "rlsndsolve"}], ")"}]}]}],
"]"}], " ", "&"}], " ", "/@", " ", "f"}]}], ";", "\n", " ",
RowBox[{"ParametricPlot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{
RowBox[{"#", "[", "tplot", "]"}], " ", "&"}], " ", "/@", " ",
"ifs"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"tplot", ",", " ", "tmin", ",", " ", "tmax"}], "}"}], ",",
" ",
RowBox[{"Evaluate", "@",
RowBox[{"(",
RowBox[{"Sequence", " ", "@@", " ", "rlsplot"}], ")"}]}]}],
"]"}]}], "\n", " ", ",", "\n", " ",
RowBox[{
RowBox[{"if", " ", "=", " ",
RowBox[{"iCurvaturePlotHelper", "[",
RowBox[{"f", ",", " ",
RowBox[{"{",
RowBox[{"t", ",", " ", "tmin", ",", " ", "tmax"}], "}"}], ",",
" ", "p", ",", " ",
RowBox[{"Evaluate", "@",
RowBox[{"(",
RowBox[{"Sequence", " ", "@@", " ", "rlsndsolve"}], ")"}]}]}],
"]"}]}], ";", "\n", " ",
RowBox[{"ParametricPlot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"if", "[", "tplot", "]"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"tplot", ",", " ", "tmin", ",", " ", "tmax"}], "}"}], ",",
" ",
RowBox[{"Evaluate", "@",
RowBox[{"(",
RowBox[{"Sequence", " ", "@@", " ", "rlsplot"}], ")"}]}]}],
"]"}]}]}], "\n", " ", "]"}]}]}], "]"}]}], ";"}]}], "Input",
CellFrame->0,
CellDingbat->None,
TextAlignment->Center,
TextJustification->0,
FontFamily->"Source Sans Pro",
FontSize->8,
FontWeight->Plain,
CellLabel->
"In[123]:= ",ExpressionUUID->"1cb68996-1682-47b9-a616-08af5811bee5"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
"\:26aa\:1513\:1515\:26aa\:144e\:26aa\:a5b4\:26aa8\:26aa\:15e9\:26aa\:a5f3\
\:26aa\:25cc\:26aa\:25cc\:26aa\:25cc\:26aa\:25cc\:26aa\:25cc\:26aa\:25cc\:26aa\
\:a5f3\:26aa\:15e9\:26aa8\:26aa\:a5b4\:26aa\:144e\:26aa\:1513\:1515\:26aa",
" ", "=", " ",
RowBox[{"Abs", "[",
RowBox[{"FabiusF", "[",
RowBox[{
RowBox[{"X", "/", "\[Pi]"}], "*", "2"}], "]"}], "]"}]}], ";"}], "\n",
RowBox[{"GraphicsGrid", "[", "\n",
RowBox[{
RowBox[{"{", "\n",
RowBox[{"{",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
"\:26aa\:1513\:1515\:26aa\:144e\:26aa\:a5b4\:26aa8\:26aa\:15e9\:26aa\
\:a5f3\:26aa\:25cc\:26aa\:25cc\:26aa\:25cc\:26aa\:25cc\:26aa\:25cc\:26aa\:25cc\
\:26aa\:a5f3\:26aa\:15e9\:26aa8\:26aa\:a5b4\:26aa\:144e\:26aa\:1513\:1515\
\:26aa", ",",
RowBox[{"{",
RowBox[{"X", ",", "0", ",",
RowBox[{"4", "\[Pi]"}]}], "}"}], ",",
RowBox[{"Axes", "\[Rule]", "True"}], ",",
RowBox[{"AspectRatio", "\[Rule]",
RowBox[{".5", "/", "\[Pi]"}]}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameTicks", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",",
RowBox[{"{", "1", "}"}]}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Full"}]}], "]"}], ",",
RowBox[{"CurvaturePlot", "[",
RowBox[{
"\:26aa\:1513\:1515\:26aa\:144e\:26aa\:a5b4\:26aa8\:26aa\:15e9\:26aa\
\:a5f3\:26aa\:25cc\:26aa\:25cc\:26aa\:25cc\:26aa\:25cc\:26aa\:25cc\:26aa\:25cc\
\:26aa\:a5f3\:26aa\:15e9\:26aa8\:26aa\:a5b4\:26aa\:144e\:26aa\:1513\:1515\
\:26aa", ",",
RowBox[{"{",
RowBox[{"X", ",", "0", ",",
RowBox[{"4", " ", "\[Pi]"}]}], "}"}], ",", " ",
RowBox[{"Axes", " ", "\[Rule]", " ", "True"}], ",",
RowBox[{"ImageSize", "\[Rule]", "Full"}]}], "]"}], ",",
RowBox[{"Plot", "[",
RowBox[{
"\:26aa\:1513\:1515\:26aa\:144e\:26aa\:a5b4\:26aa8\:26aa\:15e9\:26aa\
\:a5f3\:26aa\:25cc\:26aa\:25cc\:26aa\:25cc\:26aa\:25cc\:26aa\:25cc\:26aa\:25cc\
\:26aa\:a5f3\:26aa\:15e9\:26aa8\:26aa\:a5b4\:26aa\:144e\:26aa\:1513\:1515\
\:26aa", ",",
RowBox[{"{",
RowBox[{"X", ",", "0", ",",
RowBox[{"4", " ", "\[Pi]"}]}], "}"}], ",",
RowBox[{"Axes", "\[Rule]", "True"}], ",",
RowBox[{"AspectRatio", "\[Rule]",
RowBox[{".5", "/", "\[Pi]"}]}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameTicks", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",",
RowBox[{"{", "1", "}"}]}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Full"}]}], "]"}]}], "}"}], "\n",
"}"}], ",", "\n",
RowBox[{"ImageSize", "\[Rule]", "Full"}]}], "\n", "]"}]}], "Input",
TextAlignment->Center,
TextJustification->0,
FontFamily->"Source Sans Pro",
FontSize->8,
CellLabel->
"In[127]:= ",ExpressionUUID->"a8c1fd5e-14b8-4edc-b2f7-b94c06f766bc"],
Cell[BoxData[
GraphicsBox[{{}, {InsetBox[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2],
Opacity[1.], LineBox[CompressedData["
1:eJwsm3k8VP/3x2VfUsyIGctYWpSikizFnENSSioVyhJCkWwVJVqFJNlSlEj2
ZKeQNYRsIaGs2bexb1l+4/P9+cfj+bj3nvt+n/c5r3vvvB5vcTM7HQtGBgYG
e1YGhrX/TAWcNX/3+1MDhCoE8HTIzq2D+QcpgXYgp2rjpbrLWnkxZbd5S8A9
WFJ9tpD4iaKSOgs/eZM8Yev3iQp1/3sqvXxX5rMCnoO3dr//nWOFKj7kcu6k
3ECIuG47qqY5rhKz3TCcIeklvEt5tt5gkI9aqDC+50zEazjxM8HYdmYftVXD
vTg6IBw2NQ+GPfyhTV2UWi/lWvwOkjxjD2edMKd6yjY5Rue+B76Saf2+BGcq
34GI3JqMaHAyz3EsZ39CfadqzTz/MRYc7LhC6m69ospoyp0Qj40HO8VHk5us
Yqi5p1ZeHIv4ALryufu3XEunHtUvb78e8hHuy5JNGQmF1J8XAyTDApIhbbfy
Jz3vCmrqPhnFv6UpwD1xPikipIHqrBD4x7k4FZTn3F5tk2mjUg/O319fkAZ+
C62KL7b2UpnBaOu73HQo+b6dxDE2Sq1UK67Y/zkDOFXGZDW+TFP9NSRtKzMy
QeDJI52de5ao+sd8CBdTs0DgcxwX109GoGhPZE19/AS06Szx2FJ26Dmta+CV
8Bk4xQLufd3IAx/O5a4Kx2ZDLnmD9jtfPnA8LxaV+j4HDKueesivkkHR6PFR
jYhcKB4PEutVFYMVk6GR1jdf4LXQzAM/sS1Qan7S3y4kDwaLGYZVkreDz5WM
/czB+ZBW8+FaJaMM6NiQW18FFECypndNNEkW1itCQfCRQmCzIwgwx++H8WwH
3q7SQrhx55l5Vr4SNByMurRTvQg67G1c7lpSISuvKfNmcRFQ98gS65pUIQQ4
2AuxGKgn2aSG69TBtejgBc6CYjBqiPJ7v/0omByyTTyr8hXWpd3IP9h7HA6V
Rqy8zf0K74+GxW9kOwXbjjScGlQqAS5Cm7XtOR3grGB5v+9zCew3f//leddZ
GD2mOOMmXwpMRbOPzibrQV2V9ZHyjFLgChjgjym+AOnaYSGEfWXwsqYp67qo
MQTX1Q4bppbBlyP6Ks09JmDUKOc38fEb3PWzHtrGZQGoe7n74K5yEPGzaD9h
chm2NIfIeSSUw7x6pgK5xwrYLlR51G2vgBjHey7ur2xg6PdKs2BsBbwIE9r5
9J4dVBvt3WmxtRK+Go1bBp1wgJSOS27J7yvhbKbd9cRZR3D+Wy6uHvEdVAsN
9ie/dYILFv+u+1Kq4ASHiuKL8FtA7Zcua35TBbqq5OqcAhdgHg6wvhZSDTxf
t1zLMr0H/TalXz4J1IDNwYUtRZP3oXJsbgNjcA1k1wQLKGs8BP9Jw/TggFpw
3qF+omXzY3i2KVS5kLsO5i9rqrH98ID61Mei+3Xq4EJXWJnQCy8wGDLspfyu
g1LVqPw95j4Q4XG0PFD0B/Q9iGlBe1/okZD7wG7+AzYGBvQmHPMDWwMuh8mR
H7AnTXS3fHAApM/Nnrm8tx7If7efjqkNhPnAbvk/N+thSFRf35n/BTyoyl4q
XakHTx2iwkzVSwhSueIVwtMI6Zxhd5O7wqCl5czVDecaIcPn0z5f73CgOIH2
o5BGMAgavDIVEQGxSfx81yR+wi++4CM7bCMhR7Q0HOWa4MujY+FlJjGwkpvy
MPNWE/AQf3T12cXCIf03FlJ5TdB5IS7IziMOqvyu7+TT+AULvnVl+RUJ0LFO
4lO/XjM8/b700yQ+Gba85Q41fNMMD6+FFgzdToErBxZcf3Q2w65spuxWiVSY
dKxTy7VqgUdDR0N/30sD5p67Nb53WiGj+ySfqWUmaN63TmUqbIVXN009ju7I
Al9h3aBbzL9hv0OWZy+N3tfnpC+YPfsN5z7IvAavzyBV9rt3f/gfcFVyYLDs
zQU7s2/lCX//gFaEf/Zw6RfIWEn7ILq9DcJbTh4UTcgDFQVvB47UNmC2G9d5
5FYAp+IUl/8Ut8O74YWqztgiOFh6jFPteifMMaZTs6tLgacxplYhsBM8u5WM
n54qg55uxhfS6Z0QNS+uldNYBr4MuaLkqU7Ib1k14ev6Bt0Hd+4fd+wCcXJv
0xR7JXilcZm8dewGI2XVPRG+NdAUXpW56NADk4uHfp0UbgR7F23TdPsBuJKa
l+2r3A7HbJXj2P0G4KdLzRd9n3bYbCZFM0oegPJ2w0KJP+3QpMnqxj42ANk6
yd+y7nSACjn/ldHVQSjVlr5qZ9QJnJ+l69gsh+AMOQlevumC6Jn1YGgwAnF/
SbYqgj1wd3DxcarLCDy5oS8+q9oD+m0DVayhI3D4gfSeGKseWF9aciG1eQSK
b4uV9n/uAccgVydW3VHYMdVhXKXbC7hv5GPKqTG4yudYUeDbB9c+W/gybh6H
7ZU27251D4CM5mmxdXLjsNwjEjPEPgjjLcppq+rjIJLFn7Nx9yDc+EdsWrIc
hwTpqHNWLoPgQi0WmUsYh92+yxwk7iHwKKF8HJadAIZX8ZYPxYbh6DlOGDo0
AaGhX8giqsPA0TdTN3B2AgS2N2w+bjoMPmzV071OE5CYo/LYMGIYAo/dUe7M
mYD7SjonlMgjEFH363uj2iRsMJLWPDMzAmamX40azkxCLK06umLDKGyeTKL9
MJ8EloIb675LjkIM0YNY6zEJldy84bb6o/BRV86gonISxBmYjyhljIJtv+jo
t9+TUHv61ym2ylHYc4vrXtnIJBRql58w6RiFjJDuyK8bpiCLj1k8nX0Mcv74
DeXpTIF/gr7sn3Nj4HrN1fXLpSn4E9Xese7KGKisXN6Qe2MKqHrDvmm3x6BQ
FGQ/B09Bs3PBrszXY/AwRaokK3YK0gUzT7AljoG6Kr9u5ucpkL230tyTOwbf
zEZvp7VOQXxGk8ih1jHwmmrmSh2egrjDRJeSgTE45l4Slrw0Ba+sznjXz45B
TfTrokTKNOxtEJ0N5qVB44AmR6zZNEiMGhb9VKUBLWT74UeO00BtLPpA0qIB
53G2BxcfToPR8SM7l8/RAD+WzAtETsMNyqmTyVdoYGD8Xm46lX68UP/8PQca
OG18aF9XNA0dYPN15jYNPjjAgFfXNHikSFz8/YQGZRKULRYT0/T1cwo64U+D
zoali6rrZqALnu+2eUUDfvmcXwtiM/AukdUoM5oGe/tfEZv2zADr6ymnvx9o
oPXK+WQazsDHujjG0lQaPFyU+2ZtMgP91NfL8V9oEPaByHTEnn7+3uSjqUU0
+Gw4Sd18fwYm8nhzrpfRoJ77h8vq8xmoa79xYqqSBqP5yVm/w2dgJd5/nWwt
DdjtfSc/Jc9AcyL/r70NNJAQvyYTVDADRd9+1k430UD/kVSMVscMpMZ9k6tq
o8F1OY7u7bQZ6NuhHtPTSQPf3n4RltUZKFDQO1z+lwbxwWXnuzbMwsSPFL7b
fTQoORL9Io8yCyfmGAQWBmjQMf/oR4jMLDzRndM+NkyDxXgzbifqLAx/gwLb
URrsXi/2WMZ4FjJH2nWUJmhwLG+lkNN2FgLfyrv8naSBuW3bUp/bLHz+2Nt5
ZZoG90S/KH59Ngtfsg4+/j5Dg9C60BvhYbPgLXnSjHuOBpkPbqfc+TgLC5Px
tnvmaVAnqz+ilzcLd6aqQ+UXaDD8V367XPUsFAS+rxVfpAHri03mPG2zUC3U
NTJFZ3GN6fCRkVmg/rL/lvSPRn9vq/9dvjQLpwZ/SZ5dooFuXKpA9Po5uJIY
Wd5LZ4fzfmceCM+Bw72/Zy2WaeDDaffcaNccbNNrsmykc0zuie9KynPA/y7b
Q26FBkU2u9j4teag2rR3hyed/4hwHZo0mIOdjyXSquk8VzN4t+bqHNCy4RrH
Kg0I98tzEu7MQWNtS9BBOkvvjZ31eDoHxWYa2hZ0Ptr9WPbS6zmIrfdN8KTz
pUBzW/gwB6dy7GLe0/mu+qEEodw5qGI6L5VD51cz4n1zlXNgFGzHWUXn9BgG
icbWOZiqesnaSucavQ6jlKE58F99WdlD5wH2/BCfxTm4/dlibITOTDlvfl7h
nIcGnsTZSTpTrt7hPSw4Dw4u/ufm6KwkfOGEuNQ8dNvnXV2k89lqxSfLSvP0
52XIkyU6290VKG3RnAczw8LxZTp7755lyDo/D4Hq3j9X6OzirLmzz3oerKuo
Vqt0tip4c47fdR6Mpiay11ifbfyexrN5SOqP6l7joycPJTi9nYcWZoWZNVZ8
GdwYkzwPPYoJS2u8vWNwpalwHnh5dq+uMUlSZQdb/TzcNfn9H7PZ+Z1R+DsP
UZJL/3GZb9vSnOQCMPz3Nw7uSVIxn20W4IbayH/Hb8y61Q24LUBJyL3/+BL1
xyLp+QIsTxYvr7GOx5atmhEL4P9Pc36N1WqcT95OXQBu0dXBNZbl/347vngB
7nh4V6yxhDElqqVhAV4bGXmuMSHGoYajdwFSOO9wrfG6sZJ5pdkF6Dgitm8t
P+P7SZut2RbhTeXFmrV8drpdPRFKWgRMzQtby3ddab5z5Y5F8MqrPrm2HoXc
hMjFA4ug96Lr7tp6pZyzqJLSWoSqR91Jw3QOD/s8e8FoEWy0nY53r671N5f4
U9tFiH7tHvNzrX6kLx7PvbcI5cOb50robHsz7eaw3yJsNRvWT6azUR5LhFDk
IvyeDvkeSGctlvOVx9MXYX5lRtaBzsonEqfvlCyCgG6Zrgadd71YpST+XIQj
KT+6eeks3Kaj+advEQw3dVjW0+t//daY6+vnF+FaeK6uB53/2SyEKXP8AwNN
Pc5ddB7K0Cq3EfwHbdwC+UX0/mpdCp98s/Mf1Ei5BB6mc6X6lHC18j+Qsdwc
kEnvzxwfjSPLJ/7BW6Zj8RvpnNAY4iB98R/8e+iTepre3yHCo6+N7P9B2SZe
u9v0/vcyx7JnD/7BSlhjoDtdL24lBo7nBfwDxXyuYnu6nlyZ7hMce/8Pnl/0
9D1I1xs95QOHKZn/QNOQ9Kibrkca7s/stMv+gYnUkNglul7JV3WG3P31D4b2
5Hfn0PVsG59cSdLAP4hlG6D2j9Ngk6HnWPvCP9hbTYvrHaMBc1QraSPXErzT
rAlIH6HB9LD0IRBegltsxde0h2jQs+/BNTvpJVjP9S0hvZ8GDXcaX4ZTl6Do
TUVOZw8Nir9KFteeXAJ/0YwNDV00SOO6M7JqsgS7e+wFvNppEHmmhn+P4xI4
6A8dXm6lQcBrcVWTR0vQ58jNtecXXc92lr8ojF4CMleYSEkN/X4WPfcjspYg
6ll0tDz9eaIbwWBz/9sSvZ9mDS+W0uDAJiU1HKRzWPHXihwaJJ48Jy22uATv
u1szWDPp+uDtQGLgWoauojOG40k0YFyNHyvYtQy7zWvSC9/R+0mprCVcZRk4
zzfMRYbSoO96d8k97WW4UBhC2RFIX88Bwddgvwy9yzeXSY/o9bRZwUP0wTJc
yxztuOtCgySjMw6r/suQt2166T79+RxQ//RIQfoy7NE/cviMMT2f3HGy4SXL
9HGxmoidpT+/j5SI3Pu5DN85PwY90qTBhS9LU9S5ZaiwOXKUbR8NqmZJHRT2
FfjN5OuxVZIG1L37K1dIK9ClbGz0U5DerzHXIvIPrMBSXIh9HwMNgjqfPH17
fAUm7sUf0JgaA1ahGKe7hvTzz+74JNc7BkPP27Wod1dA/lpbf+63MUi7fXIh
r2gFyn9XnbT2HIMtGVd7wupXINe1U0zeaQyCxzxr3f6ugD9/9jtf8zFwuVQY
rcKyChqOz5/0whiondirk3d0FfzDi3ylJujvY54nVMLOr4Ltn5XjBn9GYVux
1XY361VIYyS9I30bBU6FyBVln1V4ydZOUHo9Cg1ixA9falfp36e9m3ipo6Bh
sDv4Tecq/ftK+UXM1lH4/OL4A9eJVfgWvDutfP0oaLMU73zLwYDukg49aS0j
IOuyuM54JwMGMxs/FrcdgcVLV5PabBnwAKP3SsyDYTDhnbr1xYkBFaODD6mb
D0Npvsuh13cZkKPOas8jjWHwI3s36/sy4MOZlfZBjmGQrI1jbPzIgKr+p0dv
+wzB2QN9upUjDMjqODzT9mAQknhMV7Os16FsWufA1gP9YJane8rPkhHZR6I8
jmp2g2wWiUC2Y0SRnGvcDSLdwJjc2vDOmRGrjvCzG012QWSEsV66FyM+rq3k
sH/dBd2PLI2bEhjxWkhRUdBoJ5gdc7IRpjHiiK7So9zNHWD264VXnDMTCvax
SQpntoBsnd6xvfeZ0GL5a+8R4xZgrCCvz/FiQhR7lXqHrQUic8Kefw9hwiuT
65MYLzRDd1h08FguE5KENL5XrTaBmXlmlBwDM8Ydf2Q+d6oRLk00FhZ6MSNv
tPjElHYNmLj46X32Y8aXtj4FT3KrwZBJayz5FTPuVyLrEXdUg+6mr0Lhccz4
hlXGQYKtCo4qpTq5lTNjc4FOIKGuAmQePNt1gJ0FRZ9ysS6/LgUpTs2ve3lY
0KBAV++mUClIBjJf2EFiQTGJyVDdNyUgFn3Hk7SdBffz5SlaRX4FYoVV9+wR
FqQmqLqfLiyCeR6NV+meLNj0atedqz5fYDpk3e4Pz1nwWGV6oPiXXJiQyCuN
fMmCInx2lpy0HBiSk5vyj2XBiudtlreNs6FNX0Lb/hsLrke+g12XsqC1q63n
ci0L3n437qf+MROarEPuXPzFgg9NAjd1LGRAnStPvHY/C7rDSmH2m3Qojlhh
kmZjRd/erk8sHKmQvyMndMtGVjyhN14kYZMCuWk39woLsOL5igPsY1HJkFEy
YswlyYppbAXG3qc/QuxAa/agBisSTblzx+biIMoh+FSXNis+9wiA0IlYiFg8
3d+sy4oBzU+10iZiIHR9BV+5JSvGzGe/lWCJBp89n+xiPFhRgON12Zdb76BS
9lffTV9WXG2o1w+PjwD2/XNGh4NZcaZvxm1LUTi4Kylo9USzoqF+QS+x6A0U
H9T7mv6RFS03NxbP67wGBqrzgUeZrHivlfFjxngI3FH7tF2ilBWXckSp2idf
wmf1X+ETVaz0cnqsOL0xGGY15viLGlkx57N137o/QeB4XIHFpIcVF2+dKKx8
EQDWZz91hTGxoaPOIwwSeAZxur/0r3Gxoe9+82OjGk+hT3+uVpnIhpczfNid
vJ+AqZFC/m8JNlyuKLp8U8sD3l7U2/9Big1F1dlWCJXu8MfUOdFFlg077NxG
ZC48An3LT6FkNTY8M1H4hJByH4Kv/OId1GRDwfMycb8H70Kj9ZzX59NsmDOh
WNce5AqEawIMXufZsD3Js+2giQucslNw1jNlww08WkUrx26Br4Pe2DYrNmT3
i/GSPesEVdedLWbt2dCOTeFLl8sNOHLr05kX99nw62TH5d/CDuDu8qvS3IsN
szzumt7YZQfFrnOqcn5s+FmGQdVFxwYY7glkM71iw5eL2Rl/4q2A+kBhT0M4
G5rYizOl7LkMro/0YiNj2ZDba9CRvdccch47UxyT2ZCr6/eJxRIzkPf+tJ63
gD4/L7umuVUjuOHz61FnGRvu7NxbaZ10AdJ85xaTa9hQc6OzdHaUHoz7CTje
a6Ln79uxXcSOsyAdqDCo3c6Gq3abY5PO64D1Cz0TSh8bboq5/qqC5xTEvXT+
NTrKhk+2iASeX6cFfSEvtfNm2PDH/S/WRsePwpY3n0p9ltlQTlBywWZeHcze
/lI2ZGHH2B/2OW7r1CAiYi59Jzc7SvcfjDUvoEJ7pMDOf3zsuKpl1l9IOgDC
0QqRlcLseCemdJ00ozxciNUjh25hxx5aerSqnSy8inf2s9rFjm0V2/sU42Sg
6cNLNiU5dnTtOh9Wc2wHEJM+3WVXZkfvyPcluSlb4FTKr5lfh9gx79PJiMhS
MfBNm7OJPc6O0YG/dsePCEJVhkCP0xl2LBjJo8SZbgLOTwoGGgbseKlYti++
nAeOZuvVb7rEjvmHXRSmmDnBI9dZs9eaHSVyf2172sMEJXkvCzMc2dHgy1lw
m12mMhZ+UnB3YccvMpy5w3tnqQnchJjlh+w40mLY4mBBo+oY2PA5P2VHgUp9
afOPvdTFuLKH44H048Jpt13F26jvZ8UmrN6wI0sZWXXvYj1VS/3Oxb9R7HhQ
uFOYt+0bddr/Z7XhR3YsM/SumK/6Qn3TsVu5KZMdWxu0+Wb8Uqjq0t4JJ/Pp
12911axgjKSOuPSQKsrYMdNUcoVBO4AaVE71VKtlR93b19dHbXlAVeYPmcn9
xY5nwhrSXrFco/Zemrq0v5MdFW++sst7fY7qm3qiPmmAHTfWxvicUjhIlV+N
xe0T7Pis7nTGY10harsWY/K7BXZ8ckbF3m50SsUj1FBEiJEDn5mXTEk1FanI
DGQ9DeLkwFs5RvkTXK4qTft5F7mJHHjiHIulWxuPyt1HV694CnGg6j/uxy7l
ssqSP0qbGLZw4PE3L5bcbRoP1FHEDrvs4sC+I7Vms8Qs5Vs2LulTchz462J2
8zPnYypiOY3i11To8XIU5foHI1TK2Xb79R3mwHtHflkyGP9WsT/3ZOWiNgeK
2tX9NfBlo5Le/7Vp0eVAO8tJw/ZTO6mF4yq/dS5yoIdxwGWGvUepVtRXmlWX
OfB+13BQaYQpleAz+emwPQfqDZ5iuyDjRM1p0dpWcIsDnSZ8LI/3eVHNJGOD
FB9woBr5xYK1ewiV8+Y6prQnHNh27hybs0YcNa3YwGFnAAdS71Sla2VmUi/w
ZHVEhdLjmX/yZLpWTGU05tGmvOdAsw/6aoeHq6kfPlh/efmBA0M/Xt47b/KL
enahRIo3gwPr9I63j3/ooi5piIZ4f+HA84d3F6hNDVKjgm6zMZdy4H6uzFK5
gEmqVnfDTbdqDvxRU2oi+2+BOr1bpmf2Jwc+rHgzd69mHbxx89Kxb+dA/g3G
6DfLBurfuwsH+zgwsUGDZ9unjTBKUtl9icaBjY9kQ0QS+SDY8mXYnzkOfNlU
2LgvSBCoGRNcugyc+P5v/1XFDjHoW6flUsvOiV+/8p+8uGsr+J6MGTjKy4nf
3rVukzomBfJhDHrFZE40+8fGYbNjD7QPXSg9KMGJ5zUlz0uk7gMPxcx9mVL0
49GdnaOVCrDbY2OkzD5O9GSyNz7koQzNDVY8cQc5UeDxc6noBYT74iV3xdU5
cTcz587LvOqw3Y4yGqrFibTg7/ICgUeg7sstA75znBjB7lAT7XkcbnE2VDwz
4kTzeZbHB+dPgpi+tCKbJSdelGriIDnrQHm0Z8x9W04M/uKVe1/pHNhPdfEt
OnGi//K3yK1H9YGkqvzo+j1ObLXQP9URawCFvsETI56ceEywOPSZ0UW48mf8
oqUfJ5adPnSZ85Mp8Eodr+l4xYkKSZo10rRL0McWzlseQY/HpfrkvYwl5PRO
nk2J40TCAZGwgddX4PlXjVevUjjxtPPNo/8Ur4L5u9Df9z9zYv94bmULmy0o
3RujWBVyovrZzL2qj+1hg5Ga2elyTtwSMhd3W9wRPpOGBsSbObF54YRfYNJN
eDarsouzkxO9mKckrr9zBrNGf7vJfk4MMOuckU2/DVx+SrPFc5w4xyEqpKVw
FzqvPVP6sMqJE23a8bXn7kPG8S7XQDYuPDR2tdDs3QMwZnvCZC7AhX5c5xzS
bd1hX+8fDS1RLvw8I+t1aeIxsH/d4y0nyYVmjRHHTT09Ie1uMw+LAhcW6Z7W
3UDzBk/DXWdHqVx4qs/aIqTIBwwP3H/5U4MLX3luntoe7wsss5KUGF0uVGsI
lrA39IfWhjumvsZc6NIROtRpHwBJqbVRTpZc2KyRF/DMLxD0rznvPOLEhcOM
fkZKky8gsadMceAFF56Od/KOUXsND4oFXevCuJDf0e1BQ8Yb+vecbcHnaC5s
2+DRo7jvLTAY8ms8yeTCM6d4BtwSIuBMg8UZqZ9cKBAcUMskEAXbU7ODCW1c
KHx6t0jzumhY8uVuXezhwqR1V4X/TUZDzLFMk+/TXHjRgCt7/0AsLBYx29rw
rcfLH4SqwiiJUBuun3pWeD3Okr9f5lb+CFFuidPKW9Zj69WHX+svJoG20tk7
3HLr8XC0vdVuoxR4l/LeK+nMevzeLLYvvy0NjoarvR8PWI8vrXa59zp9Bs/y
uraHr9fj1U25HIlHs6Fswpi0KWo9Gh0U6d9ByYHD6neeKWWuR7WEpqAjjbmg
Npju/PDXepxxFmL/aVMAyvu2avEJc+PGWRlCavRXuGOY7hGzhRsVP9w0vr6z
hP7+oFqkKM2NaRA50Z1WAkrNRvJGVG7MFZ5iTCkrBXm3YLEYE26M/pO5Kreu
HPZ8Y5tRiOZGhWPLshdzqsBu/MXuyo/ceIFdzUZarxqSyFusDbO4MdNAWFV4
phqkbbDj/jdu/OqfJrlPrhakeG9XVAxyYyLG1PB11MEWg6EwA5kN+OANkXOX
awMI0Ko07n3agBtOyXE5dTXDK/8C08GCDWgZv/8aq0ILkOTSXM+Ub8DlMyxm
4T50vv0yTbJlA4bB74EehVYQZDKj1C1uwOQ2Frm3vr+BIjA3I0bdiLH7t+Fh
5XbYBuLRxSUbsfIJu1nN9y6I6SIW7qreiB+VnkfGzXbBNnfW38E/N2LMc9bH
D8W7QbJimOdq30as33PXUs65G4J2GORzMPPgO3cLJ0+JvxCcvlUqbSsPokHO
l/O3eiD0W846JisedJa7+Jcs0A/jnSm3aTY8uNPrxux2lX44shgz8dueh56U
jfkbLvXD9K7AroxbPCg9eDpCN6kftAOuFll68eC+g1e2vFMbAEYj4QeVsTw4
ZsfKec1kEPSdCAtZH3hwIVG5b/nhICQ/Z3d4n8yDYJJ/XyN6EAyLp01cP/Eg
w/aT4XMDg5AlWY0y33jwDQ4lxNkMwdVJN4aAPh78HnpoaPzSMBRz3bh1d4gH
j/8xmqPSv29JW63Hrcd4sPH1TyOZt8NQpqfbeWiWHs8ke/NY0zCI5ckUzrDw
IhOPCbXz0Ag4NW1R7ObgRS89ZllJ4xGopgmm1HDzooER80GuWyPgIsEWEbuJ
F8Ex+V18wgg0enbcO7+VF2etP+ce5BoFqXc/5w7v4MXbPOr9lhKj8CDnu52s
NC86am89JKM0CjKjny5y7efF2jNsD/wtRsFLxw/y1Hlx0dpjXUL2KLRf9fgU
f5QXk2oyfLKqR2H/Y9fdwVq8qLwvQ+1i1yh0f7oianeWF6ditu1+zDYGyiKq
q2LmvFgub8C9+eQYHDVsdDS7wouauaPr75iOwdnXl/ve2/CiyCRbrNH1MbhK
9q3edpMX+851/Cl+MQZO+uKqV27z4ukjtlGHY8bg4cuMjHg3Xtz2JdDsTNYY
hG76/XqXBy9WLCiF8fwcg5izthttvXlx/ohhSuHfMUgLXPco2ZcXJTTLh5cm
xqCCd7u17EtenJwvGBHipsE8901FxTheFJ/WZWCn0oD5BHvi7URefDEk/26X
Jg14fF6L5qbwolydumTPGRpIchazUrN58QNB8iDvFRrIap5zuZfHi2/Drnx+
4kADqtfAaGERL+p+fLIQ6kIDXdaNPw9V8mLo9w+Vvk9pYHY48ujjGl40e5gk
dDOQBrbu+7+U1fMi/xHRlH+hNHjMaPhe8zcvfkuIFJmMo4GfKo3/aQcvrg82
M7NMpsGb+w+9q/7y4qbb9nmPMmmQsRLncHKEF7vvF+34WkiDQhXlXr9xXlQq
eLZ+qJQGVa61+vXTvMh2wDjqayUNmnPNqogLvHi/9+IVnVoa/F2cgXPLvCjL
bVX/qoEGY0pP0oPXEfD4w2qjkF80WLwlLNnMQkBVtiAP3d80IMypbTDYQMAY
wo13PN00oMg3PXhDIKCfqooPoZcGUjetZtr4Cbj9wmeW3/00kM9YuiIqRMCa
rVRvmyEaqE49/2MiSsBfF7YGV4zQQEt286nIzQTUtMiInh6jgb5D1te/kgS8
PD8mNz5OA/MUTYWtuwgYeku8IH+SBva0PwmWewjo+JWYbzZNA1cZe0qcHAFd
3rfGtc/QwOsaU8CgIgED6o9Oys3RICgxmGWnCgFJ3FxsV+ZpED6847aNKj2+
htdxlwUaJEjljXw8TMCXFe/Jtos0yLI6ZULTJCCju1P+4X80KI7727BHm4An
zNhuMS3RoKbf6YijDgEnfFmvx9O5dRtnbrouAdddf1WutEyDXoswmZkLBJT2
POaaRefxqD2R8hcJGHL7pIv4Cg2W/n7ddOsSAQ1e8we70pl9s96T7MsEfMB7
+EkFnfnMhpYWrxLwz4kNU2t+jdg7N3tlewJyJLbpAZ13dvL0uN0goCLKi1+l
s3a/WLHTLQJmwG5XHzrbj+2JsHMlILe6yMtYOgfM4N0r9wn093MH/Tw6Zyyd
MjR1J6DJwK6AGjo3MZkeuOBFQLcE2ro/dJ7ndCCd8SHg1eeip/voLEh4MHvc
j4CNCbBpbO33d7J/o3oQAcMFHtZN0dlY7F2ayisCDliFTq75A/clU/3k3xDQ
92Jdy5p/EClTZLs7goBx7VqNa/5Cyf4fWtujCHh2KUB8zX/oU+6SEo8jYKQq
YXqN2dUn2AUTCThsVuy45ldIHV/XT0ghYHJ2Yc4aa+nwlnJlEHDKbLRzjW3P
i79n/kxAZjH3qTX2M9n7YDmXgO0Xo/+tcdpl1YuzBQSsPZ+3ssaNtqdVaF8J
aP7+0//8GzeHhc7v9PGxrv7Hhk/9M+sbCLi4+j/uif0hnfWXgPET/2ObEt6Y
kCkCMoQ5/RfP97u4e8AcfT3aWxfXOKV+r9nTfwSEmeCJNa5vUUX3VQLGppb9
WePpztMUNyYi9iuGp60x/4Dp0k02Iop+WGf+n99Ec2i15SJiYupY61o+Lsw+
+Hx5IxHnbo3Mr/lbrsv+wSZEIlZaWr1Yy+db5sgb5wWI2JFKcV3LdyFXmo6O
EBHzLt68urYe3YTiPcdFidjzcpawtl7MgvUb1DcTUW7lF+8onbeJd48oSxKR
Epc1s+bPHd0+Wbl/JxE7S58prfl31rsZ42V2E1G/ZVR9zd/zkSd4Su4jog/x
xtU1/y9JRcJCTIGIuhF3Rtb8wTp12UPkg0S8cnZxcs0/nDyuJk4AInaP3Hyx
5i/yndFZ5TxERAMdxqY1/1H+glkb0xH6eB6pRq7Vu76pY+7SMSJKC5s3rPmX
LlcehsxoE9H/kozMmr/5xi7AeUyHiEsF3JfW/M98p8hz/bpEfFx3asOaP9rp
lrav8wIRbwYEfjanM+PjYt4WYyJO5lr96qH36xafetoPMyJ+mNes0aGzRmB3
daUlEduYP9MS6f1+JXTyw1drIn4LiLo7QdcD73eM3l9siZgsM5lMofPHOMKV
TEcifn+5PlGWrh/uPwtUmZyJ2Cc2p8lH1xdDxmtCp+8Q8avRzZiGWRrs2y04
8/YeEe94Hz5sS9cnTsNvNSOPiJh0Xyqya4oGXV434g54EbHulNC+nXR9+5wp
/tDLh4iXrXdYH6Xr3/PuGoMmPyIuWrJ+kqfro+VG1/1bXhAx3kLca2qYBirK
OzY6hhDxLKvxcddBen6tmgYKwogodP26bU0fDUZePCrmjiRi7Caei/1/afC1
eM8bgxgiKvl3eZd00iCU1nYzPoGIXB4vLl5qo4Gj8NOTc0lEfDPdcqyoha4/
Tr2MgZ+IWHaWUTjlBw3mIgP+dObS53Nxqe1gNV0PayFLppCIrY8i7VzLaeC2
I9SqspyIpQqE77z5NDire+QQqZqINWbM7qafabDr0bSw5Q8i+lb1jRmk0fXz
j3bdulZ6/f54w3ckmgapHEvxJ9uJKPLRkHvfW7qey8c/CusmYn3cJ8XCYBoo
+DEpKA3T4/29ejnTgwYb8lJ4PGn065dn1Mh36XoyaDTUOEXEa+5SLPw36fp/
6HOY/RIRDwcoszeY0uCqvYVzPgMfhu9wm3quRwO1MMLp9Sx8+GZrh2CHFg0m
Zm2Y47j58Mnb1VgZeRqUbxZsn+HlQx+/PSG7pGgQcerbp0P8fNj3wKLtkwhd
fxPEr3ZQ+JDfY+cHRyYabP1Voy69mQ+1aKIRETNjsMTkSrkjyYc2LHfz9PvH
4INR0w/+PXwY9c3HwqJiDNh5nypqq/Lh2T0xZX2eY9Chokh4c5gPnff2BRk4
jUGWde/woCYf6uufM9A3HwOLEgh/rMOHS7dFowepY1DsPM2Sd4kPm34HlVqP
jUJI1LsOzit8mD7XkEtpGQX7H9rZ+jZ82Mak6H/h6yiI7oy3mb7Bhyzjti1W
waPg2m7UsNODDzVcL3b1yY/C9BGVMAtvPmSS+/PhJGUUbFKFL4f78uFtfJim
zjIKBu6/Fwkv+dD7amBIw48ROCB1XmIxlg+Ne4OcPC1GYOHmWYfyCj48GVvi
9tR5GOw79h1krOHDkICeS016wzBwlMiiXM+HCRFpExkKw9AsVP8quZUPpzbx
Le2dHYLPRScLg4f5sGTnvmNnbYfAifv4RgvuTRgiKZJYozUIY05SLW95N2G1
/xtpYclBsOzkeN+8aRMOPtkRL7RuEHTTy+W1KJuwnH+LzIGMAdh/XsN43+5N
aJeTrackMADTUaof153ehLdaHIRN6/vAQVnx+NugTSgrZbI6Jd0DDLZB956/
2oTPnZlHpll6wDd8PP3+G/r9GsY/jrX9hQTGeOFLUZtQOTzbqe7ZX+guJ49J
ZmzClW2DUpdGu+HsuX9+qQ2bkO8Sx0bFxC6Qt81vKiHw44Px4L13zrRDSbgg
VxY/P3JSE1t3MrWDzg8niBXkR9nTlz3/pLWBrdzuuCcS/LiczctCJbRB7GL4
bW1Zfiw4Kl3B9OM3kDwfCDef5senJxcoXdotsBiubjbsx4/cXj1eDmcbgTqn
ErD3BT9GvD5PxdUGeKCtUOwcwo9Ct63zjyc0APvyDgnmSH6kRu7bv2tdA2y6
sLFbOJ0fv4vDzTdpP2APX6up9k9+TCrUPqx0ugauX23wD2rhxwQVYigxvRqy
iquKWtv40eFZvigbfzWoOBSIX+7jx7HVu1OmHd/hWE1U1705fgxfvlWwfL8C
LLzsTFPJAmireoSVl70U4jqu+M+JCGBU1PPJmXslMCJvVqQiIYB/CqwnHyx8
Bcfes+KVUgK4FJB7KXaiGO6rHejqPiiAVXJmQdmzhfA1ZB/vDhRAn/r591dd
C4F1YpeqnboA3hVt3zTEVAjPwkXf/dMSQEPWYc+Pe/IhdInZlM9YAIuu8yRo
JuVA+5kVvwtmArhj5e3N3qZsEP8wVxhhKYDnL5tPyTJlQ9z5ITFpOwGMtNdc
6bX8BJlZtZ2H7wugQq3FucwLGfTvhQoeH3cBvHIl98JQRDooWxRjvZcAvrbO
42sYSoNiYmaEsb8A2hwkxhY8SYU6+1AT50gB1EuheXEOfAQpP55/N2IE8I2B
6nPpkkR4lOzxwjFBANXBrKYk5gPIjzlWXksTQJZu2asn78VD2NXjcubFAsjI
Mfu3zC0aZr2LakzLBNDpje8/12dRcCpBwepipQDu6fn05e3798A8uPnthXoB
dAtefMv/9x1YWy6xne4WQNN/Kr3OhmFQ8tgxUruPnh+XsUz7rtcgEj2grDUk
gDJVJwdrHUOh7m+jw5FJAeQabJc3yHkJUkzH1x+eFUDlj6wpJ+yDwV2iKEZt
UQAvqMUf3Sf7AhRMP/5WYSThideUqSMtAeB3f7PTQVYS6h064r893x+GwkN4
lDhJqLiBw+Zikh+8bX98WI5AQo5Ft0vSJs9gfvlfx15+EpYastVcefgUTos4
uuwWJOH5P6HHyrKfALOhcbKUBAmtusU4d1l6gPGdRs3t20h4XXbk+IlWd/gU
eqxnqxQJE01Mrn41fQTWLfJkcVkSrqbxShXG3YeS+cR0ijwJf+87zf+i5i5Q
SJu1hQ+QUH/w9gFzW1f4obvxkYAaCaW9ZpY2E26BlNNjkU0aJLx/LzWKk88J
3F/8+0Q4RsLUpx0pr+RuQHuGgw6PNgn7fX/2fXN0BMXG/hFuHRK+3Gs+5V9t
DwFTRp5cuiQsK/m70OlpC8OERnGOCyRsuDd2Oif+Krw9XajLbEbC/SNyS77u
ljBvLz+xzpI+3/NFPfZK5qDjl/h01YqEnZUt6spCZpCYLLFt+RoJORXjvHsk
TYCl9lXhogM93kTfXE6OIRiPbTCYv0lCi2WCtsL18/CZ+/HMzG0S/l3+ICl1
UxcI0v+eT7mR0NvFxM79yxmw0XKQmnhAwl8phDPUw6eh7Gp/ydhjEpqJv5LN
4NcG0adGF0eekLBCjvVBzaZjcCuhYWHwGQnDCXfcue5rQH2FZlC/PwllzJoL
608cgl2DBTK9L0j4LjSjP9sZwYNdvqI7hIRfwwzb+UcPQqdk4qXOMBJaxh/i
CvVQAKUjEitt7+jjf2uq8TRpH8i9r/T6Fk3CacGXBZGX94DMqiMxNZ6EJs8e
s8PmnbDdQOht6EcS+pyd0JlQ2wYSn75ud0+lj7+AdOEmWQKEiTbp1zJJSMxg
ct2+TQT47fioetn0eKdWsgIPCADP9y/lmEfCpOm3l5+eIACXpMUZqSISvk/f
Ypvoth5YH3G3E0tJ2C4ysKDexQIMHZlXlsvp83fxvL7+OQMsHjCe6qsiYQD1
1I5/8fPU6WDWu3V1JGTYk3Mkj2uSOjaZxJ7TSEI+K9H6jp5B6oC2XuD7ZhKG
bXlzZ3VXN7U7YVXk2R8SOjx4fKGit5naxhoX59RJwnWclXv5g+uozWan9pn0
kHCp7ISsj1UptT5/Pk9zgJ5fZfOS5bgcapXgu6P7Rkh4vCT/X9HPZGqZk2aD
8DgJ1awvK94WjKQW1k8YsU6T8Kayc8dGh0BqjkzoAG2OhNpChVla9x5RM7zV
rrf8I2GEFGu81YoDNblvaLl4lYTOk78tHGaNqAlqgV6JTGR0O/X2xMaew9So
tweJwWxk1N7YyTa5IEV9u/g37B4XGW+rupzytuKkvtL12W61kYzPGp656sd1
qwSkyaXrEMk4m/uSM4ItRcVnQ5uKsgAZt9zJrbhWdVnFw/px+VYhMnpGSoid
XF5QflAmfWajKBl31rQLMFvyK7tKNLXNS5DRemlDWFt6zQGnu3evdG8j48TE
l7JjelHK9q3bpr5LkXFu1z6BvYmKKtbytW6ZMmRMnDKxDdnpp2Ie4MweLktG
0ScTJ+5WV6oYj4kGesmTkfmpi0CP/5yK/rFyEccDZFzQCExObhGinomxjzOg
kjH4kRB5C78SVZuRvO+wGhl9150pv+ynQz1qXJQno0HGwicJrgHJl6lqOVZH
ScfIeD6Nmf3viAtVmZ/QsE6bjPKSo1pMQ0+p8o45RsOnyfhTPb6QozmUuqfG
bKDxHBl7HRrNTmAcVUqK63r+eTIq1lmwvijPoG71SF+ONSJj575BN0a2IqpY
t4GXvykZvS1UY283VVIFqczEOxZkXBbfzPjHsZHKF5oYZm5FRsv3B3cKqrZT
N8ye3a59jR5vlktCpaaXyq6znKbgQMb9pM8rOVljVMakaBXxm2QUudEVt2HP
DHWJQ7uc8zYZu66Wtd1JXaLOWczqTLuS8dZbr12pgkwwWfS2re0+ff3kFoI9
uTlgROTIlW/uZHrLcKe3yvJA323aZIoXGTNcelaoSXzQ+fOlW6gPGa3mMzcs
CghC615kd/ejr1dhjnP+UTFofDYQcC2IjE8im0ROiW6BmkE/Eb1XZNQy5nn9
I3I7VBxWisM3ZPS526Qe1C8Nt77dlbkXQUbuioAuaU1Z2K5ZkpEXRZ+PuOQe
+53y8KuS4+BSHBlVeLeJ18cfAA+tk0UHPpLxuqNX6olGAPmaoCO3U8n4caMU
7WubGvSebK3+lEnGg8qRh0wUNSDoh+jZ2Wz6/Wt/PuxkPAbqZyxa5fLJyBj5
WsJCQxumGxNMrheT8SSPTqqYx2l4rzvel1pGxukNqtsXZM6CTvP+a+OVZJTJ
CJn1ltADxgt3pmRqydgiuvNSqsUFSPtdePtaAxmlsocOnlo2AlMjVobEX2Tk
H71mvH3OBHg6jnsM/SajprdSaC3lEhSa+K/f0UnGJFJHOt8tC7Dvbgq43ENG
jXPEBluWKyBqLkyOGSBjhVPTnnMV1lDTaxreM0LG9hvX2aHsGty9HLt18wQ9
379iK0/fsweZwZEPpjNkvGZrwuF2wBHarGVlIxbo+bxyoO3PphugbJtHFWEU
RP6GbXe3y96CERpjqQGrIIY++NnvfdMFXjscPR7KKYh/v/3y2tDuCos3GvQE
iIJoki7ImcT7AOJnSe3nBASR94jJh6MPHoL+LWPzICFBfNDCoNHOQn/+3hm0
591C56otL06c8gTLZZm5k9sFUbzh1POjAk+A/94NN99dgvgq9evYvRlvuPFw
9QnXfkH8Gj5Qm7ngC1uYD/McUxLElNPkej0/P2h47B3spSKIVyuDWq+l+IPs
k03vWTQEUU+oOZcqEATdnAY71I8JotpcnpCx8Qvw94lIfqgtiLuav77sSAuG
8ec7v6zqCqLWMN/Fj+4hkBSs+nPhsiCm1d3jV6oNB2OSp4GijSAOil3tjSyO
AO7Qqi4ne0FkOIzlDVHvwCZMb2zqliDGCSd1Ndx9D1JR19jGngiiW8Cr4+1P
YqF1a/qzXb6C2G+/wfLn2zh4EjtPvBogiB3KvNMCufEwkPBIbCBUEA/1WbI8
5EiE6NQQpe4PgpgYYSk4fzcFrP8ZSDUnC+L0h++nzgmlwp7DFKGadEHEjO86
nTmp8KU5cik7VxCNWt5k32NKh4bVDwX+3wUxXT2VuycnE15p2qZ41gpi8UPG
wGT7LDAO3PPOrUEQz0tPVcTt+ARD2zIfWv0WxDtRVlmboz/DOu38w6rDghhR
w1a+uzgXyl7el1egCeJbvfP8Rv5fwKdLTVJ6ShD3OsrMpl7KA9LNb+zkf/T1
YzM5XMFbALvf1H0f5xTCIcWhj3GaRWA01H06QkoIabIJTM7EUpCQi1YLlhHC
YUOjR1KBpTDgdnmfj6wQHsiUDlLhK4MbvCN8tw4IoXN8mo+14Dd4qjjz6+Qx
IUx27nfdIV8B2R5sxqtWQjj3bvrxn6hq2LR5l7VxvBBua+y2GQ9sAL+Ap7rx
H4Vw+99ZbdnBBuBkHFabThXCWz1X8tOojcDQFS/knSOEGq2XHA2HGmHkrWR1
5nchvEN5s+XXoSYoEdy8h3tMCLUG/rBtWWqGGwTB2VxZYYx9HP+i2bEdaA9u
d7MqCOPFCPeE45XtYD3RXHP6oDAK/PUtyBfvAJO6l7H9h4SRQTxpMKquA7R8
N50nnhPGE2rTbxVfdsJmTt4v1s7C+Dtz2xjTTBfUr2N/SP4ijO+TnvGJJPfA
2McQ41OFwrgqKfg+paUHOC7sPOhZIoyFBT9T5Zh7AdO0p6erhPE1kWcr2/le
SDJ7YVnXJoyVbRmn3q7rg6dfJY57rgqj+QHhoFitfoixy5DMZxLBCp6C60du
9kOxkAbzDJsIJuw+ZZAR1g+L163yzHhEsFncMnR4tB+ubEnZTRUXwVw9dVWf
pwOg/liFb0ZNBE9V9k64ZA+Cyd7a8Z1HRLChoaG6sm0Q7rSZVJsdF8Ga0xYF
ReuGIG2/u0fdGRE0PVhx+c3RIRDrq5z/YC6CZ7csllT/GALlAMOf3VdEcI+k
3B/K1BDoUcdSyddEkJ/Kc4idbxh8g3mvet4UQYrIC5u3Z4dhSUO/zcxDBJ23
+DVk1Q0DaWowO8RbBAO+rNOLGxuGfeF3gut8RfAxcW/UjvUjYD339iT1pQju
yHx+oOXwCDTH9haR4+jHta1dO9NHIJP9ekxdhQjqrrjvMHcZhT7XB6P51fT8
LK7zj38+CqSJ53Iff4ig9ajMN++oUXBtSSx+0iKCHdWB4WLVo6Ce0NeuNiiC
eRF+DKHkMXCizGzdOyqCbxST2/J2jkFcANM10QkRjDbi9XZTGQOuO2L//s2L
IJfhI926i2NQf/yCQCY7BRnkbl0pCR8D5sIrxu/XU/DP47uO35LGQF7OOdqf
h4Jfthl+tswbg1DhoH22JAr+Tk3NcWkZgyq/SBdDYQpamzycp/WNwQpzatEx
MQr+4K1yZpweA9PR6pOS2ykYLlbTz8BNgwDTP8GbdlFwWND19yiJBiU/h9qY
9lDQ6ig7yWULDbbns9l0KlAwiDlS7foBGoz7qnqFHKEg7UT8YwYzGkgwnar1
PE7BNrbwi6vWNDjrbMzvdJKCLa/0paOv0+DzxTtROnoUVDJIGRl6RIOhhifD
aEBB/RqGtGdPaSB89JXs7osU9EtR5W0LoMG9PZmFXJcpyCGYy+IVQYOUqK9s
i9YU9GwVn+mLoUE3qV57wJaCjBdWdy8k0kBjHe1PiRMFS3QLS6ifaXDr5vLm
dBcKnl2QaryZR4OEQa6r7+5SMFl1/cvLxTTYUL99wc2DggLaJf0Pv9MANRTQ
xpueX90I3ZRaGjjmHPa84EvB1PsVihENNIiSOVtzNICCOqrjD8/+okFTpNkm
hWAKDvWrS9W20oBdwMFwaygFE7x2bCG00+DA03vviW/p+RjkthTtokHY9Td7
x6MpeKsm7GVE35rfk3CrPZ6CL29IO5IGacBgmF1Q9ZGCO9+7W5sN00C27htr
bioFj6/wON0fpYG5etOJ+EwKFqxIed+g0SD4c0/Qy2wKMi32vcYJGpTvmvr9
OI+CD1w/hfdN0mAxYt3mG0UUXN7X5LW2H2nXJh5rs1IK8jHYHy2foQExOTcx
uoKCPp/QWHyOfv7Ry7SBanp9mEsv6c7ToKubILurnoKJSkreVxfo8V3zb9g1
UTCWcdrCdJEGyfzWn9JaKXigQqbzwD/6eFI2Lc60UzBSO/nAIp3djhUpK/2l
oAa5L/rdEn38PTb3XPsp2GGcTt23TIPjd0nFBcMUhFdn16fSWZZUwsw0TsFP
xa9WhFdoQE6zO6IxTcEzu+xHbtGZQUvI+8k8Bd362wPK6NzfW1ZVtUSv74qT
QWxr+4HuOW7kWSeKrUcO3FKhcxaZonOGRRRjDRg+WNE5LL0iKJhDFPlL+9ye
0dn9xM1fLdyiePM4n2TCmv/SLyYoQhDFV6wBRYV0PvOgytCEXxQ/fDl5op7O
B4Ruhb8XFEX3+weTO+gsnrm5u49Cv17fK3VwzV86WbtFarMofmJXZZ6gM23A
5fI1SVH80a9InV3zwx5uS0jZKYrLLy62L9A5T7h+ZGq3KPb6Xz+x5rdEZbnt
VpATxeuLjJ1rfszTUzscXRRF8dhQWPOaX+M41JiRpyyKK6si1mt+znn3+3MM
qqK4kDD5334jpOw6oH5YFBk1r/2330jy8y9XT01RbFBh+2+/0QadRwWVJ0RR
sfr5f/uNErL3Vv4yFkWW7//znzTEOxt77Ojj+39/iu+cwoWrt0SRUrLyH3d7
+XZM3BfFNoaX/3GFxAGJ/Y9FMe075T+/KuVLr/mtJ6L4DiwX1vilrn9s7jNR
nMj/O7LGd8eVh1b8RVHQdEfdGlt4D+xSCxbFjtENL/7z37YE2T0OFcWA+Fdb
13hfPqSVvxXFnv3ZpmvzF9QfnuZ6L4o5g6wia/lZNxmscDJWFOsO2wn/W9v/
9VTNJeADff1II8R5OtduHfvyM1kUH9qpR635U1kFIaukDFE02T+hv+ZPhZ0/
rGb4WRRvVxyKWfOn3KfG3cO/iKJ+XG9/M52vPnvzrbtQFH8dy7lYsbZfSvIo
57ZSUaz1ltifubZ/rGhKy6pCFKuUgm+8XvNTDcKfJ1bT66vWZeOdtXqYOVZP
+yGKc+vIf3TW6sF3lm9fkyiavnj9QpzOI+OUYunW/2vpzOOh+r8/rlKWslZa
VMYdM64oVEIx5ySRJYlEZU8RUmi1lSVLJFIqlL0kyVqotJJEqyzZSiHbXHuI
fK/P7/fn8zHzeG/nvF73PXPm/R4p3PYrULF75ryQie5RskUK59gKeGfM5HfB
0RXMNimMt+FX2k/zL4nrb1d2SKFj9sQAD81tp5+fXNpN58dGA+PrtH5av/1m
LuRK4Vu+9nIpmps0xD4JDUpht8ucZ1dn6sm31P34R6UwV2Br1Bitz3oee/k5
E1Kod5Xrr0PzV/sL9VNTUmgqdqbKl9b3YfsGrUkeBjZki8cn0Pp3ijlyY3w2
AwP7dYWSaX849HpW/ygvA3M+pKiF0f5xcOSqzvA8Bj6IN1htOkrrnb365gA/
A5O6039P0v5jb146xBVkIBi1HA8aosAu1ES/dwEDfTP3VHXS/mVb3JHUJcxA
x7WtXTL9FFh3e/3pEGVgBpVTrs6lwEpSxOiXOAPrJtj7ZXopsDRMTfuxiIGN
fqqJbbR/7vNV/dsiwcDXcYUXPDopsGi1yWhYzkAPLkt1mvbfPaLD/2pXMPCz
VVbnH9qfzbaEmtWsYuDEp7erShrp55XHiqxPDAa+j9er2VpPxzs1Z/YHgkH7
IQ9PTA0Fu2q091bJMNCkvOtG+kcKjOc2PHjLZmC8kVvcmSoKdjjOsnq9moGv
+rQeWr2aOR97Nf+FAt3/HfXKw6UU6L+VE3y2loEG43vUFIsp2C5v8qh4HQPT
2qO3tdyn9WfZIfRoAwNLjOv4X9+hYNtFL4eCjQz8EvTJfX8yBVpUitiDTQzk
32w9dC2Ggi0MVacsDQaqdWGkegSt/13vSu9yGHhmUWDt+SAKNPOHXNK0GPjQ
n7lm6XEK1E5pl9/QZ2DoT8bBSSMKVDPqV1wzZOB1z5vW77Qp2Njg6nnFiIEj
61YEb6Kf7+s3X2VcMmGged2J1BEmBWun272C9jGQ4W3m+XaQCwpKXp/8LRk4
qjeeFtjOBXk7YfKsNQNnpYrG19dxgXy18esZewba+3kG7XrMBWZIiOJRZwYa
buUonvHlgkftBj97VwaabRb9vucIF56z2qrM3Bh4vjxo6JMlF6xfazhreDBQ
WbmXTNpE729mDaYJeDHwRu+BqISBPugyThya9KbzhzV/0qGlD9SSDLX6fRl4
+0Xo48rKPqjl3Gmt9WfgoZV8G91S+kDcx3J5WhgDra4FLFu8ow/s3gkcvhbO
wHO6KqyKjX2Qs/zRowsXGXgreW/IUkYfGBWLmblHM5Dtcds6eqAXLoyWX+Lc
YKBCunLCr0u9MNtdeW5DBgOXlGQe2VjSA7uet5hWZTLwyvc9MR9u9kCSSETK
syy6/dUrHQX9e4CT3QG3cxhIHt66zUmnB7x64r08ixiolPxgU2tVNwwenNcv
VEHrLTD0fuXbLmjb1/hNq5OBqkknziy71AkLNM3v2HYxcMxcR931UCeoSH3x
9OthYFTyeY8IzU4I/Vm5oIRiYDFf0VLo6QBF1xKO8hgDlwY/sc3V7gAf3xsp
UgLSuMQ8LLtu4BcsTjJ3nlwtjYqdDWliWm2wvf3LeKGbND5JUZLkf9oAvvKR
3g+OSeO0SnF6pmsD5Llvn8rwkMYot+oG0xUNIPnvCU/CSWlcLzu/9pl3PXAl
bvMF+EmjYdGW8TWb6+DK9tOLjSKlUbeN0ncorYHv91Yod9yXRvPxwKdLv32A
xYO1ea0PpFHolfPU9W0fQF8tekNDrjQ+0PYLHcp9D/mv56pVFUpjytqE7eYX
qyG4mcvJeyqNqbslkx7tfAcKIi8M/aqlUYsRoJYp8AbszLzfn/pAtzf3hfWJ
4HKIjVcxdv8kjUMZUHOZtxymZTNNHb5K42nLktdNvGXwGWP26TdLI9/w0kJt
iVdw2uOgk0SfNKZnS3cizzMINeA6bqKkkVjp3h0kUQrXZE45Wg9Io+XRBkdP
pafwsDb00O0RaRT/hfyWRx/D0KYsh43/pNG28oDQ5WVFMHuRisM+HgIDIu+e
O7jjEYj3PT3gN5vAjVNz/Kigh6CU+MG+fB6BuIydIztdAG5zhmz3iBC4S+0O
32pGHvg2edt6iRGoL+lSlO+eCxGFvLa3FhJY7fsZh8tz4J6jhE3HEgKzK/pz
1o9nw+936lYnGQSOCReX9JGZMJb20jKOILD+TXrcEb67wOdnYFkqQ+AaPdmh
vX13gK1ktX+eHIErXVxOe35IhwNXzu2NVSbwGLMs80BvMngcEdhbsp5AWwVG
/ex5yRCgc9miRYXADQ2l+hQ7CZLGUs3Zmwh8ee2wu/hUAuR8UjDX1yCwg3du
OMc5Hp5lFu5x4xDoE/MY7rTfgBbLN2YPtQgkvDwc7s27Bn0qxmbftAk83Ox2
b/LeVZgUbtj9T4fAh/cebBq1vgKSL7pNdQwIZKUoDsj2RcPqOE9T5x0ERo/c
tJ54EwWbPCdNIncS6Bb81srU5hJYsIRNak0JHNFN2W+lFw5O/2J3TZgReGvT
25/8B8LgVJ3UrlUWBG5iTJgdvRICsWHKxocsCbQcOBWwTiMI0u1Ldl6wJvCH
+oOjjrkBULB5685sW3r+oan1/Br+8KVvt9GoA4H3ZSOMYJUvtJU371juSOBO
54llD7K8YDDx0A7OYQKbin5x59idhllnKEN7FwKVRAbJv+onQdTktGHwEQLJ
kDGrXRuPA0N+lmHmUQKVpSXfvNztAYq8FwzeuxNoobDKZ/6VY2D0MF5f4iSB
wkeeiLC/O4PTkP304tMERnb8rVfTcoJApdUFi70IdPjHF9dWcxBuHRlwWuxD
4MBTrZqFsQegKLNo5WI/Ov67lRY+DbSDz51nPy86R2Dl5eElt1RtoE9GN2RR
AIGebeHvTxTtB357YY1FQQS+3b45vP28BRCJX/sXBtPrM0ou+BpvBhpNCekL
QwmUKbZIUh41AfNlDvsWXiDwWWpEcX+UMXjskRdZGEFgzuSzMtZHQ4iIGXwl
HkngnJwXPTuo7XD7Y/Fp8SgCXcsNa+JObYMXQv5rxC8TmLak3eyUnRY06W9v
E7tCoIvWofwpfYDREJFrYrEEdvOyR/nObALRsloDsesE1pWId6yBjSA/+xaP
WByBYWqfRZZErQMdOFgomkDgm+1LPo89XQu2PgrOorcIfK/03cgO5MCreGiV
aBKBJ25n/TW8KANXR0u+iKQQGDQgH9kVzYCc9QGhImkEyhV4uBxwXw6Vx/Q0
RW4TaF0TsrGlaRH8ui86KJxBYPiNqp8ntERhurvutnAmgYLP1q0dmyUAy8nE
/cJZBG6Zc/fgq6HZsOHgIVHhbHr9jxQMfNOe5BilrCkTyiHQL+3ySPrDYc7h
1uEzQnkEzq4+zVz2uo8TtOLJWqECAk04Pc/+9v7i3Nob+HPBQwJ1XZ+uryts
4hTF6l9fUERg+ub8AS/yC+fLF7EdC0po/fSLt4SXV3C4og2zFjwhMCl6IZp0
lnL4jZIezi+l82nSL0LPJ49DhDu6zH9OYE3Iq69WoukczYq1jPkvaX1lCkzP
yYzlWMwdrRF8TeDeTQ0X88uCOR5aT8MEywn0l/rS6yR8ghNxNogjWEHg0psf
Styi7Dh3nhgMCVQSKP3Pp3mkUI/zclw8Q6CKQPeRbvepEkVO08ZvlgLvCVSz
nihLXSLCGfVMFhP4SK/fhdqhA8PtmmK5TuX8nwksXmzAmKrO01TgKnrz1xBY
civJ+lKai6aO/B9F/loCeZv57TfAlIatU+kvvnoCLxeu+N19YLGGd/r5G3zf
6P6SrcltQr2bYtsMjfiaaL9USdkU+TlbI0dq0Ry+FgJ/76vW0G9EzUrLxkfz
vtN6eikU/1Duqmb7jRTXeW0EHklI+hUl+UmTp+6w9LxfBI5bfgrE2CnN5YuU
a+d20PkuPuc9r7Y0Z8OusQtzfxOoVbpUt6maw9kZ+QzmdhO4rlusUPXmHo7z
u+Bh3l4CW4fPe6++68oJ4je6y8sl8GD6nb9R685xbm1bbM3bT6BvpVz08cIo
TnFAkzjvIIHiLeO1zv8SOTXPUt/MGSawTOaQTvTbLA530tlnziiBE3lHGs9f
KeLstTCQG/9D4I7NNsF32l5xXufL13LHCfysqL94G88HzlqRBYG//hI4eS42
3+BgHeeGc6/itykCr23p3HpM7geHt7yq6cM0gfvOLZhqufib4yZ9P6xsFhPH
Y2+9O7RmgNPgc3Hj4zlMfOA97ZMR+YejXX/kZ85cJtaUPh5MLZnmPFhvFHWb
j4nTT9d8d507F5ZfWquZIMDEc/ItL9Xc58P5buHu6PlMDJvY7hp1Twz6t1Gx
IUJMTHnnqrvhjATsT/6w1VeEibdeNVZf3bICyicf9HuIMXHt0gmfazHSoGQR
ddNpIRO9hYQ/eNxhQXz+MX3rxUwcmpNA8R5bDfNEdv0xXcJEiX/LHBbNUoJj
zsppesuYeMLTN2ZIfT00lontAkkmGlYIr1PlbqQ/zw5ObVjJxFwnSXLO6s2Q
6/M5c7UUE7+Y3FPhmQBYUZ9nzpBmYvqTNIW7hVoQsj6GV4LJxIOiKYPlZdtg
MNIzdz6LidxL7e1mG/TAqtvUepYsEz++gmo//h1QsW3D/D8kE321tu+tSDOG
dcmLinpXM/HXPh1X32kTuDk57NCmwESZqAXWzOtmwG/xVax+LRPlEpcxwzws
wCO/sLRaiYll3K6N5y/vh2bhWJdX6+j+55roDP21hu3OJ5cWb2Di5Kz3Mnv3
2kF+2Z6y7I1MdNkgEL7L6gCsklb1SFNj4hnxmrwv4Qch1GeJVNwmJp4U10/7
2OEIQ3V/3l3SYGLRtq8e6secwXp9/enzHHo+fefXT8sdgYrIIpY3MnF99gtf
gfnH4Na2M2cPaTNRM6/U67iOJwgk71Ww1GEi34Xx9HKhE3B8Ur1h13YmKi27
0yc9eBL08ifWaRoy8cY3mYaaxd5QINzYus6IiZS6e7OkuS+scn4cQRozcevJ
6Xn6xWdhmOHTsXA3E0PNr4CERwDY+FjGCOxhorzGweN2dYFQWaeB0+ZM1E6d
uDlr53lIjJy60b2fiVkaXih0KhQEu5t1vlsxMZkbttyCvADHt5UOfbWh2ae7
p7AvHPQn/Xa8OMDEdT/erdn68BIUmttMPDzIxKj2jD3Lm6OAkQ93shyZuHfn
TvuWrmgYPcwz67oLE+vlF7m5y1yB5Dr/AjdPJh54c824SfoGdJQptUaeYKLF
J1cfp4Q4UChoFXhwis6f72Z2XJkEeBilaUN5M5HnhOvtfbaJUKU3LnAsiIkX
Fb30YrakgrhaxoaoYDpeA44pc9XSwJxtbpMTykQFhaOiz1XSoW12YUF/BBMX
ToU6LNe9A2OPj9m4X6Xf/ym58NqLe8DJlLoQfY2JTy85XD8/mAWB198X5N5g
oj2fanz56mwQPqEgOHiTifl8xxcmW+QAc+3vAo/btB7WOzwWmZ8PRkk2gscf
MfFt7fLVj6SK4UqksMqVYiZ+jnHvfz1YDA0+T20KHjNxV+FtJa+3JeCwV7Jw
+BkTV3z2H/jq/wTOiNfZnKhgYl5Kv72AyHNICzIqPNnAxJdBy+RVeF5Dt8dU
a2wjE8XqzYi5wa9B0S5L8FEzEzelLLA7JVQGJZqCtn9+0PO7LrWDlC6HD6Nl
gqe7mXi0r/BN774KmHDStD3zl4mtnsc4XqLVoP94NZ6YYmIB9TtfOaUa4oWW
MtynmfjCJfRw04b3oJE32Oo0RwZF8+Za9Vh+AL+/d2ws5svg/rl2bcGNH2FO
pLiNqqQMzl/yVlFB5wssyO+0GtkkgxEf/kTe06qHlVPR+929ZGg/shhYvfYH
bG/bUXzNRwZlcxxbR/f+gONvBJaU+smgserC5y/P/4DKaP/PgoEyyJobKbWv
+QecZLvrpYXLYJWZa2JgRBt83GmsWpcgg+r1+gku3T8hIEV4oeYzGcw2brxd
kNAB90Mqjx14IYMiJ5JedZV3QL1r8PuwVzIo3jR6bri/A9aq/gurfSODxXaR
Gee0O6HxXR/PsY8yWHrgyYh8VydsGKnipvyQQd0msf1R7C6w+RZq+PanDG5f
s8uw17ALLjzTzqTaZXCtIndy2KMLvoc9OajRLYMdZq+ezi7tgourspq+DtLj
u6d2rHpnN3Tohlfy87IwZnKdvJFtD9gb2DJY81j41DLib/PZHmg2Ujm5hZ+F
Gj8N9HgSe6DGrFXaawELb2hkh4019sDLA+vP9Cxi4f4/k8dSjHuB48j/gW8J
CydOJWrmuPZCsXOzjMwyFn7soewMQnshxz3ko+VKFqZf8MwjS3vh5tlG2fcs
Fi504nXwlumDpYE5vt2yLNzbv2c3pdEHV4LPf5m3moUmKpLF1O4+uHBR8Sys
ZeE71fPfrgb2wen4wNqcjfT49SxPnmrsg+FbFgrVaiys8D0yYdTfB0dT1gR0
bWKhJO+F/jxeLhy6W7eGABau4Fm+nqHAhd2P5M/H6LLQODVfOeoEFz6W8DQ+
0GOhROE2j3fBXDAo/apUZcDCX0n6RjHXuKBVdraJ15iFhXveGr19xIXSit3r
pE1YaCXU+U71DRfUq+RCNXez0H9QKm59LReUvnxZf9KChQ1ihyJqBrmQVZsR
dnkfC+07L17x4qFA9ptva7YlCzsG/IsfCFGw6odseKctC4mGDGYlm4IFlHeb
xWEWtvG5XKs3pSB00FjthAsLvcKaRkSsKZgzyoqMPsJC94bc1BZHCiYmP6hX
urNQXl1sRNeLgpM86Zc6PFk4K6ClqT2AgoE5Xu2zT9LxPZ8SLx1OwW9BmejN
XnR/K0w3eMVR4CA83mHuw8I8ZRPR+GQKWsXeaxz3Y2H394pXdhkU1C49/Tsr
gIXrewJ8uwoo2LViB+dtEAsL2DELHpRQUCVFXGkPZuH4id3nmM8peMWuglXh
LLT58DaKqKRAP7JVX+IiC2vPytQcfE/Bx5FBM+FLdLyEP+U7f6bA3Gqe3bxo
Fu6TGmKvr6Wg5fUy13+X6fl/NGHN/D7cQWHNqdErLFRJmbot0UxBTwwGcGNZ
uCBTIk3lOwVj9o7XW+Lo/kuUBuraKfCr9EqtTWChN4+/ss1vCuaui8x+f4uF
m080Vz/qpiDiRnJxeRIL9xxyKf3ZS4H4rMLXpSksVNXR+vuLS8F1p4oPD9NY
uJvU9XnaT4HUx8Zv2bdZGP2oWe3oIAW3Van22xm0Ps7YyU4OUaCQOHvgViYL
H03baRwaoSBvnsRkbBYL/3YmH34wSoG6mxzfpWwWRpxtTmj4Q8HzrxriITks
PFJ0sLRjjAIdTeOVZ/PofJtKelA/TkF12gHyVAE93wv+erkTFOxecGr90Ycs
+vPi+D6PvxR887zAcSxioa3B0TsrJymwa7ypZ1PCQqGbG9oLaP6tlbvb/AkL
P18VfDJzXsgt87XNzlIWise8fHWf5hGxemfd5yy85ygUKP6PAp8zPSfgJQtf
Kga5HaZ59o9/51Rf0+O7xu3Mpzlsu3iEYjkLfcrKNIdoFs1hXZOtoPN/f18m
OU1B7BL1FKlKFipuurLHbOZ+rLOG95dUsTBAT363F82pHTZFIu9ZuGy+Q+r1
mfM2Rp6v+D6ycG6EklLuTL2gMPj99CcWuo28+jxzX5fqyriGP1/oeN25trOG
5tKg+7+oryxcaX3O/DvN2r3Pqc46Fp5N/xUyU295Z1oz0drAwh1cGZf+me/n
H3fOrW9kYeIrzpkRmuuJv6Ifm1n4O+7+0pl6i80F4RUVrSw87xiSOFMv6BiQ
ln3+g4Vbw6p2z9QTXPeqrCv6ycIxm0b3mXrD0PPtmjnttH+MjTBn6hFepOX2
jE4WWutXX5xhnqijpkldLBzdIPTf/WjBfwKsr/ew8KtvZ+cMC9nEHo7qY+GI
6fXRGb5Sfvd4KEXnL2/df/WX5Wufnj03wEJQlP6vnkJO/bx6bISFfr7j/7FK
lWCW7TgLdab+rx5j7GxRj7PYWPT/9Rln/tu80gJsTP0U+h+/mx16cet8NrqZ
dP13v5vC1GGJQ0Js3PS5/L/73SL/GCSGirBxIsakZ4apgTXkPTE2Pk/Kqfqv
/V6R3OqFbFx/fEnkf+ebOgbU+xez0YLMXjrDC398eSm+lI0xr3UNZtbneGOh
gcpyNjrtWjg2U7/6+vVajfkKNuYe1m+bOS+08eMZK69VbDQd+PF45rzQtcr9
HQkMNprTm8iZeszYa82jzwg2fnDXT565r2/vM6mxHzJsdBnXvPOT5pLiWf68
smw8NBR8sW4mvwp+CsjKsfFG37nLb2j2zS67rCfPxr8ClQ15NLdk3JF0XcPG
OoWfLjP5hqlhaZGKbJyqFtx4iubkmy5rcpXZuHbdBkEjmmdf3/Hwy3o22vvP
S5Sk+cBlRRhVYePcWc2XWuh8fx0hVrFUjW7/T6XlVZpZIUPGmzex8emjXGcO
zcH+XxusNNi42i5oTj2tr07vR/bnOGwMIOr22NK8/eSNnhRkY+fXKq+vM/e5
HfM+XqbFRslTTkdUaJ7vYjXVqU3Hp4kj4Ufr2/UgBAvqsvFb2Ont92n9v7eR
Flmjx8YdS/jKntP+oLhvzvWdBmysFxvQeEj7R9TudobHDjbWrEo1Daf9ZcDo
zd0rO9moILwlWZP2HxO9u+se7WKj8NaBgsphCgq2hj9uMGXj4huiS5Ro/1rM
OaI9acbGMHdlA5cB+vmhtrN6lQUb7XLefjpD0fpZp7xnyz42hq84J7e3j4I4
2RHHYGs2fooc1DpH++tf6br+DFs2qhc5TL+k/ddyRfGZd/ZsPO/6KKCqjdav
RPxsrgMb/d1V9ONaaT8V8w0XdWRjf4zcF7kmCs7Nt1m0/jAbq7Jb407XU9A2
d8tNMxc2Ni/PXhVUQ0HaBO+DuKNsHPHU3fXmHe3nIx2qT93ZaPzi2tR4OQWH
qIrnrZ5s5P/dYt/6ggK5XxGfZU6zcbdP//GihxRcaHHbr+vFxiXOwXgnh4Le
euNfh33YqMIW5INMCrKrF41mn2Pj/K3szbYJFIhUjPp9CmDjP9Zi+fYrFBx7
Wc83HMRGK+d1UoIXKVj3KGGZehgbnU+qjMj7UBCT65eyP5yNNuPBc1ieFAzf
s5X3u8jGJwr+7g8PU/AoSUbzVTQbV/He+BVvRoHMtLb3ixg2DsPw73QDOn5W
B4ufXaX1tMfG03gLBU7Lb6s8ucHGQBcHIlCegprT5Z4l8Wy0TqjxE2BQsKWu
I7foJhv9To9+VFhE+8cV2bWFyfT8D1Vm6P7lQvCgrmt+Kq3H3b8FOFwuDBo7
Zeam0/GN3Cbx4TsX3gndZWffpdvvupb/7DUXfEJWS93JZaNJkGnHlxAu/G7X
t0rPZ6Pyray/105xwUzbJT61kI2GyakrRg5xYe2srCVJxWzM9E+29NLmQqvX
GtEbL9joSUWfyJnoAy03pVnhn9jYEy6fUWnaB9lVxhD2hY3PDpCwSrMPJOXd
fUO+0uM7GFItyKb3b52544ENbPReldOSPdoL6XbrB31+sPH3vwYhmZhe4Dfb
+NNtgI1vnL4v6irqgeP5e6SPDNHjWTl1qjm+B36InbJxGWGjzN/Aw0f9eqDk
/aNGx3E2Sp3wtzuq1QMu29VrbGfJottsWfHJsm54v1mjzERMFqeKG6fcntD7
56ITf3UWyiIrYsFP77gu0FV5oLx5sSwqHHv9DU53wfO1xC3mMllsvOxnPryu
C/Kl+U8NM2TxT3EuSzv9N1znqyFjlWRRtiLlr/zZTjjwxSWiYacs+l61Mgtc
3A5jzvGmtpGyiIJXe9eu+g6XvFL5zkbJ4rm7w4x/7a3AvnDv8c3LsniB88zp
1qVWMLv7mNkYK4tqY3vGWtpaIK+zccgsURYjdkTJ2IY1g6vDiisGObIoo95T
7V77Db5b3azZ+FkWX49oDh87+RVOHUkPNauRRSkj87dbpb+CsO99jeO1shiw
UNt9a1UNaCY8Tcv9JotZnn8434gaiPvWfFzhpyy+Z86f9evzZ9htvmoxMSyL
LhH63rFaH6HCONFMSIJE4eH5J47NfQPOr9tL+ZaSWCs6fVkwoByE1BTI2ctJ
3Oca4To2XQYmUsUToytJvMgzx79z+jU09n1O/M4icchDPv2e6Cvws1sm0ChL
4jpPPTG/6y+B8dXG46sciV8EtFKrpF+Cw5Ne7co1JEYfkPfrVXsB3AvzuvNV
SBR/fbFZfKgUov4ZmmarkiioOWXBlCyF9R4xTzLUSYzk7VE103kKp/cyLt3U
JDHKs62bffsxzCY3bQjZRmJXiPzuB+FFsLjsiN8+M/r1wvLj37l5UKRW0Lnb
nES33XHuEXp5sC9rwnjnXhIlaprcHO7kwq2YEKa2FYk5TtnO111zgLRPrlhz
kMSQoNrnjE1ZUPm1U5l0JFHAcChejbgHR/TWxhOHSYxvW6CaIZoJeUqPjyw5
QqLkH8FdF3kyQGO6RnzWCRIdfhosMlNIgxYPSZ+/J0nsvPhDUEw3Ffw77NpH
TpP45pPspSVOKVBezX3U7UNiBGUtPvAkCZy2qEi3+5G4Qlx+5OiPRBAs9L7Q
eo7E0LBgVXuzW7Azgd+qJohEdsDJp6vt42FQZGf5+2AStQoE1GonbsCVwKuK
b0NJXOyoezYq8TrUOxOzSyNIHAkrsXi+IBbs1TXu3LlCovIfnTQnj2g43Fc9
0hRL4lWRixty9aLgWLKNtvgNEiukRW6ssIqEswKBP3xukpjA4D1Puy0EP12k
lJdIYru897ff5qEQ6X7brzOZxD+Oa/2qQ4MhoeGtpMltEp8bZ3V8WxcIqRf3
O4dkkGjZwv1cnOkPmVv6ip5kkvjt+6HHA2rnIG/Ej28wi0Qrm7aMe8W+UHxX
dI/sAxKT4qqeusl7w3OrlDTLXBKDA839qspOQ4XYhqHofBKnHctG7UNOQu0Z
86jJRySq3pRuvO/lAc1rulqUS0iU+XDQKP7uMfj1w2uN4xMSf35p73IcPgK9
Vxf4JJSSKCZy1I6sdYYhvVuVn56TGD5BvskZcYSJKcVlfK/o/iT+tKgbH4TZ
eS8cNcpIVLxednSyzR4EDpk+dH9DYsuyRHPle7Yguryd985bEnXyVqUwDa1g
yfuTpk3vSNyyqEkqJ3kvrArgTxF7T6IF+iSe27UH2Bvj+nU+knh6h2TRoj2m
sKZbHnw+k1i6693KP3eNYcOtpxdza0hc48AsC7pkCBomO5s6aklsUDrmaLh7
O2yd92P1igYSb7qdi224pg36JR5ndjWS2MiVaeAx3gK73HgrgptJrHf/dvZV
uwZYELEST1pJrPZ64PKzTxVsa2UPDvwgcXnp4pAFt9eD44XifPYvEh+IcPNP
jyuCG8dgtmUHiUJ/dyamvpSDk4NNxtG/6fZuhj5TCpUB39tuieXdJI7/y2q+
pcCAoH083L+9dH6mVWoUk8sgXPiyhjJFx1tM9/A1g4Vw+SUz/NAAPR9Hs7vz
WEIQd7KwIX6IxDGB6AaptLmQvFqX/DRC4qfl7JetF6Y5GS31J+eNkeiuCltO
BI5yci47l22eIFG3z3DJmkMU55HO5EL3SRINOrRNvHa3c0onLtrf/kciWVUn
dE+6iVOWLZXbyCOHDnt83I24nzhV9rnTonPkcONEWIrNRBmnRmKrkc5cOZxn
+uJh6eNiTmNlTYI3nxx2aLeKvorI4rT5HerJEZDDkKi6ez0FNznd68bUO+bL
oQ1v3QOP+AjOQEdYqKSwHI6qVoblzz/DGYuTrDMWlcOuFYLv6z0OcKaN7rOC
xeUwdvZgyrNvepx5c+D440VyeHSvQ7ROpzxH6NHHl/0SNIcpCEuencdZ5GIv
xl5G9+fJ+6Hbq05TUmrYZr+kHO7KSTAN5b2uSXw5nx21Ug6lS793JGxU11wd
smSqTEoOc1b7TwS4hGoob75r8FdaDqXOpy2f+b+b/wFTEBZi
"]]},
Annotation[#, "Charting`Private`Tag#1"]& ]}, {}},
AspectRatio->0.15915494309189535`,
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{{{1,
FormBox["1", TraditionalForm]}}, {{1,
FormBox["1", TraditionalForm]}}}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->{{9.203125, 9.}, {14.34375, 0.5}},
ImageSize->Full,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->
NCache[{{0, 4 Pi}, {0., 1.}}, {{0, 12.566370614359172`}, {0., 1.}}],
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}], {314.4375, -314.475},
ImageScaled[{0.5, 0.5}], {585, 105},
BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}],
InsetBox[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2],
Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData["
1:eJxc13c8lt//OPDbXreSQiEZkRJJUpL7dcoopWWklBlKhVQakqKMMkqIUBmR
QmRndCF7ZI+Msvfe3Dd+535/P3/9+qfH03Vf5zrnXOd6DTFzOx1LRhKJtMhC
ItH/////VT8I9w54YwfTlTv2frlkdOj//ASQVQ8TH1OzSrDhA+uJBA8gdd8W
yn91QbXyv+uvgKfXLIDJ8K2qy8ne5rBsf0jS8twZHZGoGvrf74OgNKvJJiIt
VzXNmkw9Eh4KuhsvWSbMFqv+3/gfYeuuXkYlz2rVWTXBV3cKIqCu4vKHmpn6
/40XBYPSbJ1vkptV1+l+Ey1OjQa2xqOfT3V0/G/8z9D9M0PPXLhPVdr8aPLm
z1/AxX5HhtCbkf89Lw4Sq35lsXLNqR6xb1K78S4BDOazdJ1mSZSq/56fCDX6
/yTN9rFRdqO04b9FSXCTbGhdRF1PmfxvPt/BaKROcm2En5J87Mk+diIZ5BPk
ZxgVRCl3/ptfCsTs3P2IqiBF2XdGy2lvZipE2iwkymTKUgZ06PNNg8+vLnTf
BUWK3/mNRYbf08GZq4O50laFIvXf/DNAxU0/uv3WUYqHUQf386+ZkP36k7wD
ixYl2ZS+nh9wZ3J+fk/+WcrdK5/PJ0RlgYQmv8w/1fMUd0v6+rKBd/lrdoGF
EcXDyv5jU1gOdIxZzQipX6FkWdLXmwsBKgQ1TsyacsVcZXAt8Cc0q3eMtKve
omQZ0tdPAE+6/YXR7ruUhRjX4IBjeSAlTf4a4etIERCm70cesN0Z4/3y6ylF
wGvg8E71fLClNNLKOdwozZNb8P7kg6TZl+070UuKkpZ2Vy4qAD2BY5qDx15T
rr92xvtVAH/RVHsMTwDFLDfJTUf1F3zjuVDqHRRMaSrpxvv3C4Se6D5+vPie
kvxp064B5UL4kOBxZVQ6kvIZNPF+FsJ6+WOTQ33RlArP+78fKRXBhnVsZVPq
XymhV2Lx/hbBZ+0aqDZMpERFtdzm2VcM4dL7xHgikimmW9nxfheD9ffFvAXO
dMqpaCWB6D0lsLe3sjlq8QdFltEC738JhJ+YSuB78JMil/8qW3l3KeSYLFz0
rMqnRNj8wO+jFFqvTdu/yCqk/PTvNPktXQZ3XQO4f5NLKXxZzPj9lMHRMstp
0d8VlHTqduYrkuXQebD+SBdzDeXWEYTfVznoMrGs07eqo3A66ccuiFXAj0C+
xekNjRSNsCvLR8Ir4NcRHcGj61ooTWLW2t4ilbCLP3BM1byNkpJ65UNTWCVE
LqXmq/L/oyhyn5sUFaqC5wcl91u966Lk98gdvfGuCg798r54qLOHkpGy7J8m
8Buu780vmLrST/l9OKlvLfA3kPleHgzaOUS5PXjiwIlN1VCwwusdpDRKiZUt
9gx4Uw1OvVxeJq8nKEWzTVIEdw1I2WecjiuZoiSsyHMo6tSAXujjwq3UGYrR
thsjsW9rwDae2XHAap7y2/hJ1da2Gog458PtuX6JQsu7mvhmWy3sP3hh65Ml
KqXjhIgfm0UtGHDHHNPeuUbJDW/TnRqthfjpqSlDJSaQvVehaLW3Dr5G2J90
0mCB0FxjvjaHOjCXpC1zuLLBdJHH3JmsOrjWVHp6apwD3jYebCxcrYPZ/ScS
t70ig/CCSaqyWj18cNl+NNZyPWjk9b355lEPtjM7zVcObQDv3UmngnkaoPJY
xdRS7CaAq0U7ufUboKfwSoz2G36YLqhmdn3XAMZOzya/fNwMFauf/853NMDD
uEdmW+sFQUBzR8YN8UZI5lKqTZHbCmKFUr6dVo3gcz5MwDF1G1S7PLqiH9cI
Bw0l+Y7uEwPXKQV2UGwC96h4I63d2+G2lGBzyoMmeONzJeTzb0ngsTCLks5t
AsPjteMNXjvAsiH35nuGZjAyYoxkt9wJccdrFXg1m0FqcZzmf0kGIpNU59xf
NsOc6LPqyluywEn7lEL93QzcnV+H2GP2wJhfmXifQQsoHSqvXD6kAH6WT+su
hrVAO/dJ3qIX+2CjyRGn350tICfiOHRzRBHsjiRmZ1j/AV3joOpzwweg15Tr
7O5vf8A8k2Qo9EIZvp+paQuf/gPdL85od6qqgGD046YXj1qBQ+HncMwoBVIb
CbVVohUO8bbMSN9FcHV17NNt5jZoO+jGFu98BFjeFVAu+bTBgWbbDo9sNWC7
oeZQXdsGgfWS54vH1cE8/mCoGn87TDAe2+skrwm6L7Ykynxsh531e4+c7joO
1JVf7z72tIOSMleI7bkTIJlsbbNRugOMxDxGuOpOwnav7WXLSR1whtE9r4j1
DHC/WDxlO9cBu0zJijNGZ8HCRy2tS/kvNLlrxhYfOQcD6YpipQV/YdPKFrGz
Urpw5IufqArbPxDlOns6aIcerESJLSac/AeeZzceQ/v0QfFkwnb/hn/QdvvJ
zN/rBsDz8a6v7J1OUAghBQdeuQyzV0zTxfw74d6moayEWCM4nB6Sz5fSCazf
ev36Fo3B9pjUo5XpTsh5rKr2t8MUNjSHSk7xdkGY4LVx+yAz0Dg+E9er0AX+
6apnhA3MgbHfR73idhfQGjvvqQ5dAYfmGZ2fb7AlV68sZlvAFkGt/d+Tu0Be
EsR0Ay1Bb7/+jbfTXaBLFrF6cPkqPD80omN8uxtY/ug530M34O2NtfQzb7rh
T8J70nbtm/DRcecflNwNKfHqmgEmNiDqanZCfLobWq3d3XU/2MGmiwYuXfY9
sI3tCUc63AZZnwyHGr8eMPDeZRfbfxtufpTiIr73wAPtYe1Nb+4AT90Ke+hU
D0xmnI2Onr8Lh5eda0/Z9wJ/hntj7eJ9+Cr6XEfZrxfUxm9f+l70AIhNj85s
/94Lm1n1h2KCHsJx9YmYxcleCPIj/CROPoJnBcxyIbf6wLeOMfjVtDP8eE6e
ePq6D6J22khoDz8BA2dPmlVSHzxlFOf4d+cpTAUMdstP9sHpBjInh6MLyJnt
Fci26wf5bdkl+l+fQXiz0cPQV/0wEDreJUZ5DgzfHo07JvbDodWvVZsbn8Px
yfsTShP90NdlJZpIdocHgTyXI20HQKT296/AKE/4dHL2N8VmEDL6nGTZH/rC
BjvTWze9ByHw0kTOLvQKIq7+fhccNwiLpvG9D1heg6jkwYujQ4NweK3kQlnj
a/AL+X7+qdUQ3D5015nX5w3Yl4cxRLgNge55o2OZa29gffrtFuLTEIhd4PfU
v+sPgwGHWha6h+Ahc8SS55UAEC2Iyj5jMgx/35QK6xu+BalNa8amzsMQpsHH
d7DjLbTfWV9o+34Y7L42XDtgHgQuaHPo87ZhMNLa9/T97WDoabL598ZgBNKP
9N7wSAiBv//2t8qcGQX5D4Ha5a8+Qv4FIaMNtqNwo5iwOyEUDt78Ch9nvEfB
6+FhgW67cJCTc9v8rXwU0tw9LL8LR0DM9a78RY0xyA3k0+B2iwT1msOu9Srj
sPv1gdSPb6JhOZe/8JHhOJzyPsEovxwNj+zyn2x7OA6bRI5t4rsSA+dDstku
po/D/mHX130HP0P6ybM1fvITcGj76wMts7FwLdvyIyPvJDw9TshlJcbDu40a
vQ7ik1AzGrhO9WACLNTYBfcpTMLqpzUNh4IEyN1nw5GlOwneDruOrGv/BjM8
xjv3B06CUMuDlXVvkqB8ePekhcAUrMiIaP9kTgHFxcjhtzumYOzio2uSBilQ
zy+uVHhgCox8RLvvfU2BHLFvd3guTEFkm9F4m24qiDwcu2UTPAXeW5Z2/fqe
BlVeMq+kN0/DX+/+1IiQTFBIEXnNKj0NaQZNJYy0THAdHPv698A0KBbrul8w
/gG7kp3+OhlMg3updXmPZBa4uVmst3s7DVr9jx+75WVD1VOXTVs2zsD6/Js6
sJ2A82FaHIuss3B3fLvZZd1f8JixmmVm0yzEd05ePfbqF5xfnMjsF58FrsEd
xIeKX/D8zkOWTMosjN14sOqnUQg5lVkvSPdmge9oNbMnpQgcbz4TFO6ZhQRj
784A9RLY6FxvHTo5C2r/xl8qeZSAl9E+F97VWei/Wn/yaHkJWGUG/B7YPAc7
Yl30g86Vgnjkq4uyp+dA3Si5cq9lGSgZ7hHenDEHhsGMD+c/VkCY1g8L7sI5
yI892rNtqAJygr++W6qZgyuDEkWJCpWwGLwSkD6MLbi7jaGkEl76b7bO3zoP
shrbPl+drQI7oTzT9a7zwHG/7+2KfA3cY1O6rqS2AHZynzP5ftVBCYfI1MiZ
BbB3fH7LZKoO/uZvZAy8vAD795Hj/m2rh+prBzzzHRbgl6pJtevjesjlfuHn
+nkBvF1d/p1SaYBtl20FgtkXATJCFovzGmFfCtOLJ5sWwXp1WMRkuhFanYYi
LoouwhnrvjO7tjeBqNMj/74Di7CHb2rogmcTuPK8Xja0WoT7zAyfeXSbQX/P
pT1JeYtQp5HTmj7VApsq3tdkVyyCYdDBAxZSf8A+hKz5o2kRRBTmh9GlP/Dj
0/5HL0YXoZzxlblH0R9wd4xKfCywBKrXNv45EtYKD60rY75eX4KZMtWF/Trt
IH1UjaeUZRnuXv3ZovP3Hwxqha5UrluGtU0bPiZydcKnxG1zBQLLMDgw/vm4
dCfwCzb1uOxcBkvzppRks064ynxy5oT2MpQOtk2YN3bCldX6YOZXy9C4em1o
U14XHk9cRCBoGdQJP3JmRxcwVf7SEfy4DIHMAhU3qF3gdEEge/rbMgw47nVn
PtANfleIAyNVy1DLfrht/ls3cNQJ/1hip4J8l9j73IgeWFO11uLnocLwppeZ
F/J64FS0+0MJASrIXlnjYvzXA46j7D/XS1LhaI4V4SzcC/bb88TkERXMTh5Z
LxzcCxJvn1f636HCo4KDjIV+OK5vmRrJfkgFOYWH6vLf+0A3tWuy4QkVFBJs
tWNr+sApMKbojxcVosj7NmSv74euawNue6KoUOogqXDVtx/gn0fwxmoquEQL
qWb6DEBupH7abD0V6n2cb8TEDcBnvQ1KZS1U4GuaLQ4rG4CnXR4vtbupULC2
6BXBMghbLTZn5c5SIT9Omp/deRBY55Qe6AnQIOek7c89t4bg9+5ncvZC2AJO
7P6+Q2BwJovDdRsN3r35nkKLHwKfunCLpztoEJPFQ3QPDcGBNs8jU0o06Hw0
/mv+yjB8ujryI0mXBg9DBVilL47A77hLkfwGNDi6iSrVd38ElrVDIu0NafC+
b4b389sRoLIelGEzo0Gy3/TowYYRqGtblk+2oYGOEs/uNziOj5Tc5xVwo0HA
2t45tmNjoCyQatXkQQPPrOfWbFZj4BMk3u/1kgZRIkZ6nG5jYBBamvDnFQ1O
sDAiwV9jYCxLGDCG0OBQo7mFKYyDCqchZ3A8DV7MOxbfOzgBFz7GTE5+o4HR
LuEiTcMJSDqQEw7f8fx8dgdscZqAOp2inJ9pNOh58fl8CTEBim8PO2n+pMHO
qIiUcIlJ2H+v/fjZPBro5d2afqM4CWyh796fLaABs6W9jrvGJISyc8H+Yhqo
m0To3bo6CfP5xxj8qmjw8ejw87Nxk9DEfvLbuWoaPFtKnTiRMwmc8rlRHLX4
unYrRbNqEn6P2JaaNNDA5K63DUxMQvxe7w+fW2lwf+c5XZV9U3Bvh4GiZDsN
zh+wlTysPgXkZeuGkA4a1HHcj1XVnwJq46sA2048Pt/GL0fvT8Hyn76fWX00
cKzvpepmT4GAx6uz1H4anBNS+nGxcgoMAu8mKg7S4DRrBM2kYwrcJ32V3gzT
gLzjO4Pt2hT4Nzzho47j8cLjX7xSm4aPYVY5zJM0oKRTFoP1psHKo2iGbYoG
j2JGyyItp0Ez74kDdZoGxrk33TM8piHZ88GNd/M0iPyxjqmvYho2df5Rvb1A
g3idhu1T7dOgqv/CXGMRv/9nRT4rYzivKJ9galuiQaJ7iLQAzwy4eP48VEyj
wc2LwQdO6c3AUO9OlbsrNOC35lG/ZDkDHxyGT25dxedtgeRqfW8Gnnptopmu
0SBdguOFe/AMnNibwP+dYQUUznZ7FbTPwKE3ZyT3Mq5Az8Oa9MRRfP+HTW4J
2GoR+athtBkY9bz3NJRpBWr+6nbeF56Fo/5ngZt5BWbyAu5b7sZ5ydri7SPs
Zc1+Kd3Ds9CeHqB7mmUFvKNWSuUuz8Kt8r/tyXTHW/wQvjkLPy//VN/Eip9n
tC2X02kWPjPGzVZhG/QHLveHzuL+yzlchH0FqtrH9oe3zUJuJe/kDezzkzOf
fUdmYSZTJTIde1rTROoxdRY2qg/YqHOswC5JTw1DoTl4994l2gP7+h/hvuMy
c+Bw+I9TKXboiXe+B1TmAKZtNdU4V8Cch7Sy6dIcHDR6fv4x9tHsojymG/j+
NJajadifqnd6TzvOwdYH5n0iXCtg9q76QE3IHKhU1jW1Yj9kWWr2ap3DaSdO
nYW8AvfcWaoccR5cXxy+LIv918aj2Hp5Du63td92xL55M6TomOA8DHDIn/qA
/VYisVxp1zy0ZH4Pz8O28pGqlzw0D++3mXWTuFegvOP0GJPhPIgJbRsUwa64
57k6bT0PbiK736pga+xQ4u1+OA+tFMfN9tgpMttR3rt5+KjuyvAS265B0DDx
yzykadrmRmBPBHY5fPgxD9nq7U1V2HqXziY7/ZkHEbX6493YWm1JdTeG5iF1
R3D6HLaQvc6s4dI8fOdZiduybgU+Fw0dUt6yAKrS4hq7sP3X0k2kdy7At0SJ
VWVswu+6m4DyAlQL3Jw+j60Vq1g/d2EBjq9wggW2pZgEtffaAlC9FH/fwp5f
+SzR8AD/Pokt1gm7VDRV+5fnAkjvzqz3wJ7aq3ovOXgBnAWvXHiDbfTvYHhE
7AKcCJZUDcOmNoWVv85cgB2plmrfsO9dvitq17IAVT9kT6ZjR4nGkNcNLkCn
74OGXGyXlk1L8QsLoJVyuq8QW0Ikq+8k2yLwRqy6VmBL3verG+ZfhKzRyuRa
7ALjt8QLqUUo2LX6sBn74NnCeGmlRZitDu3pwg5WfeFhpb8IoqZ+r/uxaXsE
HFgsF4Hrx+zQMPanAznmn+4uQvDHy7Pj2Mk+DmfVni/CoGxuyjR2j8kRSrf/
Ihj/ZNo9j63SsnW3SxR23FazJewcUQ5B0ZRFeM7ssmENG8qZ543qFsFOMjqA
YT1+/0829NK6FuHD+uO9TNjKGZJ1oVOLUN0bx8SKTT2D8g4xLMGLfv85NuyP
X0y//eFZgiOqeTkc2Dt2uIc9EF0C2w1Tl7iwg2WSXgrIL8Fzr/5GMvbUlr8P
0mEJqPWmsuuwFfTXX9U/swTHN4parsc2Qmr6s8ZLoPC3+QkP9oDyQzV/2yUQ
ePT5yQZswbykvQrOS6Bfct6KFzsqdmhbrc8SiN1K2L8Rm7lGYt2t90uQJH5n
gu6fvCa0dQlLsN/bLnATtu6p0OGEnCXov3h9Jx/2kcstLdqVSzB/UCaBbm5h
/pKRtiVYt+2mOD+2wWW9tJcjS2C4/vpLur/UvYnaSV2CtOu7++kufFDrV8q5
DKr52UoC2I/P8Dy9KrgMvFGij+n+bHDGlnXXMuiFX8miW+CN7+Vo5WUQ0/KZ
oDt8reqEutYyhMjGbN1Mvx7BrdxzYRlcy75o0I2sT+1wvbYM3/QVr9GtuMOH
T+zBMvxJL3Kj+2R7JVOeB75+7N8Huid9ydPGuE5rNWdMpfulhnbnSswycFxJ
KqL7Cav377D0ZRiOvN5A94GWihyV4mXY8Ti587/n53PFtTYuw7bbq8N0/8w5
+e5h3zK4tHnM0H0owctj89wy9Aw9WaZbIqDCIYMZ10lbtpC2YFc4cFmc30SF
rgE3ZrqfnT+pMydBhbCaRTa63x/yQgH7qBBw9hMn3dZSFXL71KhwvjeLTLeK
CNfWOh0q3JW2Wkc3t+hJLntzKuQFJKynO1TYa2n9bSpsy/rAQ3fGpoqBby5U
2NKWuYHua2snCkfDqWDYtZOX7ryJ8vBdeVS4UxT6n0kum25ewHWBRuS5jXS/
2W98wP0v/vv0zv/cGCn/9Zz4KoirOPz3ez4epq1brVbB1+Duf+PHa95sYvRc
hddWD/6bj+LjxleDX1bh3u0lbrrtN7+82ZaFvYv3v/V8SqFo/a5YBWMUx0F3
8ekZyfz2VZhT9GKlO2XoM2Pq2Cqcrb7NSPfx55f/xayugnuT+Ap9f01FNuS8
W78G8Rsuz9PdnFEU7C26Bs3H/o3R7XnW0eHJ3jUQQTY9dJ8elNO5fXQNmLpL
muiec+6Rs9RdAz2BJyV0n98YzHXBYg3UeAb/Ox+OUdqDJxzWYJHl/H/nx0qW
oUjVfQ3e7xV+RrdoYlqEfNAaXKz0Mac7Xuq6s0TsGhisX1Whm+eNyCX+H2vw
zipvHd3nJuoOcJSvAZuvUCv9fDcd8thEa10DvpaGMLp1rqlMjY+sgW6phz7d
260nqrpoa7DnZDY73T/2nNx1kZWEim61J9G/L0GvDzZH1pEQ5UOZ9n/fW95U
0k5+Eio8aNZG/16LytVnN4iQkNg+10t0K0UFHViWJKH1ohMV9O99GQ07dsuS
ECmzYRfdrF6Hf5bvJ6HBusP36PHhu4UvQ4oqCWUf3xtPjydnv/9TD9UgIdup
7HJ6vFHRk/d8doqE5j71V9PjUYn804ob+iSkoZL9gx6vtHdVr9MzIqGMQDV3
ejyT2L5V57AlCb2UvbmPG3uQZh243YaEDM9f/UmPhzWmaS1kBxJ6emT3dk5s
j6FVoTknEtITTTZjx86S1zTpeE5Cctsn79DjrUDNy8gibxKycu4wYKY/z6yy
LyGAhPRN7TkZ6etx5tz5NoyEzlEjPenxfJpQv+n8iYSYz5+upmEr5TgmWsWT
UKt7RTQ9H0huadp/IIeEdMfHds9g39y99GBbIQlV3fG8MYHt+GljDlslCSFN
NaMRbFfD7WsT9SQUFVC8Qs9HyTt2HW1pI6FJn6zj3fT81SfhltdDQl+SUpQ7
sPfc4CmNHcHzHeNepOe706OZpx5SSeibRt0Pej70O2732oyJAT0+MMBZhP1y
jrtei4sBMb173EfPp8Nib/gUNjIgO1SsRs+3ZrRFA0EhBjTDNL2Nno8/pkAI
owQDUl2WuBtNH+/RlfbhXQzok9Q+a3o+H8nbY5p9iAEpaplR6fl+VbkyIuoo
A6o91D5Irwdi3ff0eJ1gQNH/zmXS64df1xQsLxsyoE2q77wMsBX6iqLVzRnQ
mbM/w7Sw3dex9+++zoA+uJ43kMH2tHSwXHnIgK4MU8cFsbkfvfjU58KABj2i
Ijjo+xMo1lP1ggEpXTul2IvrnXS+ROMP7xgQQ8JDxhpsYrNPqHsEA9JzXSzJ
wi62zmu2/cKAnttVb/DBFrYeOgU/GJDkKVWXu9gtuukeO/LxfgmyEobYOtt9
8taXMSAjt9RHEthR51j2dLYwIFuJ8D4WbDbhxxalnQzIo3pqph/Xf+Lf44KT
BhmQGl9/zSdsr3MltKeLDCjjMuWJM3bEy0mxjQyMaPtswuXz2CcKSRrRHIzo
RP/FqyTsWHap52WCjCj16x+HOlyfslC7P16SYEQtvMMOkdhZ8U2ZYzKMKDRI
kv0wdstHx64NqoyIavzpPgv2897wySgNRhTfgQIqcf27XXSRuv80I1oTvv5K
F/tvuQSroQkjckot+nAU19Opz051Rrgwoj+81m4LuB7fphVSuu8lI7peke7+
BXtrnMXXojf4epihNzN2572aC0NRjOj5denrCWy4PskM3/4onhF5Wydu0sU+
oa08SE5jRBMvjzsF4H5AVd1GT76YESnscl0vj01Va6Pm/2ZEJY/KhEpxP3Hy
QmawbjMj+iRXc3IM9x8rsxZJ9wYZ0a0TTxI5cL/CWVSpnsPJhKaTULI77mf+
Dq89P7WRCcXwPnmyhvuf1zVVqX+FmBCbnpBoL2kFnsrO/iPJMqEZZv/5e7h/
+vzaX0v9DBMq5gyrqsb9VTX50miDARPqOHg9XQI7aSnpnqUpE7rv5WqSQ6VB
VnOIqrs9E5L5kmv3Dfdv737ftyv2Z0Kib2WVO3B/l/NSSuZ8GBPS9Linx4o9
1fb1V98nJuQf67Ht2BwNhCvOuTGn4/GmGS48xf2j7WlzQdTChBbuIqYnuL9s
btzp+7uTCeW07D18f4IGfR6TNZeHmNDhHSazumM0uJBfkP1gmQlZzF0oy8b9
q15KxWCCMDOq3keZejFAA/gnG8AryYwOKjtuP4f73Y8NEWv3ZJnRc+b9Z8p7
aLA7XIcbKMxo0+bHOyz/0iDI63VOhQkz0lhQElrC/XWw46K43DVmJHVGw8St
jQY1Cmf3v77FjGT7FR65t9CgiENZR9eFGelxj96XrqPBgEoNf2MkHv+u1hWn
GhrIpB7xVIzD9xdv6Cv5TYOXCWo+/inM6MMq42mNCrzew7fUzxYyo0SxEaXm
XzSIa6UwF/YxI75zDipqKTTI5+F47CfNgiwe2hewfKcBm4vXzUF5FpQUlHHr
5zca/DPS/E5RZkHvGg0GN3zF/beltfSQFgtCPrQKSjgNjvjLHd9/gwUJVQVs
SnpPgy8/Pxu532FB0Sw8NfyheL4LrRFNj1jQ4+unNAsD8fpL/0bc9WZBo1N7
CsNe4v5e7FR/dAILqjmtqZThQYNC5dzWiTQWpMtse734OQ1Obq+tPfgTjycm
UlDgTAOuy1WJJb9ZkI1KYo38bRp81Qt2aZlgQRuflXdXn6eBIjm9PW8vK9qR
PhpxQ5cGl0yD9K4rs6J+Ed77tDM02H/POJD3CCt6soF7+8pxGrxa6rlocpYV
RQqN1D04hM+fWYfakC0rivqreFhbiAY75G+J/YhjRWk3OuUUBPD5m3cF7RRW
9O72wRPkjTTYYxuV15HFiiC6oyiMkwbTt91qqGWsKJvTzEx2iQolj2MtJQZZ
0St77UjGBip4lq2TEdzOhjjMy85KVlMhN8lh92sZNuSmGHJTpZwKO+SkRZj3
saFZ44lfR3Ddps/mldp3hA19231rKi2OCvuKh/74mrAh04Hw7fufUiF5e825
2yFsaMn+zpL5Nip0+J61OLaOHX1hu7r3wmYq/OMyFGTjZ0eazJaFqhuokOq8
kfJrKzuS28q1+IeRCr5anjHysuzoSd5u5/O4zj10Z13P35PsaHv4mymTz8uw
mGF8+aknO2rW2lFk+HEZ1jGMqjO+ZkesgV9WNXCdXZkdtPIkiB3Vhg4kj7kv
g3ES+mEbw45el7545Wq5DBVK2mc3F7KjwbDPMcXbluH5V95//qvs6PD3DqFy
/mVQrwu89puFA2nFzp/5yb0M/ZPtcszcHOj2BWO+h7jPkCmcO20mxIFkyBMr
B5uWYNY2ZbjzAAf6wSIvPuy5BA3mB7eP23GgHdTYuxd7FsGg720OWzsHkifc
rqE/i/DgRNPQzm4OlPGVYZ9Q9SIEUN7wHBvkQCv8/+7EZy3CMas7CrdnOdA3
mngexQ//Xk9V1IvMiSolEx/LHMZ96Ov99wpUOJFKctYnvb2LwL35y22/I5yo
xnXo2G3cx07ZuXJeOsaJ1AavyXrxLMLOlw/mOnQ4Ue2fik+KvQtAaTsmGGnN
iSS4S3vsXixAVIFcrshbTuQo6Dna93gBrNQCfweEciL37Ivi524vgMv2cHGW
CE7Ueny7GtulBRi4d+ZxQxwn8oyghczI4D7fv/qqbD4nPh+1TU0V8+DRrfv4
1zAn2vC1yEGIeR4EelStjZS50LhLe77K/Bw4HApXu0fhQtHL0aLnBudg4tqW
GA81LpQa3GVwqXIOSm3SRv1PcaFQtxDXCf85cBxcHT5nxoUmmb5nSorNwT85
HiUTDy6kIhIt+pF3DsQ/iYqvenEh7YtbEtcxz0HuuNOxwNdcaKXtlGdN/yw4
ZrPIxb/jQkKecbu64mbhw2IO9VEcF+KJk3qnqTgLDBoHMsOruNC6PCZRGclZ
0BiNDciv5UKbj1RSWfln4arN1oetjVzo6OQvUvTCDOQnDZyb7eBC109utXHK
moEnpg+2lI5xoQu2f1y/UmbA54q37gQXGZmtG8/n3jMDN9O89rxeT0ae90+F
WG+bgQb2Zs6dG8nohxfHdS7SDERvvP7rqCAZLfHWlS/lTQOb/aoJvzQZGd2q
KvM/Mg0irmPC6CgZcXe17mrcOw1mN4NBV4OMqi7EfeERnwY704vVxsfJyMGq
8PQ9xmn4WPNI0+Q0GV2W2mK4WjAF8WV/WFgNyWgP+ZkOr9oUPHtf2TVuR0Z3
k05EripMQaWc1sLL22S0b9b2aL/4FNAshMu3OZCRWI537mfGKUhwMCjY54if
f/5zxFz+JLCdaM9keU5GBScfllTCJJA+yihdeEtG9Xmtr+/tmYQS+6vOz4LJ
aKi7t0h42yTYLlxb+RxCRmrtPNdzaRMgvuVVQfsHMpp2dmi8+3ACDnZ8uz4f
Q0Yng6Xbcu3HYc0q6v50Ghl5zUdnJZwdh/eqdS/TMsjIh+i8HLxnHHTbPtve
/kFG1LQTF43HxuBr35a6PzlkdHF9gFLStTHYH75d1vQXGRW+lqK6GI9C6NOL
kXrVZLSz6oDiVRiFLUud8xE1+P0Y6B3WEh2FiMb3T4ZryWhFV4qJuXsElCt3
6tg0kNHP7A+G5y1HYCR6M/XQHzI6MddGldAcgUtkkSnzVjKS8m+ZG5caAQ2p
DAv3NjIycVXa/3hwGGIPvxsiOsgoKtv5pdONYYg6zmi32kVG6csxUUraw2D2
dEKfqYeMOmNafMd3D4Nl0gIzcy8ZzWXqb7gwPgQOqwudi31k9Ot3CWWj/RBo
sZ8K/j5ERpW2b9X33xuE+rzq41cnycjNsdal7vwgOPptEZGdIqOGgDt6tgcG
4WjvvM4E9hTX1r6IxQHovePJYD1DRolSYeVLjgPwWdf3scI8ns/TkErvSwNQ
+HzBsB17o/RwksjhAdCweNHruoDf99YIdVjpB4EFL/HiRTLifd7ndfdJP9Rs
qj8vRSWjc9yNfmsm/fDPwSQyHVtZ2SX7BeqH8vClfjUaGT3dWR8UytAPclf/
uuivkNFjXYnD6c/6oIVcznV+jYwGImOlVCz64NJzRdlqbM17XDcI9T4wFogM
0CBxo81imoLFLH0gRp25tIuBG302/fet0qMX7NJrmxsYuVF/w8OVaMteUPml
732EiRtdurs911mtF4Y3SF+Nw/5wTf6z3FoPvGyLJO4xc6OPW3/ne97rAcFu
XEeycKPkoAwlY70eqAjY4KrOyo2m0vOO7VPoAdPGYdV32EGy+mfbx7ohVFnb
QYWNG32fSby3y7Ib9mRelbZg50ZjytKaK0e7QY/tc00s9ofhO3XVot2wvOJv
OIJdlq0qf7e9C9jQW3Sdgxudc7/CrpnVBUPKb5NjsL9eMvwqENwFj8J1FLqw
7WIdzmfpdkFDk6L7WU5u9NJ0wdJrbxfszJy1c8MmRTOfuLy+C87ujH6Tid0l
5RuyUt4JpsaXErZwcaOiw3PBlKOdsC2h7mwpdmi0hPc60U4IHhMSncR28ess
zaH+g4OMwg/5ydzI1kE8iHr7HyxbaUwYY8fKl2aFyP2DM07ZIi7YZ+4tpioP
/4WTxw6uRGArmLkcuG/2F1RjI0f+YR+xES3i2/oXem/lcK9g32iM25fa0gHX
dHsYt3Dj+yfYsyfPdMDRsp8ep7BdXj5q9uXqgL//hKWtsM0d9rbvLmkHYa+u
nMfYZZY/oq9R2kHuXWjvF+z5eMKGdbkNJjPEPX5iB9w6vf1TWhv4Rz9SrcPe
J0kz+7e7DQTfZzMtYMvlB404DbZCuc83cfZ13IjPm7gm+KkVhhm072zGTjfX
PqIv1ArW5gGFSth1G3Q+TDf9gXqLxDp17BHDo9Ov3vwBUwMLWR1svfR9ruUc
f0A643jPdezEyu/E1aIWEJuhnbiH/bt2eJ7ZpQUIp9ubXbDPRQbpwWIzmMye
pAVgu0RX11pmNsNxVTeP99hzxjYnvR80g3zGq/BobM2ryvv/LDbBpyQ+n1Ts
+Ne10WuZTcCVlHYtG3v8R+1GqYdN4MAa352PvTO/Y/D2UiNwZ/bmV2F/eah7
9t2PRuDzP7mnHpuHkTedeNgI3nrHTrZg67y4Ltiv3AiQYLmlA1tA88Fj8nID
HJXpC+vC5i/Q+aeQ1QAn2Zj+9GFv9NiALjo2AK8jrWYIO4Q3ZDV6uR7SWO8z
TGH7jr65XJlVD2t+t9EsfX+tqn9MO9aDaPKh4wvY+0Zu829RqYeDo1FCy9iG
na9uA7UO7PXlc2nYQ0b7fltm1wGTwZU9a9i7na7v9H5UB+KGeXcZ1uPn00r+
tlBroZ+D9RkLdnAvh/Jadi3cyJs8y4bdubzJX9KpFi6qZ1DZsSWbxkZPHq4F
wlbDjRObEh6seZtWAwqBbhNc2KRnW8KDc2pAjdv8MDe2TuzdpZ9ONeC5u8hm
Hba+yjedvsM1UHXyndt67OZ/7w0ElqvB4GWOGw92ypYsDgvHapDm/m63AZuB
IzU7afk38Oj+UefFVn/ja7Pi+Bu6W4NYN2KvvdPedoJaBXYSZ9LpnmWeqnn7
qAo848z0N2GrXXvi2kOtBAXKvj665YdJivJOleCnvf4qH7a24IM+J1oF1EtM
tdFd/LrvbZlTBViblKnzY1f2aR3nXymHkhDPSLqrv0cvmT8uB1P7bfN0b/VZ
+pq4UgYxzs5IAJvd9Nhl2uMy0FINcaXbufcNt9ZqKew5j3Lp1ob2n4HOpfDd
jn2K7ggLiVvdqyWw9sJTZDP2yPFrYnuelMCJ6POadD/q/Fr3aK0Y8vPZrene
JD7yrPRJMZjz7veg27d5134+UjE0Zb2IoFte7Ea/2dMiyBi+n0n3q7i4oG+k
IqCkH6+k20Vi9Dj1aSFE7dXooPvn/t3LxxgKQcQ+fYRumu+NuACXXzDo2bdA
N2/7l8tdDL/gkI8Q4xbsycp+bjnXAohniOSkO15DgnBkLAB+578b6EajJrdK
XPNBJY19M92kb2Fim5jyIZOkvJVuePCnzvRZHuzK8hCj+9ZB/ucJTHkgp8It
SfeRl/zGi2QC8uQad9CtqkVKDeT9CUN8nLvo1vUa4ti3ORc4d/ySoXtPZJ1J
zdYcsG1SkKV77Hd2mo1ENnj535Gje5YjmotrZxbkb/XYQ/e3k75msXI/4I6i
nfx/z/O+n6GhmAmMQbJ76Z5fFlqffSIVrAZTFOjOqyWs5M2SYDxs/z66z/1a
v1tJOAKsgVmR7vavK18yTa+CnEvgf84QDpelmIYRihZb99PNvwCZWk0JBNva
jf/8du7R88SGZOKkxp7//GKiefehn+lEsOWz/+6HURaXteRM4ody9X/PCxzY
11j4OYs45//uv/kY9554siMymyi+n/nffNv/me18GZZDVNAC/ltPxp8H9aNv
c4lv1hL/rfdT7avHZ/x+EuR35//bn9/yk+umwgnio03bf/t5Wl36rNaFPEIk
Pf2//T53o2WzYGcewVZWJUH33AvPruGr+YRN7LTIf+OHHvyaPZFP1G2f/O/9
Mr8fvO19v4B4mBvy3/v/7hGsYrRWQITWEex0N5w8zizn8YuwClu3Sj9Pwq0L
lavrCgmn1wpTdJtIfA6sfltIfDBr7qI7cfN543CRIsK3ILaa7uIQ5h32MUVE
r86xLLqnrJMnjsgVE0ousv+dd3dtk0ze9GJCyrz6Gd17OLhcelRLiMwNEWb/
nXerNK3UohJC7DP/Ibq1Rox43U6VEoOXXpHpvtjA1KbfWEpcZKe00L9HC9uY
KCmjMoJ/7lwY3UKsGjcXesuI3OvLBnSn9f5VLL1ZTvCoW3HSPRVweyV4tpy4
yR6eTI8HcptXi6ydKojwladn6N7u88T3EHMl0bi+6x89vmjxzp3n8q4k9sgE
m9OdnHR5W/vGKmIu0qmJHp+Mw5IH4kOriAd1ew/RLbNvOvGxxG/ixT1pb3p8
20YSeHA67jdR+KimnB4PI3yF0bZ91UTZ73ez9Hg52L7CNplVTaDjC2x031tr
vmoqVkNkGO9josfXARf/iuOWNYSx7/Zeejz+kSazZ++XGsJ1JiCWHq/jW0Pe
bBmrIe5+PX2ajJ0k3zbHsLeWeFYtVE+P92kL/ReG79YSa87FihzYj+0ys+sy
a4kDjZvt6fnCNyDgaRSqIxq21dxiwjagunV7Pa8j3rIMytHzzbl4TvW7pXWE
umx/zirORwoLPNGXyfWE4c9wAXq++i7jwaJxtp7Q6RxTWcK+8u6SpWxAPfEl
K0pqHrvzlVMhX0s90Xo3uGEau1FF6Wm/SQOxneHdzRF6fr/o0f47qoEY+z5y
egD7/fbIAxkDDQRrhk9fN7ZF7hW/jzKNRKih3+6/2DvUvgx52DUSjf3son+w
UwO00a2URuKj82o2Pb9LG3IHXlhoJCa+stDo+T+lqu3AzidNxHO5I/r0+uDF
sKXbhl9NxI6wCYss7MeDzDVLrM3EyP5olhRsoySTS+W+zcSp+/39kdiZGsdD
k+uaCSULqnAItklqblMIfwsh8VKz+jV9Pf7PKDc+tBAXCsTfOGG3/svkK+9o
IbIUWC/cps9X8fGA9NY/hGb8YtBV7D9W+g/6Q/8QhtHct89ie0cqKmm0/SHW
7AoZ6PVVcSFlNEqwlbhhtjxPr7/CZGwpZu9aiazX7CuC2IdSzv0hWloJXtc7
TGT6/rsEWItsbiMkqVKGNFzfpfoZWrW9bSOcrD90tmLf1ZlJ0wtoJ05dFIjz
xd70paIzub6dGIrd5vMQ+5R4wSLPxg4ik+L06gr2+ELkUKVfBzGedKRVEfvm
rpvErtoOoklLkk8Y+4YQi5Mnz19i6sQlfUZszr4rUWqv/hIFqynlFbi+FbzH
zhXx+y9BMz83/Q3b0bZGZ5X7H9F4g8bkh3348LqHmd7/iFMlqSXnsPU/yNvx
aXQS+cvla4W4/l6VWXD5ZdFJ+K/ri/mAbegW7Wj/vJN4yRxNvYctznxRoOpX
JyHxaMZHAlvgr2ymY08n0WdzK3sB1/tloy8OSjN1EVw7bt0rx+6NzalxPdpF
pBQ9v3sD+9Gwae8e8y6CVPozRhnb2Ni7ut2li3jdzanBip0SuCShlN9FKKok
RoXgfsO9P8mtH7oJ9ZbHi99wv2LueorvjUk3sYNa/c4O+9lc3DXVJ92E2Dc1
MzlsnZj3Z/x/dhNa1AxKDO6HYKt7oYpqD6HapbbfGfdLwnG9gn2Xe4jgyCMc
e7D7qBmCvk49RGDJ2o8O3G+9ms5g+5fdQ2gVZXsrYjeITQk7HeolYqz2jxXj
fs2rmfVi2eVeQk1p6yUjev82H8PK/6SXeCm5NjKJ+z07G833Cb96CXlHLc31
2O/Xl0w2aPcReckPnu3A/SJbw/klYbs+ghIW9D0a95PseWYqFn59hMTilnBR
bAt/9hOTjX3Ev3EJH/IqGSXThkNWjPsJI8n7J7Jx/xpoXveI4tJPzHbYiopg
i11QPeMc1U8oXbTVfbxMRlsivaOWB/oJqdn5D/JLuF9uGmrrvTVARIeH3LLG
/TObrPMjB9dBQt1mUmoL7s9fmwdRwj8NEme3Ba+qTJDRMfsUxbLiQSKO1cjG
cJyMPmjse8rHNUQ4mkj8ezFKRvEpVoOB/kOEclVKzvdBMrKtOfQhKW2ICKaI
zycOkNGafhdnWfMQcbzqt8WXfjKqFt5aOC00TNTeVvnu04v7cz7P2h2fhomt
7ZRkwU68vgvlunLFw8TK6o8jU3/JqNldlbp3cJiY2RQRXdBBRke6N9+Q3z1C
XJ/wy9JvIyMVj45PbKkjxAFG01KVJjJ64KVrRf41SuTcOMOzUk5GtS6Mhqq9
o8QteddrrmVktE7QYv91ljFC597AOsZSvF5fW7WMY2NEIe2p4GQhGe1g0+YU
rhwjzjjPrrj9JKOEMfndS/XjhMMznqxXSWS0tyHeu312nFjp3buQ+o2MvnL+
kc7imyBs1Sht9fFkpGF0KfSKwQQhfFbDfjWWjH46hwncbJ0gtLsqi1kiyChl
XVBbqN0kUVorw9P4ioxEVh/xtTyZJN4bpRi99iGjP78Kb/K8niSU9Sfy1b3I
KPdsiJxD0iTh9CkyMdidjLT5q8ncU5PE0Cfjs6NOZHTNzPOplf0UMawcdP3w
NTLKdmDfd9llipiRSSl0sySjonatLm2/KWIqcVdZiTkZOdjP9op8nyJCh9/m
7Dcio+eBB+8+m5wiTtkd+Jl5joxCbj7tU7WdJp5P7dE1UCaj3TJWcVVO08S+
e2xypkp4frOT7Be8pgkTjQO25vvIyPSr78nLsdNEvO4GPl1ZMlKK6Non1j1N
oDt1pb2iZORtuyvJV2+G6Ge86VPKSkZTp92f5ZnPECX1TCtWTGRk9VZlauTW
DEHiWMtdXeNCDm/Vjfb4zBDx3F8VBJe40PMrdcVWRTOEZELJJGmEC5n7yVx+
qThL3DkbdNS3igvd/+UXfProLGEQ2E/LL+NCMSPgyHV2lhjIDN00UcSFrElR
07Y3ZgkbA5cr+39yIR+e4a1tEbNEa6dY1u1vXKj9w0iOCvccMeJ1VzfZhwuF
cP0Vyu2YI3R03S8YHuNCjZfk031G5ogdQQf4Lx3lQs1BWtG6S3MEKdnVSU+V
C2mcenuE2DRPHHwcfGHvPi60K1swdePJeeJDYuCAvwgX0rtxYjIqbZ4orJm6
xTDLiXxqmZ0LCuYJQpNs+mqcE3E+PGDdWD1P3Pteqsc/xInOB0sKtwzNE7O9
qVfX/+VEbqyHL5zZukA427j3fCvhRNT4vfaLLgvE5iKojH3HiZStiqj6vgtE
ckXVunJ/ThT50oEWE7JAXNq9kNvrw4lKNj6SlkhZIEpvcj5mdeVE2z//jXbt
WSC+71k6RLPmRBsdNmjUHVkkYpaOZ6Yf5EQjaTWRBrOLhCmbqsa7Wg6U35Gg
pre6SHTTOlqtKjhQRGSqlzr7EvG5jNdpTxEHasoYH1oTWiLa3tUtfc/kQEI1
so2dR5eIc4zWb5w+cqCL5Ax1Nd8lwrbhdbHsTXx/2o5ph6AlouOHFVeiJQfa
OXkjNTR8ibg4srtAxoQDCbJrGuQlLxEWr3zCBXQ4kNVytaJN0xLx+1Zqx48D
HIjf7l3aaaFlItPxookcIwc6EeayOVFimZg8b7hkTWVHtzw/CjPuXiZ+B8fc
jZhlRyIv9089ObxM+Pka7WYeYEfNjQ92tV5eJqaDhGzeVbAjcOgsZQ5dJsh9
bUUcAewoo9QzfCs3lVj/9tb+g+LsSP5kzKkvG6lEiWKOkoQQO5LQHW7cIUgl
prbsV+DaxI7ux75wWpGiEhnCHkp1LOyo2EbPjAtRiU0L5dqqQ2yIy+fE4VQ7
KsG18clD30Q2NK+h+s/WgUroXtrzUzuWDZ0MZPMXfkQlVCx7HrBHsCG2EgON
c+5UgqTTafvgDRsKGrHzFg2jEkUKpxRVHNjQDmbp1MtFVEJT3axO5xAb4n3h
+P5kOZVY1PTgHFVgQ6fPxq+Xq6YSt25M7H0mw4Ys41OSq1qoRJ+f2s04YTZE
+v6L/+EIlTB9y3mxd5UVJWt6Tr9YRyMCX87qrxawoqIrzFbpvDTCo9ut62E2
K7KyVOBv5qcRD3Vrq2ZSWFHI0zLzOREaYZg70d39iRUJPHiw+7Mcjcjjr8z4
5s6KJvbydo+cpBGDTEe/MJ5gRRHyPvEJZ2jEvWtLzvlHWJHRnfBEc10asdts
ottZmRXt6fydFGNII9Y2brkzJ43nw/+8JfgajXBNlXGpY2NF3FH3o+Zv0Ig3
5BsB7mssKGWhUvu4HY242JNkq7zAgjSarF6XONAIfx4d/9B+FnSlbWHfQVca
cb66/rxOEQv6mvFF+4AbjWj/uWK4ksOCiJK8qV2eNGIs1uji51QWFPVR4dCk
D414aTt8eTGKBe37oaM4F0wjDtuabX/lyoLigjyCaPE0Yl3k7bsBwILEK2OZ
ziTSCJsIt5y9B1jQZbX1V4O+04jxIFu933Is6H1okx1nOo3QDljnziLCglqo
tRudftIIccZB65s0ZiTu2FvwNI9GqLfvimeeZUYeV1bFnQpohIRKnmnYCDNq
CSPpGRTj93HugHx5KzPKN9PliKyiES5vz9dv+4Hvbx+rMa6mEaXh9rypSczI
wciEZWMtjeD8e67rWCy+3iC+0byBRvxUbFWxDWJGVRG559+30oiWZ1Uo3YEZ
1R03przvoxGTynlblBSYkf1aV0VxP404cN7UV38XM5pNuyYzPEAjLAbEy+6K
M6O2HQzfRIZpRBU4BSfzMqMde1v/oXEa0SZqUiczw4Qq3v4SUpmgERoxz+K0
RpjQ1pL7hXsmaUT6984LV3uYkLuQ1xf2aRpxnc9IKbKeCdkfTv3rOIfP0+Eo
Kf5UJiSXNRh2Yp5GKD8/XaEQz4QofEVmfAs0YquN75kzn5iQnf967bBFfL5G
aqgeAUxIke1Jhj2VRjQkabMs3mVCO7P9CCEajbi/TbZ0ow0TCorLsszHzq5K
vrPHkgm1sNxrXluhEa/QL08rfSbk4TKse5K0Qsg1EYX1+5nQa/58nQbsP84T
/eOyTKiRp9r1IsMK0W1at8ghxYQOjHn+vMC4QhxLaxsHfibU91R7rA7blsW4
wXAdE4oO4grQYlohODTN4h1YmdCegahXu5lXiCJXe6W4eUZ0ZfQ12zvshZn8
oaJxRlR4x0aVkWWFYPoo/qaznxHVj9lKVmAPSFIK+ZoZ0Te54LSDbCvEeF5g
1pMMRnQ+qWLUG/tJw5hESCIj2hh3zuov9oIEv3vqZ0bkIexk/JB9hdiR8VFp
KIgRrRUcpRZgO+yOdWN6zYhyvp4W4ORYIQq1J39v9cTjSUVx+GFzHrx/TucB
IzKWE1+twS5tPud18xYjWjHR/baOc4WQrozKc7/GiO7o+zg9o3t/h0j2BUYk
c2T0tB7XCuEZLpYkoYyfz6jl64FtzabX4i/PiBoTfsRkYju8v7rCJM2IqO4T
kZvIK8ThG2zQy8+IJAaOxwC2Tt7kJb11jCguTa7gGraTjfO9QhZGlPsoyjUN
myHlaPSnWQZUWn5L4w92pFrDj02jDMisfe4yFfv+cnLl8x4GVK73veAQ9woR
HFM/ZlGHrxfslr2A3eyiS2soY0B/vrduv4vNpv6eQyOfAXFwd098xv5utCIq
mcSAhAcOtxPYR7+qyAR+xvZz9GzCFgx+r8jykQHVf3mjQ1q3QmzZL6TR58OA
Pol+9tyIff+jiba+GwPq6aB8k8S+tcyjW+TEgJhuW85oYiu9GDKOvsGANo5+
lT6P7YWkLfiuMKBBm/EHFthqYUzWboYMyOL0zQl7upP8bObOMSDJNMNAZ2wZ
vzZ7Sy0GxH7I9M5L7OTBXodGxID670q8CcT+YPr9ocZBBsR883HqF2zPC5FP
JXcwoCUDs7JkbNLu388CRRjQhYvvj2Rj1xRXuLPwM6BlthbJX9hJdR9eOHAz
oBxqhnM59qWlE959zAxopvaMXi32w4VGX30aCXU0NcY3YyeYHvMrmiEhMjsj
qQd7+etQYHQ3CYVJXWIbxB6/LRrM10pCicOMcaP0+b3VCnGrJSHrKp2pSWxn
jmthc6UkBO8+ds5iQ5DzB8s8EkpucHRexA687BvemEFCF/b5VlOxGyOCIjUS
Sahc637LKnZWSsintBgSioyvf8+wfoVg/hcUI/mBhB5Oou3M2I9vvYoNDCSh
oS+Xb7Fid6W6fGXxIaFJgwJ3duxcsl28w3MSWuH0vsGJfWrLxW99j0iI5S5Z
nIx9KAEl6d8hIclPbgnc2DckpJKLruPx45U3rMeubeJI3W9OQiIfrp/lwdYR
H02LvkhCDyQu227A1jKvyuA7R0LCD8VtebFlZhJ+uB0nobIAPp2N2EbDPtlz
QEKUhJvCm7CrtW1yLQ+Q0OEl42q6XbZpE41yJOSSKGHDh212dVe+hhQJaZ6Z
XaBbRpb9V9pWEvp5Yt6eH3s1va9Qko+EGmfXNdFd8bRsSoqbhNQSZmUFsE/L
JIhIs+DxFcoc6b50UyxIZ3kN5o58y6Vb+ujgpN7wGkSFFC3QfaX52wmD1jXo
vKK6azP2nKbDp4vla2B/ck6f7t9JKquXstYga6PvI7qFeBkvGH9dg/IrsaF0
M/+/ju08HMovigM4JS1KIkSJSNojSklzyBqyZUlCJKkQkaQFWaIkW1L9orRY
CxVlm5OULSE70dj3GOus+L3Tn5/nfefOnXfmnnu+z3PHuTz79JMF+Njdm8tx
dmYE35m7CxCq3PuTY+V+s7NnfRfgFY9hF8dcK9fjuQsL8N+z8gmOrRW61l04
uQCC794scJxsmXzZRW8B1tso8IkRtrjpWuWmsgDVv7LXctz2XHGLx/YFOKLo
sYHjz18Yfp7iC5C0LU+aY//f2HplxQL0S63ZyrEyLVjRhzkPJ91wJ8f5ogb3
fYfnwcnuhzzHQYcEB260zYOPuqoSx2vsW9T8KueBZS+mzHFVSMKTgPx5sOK/
cJBjmXTH6cC0ebBUC1Tl+MEQNTn07jy431lL4rhQ5Kb1/QvzcK1ZDDiWguWr
o/XmYUVf4z+vcn74NW77PAQqPj/CcaN0aWRq2hxUtURqcnyofda2cPsc2FhY
anOc8FBuV00aGwxPZutwvNjoBKtrOxt4W43+ObvLwG7nKAvaxiq0OLb2Ui/x
fsuCzuRL/8bLKjo0sz6CBSx39X/vt2HpfrliNxa0HMxQ47hjh+IXITsWqC6k
/pv/e2N5KycjFgxES//7fJFXdk1+BhZsXz1ygOOHT7bf45NnQfnynn/Pqwrl
NttKseCG+MgejjX7NhdlCbDAS6t827/nzydtsZibBV1jyv++n0YFyXHzCSZ4
d/GIcXzcakNoShcTtqRPcM6/40KA2CbWLyY88XzA+T8ApmeI5B/7ygSUCKJy
fh/MVqHjz98z4Znd9Q6OfVesGZ1MYoJiNB/nfDoGAn+wVgwTvHriMjiuuc63
MT6QCXe33brPcW7xsk/DnkxYoiF9nuNUIV7jw45M8OHvJXEs4rV46IEZE5hq
Mpzz6Bjex3W7W5MJXGv4mzjr5Yj7vPi+fUwQVf7vIcceG9kf7sgyIc/tmz7H
FxkMgzZhJth63qRx1ueDFfS+nbxM8OMiP+JYynr2lt8sA3S4PHdwnE6bFq3r
Z8A9WcVsznq3XZjK2tzMgN6Ay3Icn42cOnq1jAF8sm/COfVifflUd8UnBnze
qEHh1Je6kunrG1IY8PoWWYLj1uezay/FM8DW3kmbU49yIhlvi0MZYPpMxJJT
r64Oz2mvvcYA6eTnxzj1bI69uNPpPAN4BJvkOPVupejKa3lWDFDwCO3h1EOP
OyKCK/UYMBR/5xanXkokyqTbqjDAVV5/llNPK1mKmtnbifmP9+osJ0x10O1Y
vJ4BF785ui8l3Bdh723BxwCVZ20uSwgLq/ivTmXRYZOzhcpiwt0bX6ewRuhw
mWuwkYtwvPgvdcN2OujT95zn7Ae/L2l5TRXSocB8+ARnv7hhHLVK+y0dVplZ
L50hTDEZeRP/jA7bCvzdJwg/UTBXG7lPh1nTE5F/Ccu/rW09fIsONj0UhyHC
B27beUa60UFLSbi3l7C+2+JVPbZ0OBq7srONsNDqeLVQoENM+JO6BsJpV/eN
huymA2VNuEE1xzFc8cESdKgBqnYZZ/87uKARtJIOXHub8pHwMXVl6m0WDdR2
67/4RPjxs3f/BQzT4IvJz8l3nP11xO2ofysNQvVkcp4S1k6iv7z5iQZcBiNr
owjvCm4xufGGBq9LyEXBhC3Ju7muP6RBRJlo8jXCP+7yZl4LokEk995yF8JR
um62Pp40SHLbKWrHGd/6Ov9VBxqMZjeHGRM2VT+CV0xocDEmMFueMx8HIxnP
PTQofSZrKknYJ5zc5LGRBrkpmX9XEj7yXeWe+yoaVJtfGewl+qFW7y6a68gs
/Crgk68hvJ5lkuXSNguhyNb4THgw0erCxYpZ2MqKexFCmNsvr8c5eRaaM2Xq
LxK223zm5bm4WXA59T3RiHDnHpOzTsHEdYtTDYKc8b+2Us+cmYUr3Kc2TRL9
3fRYT76D6SzctQmuryGcUrkm1F59FqJ6NyuEEA5qGNppJzkLBiXNZFvCa2ja
S2z5Z6Hy1fqr+wiXiq7tPjU3A6rVh7d1EP3o/NTFtJO/Z0Dn+2qed4RL/N7G
WVXOwBGJkz9uEN6YVhV6Im8G9uoqdgkRLkpa62/xaAb+VDqubif6345WpRDz
kBm46nJp8AVhTcPtsWZXZuD7Iw2zLYST43grTY/PQJ2OnIwA0U83eGe8M1o9
Ay6+07klRD/+ahWVx2h+Gopejjp6Eb52KcjZ8O80XBKZLa4i+vl7zlusj/2Y
hrKbx/W8CC+5QBsxyJ8Gw1LPxHWE+xxe3jdInYa5um47S945THSdW2pwZxpk
4nteTBD5gSTD16PvPQ2/FzfZhhK2NI+v1z87DdeM6mfTiPzRQx1j6GtMg5KG
gfFXIr/wTMnfPrYwBcmyb1fpEG50L7J3H5+Cd2THLeVE/nmZPWUTQ5kCjfcJ
0kjko/n9Y9mtOAVptUs1b80TeevVgZlz/lMQ/cPnTw+Rr0hPFfvuuU9BSdxr
dS3C0umv5jNPT4FbYbwIi8hrDl8W59LViOsBq/rlGWy8T0+/FM49BecthD5c
JvLddYErvdkTkyB5pDArk8h/V8M+xDR3TUKI42KqOJEPQ0R+pst8nYSsufxT
H4k8GdkjtgJvT4I+4/T9nxNsrIq0eNJ/eRJM7xw63kXkz958DV/+M5MQW/fb
iE7k1WvUXfvtNCYh92JWXxeRZ6tatzF4eCah1Gw2/ucQkY8rW+z3TE/ArsAD
mh8GiXzf9EzpZO8EHEj1VnIh8nFbkv7W7G8TYKR40iK6i40jg/65jsETUEL5
/Eq/k42nK9v/RF+ZgI2Mo4bzf9jI5u+MKj47AelqKY5G7cTr3aXTpLQnQKRP
xjehiY0HhE9t7uedAMfArbekGtno28GQEaNRgcdHRP1pPRutLjU2GAxQgbW+
NMe3lo2XwcAut4wKRsHzBykVbAyHrHfRoVSgDQ2TdxWwkV902O3KCipYBKj/
WJrHRsq1FEbF5DgMv8rta84l8jJL/L/02nEo9Q/psXrPxouumgXe4eOwvvG2
TXcKG90klO/s5hkHPYdFShfesHHJ1uQRme4xWLWYbjHwko0KgryXN3wZg6CJ
1E3FCWx8+NZDSfTGGOj46+6hxrDxgySTtW/6L0ybL6mSjGKjSF5SlXbdX6ia
eTGrEcHGFZkHPayz/oIJlR53PpSNR+5bxkS6/IV6lc2+cjfY+CdVdn5n3yjQ
uz1TrezZeHd+h6NW8wgsr4szKbNhY+rDewGJOSNAGwxcv/UkG39dy5BciBkB
ofPC+NWUjRI38k/UGI/Abrm2cSsNNlpfchb/VDkM6q5R4vOb2GjYyrf6Cw6B
01/DXbESbNSMStgYkDAEG0OzpTaIsXG1QGH+0ZtD8P5AoD23ABuPpZTKTqoM
Qa/+jKvkHAuZbhe+v8wdBNEzAkFPG1h4kSs9Oy1zAD7Hb6OcrmFh4OPa4xEP
BkCuqSNDtJKFIwVb/K5fGoDIdHMPK2QhvbxhqeeeAdDiTz65M5WFvoMd822Z
/RC4taGL15eFurFfJjPf98GE9YjPH08WGojasQ7H9MHm1s6hN67E/YVdk82e
ffDh4brDK+xZ6Fkdqye/rw82fZlYJa7Dwhu2Vv3en3vBam7r8ZMCLLwpaqF0
q7gHuMMo2w4vZ2GkXND9jqQeGIy59VhgEQsPPMnT1Q/qAf1kLvWwKSY2JZkE
mOr0wHLm5ufFjUy80W4Ea6u7IcxYRN3oERNFf2kFhfzpgqu8XzdM8zNxN4v/
wY6VneBosD4ujJeJL0W8twj3UEB6r/1KwXkGznTtPjj9lgJ+5zyWsUcZqB6R
Yy2iSYHCpU+591UyMKFz5ibV4w/kPN7tqH6bgXjxW//2hnaIiD20eMU1Bo7d
6f0q+KIdlg08Fym9xMAkHSZ9o1s7LOWjFK2zYWDLZh2V18vawS5Ai3ebMgP1
5bsD3eA3/BmXPjE3SMdvgsfsJT+2wunvMpe5KXRsCjZc5BjYCoOK36IZDXQU
tzzDV2vaCmXhj/hLv9BR37Z+jeRkC2SDKc+vR3TU/bloRcLeFpBo8Ej8pEFH
rJncpFvQBNyHhX6ujqGh4HKV7juj9dD8klydHUJDUbfDHeeL6sEk6bWmji8N
OzIGvvhH1MNVH+/vBvY0NLurImaoUA+iNfapJbtpaLx0y2+Xa3WgwHUv27Vs
FkkeTswBoV9w+u3V3GP5s9glu4NPYbAWss4XrJN+O4tv5KoOvy+shS0SlxVS
omexWEC52sapFhTKS0/usJlFBQv98SKfGhAqsxRdT53BDfNzlmf7q+A+y0VG
t3sGP1Oz/bbGVUHq8aHgCw0zqPrydpG9dhXkCcdEPPg8g/3mWU3KKT9A0Wvm
xin/GdRZvMP1ukclVJ4TChDgn0Hxidu7XomXA09TlOAp6Wm8KasXpFVRApOF
ZXSztdM4IXR/3fPwEjhre/y2Nu80ap+WkHM2LgGzsPEioeEp3C96TlS99Ssk
HDsUeyJ7CkfvUleuoxZDqpp4y2PSFOZSjpPs936BTstyz83yU+jvNrF6LwPh
lKJgTsqmKWS0XDG4GYEgdnT7hQSeKZRwOhfwpoAMDvZBLmqVk/hQxHWnmlQR
fDNwMnA1m8Q37R+lzwjmQ5u/wcJjrUlclhI34PMxD04prDpdvH8SVzyRqnSy
zIOrrWtcucQm0c67Kaoi8TNQWG7+6h0TOJBybixR5RM0xz/52uE4gaRBH33Z
+I+g8Jg6W2g+gY8P7O6+o/MR5j2f/n6kTdyf7P06n/YBeJ6unlHbOoEHfeaV
Ik5+AFMjWymHESrab3C/93vbe+hyqH71152KIRbzbTXtmXDf6vXVdnsq0joL
3j+2zIRDL3n5y02p+Ei59WF7/TuIJ9nkP1Si4nem7+vS2rfgtbB+mRh1HFXJ
xnOs3+mQ4Rdl3M8ewyX8ph02+1MgOuxXuPOfMZzb1R3UW5YMVKphXx+OYb1k
z/qyk8nwccc5vbrbYyh5do9WfNAboN7dbey1bAyj3ipR5QdfwcVjqTpUwb94
Z5H2jYt/X4Ddt7Enu6dH0TJZwjc/5gVsmL5se75xFP+q89A0Dr2AmSPGgQ2P
RhE1VL/M3X8OYjxvrAM3jOLlbRIKiYEJMMw200ieG0HxM75/L/Q8g5XGzrvK
/4xgUt5B71CtZxB8h6zP/WIElczPCyYL/Ade/ntCTGVH0L4sz2em+DHUZ9WY
neYdwQhtg5t1io+Bf9/RlIsDw9i4wfVsR3I8GBgoiV5PHcZIEf7cC3GP4Okh
yptbu4axcG+BfG/4Q5iyXZm6ed8Qikruizb7HQUq94bPuQoN4bKiF6xPjlFQ
IWa+/+PEIOa0MHzMqZEwdbWMpPpuEKNHdSXl+COBNXflirLcIG6/61kwVxoO
5QKk/ZeXDGLEgXJ5cfY9+JbCdzm9ZwCpJsxx/X33wE5PLULs+QDmVXv+xA9h
8Clv0Yu+dQM47cGn8JQSAmS92BBhWj9mDBidX6sUAsoFoeqajf24w3vFNY3w
YAhclGGfENWPUipGhjE6QfD0zZEz2iv6UVDQcyBtMAB0n/GscBvsw0+hz6mB
VgGQvbO/Nra0D+uUEoU+/PSH49djOim3+/BwzfubZX5+0CVV+deF1Ys/NUhK
frHXwfDmSp+I1l489ZStMJPiC16jc7aZn3oxu1I07ETJNfg13Hdq3LMX7/c2
m4cu9wGH2ayfzqM9GKdntX+6xQvEZEfGgyt7sEX2QvZhcS8QYGclJKX04MGw
PcqfT3vCFlXNnDbHHrR+lLm8l+0BARR1Q+2ObhQqVM6VorjB7qkm69MF3Wg6
bKz5OdMV7KUzxH0fdyNbIMBZI8wF7GPm8zLMuzFKvfG/IIsLQP946cV3xW6M
La0t7j56Htqyl+n+WdONDYei3wRpOcOWuced/NVdOPRXuLXHzAnWONxq3ZLR
hSeYbSpHnc9CkEl1AuluF+58zYrUCHSELYIQ76rdhYpzGSLHaxyA8XddWAW5
E5/Pbc6v8LaDvh0KOZsTO5F+4LBghqwtBC/UffPz68TSYv6L9ymnYLvjm9h9
ap3YeSfdw9DzJKgb21hGSnXiOu/aEzkGVpDEmFk0wtWJzgvvX8vKnwB61DtF
tUAKqiaptimstQCXJL3VMxoUXPQk1dt8rTl45GJpKg8Fo4bsuqMkzKDtt0y9
YMgfvA2nixz1TIE8UBHbE9qBmezm7AR+Q0gz+Bny6GgHWmnrvlwcawCUxhkH
/RUd+MEoJUluqz58GRqhvL/XjuG1EZU813Xh3aP6QCeDduTyvjM+dEAHshuL
RMVXteMINUF5cLE2hGutFgqI+I0fgmu+FKAGeMUeuaFk9BsP+D141JZ5BFR4
l7QOrP6NT1sCFV+mq4NkeI27YVQb0Q+8qwoLAzAuevmW27QN3ebyZWu+HgZ1
/cSuj4JtuMTph12EgCpIU9buXR/bis/dq43f9R8AaL1hVG3WilTn5OAfrsqQ
ttXYKUC4FfuffRCt5d0Prkflbg/EtaDObc3+HS6KcMdaOvSJZQu6RB9wMVHe
CzGaV8OOrWvBwBekbuYaBejdIOH/4XEzHmSRHUb7d4HzfS1vp5PNuGEs6Mfe
yR2Q9FrtvNj6ZixPPDoyKrodPv1J1Pb7rwldVeXvdb/bAj4bbirstWnClW/V
FBU2ykJry0bxPokmVO0+8VvslQyUL03q00tsxDcpN69TxqXg8CN2+ZxdI/65
NbE/8Zwk7F62Mj1LqhHJl3PcuYQlQE6p896ZrgZM0rA13NAvDmaiYRdFkhow
NM1O36t1HZic3KRX4dCAEeHa9VF/ReDT6xK5GzINKFSTaDIvJQy7GJGdXa/q
0VqwgzJEWQPZphMFsWfr0Y/SVnrdWQDuWpbG6WypxxyDuVc8wvwQnbXdg9lf
hx1P09pXhfGB1KC8/tvkOjwyHMq3Z/tyaDpXu/m0cx26XHHcvzDDC0Xla+YF
t9Wh93iLptswD/zKfJXpk/YLKUvZHlRNbojo2tpUfeYXSvqf5a6YmCfFGLix
N0v8QoEdO2RaUlmkNXmB0tebanFtrNg1iww6yWL8qu6vB7XorMatGD41Q9Jh
mbnJHa3Fpcd49v68NkVi+/LH3lxUi48HuDwuqUyQVA4aeiZfrUE7rTXawWfG
SAJ/dMnHh6vRYeW6teqfh0m53OuWc9lUY7Q8reb7xQGSc3Hp8YyanzhBfjBX
6t1L6lY5nXDiyE80LPsqRf/VReq6Nz7Ik1OFVdndvmKjf0gvfvkpZstVoTc3
4537pzaSrQnfLZsnP/Cw2ZyYOr2J9HxlYPnyVT9w6LZoPd/relK34Ihgrl8l
+q7c5f8gp5bEHapj4zBZgapOn18Ia1SRWh78l8x/tgL1PUOGfIrLSKWGYxP5
zeW4tpJLubSxhCQ7pKZ6Tq8cr0+dGfK99IXUcDs+RKioDHWGW3ArO5/Er02v
xT1lmKym72DdnUOSTDNf75JUioy3hax+n2ySYNfbs+uESzHE3AjodumkjR6L
sr7d+Y7qlxM/bKG+Inl1mjHdmd+wz72rOZY3kVSR80ZTwvUbHj0Xu5Ay/ZBU
d5URUUEpwWWffoi3tISTSjIMW6+YluCpj2Wn/e38STVtyTLS379iZlRPoSqP
M2nSh8etWvkrqmVcm+e9Z04ueWz32TetGFfQj+n6VnmSX9rnLZKTKEbxydPz
GhF+ZGcTwWP1D75gCOyb7rkVRHYavvDIb9EX/NhxK8TyQCh5yPpOieUwGTN6
LA6abLxHrj2ociKrpghNenkjX1vfJ+90Hx9dllOIJzxaVm1b/4D8jZ0cYP+k
AE8ITjl+14gkb3ppL5Lvl4+M43QralMk2femeLrg2Tx8lrxt51PtKPKNyjq4
qPcZI4u9zxfGR5HrKu42lOz5hD/MaxL16qPIOwqOnN8gnIte62RsVNlRZMUO
5pwX8yM2FtnvCRWLJgtf+hD9k/IBxZm+rzYrRJO5slzktnx/j+4BtnrLjkaT
C3FL4a20bEw7GJTW6BhNlp/uNG5+kIV0G9I5p2vRZH7T/T/sht+h3NMH3bdC
osmPCtKmBXIyUJPpQS+IiCYLykpu/OqXhmZBlKD82GhyVESMjqdeCp44UndG
9Gk0eSdtqcdm4TdofVjT49KraDLN7saTRspLtL+1J8zuQzQ5pIJaEpL2AiOi
Nv4nWBlNVjCqbLs0nIDdBvyNHZRocsr4+111fk+wml348PNENPmk31N/JeE4
PHhWVUSLO4asuDyoPi4tCgX0EiJkBWLIB7e2Gkz63UX9S9P72ZIx5IVjaZO5
aQHYF2+sc3FvDFlMkSZPS/PAirvfaGuPxpDHSbt0Y1Y/J7cvc/B/ejaG/D8K
Gd2R
"]]},
Annotation[#, "Charting`Private`Tag#1"]& ]}, {}},
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->{{0.5, 0.5}, {14.34375, 0.5}},
ImageSize->Full,
Method->{
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"ScalingFunctions" -> None},
PlotRange->{{-1.8161862183093436`,
1.816186023201355}, {-2.8903639338202297`*^-7, 3.632372300489695}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.05],
Scaled[0.05]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}], {943.3125, -314.475},
ImageScaled[{0.5, 0.5}], {585, 599},
BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}],
InsetBox[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2],
Opacity[1.], LineBox[CompressedData["
1:eJwsm3k8VP/3x2VfUsyIGctYWpSikizFnENSSioVyhJCkWwVJVqFJNlSlEj2
ZKeQNYRsIaGs2bexb1l+4/P9+cfj+bj3nvt+n/c5r3vvvB5vcTM7HQtGBgYG
e1YGhrX/TAWcNX/3+1MDhCoE8HTIzq2D+QcpgXYgp2rjpbrLWnkxZbd5S8A9
WFJ9tpD4iaKSOgs/eZM8Yev3iQp1/3sqvXxX5rMCnoO3dr//nWOFKj7kcu6k
3ECIuG47qqY5rhKz3TCcIeklvEt5tt5gkI9aqDC+50zEazjxM8HYdmYftVXD
vTg6IBw2NQ+GPfyhTV2UWi/lWvwOkjxjD2edMKd6yjY5Rue+B76Saf2+BGcq
34GI3JqMaHAyz3EsZ39CfadqzTz/MRYc7LhC6m69ospoyp0Qj40HO8VHk5us
Yqi5p1ZeHIv4ALryufu3XEunHtUvb78e8hHuy5JNGQmF1J8XAyTDApIhbbfy
Jz3vCmrqPhnFv6UpwD1xPikipIHqrBD4x7k4FZTn3F5tk2mjUg/O319fkAZ+
C62KL7b2UpnBaOu73HQo+b6dxDE2Sq1UK67Y/zkDOFXGZDW+TFP9NSRtKzMy
QeDJI52de5ao+sd8CBdTs0DgcxwX109GoGhPZE19/AS06Szx2FJ26Dmta+CV
8Bk4xQLufd3IAx/O5a4Kx2ZDLnmD9jtfPnA8LxaV+j4HDKueesivkkHR6PFR
jYhcKB4PEutVFYMVk6GR1jdf4LXQzAM/sS1Qan7S3y4kDwaLGYZVkreDz5WM
/czB+ZBW8+FaJaMM6NiQW18FFECypndNNEkW1itCQfCRQmCzIwgwx++H8WwH
3q7SQrhx55l5Vr4SNByMurRTvQg67G1c7lpSISuvKfNmcRFQ98gS65pUIQQ4
2AuxGKgn2aSG69TBtejgBc6CYjBqiPJ7v/0omByyTTyr8hXWpd3IP9h7HA6V
Rqy8zf0K74+GxW9kOwXbjjScGlQqAS5Cm7XtOR3grGB5v+9zCew3f//leddZ
GD2mOOMmXwpMRbOPzibrQV2V9ZHyjFLgChjgjym+AOnaYSGEfWXwsqYp67qo
MQTX1Q4bppbBlyP6Ks09JmDUKOc38fEb3PWzHtrGZQGoe7n74K5yEPGzaD9h
chm2NIfIeSSUw7x6pgK5xwrYLlR51G2vgBjHey7ur2xg6PdKs2BsBbwIE9r5
9J4dVBvt3WmxtRK+Go1bBp1wgJSOS27J7yvhbKbd9cRZR3D+Wy6uHvEdVAsN
9ie/dYILFv+u+1Kq4ASHiuKL8FtA7Zcua35TBbqq5OqcAhdgHg6wvhZSDTxf
t1zLMr0H/TalXz4J1IDNwYUtRZP3oXJsbgNjcA1k1wQLKGs8BP9Jw/TggFpw
3qF+omXzY3i2KVS5kLsO5i9rqrH98ID61Mei+3Xq4EJXWJnQCy8wGDLspfyu
g1LVqPw95j4Q4XG0PFD0B/Q9iGlBe1/okZD7wG7+AzYGBvQmHPMDWwMuh8mR
H7AnTXS3fHAApM/Nnrm8tx7If7efjqkNhPnAbvk/N+thSFRf35n/BTyoyl4q
XakHTx2iwkzVSwhSueIVwtMI6Zxhd5O7wqCl5czVDecaIcPn0z5f73CgOIH2
o5BGMAgavDIVEQGxSfx81yR+wi++4CM7bCMhR7Q0HOWa4MujY+FlJjGwkpvy
MPNWE/AQf3T12cXCIf03FlJ5TdB5IS7IziMOqvyu7+TT+AULvnVl+RUJ0LFO
4lO/XjM8/b700yQ+Gba85Q41fNMMD6+FFgzdToErBxZcf3Q2w65spuxWiVSY
dKxTy7VqgUdDR0N/30sD5p67Nb53WiGj+ySfqWUmaN63TmUqbIVXN009ju7I
Al9h3aBbzL9hv0OWZy+N3tfnpC+YPfsN5z7IvAavzyBV9rt3f/gfcFVyYLDs
zQU7s2/lCX//gFaEf/Zw6RfIWEn7ILq9DcJbTh4UTcgDFQVvB47UNmC2G9d5
5FYAp+IUl/8Ut8O74YWqztgiOFh6jFPteifMMaZTs6tLgacxplYhsBM8u5WM
n54qg55uxhfS6Z0QNS+uldNYBr4MuaLkqU7Ib1k14ev6Bt0Hd+4fd+wCcXJv
0xR7JXilcZm8dewGI2XVPRG+NdAUXpW56NADk4uHfp0UbgR7F23TdPsBuJKa
l+2r3A7HbJXj2P0G4KdLzRd9n3bYbCZFM0oegPJ2w0KJP+3QpMnqxj42ANk6
yd+y7nSACjn/ldHVQSjVlr5qZ9QJnJ+l69gsh+AMOQlevumC6Jn1YGgwAnF/
SbYqgj1wd3DxcarLCDy5oS8+q9oD+m0DVayhI3D4gfSeGKseWF9aciG1eQSK
b4uV9n/uAccgVydW3VHYMdVhXKXbC7hv5GPKqTG4yudYUeDbB9c+W/gybh6H
7ZU27251D4CM5mmxdXLjsNwjEjPEPgjjLcppq+rjIJLFn7Nx9yDc+EdsWrIc
hwTpqHNWLoPgQi0WmUsYh92+yxwk7iHwKKF8HJadAIZX8ZYPxYbh6DlOGDo0
AaGhX8giqsPA0TdTN3B2AgS2N2w+bjoMPmzV071OE5CYo/LYMGIYAo/dUe7M
mYD7SjonlMgjEFH363uj2iRsMJLWPDMzAmamX40azkxCLK06umLDKGyeTKL9
MJ8EloIb675LjkIM0YNY6zEJldy84bb6o/BRV86gonISxBmYjyhljIJtv+jo
t9+TUHv61ym2ylHYc4vrXtnIJBRql58w6RiFjJDuyK8bpiCLj1k8nX0Mcv74
DeXpTIF/gr7sn3Nj4HrN1fXLpSn4E9Xese7KGKisXN6Qe2MKqHrDvmm3x6BQ
FGQ/B09Bs3PBrszXY/AwRaokK3YK0gUzT7AljoG6Kr9u5ucpkL230tyTOwbf
zEZvp7VOQXxGk8ih1jHwmmrmSh2egrjDRJeSgTE45l4Slrw0Ba+sznjXz45B
TfTrokTKNOxtEJ0N5qVB44AmR6zZNEiMGhb9VKUBLWT74UeO00BtLPpA0qIB
53G2BxcfToPR8SM7l8/RAD+WzAtETsMNyqmTyVdoYGD8Xm46lX68UP/8PQca
OG18aF9XNA0dYPN15jYNPjjAgFfXNHikSFz8/YQGZRKULRYT0/T1cwo64U+D
zoali6rrZqALnu+2eUUDfvmcXwtiM/AukdUoM5oGe/tfEZv2zADr6ymnvx9o
oPXK+WQazsDHujjG0lQaPFyU+2ZtMgP91NfL8V9oEPaByHTEnn7+3uSjqUU0
+Gw4Sd18fwYm8nhzrpfRoJ77h8vq8xmoa79xYqqSBqP5yVm/w2dgJd5/nWwt
DdjtfSc/Jc9AcyL/r70NNJAQvyYTVDADRd9+1k430UD/kVSMVscMpMZ9k6tq
o8F1OY7u7bQZ6NuhHtPTSQPf3n4RltUZKFDQO1z+lwbxwWXnuzbMwsSPFL7b
fTQoORL9Io8yCyfmGAQWBmjQMf/oR4jMLDzRndM+NkyDxXgzbifqLAx/gwLb
URrsXi/2WMZ4FjJH2nWUJmhwLG+lkNN2FgLfyrv8naSBuW3bUp/bLHz+2Nt5
ZZoG90S/KH59Ngtfsg4+/j5Dg9C60BvhYbPgLXnSjHuOBpkPbqfc+TgLC5Px
tnvmaVAnqz+ilzcLd6aqQ+UXaDD8V367XPUsFAS+rxVfpAHri03mPG2zUC3U
NTJFZ3GN6fCRkVmg/rL/lvSPRn9vq/9dvjQLpwZ/SZ5dooFuXKpA9Po5uJIY
Wd5LZ4fzfmceCM+Bw72/Zy2WaeDDaffcaNccbNNrsmykc0zuie9KynPA/y7b
Q26FBkU2u9j4teag2rR3hyed/4hwHZo0mIOdjyXSquk8VzN4t+bqHNCy4RrH
Kg0I98tzEu7MQWNtS9BBOkvvjZ31eDoHxWYa2hZ0Ptr9WPbS6zmIrfdN8KTz
pUBzW/gwB6dy7GLe0/mu+qEEodw5qGI6L5VD51cz4n1zlXNgFGzHWUXn9BgG
icbWOZiqesnaSucavQ6jlKE58F99WdlD5wH2/BCfxTm4/dlibITOTDlvfl7h
nIcGnsTZSTpTrt7hPSw4Dw4u/ufm6KwkfOGEuNQ8dNvnXV2k89lqxSfLSvP0
52XIkyU6290VKG3RnAczw8LxZTp7755lyDo/D4Hq3j9X6OzirLmzz3oerKuo
Vqt0tip4c47fdR6Mpiay11ifbfyexrN5SOqP6l7joycPJTi9nYcWZoWZNVZ8
GdwYkzwPPYoJS2u8vWNwpalwHnh5dq+uMUlSZQdb/TzcNfn9H7PZ+Z1R+DsP
UZJL/3GZb9vSnOQCMPz3Nw7uSVIxn20W4IbayH/Hb8y61Q24LUBJyL3/+BL1
xyLp+QIsTxYvr7GOx5atmhEL4P9Pc36N1WqcT95OXQBu0dXBNZbl/347vngB
7nh4V6yxhDElqqVhAV4bGXmuMSHGoYajdwFSOO9wrfG6sZJ5pdkF6Dgitm8t
P+P7SZut2RbhTeXFmrV8drpdPRFKWgRMzQtby3ddab5z5Y5F8MqrPrm2HoXc
hMjFA4ug96Lr7tp6pZyzqJLSWoSqR91Jw3QOD/s8e8FoEWy0nY53r671N5f4
U9tFiH7tHvNzrX6kLx7PvbcI5cOb50robHsz7eaw3yJsNRvWT6azUR5LhFDk
IvyeDvkeSGctlvOVx9MXYX5lRtaBzsonEqfvlCyCgG6Zrgadd71YpST+XIQj
KT+6eeks3Kaj+advEQw3dVjW0+t//daY6+vnF+FaeK6uB53/2SyEKXP8AwNN
Pc5ddB7K0Cq3EfwHbdwC+UX0/mpdCp98s/Mf1Ei5BB6mc6X6lHC18j+Qsdwc
kEnvzxwfjSPLJ/7BW6Zj8RvpnNAY4iB98R/8e+iTepre3yHCo6+N7P9B2SZe
u9v0/vcyx7JnD/7BSlhjoDtdL24lBo7nBfwDxXyuYnu6nlyZ7hMce/8Pnl/0
9D1I1xs95QOHKZn/QNOQ9Kibrkca7s/stMv+gYnUkNglul7JV3WG3P31D4b2
5Hfn0PVsG59cSdLAP4hlG6D2j9Ngk6HnWPvCP9hbTYvrHaMBc1QraSPXErzT
rAlIH6HB9LD0IRBegltsxde0h2jQs+/BNTvpJVjP9S0hvZ8GDXcaX4ZTl6Do
TUVOZw8Nir9KFteeXAJ/0YwNDV00SOO6M7JqsgS7e+wFvNppEHmmhn+P4xI4
6A8dXm6lQcBrcVWTR0vQ58jNtecXXc92lr8ojF4CMleYSEkN/X4WPfcjspYg
6ll0tDz9eaIbwWBz/9sSvZ9mDS+W0uDAJiU1HKRzWPHXihwaJJ48Jy22uATv
u1szWDPp+uDtQGLgWoauojOG40k0YFyNHyvYtQy7zWvSC9/R+0mprCVcZRk4
zzfMRYbSoO96d8k97WW4UBhC2RFIX88Bwddgvwy9yzeXSY/o9bRZwUP0wTJc
yxztuOtCgySjMw6r/suQt2166T79+RxQ//RIQfoy7NE/cviMMT2f3HGy4SXL
9HGxmoidpT+/j5SI3Pu5DN85PwY90qTBhS9LU9S5ZaiwOXKUbR8NqmZJHRT2
FfjN5OuxVZIG1L37K1dIK9ClbGz0U5DerzHXIvIPrMBSXIh9HwMNgjqfPH17
fAUm7sUf0JgaA1ahGKe7hvTzz+74JNc7BkPP27Wod1dA/lpbf+63MUi7fXIh
r2gFyn9XnbT2HIMtGVd7wupXINe1U0zeaQyCxzxr3f6ugD9/9jtf8zFwuVQY
rcKyChqOz5/0whiondirk3d0FfzDi3ylJujvY54nVMLOr4Ltn5XjBn9GYVux
1XY361VIYyS9I30bBU6FyBVln1V4ydZOUHo9Cg1ixA9falfp36e9m3ipo6Bh
sDv4Tecq/ftK+UXM1lH4/OL4A9eJVfgWvDutfP0oaLMU73zLwYDukg49aS0j
IOuyuM54JwMGMxs/FrcdgcVLV5PabBnwAKP3SsyDYTDhnbr1xYkBFaODD6mb
D0Npvsuh13cZkKPOas8jjWHwI3s36/sy4MOZlfZBjmGQrI1jbPzIgKr+p0dv
+wzB2QN9upUjDMjqODzT9mAQknhMV7Os16FsWufA1gP9YJane8rPkhHZR6I8
jmp2g2wWiUC2Y0SRnGvcDSLdwJjc2vDOmRGrjvCzG012QWSEsV66FyM+rq3k
sH/dBd2PLI2bEhjxWkhRUdBoJ5gdc7IRpjHiiK7So9zNHWD264VXnDMTCvax
SQpntoBsnd6xvfeZ0GL5a+8R4xZgrCCvz/FiQhR7lXqHrQUic8Kefw9hwiuT
65MYLzRDd1h08FguE5KENL5XrTaBmXlmlBwDM8Ydf2Q+d6oRLk00FhZ6MSNv
tPjElHYNmLj46X32Y8aXtj4FT3KrwZBJayz5FTPuVyLrEXdUg+6mr0Lhccz4
hlXGQYKtCo4qpTq5lTNjc4FOIKGuAmQePNt1gJ0FRZ9ysS6/LgUpTs2ve3lY
0KBAV++mUClIBjJf2EFiQTGJyVDdNyUgFn3Hk7SdBffz5SlaRX4FYoVV9+wR
FqQmqLqfLiyCeR6NV+meLNj0atedqz5fYDpk3e4Pz1nwWGV6oPiXXJiQyCuN
fMmCInx2lpy0HBiSk5vyj2XBiudtlreNs6FNX0Lb/hsLrke+g12XsqC1q63n
ci0L3n437qf+MROarEPuXPzFgg9NAjd1LGRAnStPvHY/C7rDSmH2m3Qojlhh
kmZjRd/erk8sHKmQvyMndMtGVjyhN14kYZMCuWk39woLsOL5igPsY1HJkFEy
YswlyYppbAXG3qc/QuxAa/agBisSTblzx+biIMoh+FSXNis+9wiA0IlYiFg8
3d+sy4oBzU+10iZiIHR9BV+5JSvGzGe/lWCJBp89n+xiPFhRgON12Zdb76BS
9lffTV9WXG2o1w+PjwD2/XNGh4NZcaZvxm1LUTi4Kylo9USzoqF+QS+x6A0U
H9T7mv6RFS03NxbP67wGBqrzgUeZrHivlfFjxngI3FH7tF2ilBWXckSp2idf
wmf1X+ETVaz0cnqsOL0xGGY15viLGlkx57N137o/QeB4XIHFpIcVF2+dKKx8
EQDWZz91hTGxoaPOIwwSeAZxur/0r3Gxoe9+82OjGk+hT3+uVpnIhpczfNid
vJ+AqZFC/m8JNlyuKLp8U8sD3l7U2/9Big1F1dlWCJXu8MfUOdFFlg077NxG
ZC48An3LT6FkNTY8M1H4hJByH4Kv/OId1GRDwfMycb8H70Kj9ZzX59NsmDOh
WNce5AqEawIMXufZsD3Js+2giQucslNw1jNlww08WkUrx26Br4Pe2DYrNmT3
i/GSPesEVdedLWbt2dCOTeFLl8sNOHLr05kX99nw62TH5d/CDuDu8qvS3IsN
szzumt7YZQfFrnOqcn5s+FmGQdVFxwYY7glkM71iw5eL2Rl/4q2A+kBhT0M4
G5rYizOl7LkMro/0YiNj2ZDba9CRvdccch47UxyT2ZCr6/eJxRIzkPf+tJ63
gD4/L7umuVUjuOHz61FnGRvu7NxbaZ10AdJ85xaTa9hQc6OzdHaUHoz7CTje
a6Ln79uxXcSOsyAdqDCo3c6Gq3abY5PO64D1Cz0TSh8bboq5/qqC5xTEvXT+
NTrKhk+2iASeX6cFfSEvtfNm2PDH/S/WRsePwpY3n0p9ltlQTlBywWZeHcze
/lI2ZGHH2B/2OW7r1CAiYi59Jzc7SvcfjDUvoEJ7pMDOf3zsuKpl1l9IOgDC
0QqRlcLseCemdJ00ozxciNUjh25hxx5aerSqnSy8inf2s9rFjm0V2/sU42Sg
6cNLNiU5dnTtOh9Wc2wHEJM+3WVXZkfvyPcluSlb4FTKr5lfh9gx79PJiMhS
MfBNm7OJPc6O0YG/dsePCEJVhkCP0xl2LBjJo8SZbgLOTwoGGgbseKlYti++
nAeOZuvVb7rEjvmHXRSmmDnBI9dZs9eaHSVyf2172sMEJXkvCzMc2dHgy1lw
m12mMhZ+UnB3YccvMpy5w3tnqQnchJjlh+w40mLY4mBBo+oY2PA5P2VHgUp9
afOPvdTFuLKH44H048Jpt13F26jvZ8UmrN6wI0sZWXXvYj1VS/3Oxb9R7HhQ
uFOYt+0bddr/Z7XhR3YsM/SumK/6Qn3TsVu5KZMdWxu0+Wb8Uqjq0t4JJ/Pp
12911axgjKSOuPSQKsrYMdNUcoVBO4AaVE71VKtlR93b19dHbXlAVeYPmcn9
xY5nwhrSXrFco/Zemrq0v5MdFW++sst7fY7qm3qiPmmAHTfWxvicUjhIlV+N
xe0T7Pis7nTGY10harsWY/K7BXZ8ckbF3m50SsUj1FBEiJEDn5mXTEk1FanI
DGQ9DeLkwFs5RvkTXK4qTft5F7mJHHjiHIulWxuPyt1HV694CnGg6j/uxy7l
ssqSP0qbGLZw4PE3L5bcbRoP1FHEDrvs4sC+I7Vms8Qs5Vs2LulTchz462J2
8zPnYypiOY3i11To8XIU5foHI1TK2Xb79R3mwHtHflkyGP9WsT/3ZOWiNgeK
2tX9NfBlo5Le/7Vp0eVAO8tJw/ZTO6mF4yq/dS5yoIdxwGWGvUepVtRXmlWX
OfB+13BQaYQpleAz+emwPQfqDZ5iuyDjRM1p0dpWcIsDnSZ8LI/3eVHNJGOD
FB9woBr5xYK1ewiV8+Y6prQnHNh27hybs0YcNa3YwGFnAAdS71Sla2VmUi/w
ZHVEhdLjmX/yZLpWTGU05tGmvOdAsw/6aoeHq6kfPlh/efmBA0M/Xt47b/KL
enahRIo3gwPr9I63j3/ooi5piIZ4f+HA84d3F6hNDVKjgm6zMZdy4H6uzFK5
gEmqVnfDTbdqDvxRU2oi+2+BOr1bpmf2Jwc+rHgzd69mHbxx89Kxb+dA/g3G
6DfLBurfuwsH+zgwsUGDZ9unjTBKUtl9icaBjY9kQ0QS+SDY8mXYnzkOfNlU
2LgvSBCoGRNcugyc+P5v/1XFDjHoW6flUsvOiV+/8p+8uGsr+J6MGTjKy4nf
3rVukzomBfJhDHrFZE40+8fGYbNjD7QPXSg9KMGJ5zUlz0uk7gMPxcx9mVL0
49GdnaOVCrDbY2OkzD5O9GSyNz7koQzNDVY8cQc5UeDxc6noBYT74iV3xdU5
cTcz587LvOqw3Y4yGqrFibTg7/ICgUeg7sstA75znBjB7lAT7XkcbnE2VDwz
4kTzeZbHB+dPgpi+tCKbJSdelGriIDnrQHm0Z8x9W04M/uKVe1/pHNhPdfEt
OnGi//K3yK1H9YGkqvzo+j1ObLXQP9URawCFvsETI56ceEywOPSZ0UW48mf8
oqUfJ5adPnSZ85Mp8Eodr+l4xYkKSZo10rRL0McWzlseQY/HpfrkvYwl5PRO
nk2J40TCAZGwgddX4PlXjVevUjjxtPPNo/8Ur4L5u9Df9z9zYv94bmULmy0o
3RujWBVyovrZzL2qj+1hg5Ga2elyTtwSMhd3W9wRPpOGBsSbObF54YRfYNJN
eDarsouzkxO9mKckrr9zBrNGf7vJfk4MMOuckU2/DVx+SrPFc5w4xyEqpKVw
FzqvPVP6sMqJE23a8bXn7kPG8S7XQDYuPDR2tdDs3QMwZnvCZC7AhX5c5xzS
bd1hX+8fDS1RLvw8I+t1aeIxsH/d4y0nyYVmjRHHTT09Ie1uMw+LAhcW6Z7W
3UDzBk/DXWdHqVx4qs/aIqTIBwwP3H/5U4MLX3luntoe7wsss5KUGF0uVGsI
lrA39IfWhjumvsZc6NIROtRpHwBJqbVRTpZc2KyRF/DMLxD0rznvPOLEhcOM
fkZKky8gsadMceAFF56Od/KOUXsND4oFXevCuJDf0e1BQ8Yb+vecbcHnaC5s
2+DRo7jvLTAY8ms8yeTCM6d4BtwSIuBMg8UZqZ9cKBAcUMskEAXbU7ODCW1c
KHx6t0jzumhY8uVuXezhwqR1V4X/TUZDzLFMk+/TXHjRgCt7/0AsLBYx29rw
rcfLH4SqwiiJUBuun3pWeD3Okr9f5lb+CFFuidPKW9Zj69WHX+svJoG20tk7
3HLr8XC0vdVuoxR4l/LeK+nMevzeLLYvvy0NjoarvR8PWI8vrXa59zp9Bs/y
uraHr9fj1U25HIlHs6Fswpi0KWo9Gh0U6d9ByYHD6neeKWWuR7WEpqAjjbmg
Npju/PDXepxxFmL/aVMAyvu2avEJc+PGWRlCavRXuGOY7hGzhRsVP9w0vr6z
hP7+oFqkKM2NaRA50Z1WAkrNRvJGVG7MFZ5iTCkrBXm3YLEYE26M/pO5Kreu
HPZ8Y5tRiOZGhWPLshdzqsBu/MXuyo/ceIFdzUZarxqSyFusDbO4MdNAWFV4
phqkbbDj/jdu/OqfJrlPrhakeG9XVAxyYyLG1PB11MEWg6EwA5kN+OANkXOX
awMI0Ko07n3agBtOyXE5dTXDK/8C08GCDWgZv/8aq0ILkOTSXM+Ub8DlMyxm
4T50vv0yTbJlA4bB74EehVYQZDKj1C1uwOQ2Frm3vr+BIjA3I0bdiLH7t+Fh
5XbYBuLRxSUbsfIJu1nN9y6I6SIW7qreiB+VnkfGzXbBNnfW38E/N2LMc9bH
D8W7QbJimOdq30as33PXUs65G4J2GORzMPPgO3cLJ0+JvxCcvlUqbSsPokHO
l/O3eiD0W846JisedJa7+Jcs0A/jnSm3aTY8uNPrxux2lX44shgz8dueh56U
jfkbLvXD9K7AroxbPCg9eDpCN6kftAOuFll68eC+g1e2vFMbAEYj4QeVsTw4
ZsfKec1kEPSdCAtZH3hwIVG5b/nhICQ/Z3d4n8yDYJJ/XyN6EAyLp01cP/Eg
w/aT4XMDg5AlWY0y33jwDQ4lxNkMwdVJN4aAPh78HnpoaPzSMBRz3bh1d4gH
j/8xmqPSv29JW63Hrcd4sPH1TyOZt8NQpqfbeWiWHs8ke/NY0zCI5ckUzrDw
IhOPCbXz0Ag4NW1R7ObgRS89ZllJ4xGopgmm1HDzooER80GuWyPgIsEWEbuJ
F8Ex+V18wgg0enbcO7+VF2etP+ce5BoFqXc/5w7v4MXbPOr9lhKj8CDnu52s
NC86am89JKM0CjKjny5y7efF2jNsD/wtRsFLxw/y1Hlx0dpjXUL2KLRf9fgU
f5QXk2oyfLKqR2H/Y9fdwVq8qLwvQ+1i1yh0f7oianeWF6ditu1+zDYGyiKq
q2LmvFgub8C9+eQYHDVsdDS7wouauaPr75iOwdnXl/ve2/CiyCRbrNH1MbhK
9q3edpMX+851/Cl+MQZO+uKqV27z4ukjtlGHY8bg4cuMjHg3Xtz2JdDsTNYY
hG76/XqXBy9WLCiF8fwcg5izthttvXlx/ohhSuHfMUgLXPco2ZcXJTTLh5cm
xqCCd7u17EtenJwvGBHipsE8901FxTheFJ/WZWCn0oD5BHvi7URefDEk/26X
Jg14fF6L5qbwolydumTPGRpIchazUrN58QNB8iDvFRrIap5zuZfHi2/Drnx+
4kADqtfAaGERL+p+fLIQ6kIDXdaNPw9V8mLo9w+Vvk9pYHY48ujjGl40e5gk
dDOQBrbu+7+U1fMi/xHRlH+hNHjMaPhe8zcvfkuIFJmMo4GfKo3/aQcvrg82
M7NMpsGb+w+9q/7y4qbb9nmPMmmQsRLncHKEF7vvF+34WkiDQhXlXr9xXlQq
eLZ+qJQGVa61+vXTvMh2wDjqayUNmnPNqogLvHi/9+IVnVoa/F2cgXPLvCjL
bVX/qoEGY0pP0oPXEfD4w2qjkF80WLwlLNnMQkBVtiAP3d80IMypbTDYQMAY
wo13PN00oMg3PXhDIKCfqooPoZcGUjetZtr4Cbj9wmeW3/00kM9YuiIqRMCa
rVRvmyEaqE49/2MiSsBfF7YGV4zQQEt286nIzQTUtMiInh6jgb5D1te/kgS8
PD8mNz5OA/MUTYWtuwgYeku8IH+SBva0PwmWewjo+JWYbzZNA1cZe0qcHAFd
3rfGtc/QwOsaU8CgIgED6o9Oys3RICgxmGWnCgFJ3FxsV+ZpED6847aNKj2+
htdxlwUaJEjljXw8TMCXFe/Jtos0yLI6ZULTJCCju1P+4X80KI7727BHm4An
zNhuMS3RoKbf6YijDgEnfFmvx9O5dRtnbrouAdddf1WutEyDXoswmZkLBJT2
POaaRefxqD2R8hcJGHL7pIv4Cg2W/n7ddOsSAQ1e8we70pl9s96T7MsEfMB7
+EkFnfnMhpYWrxLwz4kNU2t+jdg7N3tlewJyJLbpAZ13dvL0uN0goCLKi1+l
s3a/WLHTLQJmwG5XHzrbj+2JsHMlILe6yMtYOgfM4N0r9wn093MH/Tw6Zyyd
MjR1J6DJwK6AGjo3MZkeuOBFQLcE2ro/dJ7ndCCd8SHg1eeip/voLEh4MHvc
j4CNCbBpbO33d7J/o3oQAcMFHtZN0dlY7F2ayisCDliFTq75A/clU/3k3xDQ
92Jdy5p/EClTZLs7goBx7VqNa/5Cyf4fWtujCHh2KUB8zX/oU+6SEo8jYKQq
YXqN2dUn2AUTCThsVuy45ldIHV/XT0ghYHJ2Yc4aa+nwlnJlEHDKbLRzjW3P
i79n/kxAZjH3qTX2M9n7YDmXgO0Xo/+tcdpl1YuzBQSsPZ+3ssaNtqdVaF8J
aP7+0//8GzeHhc7v9PGxrv7Hhk/9M+sbCLi4+j/uif0hnfWXgPET/2ObEt6Y
kCkCMoQ5/RfP97u4e8AcfT3aWxfXOKV+r9nTfwSEmeCJNa5vUUX3VQLGppb9
WePpztMUNyYi9iuGp60x/4Dp0k02Iop+WGf+n99Ec2i15SJiYupY61o+Lsw+
+Hx5IxHnbo3Mr/lbrsv+wSZEIlZaWr1Yy+db5sgb5wWI2JFKcV3LdyFXmo6O
EBHzLt68urYe3YTiPcdFidjzcpawtl7MgvUb1DcTUW7lF+8onbeJd48oSxKR
Epc1s+bPHd0+Wbl/JxE7S58prfl31rsZ42V2E1G/ZVR9zd/zkSd4Su4jog/x
xtU1/y9JRcJCTIGIuhF3Rtb8wTp12UPkg0S8cnZxcs0/nDyuJk4AInaP3Hyx
5i/yndFZ5TxERAMdxqY1/1H+glkb0xH6eB6pRq7Vu76pY+7SMSJKC5s3rPmX
LlcehsxoE9H/kozMmr/5xi7AeUyHiEsF3JfW/M98p8hz/bpEfFx3asOaP9rp
lrav8wIRbwYEfjanM+PjYt4WYyJO5lr96qH36xafetoPMyJ+mNes0aGzRmB3
daUlEduYP9MS6f1+JXTyw1drIn4LiLo7QdcD73eM3l9siZgsM5lMofPHOMKV
TEcifn+5PlGWrh/uPwtUmZyJ2Cc2p8lH1xdDxmtCp+8Q8avRzZiGWRrs2y04
8/YeEe94Hz5sS9cnTsNvNSOPiJh0Xyqya4oGXV434g54EbHulNC+nXR9+5wp
/tDLh4iXrXdYH6Xr3/PuGoMmPyIuWrJ+kqfro+VG1/1bXhAx3kLca2qYBirK
OzY6hhDxLKvxcddBen6tmgYKwogodP26bU0fDUZePCrmjiRi7Caei/1/afC1
eM8bgxgiKvl3eZd00iCU1nYzPoGIXB4vLl5qo4Gj8NOTc0lEfDPdcqyoha4/
Tr2MgZ+IWHaWUTjlBw3mIgP+dObS53Nxqe1gNV0PayFLppCIrY8i7VzLaeC2
I9SqspyIpQqE77z5NDire+QQqZqINWbM7qafabDr0bSw5Q8i+lb1jRmk0fXz
j3bdulZ6/f54w3ckmgapHEvxJ9uJKPLRkHvfW7qey8c/CusmYn3cJ8XCYBoo
+DEpKA3T4/29ejnTgwYb8lJ4PGn065dn1Mh36XoyaDTUOEXEa+5SLPw36fp/
6HOY/RIRDwcoszeY0uCqvYVzPgMfhu9wm3quRwO1MMLp9Sx8+GZrh2CHFg0m
Zm2Y47j58Mnb1VgZeRqUbxZsn+HlQx+/PSG7pGgQcerbp0P8fNj3wKLtkwhd
fxPEr3ZQ+JDfY+cHRyYabP1Voy69mQ+1aKIRETNjsMTkSrkjyYc2LHfz9PvH
4INR0w/+PXwY9c3HwqJiDNh5nypqq/Lh2T0xZX2eY9Chokh4c5gPnff2BRk4
jUGWde/woCYf6uufM9A3HwOLEgh/rMOHS7dFowepY1DsPM2Sd4kPm34HlVqP
jUJI1LsOzit8mD7XkEtpGQX7H9rZ+jZ82Mak6H/h6yiI7oy3mb7Bhyzjti1W
waPg2m7UsNODDzVcL3b1yY/C9BGVMAtvPmSS+/PhJGUUbFKFL4f78uFtfJim
zjIKBu6/Fwkv+dD7amBIw48ROCB1XmIxlg+Ne4OcPC1GYOHmWYfyCj48GVvi
9tR5GOw79h1krOHDkICeS016wzBwlMiiXM+HCRFpExkKw9AsVP8quZUPpzbx
Le2dHYLPRScLg4f5sGTnvmNnbYfAifv4RgvuTRgiKZJYozUIY05SLW95N2G1
/xtpYclBsOzkeN+8aRMOPtkRL7RuEHTTy+W1KJuwnH+LzIGMAdh/XsN43+5N
aJeTrackMADTUaof153ehLdaHIRN6/vAQVnx+NugTSgrZbI6Jd0DDLZB956/
2oTPnZlHpll6wDd8PP3+G/r9GsY/jrX9hQTGeOFLUZtQOTzbqe7ZX+guJ49J
ZmzClW2DUpdGu+HsuX9+qQ2bkO8Sx0bFxC6Qt81vKiHw44Px4L13zrRDSbgg
VxY/P3JSE1t3MrWDzg8niBXkR9nTlz3/pLWBrdzuuCcS/LiczctCJbRB7GL4
bW1Zfiw4Kl3B9OM3kDwfCDef5senJxcoXdotsBiubjbsx4/cXj1eDmcbgTqn
ErD3BT9GvD5PxdUGeKCtUOwcwo9Ct63zjyc0APvyDgnmSH6kRu7bv2tdA2y6
sLFbOJ0fv4vDzTdpP2APX6up9k9+TCrUPqx0ugauX23wD2rhxwQVYigxvRqy
iquKWtv40eFZvigbfzWoOBSIX+7jx7HVu1OmHd/hWE1U1705fgxfvlWwfL8C
LLzsTFPJAmireoSVl70U4jqu+M+JCGBU1PPJmXslMCJvVqQiIYB/CqwnHyx8
Bcfes+KVUgK4FJB7KXaiGO6rHejqPiiAVXJmQdmzhfA1ZB/vDhRAn/r591dd
C4F1YpeqnboA3hVt3zTEVAjPwkXf/dMSQEPWYc+Pe/IhdInZlM9YAIuu8yRo
JuVA+5kVvwtmArhj5e3N3qZsEP8wVxhhKYDnL5tPyTJlQ9z5ITFpOwGMtNdc
6bX8BJlZtZ2H7wugQq3FucwLGfTvhQoeH3cBvHIl98JQRDooWxRjvZcAvrbO
42sYSoNiYmaEsb8A2hwkxhY8SYU6+1AT50gB1EuheXEOfAQpP55/N2IE8I2B
6nPpkkR4lOzxwjFBANXBrKYk5gPIjzlWXksTQJZu2asn78VD2NXjcubFAsjI
Mfu3zC0aZr2LakzLBNDpje8/12dRcCpBwepipQDu6fn05e3798A8uPnthXoB
dAtefMv/9x1YWy6xne4WQNN/Kr3OhmFQ8tgxUruPnh+XsUz7rtcgEj2grDUk
gDJVJwdrHUOh7m+jw5FJAeQabJc3yHkJUkzH1x+eFUDlj6wpJ+yDwV2iKEZt
UQAvqMUf3Sf7AhRMP/5WYSThideUqSMtAeB3f7PTQVYS6h064r893x+GwkN4
lDhJqLiBw+Zikh+8bX98WI5AQo5Ft0vSJs9gfvlfx15+EpYastVcefgUTos4
uuwWJOH5P6HHyrKfALOhcbKUBAmtusU4d1l6gPGdRs3t20h4XXbk+IlWd/gU
eqxnqxQJE01Mrn41fQTWLfJkcVkSrqbxShXG3YeS+cR0ijwJf+87zf+i5i5Q
SJu1hQ+QUH/w9gFzW1f4obvxkYAaCaW9ZpY2E26BlNNjkU0aJLx/LzWKk88J
3F/8+0Q4RsLUpx0pr+RuQHuGgw6PNgn7fX/2fXN0BMXG/hFuHRK+3Gs+5V9t
DwFTRp5cuiQsK/m70OlpC8OERnGOCyRsuDd2Oif+Krw9XajLbEbC/SNyS77u
ljBvLz+xzpI+3/NFPfZK5qDjl/h01YqEnZUt6spCZpCYLLFt+RoJORXjvHsk
TYCl9lXhogM93kTfXE6OIRiPbTCYv0lCi2WCtsL18/CZ+/HMzG0S/l3+ICl1
UxcI0v+eT7mR0NvFxM79yxmw0XKQmnhAwl8phDPUw6eh7Gp/ydhjEpqJv5LN
4NcG0adGF0eekLBCjvVBzaZjcCuhYWHwGQnDCXfcue5rQH2FZlC/PwllzJoL
608cgl2DBTK9L0j4LjSjP9sZwYNdvqI7hIRfwwzb+UcPQqdk4qXOMBJaxh/i
CvVQAKUjEitt7+jjf2uq8TRpH8i9r/T6Fk3CacGXBZGX94DMqiMxNZ6EJs8e
s8PmnbDdQOht6EcS+pyd0JlQ2wYSn75ud0+lj7+AdOEmWQKEiTbp1zJJSMxg
ct2+TQT47fioetn0eKdWsgIPCADP9y/lmEfCpOm3l5+eIACXpMUZqSISvk/f
Ypvoth5YH3G3E0tJ2C4ysKDexQIMHZlXlsvp83fxvL7+OQMsHjCe6qsiYQD1
1I5/8fPU6WDWu3V1JGTYk3Mkj2uSOjaZxJ7TSEI+K9H6jp5B6oC2XuD7ZhKG
bXlzZ3VXN7U7YVXk2R8SOjx4fKGit5naxhoX59RJwnWclXv5g+uozWan9pn0
kHCp7ISsj1UptT5/Pk9zgJ5fZfOS5bgcapXgu6P7Rkh4vCT/X9HPZGqZk2aD
8DgJ1awvK94WjKQW1k8YsU6T8Kayc8dGh0BqjkzoAG2OhNpChVla9x5RM7zV
rrf8I2GEFGu81YoDNblvaLl4lYTOk78tHGaNqAlqgV6JTGR0O/X2xMaew9So
tweJwWxk1N7YyTa5IEV9u/g37B4XGW+rupzytuKkvtL12W61kYzPGp656sd1
qwSkyaXrEMk4m/uSM4ItRcVnQ5uKsgAZt9zJrbhWdVnFw/px+VYhMnpGSoid
XF5QflAmfWajKBl31rQLMFvyK7tKNLXNS5DRemlDWFt6zQGnu3evdG8j48TE
l7JjelHK9q3bpr5LkXFu1z6BvYmKKtbytW6ZMmRMnDKxDdnpp2Ie4MweLktG
0ScTJ+5WV6oYj4kGesmTkfmpi0CP/5yK/rFyEccDZFzQCExObhGinomxjzOg
kjH4kRB5C78SVZuRvO+wGhl9150pv+ynQz1qXJQno0HGwicJrgHJl6lqOVZH
ScfIeD6Nmf3viAtVmZ/QsE6bjPKSo1pMQ0+p8o45RsOnyfhTPb6QozmUuqfG
bKDxHBl7HRrNTmAcVUqK63r+eTIq1lmwvijPoG71SF+ONSJj575BN0a2IqpY
t4GXvykZvS1UY283VVIFqczEOxZkXBbfzPjHsZHKF5oYZm5FRsv3B3cKqrZT
N8ye3a59jR5vlktCpaaXyq6znKbgQMb9pM8rOVljVMakaBXxm2QUudEVt2HP
DHWJQ7uc8zYZu66Wtd1JXaLOWczqTLuS8dZbr12pgkwwWfS2re0+ff3kFoI9
uTlgROTIlW/uZHrLcKe3yvJA323aZIoXGTNcelaoSXzQ+fOlW6gPGa3mMzcs
CghC615kd/ejr1dhjnP+UTFofDYQcC2IjE8im0ROiW6BmkE/Eb1XZNQy5nn9
I3I7VBxWisM3ZPS526Qe1C8Nt77dlbkXQUbuioAuaU1Z2K5ZkpEXRZ+PuOQe
+53y8KuS4+BSHBlVeLeJ18cfAA+tk0UHPpLxuqNX6olGAPmaoCO3U8n4caMU
7WubGvSebK3+lEnGg8qRh0wUNSDoh+jZ2Wz6/Wt/PuxkPAbqZyxa5fLJyBj5
WsJCQxumGxNMrheT8SSPTqqYx2l4rzvel1pGxukNqtsXZM6CTvP+a+OVZJTJ
CJn1ltADxgt3pmRqydgiuvNSqsUFSPtdePtaAxmlsocOnlo2AlMjVobEX2Tk
H71mvH3OBHg6jnsM/SajprdSaC3lEhSa+K/f0UnGJFJHOt8tC7Dvbgq43ENG
jXPEBluWKyBqLkyOGSBjhVPTnnMV1lDTaxreM0LG9hvX2aHsGty9HLt18wQ9
379iK0/fsweZwZEPpjNkvGZrwuF2wBHarGVlIxbo+bxyoO3PphugbJtHFWEU
RP6GbXe3y96CERpjqQGrIIY++NnvfdMFXjscPR7KKYh/v/3y2tDuCos3GvQE
iIJoki7ImcT7AOJnSe3nBASR94jJh6MPHoL+LWPzICFBfNDCoNHOQn/+3hm0
591C56otL06c8gTLZZm5k9sFUbzh1POjAk+A/94NN99dgvgq9evYvRlvuPFw
9QnXfkH8Gj5Qm7ngC1uYD/McUxLElNPkej0/P2h47B3spSKIVyuDWq+l+IPs
k03vWTQEUU+oOZcqEATdnAY71I8JotpcnpCx8Qvw94lIfqgtiLuav77sSAuG
8ec7v6zqCqLWMN/Fj+4hkBSs+nPhsiCm1d3jV6oNB2OSp4GijSAOil3tjSyO
AO7Qqi4ne0FkOIzlDVHvwCZMb2zqliDGCSd1Ndx9D1JR19jGngiiW8Cr4+1P
YqF1a/qzXb6C2G+/wfLn2zh4EjtPvBogiB3KvNMCufEwkPBIbCBUEA/1WbI8
5EiE6NQQpe4PgpgYYSk4fzcFrP8ZSDUnC+L0h++nzgmlwp7DFKGadEHEjO86
nTmp8KU5cik7VxCNWt5k32NKh4bVDwX+3wUxXT2VuycnE15p2qZ41gpi8UPG
wGT7LDAO3PPOrUEQz0tPVcTt+ARD2zIfWv0WxDtRVlmboz/DOu38w6rDghhR
w1a+uzgXyl7el1egCeJbvfP8Rv5fwKdLTVJ6ShD3OsrMpl7KA9LNb+zkf/T1
YzM5XMFbALvf1H0f5xTCIcWhj3GaRWA01H06QkoIabIJTM7EUpCQi1YLlhHC
YUOjR1KBpTDgdnmfj6wQHsiUDlLhK4MbvCN8tw4IoXN8mo+14Dd4qjjz6+Qx
IUx27nfdIV8B2R5sxqtWQjj3bvrxn6hq2LR5l7VxvBBua+y2GQ9sAL+Ap7rx
H4Vw+99ZbdnBBuBkHFabThXCWz1X8tOojcDQFS/knSOEGq2XHA2HGmHkrWR1
5nchvEN5s+XXoSYoEdy8h3tMCLUG/rBtWWqGGwTB2VxZYYx9HP+i2bEdaA9u
d7MqCOPFCPeE45XtYD3RXHP6oDAK/PUtyBfvAJO6l7H9h4SRQTxpMKquA7R8
N50nnhPGE2rTbxVfdsJmTt4v1s7C+Dtz2xjTTBfUr2N/SP4ijO+TnvGJJPfA
2McQ41OFwrgqKfg+paUHOC7sPOhZIoyFBT9T5Zh7AdO0p6erhPE1kWcr2/le
SDJ7YVnXJoyVbRmn3q7rg6dfJY57rgqj+QHhoFitfoixy5DMZxLBCp6C60du
9kOxkAbzDJsIJuw+ZZAR1g+L163yzHhEsFncMnR4tB+ubEnZTRUXwVw9dVWf
pwOg/liFb0ZNBE9V9k64ZA+Cyd7a8Z1HRLChoaG6sm0Q7rSZVJsdF8Ga0xYF
ReuGIG2/u0fdGRE0PVhx+c3RIRDrq5z/YC6CZ7csllT/GALlAMOf3VdEcI+k
3B/K1BDoUcdSyddEkJ/Kc4idbxh8g3mvet4UQYrIC5u3Z4dhSUO/zcxDBJ23
+DVk1Q0DaWowO8RbBAO+rNOLGxuGfeF3gut8RfAxcW/UjvUjYD339iT1pQju
yHx+oOXwCDTH9haR4+jHta1dO9NHIJP9ekxdhQjqrrjvMHcZhT7XB6P51fT8
LK7zj38+CqSJ53Iff4ig9ajMN++oUXBtSSx+0iKCHdWB4WLVo6Ce0NeuNiiC
eRF+DKHkMXCizGzdOyqCbxST2/J2jkFcANM10QkRjDbi9XZTGQOuO2L//s2L
IJfhI926i2NQf/yCQCY7BRnkbl0pCR8D5sIrxu/XU/DP47uO35LGQF7OOdqf
h4Jfthl+tswbg1DhoH22JAr+Tk3NcWkZgyq/SBdDYQpamzycp/WNwQpzatEx
MQr+4K1yZpweA9PR6pOS2ykYLlbTz8BNgwDTP8GbdlFwWND19yiJBiU/h9qY
9lDQ6ig7yWULDbbns9l0KlAwiDlS7foBGoz7qnqFHKEg7UT8YwYzGkgwnar1
PE7BNrbwi6vWNDjrbMzvdJKCLa/0paOv0+DzxTtROnoUVDJIGRl6RIOhhifD
aEBB/RqGtGdPaSB89JXs7osU9EtR5W0LoMG9PZmFXJcpyCGYy+IVQYOUqK9s
i9YU9GwVn+mLoUE3qV57wJaCjBdWdy8k0kBjHe1PiRMFS3QLS6ifaXDr5vLm
dBcKnl2QaryZR4OEQa6r7+5SMFl1/cvLxTTYUL99wc2DggLaJf0Pv9MANRTQ
xpueX90I3ZRaGjjmHPa84EvB1PsVihENNIiSOVtzNICCOqrjD8/+okFTpNkm
hWAKDvWrS9W20oBdwMFwaygFE7x2bCG00+DA03vviW/p+RjkthTtokHY9Td7
x6MpeKsm7GVE35rfk3CrPZ6CL29IO5IGacBgmF1Q9ZGCO9+7W5sN00C27htr
bioFj6/wON0fpYG5etOJ+EwKFqxIed+g0SD4c0/Qy2wKMi32vcYJGpTvmvr9
OI+CD1w/hfdN0mAxYt3mG0UUXN7X5LW2H2nXJh5rs1IK8jHYHy2foQExOTcx
uoKCPp/QWHyOfv7Ry7SBanp9mEsv6c7ToKubILurnoKJSkreVxfo8V3zb9g1
UTCWcdrCdJEGyfzWn9JaKXigQqbzwD/6eFI2Lc60UzBSO/nAIp3djhUpK/2l
oAa5L/rdEn38PTb3XPsp2GGcTt23TIPjd0nFBcMUhFdn16fSWZZUwsw0TsFP
xa9WhFdoQE6zO6IxTcEzu+xHbtGZQUvI+8k8Bd362wPK6NzfW1ZVtUSv74qT
QWxr+4HuOW7kWSeKrUcO3FKhcxaZonOGRRRjDRg+WNE5LL0iKJhDFPlL+9ye
0dn9xM1fLdyiePM4n2TCmv/SLyYoQhDFV6wBRYV0PvOgytCEXxQ/fDl5op7O
B4Ruhb8XFEX3+weTO+gsnrm5u49Cv17fK3VwzV86WbtFarMofmJXZZ6gM23A
5fI1SVH80a9InV3zwx5uS0jZKYrLLy62L9A5T7h+ZGq3KPb6Xz+x5rdEZbnt
VpATxeuLjJ1rfszTUzscXRRF8dhQWPOaX+M41JiRpyyKK6si1mt+znn3+3MM
qqK4kDD5334jpOw6oH5YFBk1r/2330jy8y9XT01RbFBh+2+/0QadRwWVJ0RR
sfr5f/uNErL3Vv4yFkWW7//znzTEOxt77Ojj+39/iu+cwoWrt0SRUrLyH3d7
+XZM3BfFNoaX/3GFxAGJ/Y9FMe075T+/KuVLr/mtJ6L4DiwX1vilrn9s7jNR
nMj/O7LGd8eVh1b8RVHQdEfdGlt4D+xSCxbFjtENL/7z37YE2T0OFcWA+Fdb
13hfPqSVvxXFnv3ZpmvzF9QfnuZ6L4o5g6wia/lZNxmscDJWFOsO2wn/W9v/
9VTNJeADff1II8R5OtduHfvyM1kUH9qpR635U1kFIaukDFE02T+hv+ZPhZ0/
rGb4WRRvVxyKWfOn3KfG3cO/iKJ+XG9/M52vPnvzrbtQFH8dy7lYsbZfSvIo
57ZSUaz1ltifubZ/rGhKy6pCFKuUgm+8XvNTDcKfJ1bT66vWZeOdtXqYOVZP
+yGKc+vIf3TW6sF3lm9fkyiavnj9QpzOI+OUYunW/2vpzOOh+r8/rlKWslZa
VMYdM64oVEIx5ySRJYlEZU8RUmi1lSVLJFIqlL0kyVqotJJEqyzZSiHbXHuI
fK/P7/fn8zHzeG/nvF73PXPm/R4p3PYrULF75ryQie5RskUK59gKeGfM5HfB
0RXMNimMt+FX2k/zL4nrb1d2SKFj9sQAD81tp5+fXNpN58dGA+PrtH5av/1m
LuRK4Vu+9nIpmps0xD4JDUpht8ucZ1dn6sm31P34R6UwV2Br1Bitz3oee/k5
E1Kod5Xrr0PzV/sL9VNTUmgqdqbKl9b3YfsGrUkeBjZki8cn0Pp3ijlyY3w2
AwP7dYWSaX849HpW/ygvA3M+pKiF0f5xcOSqzvA8Bj6IN1htOkrrnb365gA/
A5O6039P0v5jb146xBVkIBi1HA8aosAu1ES/dwEDfTP3VHXS/mVb3JHUJcxA
x7WtXTL9FFh3e/3pEGVgBpVTrs6lwEpSxOiXOAPrJtj7ZXopsDRMTfuxiIGN
fqqJbbR/7vNV/dsiwcDXcYUXPDopsGi1yWhYzkAPLkt1mvbfPaLD/2pXMPCz
VVbnH9qfzbaEmtWsYuDEp7erShrp55XHiqxPDAa+j9er2VpPxzs1Z/YHgkH7
IQ9PTA0Fu2q091bJMNCkvOtG+kcKjOc2PHjLZmC8kVvcmSoKdjjOsnq9moGv
+rQeWr2aOR97Nf+FAt3/HfXKw6UU6L+VE3y2loEG43vUFIsp2C5v8qh4HQPT
2qO3tdyn9WfZIfRoAwNLjOv4X9+hYNtFL4eCjQz8EvTJfX8yBVpUitiDTQzk
32w9dC2Ggi0MVacsDQaqdWGkegSt/13vSu9yGHhmUWDt+SAKNPOHXNK0GPjQ
n7lm6XEK1E5pl9/QZ2DoT8bBSSMKVDPqV1wzZOB1z5vW77Qp2Njg6nnFiIEj
61YEb6Kf7+s3X2VcMmGged2J1BEmBWun272C9jGQ4W3m+XaQCwpKXp/8LRk4
qjeeFtjOBXk7YfKsNQNnpYrG19dxgXy18esZewba+3kG7XrMBWZIiOJRZwYa
buUonvHlgkftBj97VwaabRb9vucIF56z2qrM3Bh4vjxo6JMlF6xfazhreDBQ
WbmXTNpE729mDaYJeDHwRu+BqISBPugyThya9KbzhzV/0qGlD9SSDLX6fRl4
+0Xo48rKPqjl3Gmt9WfgoZV8G91S+kDcx3J5WhgDra4FLFu8ow/s3gkcvhbO
wHO6KqyKjX2Qs/zRowsXGXgreW/IUkYfGBWLmblHM5Dtcds6eqAXLoyWX+Lc
YKBCunLCr0u9MNtdeW5DBgOXlGQe2VjSA7uet5hWZTLwyvc9MR9u9kCSSETK
syy6/dUrHQX9e4CT3QG3cxhIHt66zUmnB7x64r08ixiolPxgU2tVNwwenNcv
VEHrLTD0fuXbLmjb1/hNq5OBqkknziy71AkLNM3v2HYxcMxcR931UCeoSH3x
9OthYFTyeY8IzU4I/Vm5oIRiYDFf0VLo6QBF1xKO8hgDlwY/sc3V7gAf3xsp
UgLSuMQ8LLtu4BcsTjJ3nlwtjYqdDWliWm2wvf3LeKGbND5JUZLkf9oAvvKR
3g+OSeO0SnF6pmsD5Llvn8rwkMYot+oG0xUNIPnvCU/CSWlcLzu/9pl3PXAl
bvMF+EmjYdGW8TWb6+DK9tOLjSKlUbeN0ncorYHv91Yod9yXRvPxwKdLv32A
xYO1ea0PpFHolfPU9W0fQF8tekNDrjQ+0PYLHcp9D/mv56pVFUpjytqE7eYX
qyG4mcvJeyqNqbslkx7tfAcKIi8M/aqlUYsRoJYp8AbszLzfn/pAtzf3hfWJ
4HKIjVcxdv8kjUMZUHOZtxymZTNNHb5K42nLktdNvGXwGWP26TdLI9/w0kJt
iVdw2uOgk0SfNKZnS3cizzMINeA6bqKkkVjp3h0kUQrXZE45Wg9Io+XRBkdP
pafwsDb00O0RaRT/hfyWRx/D0KYsh43/pNG28oDQ5WVFMHuRisM+HgIDIu+e
O7jjEYj3PT3gN5vAjVNz/Kigh6CU+MG+fB6BuIydIztdAG5zhmz3iBC4S+0O
32pGHvg2edt6iRGoL+lSlO+eCxGFvLa3FhJY7fsZh8tz4J6jhE3HEgKzK/pz
1o9nw+936lYnGQSOCReX9JGZMJb20jKOILD+TXrcEb67wOdnYFkqQ+AaPdmh
vX13gK1ktX+eHIErXVxOe35IhwNXzu2NVSbwGLMs80BvMngcEdhbsp5AWwVG
/ex5yRCgc9miRYXADQ2l+hQ7CZLGUs3Zmwh8ee2wu/hUAuR8UjDX1yCwg3du
OMc5Hp5lFu5x4xDoE/MY7rTfgBbLN2YPtQgkvDwc7s27Bn0qxmbftAk83Ox2
b/LeVZgUbtj9T4fAh/cebBq1vgKSL7pNdQwIZKUoDsj2RcPqOE9T5x0ERo/c
tJ54EwWbPCdNIncS6Bb81srU5hJYsIRNak0JHNFN2W+lFw5O/2J3TZgReGvT
25/8B8LgVJ3UrlUWBG5iTJgdvRICsWHKxocsCbQcOBWwTiMI0u1Ldl6wJvCH
+oOjjrkBULB5685sW3r+oan1/Br+8KVvt9GoA4H3ZSOMYJUvtJU371juSOBO
54llD7K8YDDx0A7OYQKbin5x59idhllnKEN7FwKVRAbJv+onQdTktGHwEQLJ
kDGrXRuPA0N+lmHmUQKVpSXfvNztAYq8FwzeuxNoobDKZ/6VY2D0MF5f4iSB
wkeeiLC/O4PTkP304tMERnb8rVfTcoJApdUFi70IdPjHF9dWcxBuHRlwWuxD
4MBTrZqFsQegKLNo5WI/Ov67lRY+DbSDz51nPy86R2Dl5eElt1RtoE9GN2RR
AIGebeHvTxTtB357YY1FQQS+3b45vP28BRCJX/sXBtPrM0ou+BpvBhpNCekL
QwmUKbZIUh41AfNlDvsWXiDwWWpEcX+UMXjskRdZGEFgzuSzMtZHQ4iIGXwl
HkngnJwXPTuo7XD7Y/Fp8SgCXcsNa+JObYMXQv5rxC8TmLak3eyUnRY06W9v
E7tCoIvWofwpfYDREJFrYrEEdvOyR/nObALRsloDsesE1pWId6yBjSA/+xaP
WByBYWqfRZZErQMdOFgomkDgm+1LPo89XQu2PgrOorcIfK/03cgO5MCreGiV
aBKBJ25n/TW8KANXR0u+iKQQGDQgH9kVzYCc9QGhImkEyhV4uBxwXw6Vx/Q0
RW4TaF0TsrGlaRH8ui86KJxBYPiNqp8ntERhurvutnAmgYLP1q0dmyUAy8nE
/cJZBG6Zc/fgq6HZsOHgIVHhbHr9jxQMfNOe5BilrCkTyiHQL+3ySPrDYc7h
1uEzQnkEzq4+zVz2uo8TtOLJWqECAk04Pc/+9v7i3Nob+HPBQwJ1XZ+uryts
4hTF6l9fUERg+ub8AS/yC+fLF7EdC0po/fSLt4SXV3C4og2zFjwhMCl6IZp0
lnL4jZIezi+l82nSL0LPJ49DhDu6zH9OYE3Iq69WoukczYq1jPkvaX1lCkzP
yYzlWMwdrRF8TeDeTQ0X88uCOR5aT8MEywn0l/rS6yR8ghNxNogjWEHg0psf
Styi7Dh3nhgMCVQSKP3Pp3mkUI/zclw8Q6CKQPeRbvepEkVO08ZvlgLvCVSz
nihLXSLCGfVMFhP4SK/fhdqhA8PtmmK5TuX8nwksXmzAmKrO01TgKnrz1xBY
civJ+lKai6aO/B9F/loCeZv57TfAlIatU+kvvnoCLxeu+N19YLGGd/r5G3zf
6P6SrcltQr2bYtsMjfiaaL9USdkU+TlbI0dq0Ry+FgJ/76vW0G9EzUrLxkfz
vtN6eikU/1Duqmb7jRTXeW0EHklI+hUl+UmTp+6w9LxfBI5bfgrE2CnN5YuU
a+d20PkuPuc9r7Y0Z8OusQtzfxOoVbpUt6maw9kZ+QzmdhO4rlusUPXmHo7z
u+Bh3l4CW4fPe6++68oJ4je6y8sl8GD6nb9R685xbm1bbM3bT6BvpVz08cIo
TnFAkzjvIIHiLeO1zv8SOTXPUt/MGSawTOaQTvTbLA530tlnziiBE3lHGs9f
KeLstTCQG/9D4I7NNsF32l5xXufL13LHCfysqL94G88HzlqRBYG//hI4eS42
3+BgHeeGc6/itykCr23p3HpM7geHt7yq6cM0gfvOLZhqufib4yZ9P6xsFhPH
Y2+9O7RmgNPgc3Hj4zlMfOA97ZMR+YejXX/kZ85cJtaUPh5MLZnmPFhvFHWb
j4nTT9d8d507F5ZfWquZIMDEc/ItL9Xc58P5buHu6PlMDJvY7hp1Twz6t1Gx
IUJMTHnnqrvhjATsT/6w1VeEibdeNVZf3bICyicf9HuIMXHt0gmfazHSoGQR
ddNpIRO9hYQ/eNxhQXz+MX3rxUwcmpNA8R5bDfNEdv0xXcJEiX/LHBbNUoJj
zsppesuYeMLTN2ZIfT00lontAkkmGlYIr1PlbqQ/zw5ObVjJxFwnSXLO6s2Q
6/M5c7UUE7+Y3FPhmQBYUZ9nzpBmYvqTNIW7hVoQsj6GV4LJxIOiKYPlZdtg
MNIzdz6LidxL7e1mG/TAqtvUepYsEz++gmo//h1QsW3D/D8kE321tu+tSDOG
dcmLinpXM/HXPh1X32kTuDk57NCmwESZqAXWzOtmwG/xVax+LRPlEpcxwzws
wCO/sLRaiYll3K6N5y/vh2bhWJdX6+j+55roDP21hu3OJ5cWb2Di5Kz3Mnv3
2kF+2Z6y7I1MdNkgEL7L6gCsklb1SFNj4hnxmrwv4Qch1GeJVNwmJp4U10/7
2OEIQ3V/3l3SYGLRtq8e6secwXp9/enzHHo+fefXT8sdgYrIIpY3MnF99gtf
gfnH4Na2M2cPaTNRM6/U67iOJwgk71Ww1GEi34Xx9HKhE3B8Ur1h13YmKi27
0yc9eBL08ifWaRoy8cY3mYaaxd5QINzYus6IiZS6e7OkuS+scn4cQRozcevJ
6Xn6xWdhmOHTsXA3E0PNr4CERwDY+FjGCOxhorzGweN2dYFQWaeB0+ZM1E6d
uDlr53lIjJy60b2fiVkaXih0KhQEu5t1vlsxMZkbttyCvADHt5UOfbWh2ae7
p7AvHPQn/Xa8OMDEdT/erdn68BIUmttMPDzIxKj2jD3Lm6OAkQ93shyZuHfn
TvuWrmgYPcwz67oLE+vlF7m5y1yB5Dr/AjdPJh54c824SfoGdJQptUaeYKLF
J1cfp4Q4UChoFXhwis6f72Z2XJkEeBilaUN5M5HnhOvtfbaJUKU3LnAsiIkX
Fb30YrakgrhaxoaoYDpeA44pc9XSwJxtbpMTykQFhaOiz1XSoW12YUF/BBMX
ToU6LNe9A2OPj9m4X6Xf/ym58NqLe8DJlLoQfY2JTy85XD8/mAWB198X5N5g
oj2fanz56mwQPqEgOHiTifl8xxcmW+QAc+3vAo/btB7WOzwWmZ8PRkk2gscf
MfFt7fLVj6SK4UqksMqVYiZ+jnHvfz1YDA0+T20KHjNxV+FtJa+3JeCwV7Jw
+BkTV3z2H/jq/wTOiNfZnKhgYl5Kv72AyHNICzIqPNnAxJdBy+RVeF5Dt8dU
a2wjE8XqzYi5wa9B0S5L8FEzEzelLLA7JVQGJZqCtn9+0PO7LrWDlC6HD6Nl
gqe7mXi0r/BN774KmHDStD3zl4mtnsc4XqLVoP94NZ6YYmIB9TtfOaUa4oWW
MtynmfjCJfRw04b3oJE32Oo0RwZF8+Za9Vh+AL+/d2ws5svg/rl2bcGNH2FO
pLiNqqQMzl/yVlFB5wssyO+0GtkkgxEf/kTe06qHlVPR+929ZGg/shhYvfYH
bG/bUXzNRwZlcxxbR/f+gONvBJaU+smgserC5y/P/4DKaP/PgoEyyJobKbWv
+QecZLvrpYXLYJWZa2JgRBt83GmsWpcgg+r1+gku3T8hIEV4oeYzGcw2brxd
kNAB90Mqjx14IYMiJ5JedZV3QL1r8PuwVzIo3jR6bri/A9aq/gurfSODxXaR
Gee0O6HxXR/PsY8yWHrgyYh8VydsGKnipvyQQd0msf1R7C6w+RZq+PanDG5f
s8uw17ALLjzTzqTaZXCtIndy2KMLvoc9OajRLYMdZq+ezi7tgourspq+DtLj
u6d2rHpnN3Tohlfy87IwZnKdvJFtD9gb2DJY81j41DLib/PZHmg2Ujm5hZ+F
Gj8N9HgSe6DGrFXaawELb2hkh4019sDLA+vP9Cxi4f4/k8dSjHuB48j/gW8J
CydOJWrmuPZCsXOzjMwyFn7soewMQnshxz3ko+VKFqZf8MwjS3vh5tlG2fcs
Fi504nXwlumDpYE5vt2yLNzbv2c3pdEHV4LPf5m3moUmKpLF1O4+uHBR8Sys
ZeE71fPfrgb2wen4wNqcjfT49SxPnmrsg+FbFgrVaiys8D0yYdTfB0dT1gR0
bWKhJO+F/jxeLhy6W7eGABau4Fm+nqHAhd2P5M/H6LLQODVfOeoEFz6W8DQ+
0GOhROE2j3fBXDAo/apUZcDCX0n6RjHXuKBVdraJ15iFhXveGr19xIXSit3r
pE1YaCXU+U71DRfUq+RCNXez0H9QKm59LReUvnxZf9KChQ1ihyJqBrmQVZsR
dnkfC+07L17x4qFA9ptva7YlCzsG/IsfCFGw6odseKctC4mGDGYlm4IFlHeb
xWEWtvG5XKs3pSB00FjthAsLvcKaRkSsKZgzyoqMPsJC94bc1BZHCiYmP6hX
urNQXl1sRNeLgpM86Zc6PFk4K6ClqT2AgoE5Xu2zT9LxPZ8SLx1OwW9BmejN
XnR/K0w3eMVR4CA83mHuw8I8ZRPR+GQKWsXeaxz3Y2H394pXdhkU1C49/Tsr
gIXrewJ8uwoo2LViB+dtEAsL2DELHpRQUCVFXGkPZuH4id3nmM8peMWuglXh
LLT58DaKqKRAP7JVX+IiC2vPytQcfE/Bx5FBM+FLdLyEP+U7f6bA3Gqe3bxo
Fu6TGmKvr6Wg5fUy13+X6fl/NGHN/D7cQWHNqdErLFRJmbot0UxBTwwGcGNZ
uCBTIk3lOwVj9o7XW+Lo/kuUBuraKfCr9EqtTWChN4+/ss1vCuaui8x+f4uF
m080Vz/qpiDiRnJxeRIL9xxyKf3ZS4H4rMLXpSksVNXR+vuLS8F1p4oPD9NY
uJvU9XnaT4HUx8Zv2bdZGP2oWe3oIAW3Van22xm0Ps7YyU4OUaCQOHvgViYL
H03baRwaoSBvnsRkbBYL/3YmH34wSoG6mxzfpWwWRpxtTmj4Q8HzrxriITks
PFJ0sLRjjAIdTeOVZ/PofJtKelA/TkF12gHyVAE93wv+erkTFOxecGr90Ycs
+vPi+D6PvxR887zAcSxioa3B0TsrJymwa7ypZ1PCQqGbG9oLaP6tlbvb/AkL
P18VfDJzXsgt87XNzlIWise8fHWf5hGxemfd5yy85ygUKP6PAp8zPSfgJQtf
Kga5HaZ59o9/51Rf0+O7xu3Mpzlsu3iEYjkLfcrKNIdoFs1hXZOtoPN/f18m
OU1B7BL1FKlKFipuurLHbOZ+rLOG95dUsTBAT363F82pHTZFIu9ZuGy+Q+r1
mfM2Rp6v+D6ycG6EklLuTL2gMPj99CcWuo28+jxzX5fqyriGP1/oeN25trOG
5tKg+7+oryxcaX3O/DvN2r3Pqc46Fp5N/xUyU295Z1oz0drAwh1cGZf+me/n
H3fOrW9kYeIrzpkRmuuJv6Ifm1n4O+7+0pl6i80F4RUVrSw87xiSOFMv6BiQ
ln3+g4Vbw6p2z9QTXPeqrCv6ycIxm0b3mXrD0PPtmjnttH+MjTBn6hFepOX2
jE4WWutXX5xhnqijpkldLBzdIPTf/WjBfwKsr/ew8KtvZ+cMC9nEHo7qY+GI
6fXRGb5Sfvd4KEXnL2/df/WX5Wufnj03wEJQlP6vnkJO/bx6bISFfr7j/7FK
lWCW7TgLdab+rx5j7GxRj7PYWPT/9Rln/tu80gJsTP0U+h+/mx16cet8NrqZ
dP13v5vC1GGJQ0Js3PS5/L/73SL/GCSGirBxIsakZ4apgTXkPTE2Pk/Kqfqv
/V6R3OqFbFx/fEnkf+ebOgbU+xez0YLMXjrDC398eSm+lI0xr3UNZtbneGOh
gcpyNjrtWjg2U7/6+vVajfkKNuYe1m+bOS+08eMZK69VbDQd+PF45rzQtcr9
HQkMNprTm8iZeszYa82jzwg2fnDXT565r2/vM6mxHzJsdBnXvPOT5pLiWf68
smw8NBR8sW4mvwp+CsjKsfFG37nLb2j2zS67rCfPxr8ClQ15NLdk3JF0XcPG
OoWfLjP5hqlhaZGKbJyqFtx4iubkmy5rcpXZuHbdBkEjmmdf3/Hwy3o22vvP
S5Sk+cBlRRhVYePcWc2XWuh8fx0hVrFUjW7/T6XlVZpZIUPGmzex8emjXGcO
zcH+XxusNNi42i5oTj2tr07vR/bnOGwMIOr22NK8/eSNnhRkY+fXKq+vM/e5
HfM+XqbFRslTTkdUaJ7vYjXVqU3Hp4kj4Ufr2/UgBAvqsvFb2Ont92n9v7eR
Flmjx8YdS/jKntP+oLhvzvWdBmysFxvQeEj7R9TudobHDjbWrEo1Daf9ZcDo
zd0rO9moILwlWZP2HxO9u+se7WKj8NaBgsphCgq2hj9uMGXj4huiS5Ro/1rM
OaI9acbGMHdlA5cB+vmhtrN6lQUb7XLefjpD0fpZp7xnyz42hq84J7e3j4I4
2RHHYGs2fooc1DpH++tf6br+DFs2qhc5TL+k/ddyRfGZd/ZsPO/6KKCqjdav
RPxsrgMb/d1V9ONaaT8V8w0XdWRjf4zcF7kmCs7Nt1m0/jAbq7Jb407XU9A2
d8tNMxc2Ni/PXhVUQ0HaBO+DuKNsHPHU3fXmHe3nIx2qT93ZaPzi2tR4OQWH
qIrnrZ5s5P/dYt/6ggK5XxGfZU6zcbdP//GihxRcaHHbr+vFxiXOwXgnh4Le
euNfh33YqMIW5INMCrKrF41mn2Pj/K3szbYJFIhUjPp9CmDjP9Zi+fYrFBx7
Wc83HMRGK+d1UoIXKVj3KGGZehgbnU+qjMj7UBCT65eyP5yNNuPBc1ieFAzf
s5X3u8jGJwr+7g8PU/AoSUbzVTQbV/He+BVvRoHMtLb3ixg2DsPw73QDOn5W
B4ufXaX1tMfG03gLBU7Lb6s8ucHGQBcHIlCegprT5Z4l8Wy0TqjxE2BQsKWu
I7foJhv9To9+VFhE+8cV2bWFyfT8D1Vm6P7lQvCgrmt+Kq3H3b8FOFwuDBo7
Zeam0/GN3Cbx4TsX3gndZWffpdvvupb/7DUXfEJWS93JZaNJkGnHlxAu/G7X
t0rPZ6Pyray/105xwUzbJT61kI2GyakrRg5xYe2srCVJxWzM9E+29NLmQqvX
GtEbL9joSUWfyJnoAy03pVnhn9jYEy6fUWnaB9lVxhD2hY3PDpCwSrMPJOXd
fUO+0uM7GFItyKb3b52544ENbPReldOSPdoL6XbrB31+sPH3vwYhmZhe4Dfb
+NNtgI1vnL4v6irqgeP5e6SPDNHjWTl1qjm+B36InbJxGWGjzN/Aw0f9eqDk
/aNGx3E2Sp3wtzuq1QMu29VrbGfJottsWfHJsm54v1mjzERMFqeKG6fcntD7
56ITf3UWyiIrYsFP77gu0FV5oLx5sSwqHHv9DU53wfO1xC3mMllsvOxnPryu
C/Kl+U8NM2TxT3EuSzv9N1znqyFjlWRRtiLlr/zZTjjwxSWiYacs+l61Mgtc
3A5jzvGmtpGyiIJXe9eu+g6XvFL5zkbJ4rm7w4x/7a3AvnDv8c3LsniB88zp
1qVWMLv7mNkYK4tqY3vGWtpaIK+zccgsURYjdkTJ2IY1g6vDiisGObIoo95T
7V77Db5b3azZ+FkWX49oDh87+RVOHUkPNauRRSkj87dbpb+CsO99jeO1shiw
UNt9a1UNaCY8Tcv9JotZnn8434gaiPvWfFzhpyy+Z86f9evzZ9htvmoxMSyL
LhH63rFaH6HCONFMSIJE4eH5J47NfQPOr9tL+ZaSWCs6fVkwoByE1BTI2ctJ
3Oca4To2XQYmUsUToytJvMgzx79z+jU09n1O/M4icchDPv2e6Cvws1sm0ChL
4jpPPTG/6y+B8dXG46sciV8EtFKrpF+Cw5Ne7co1JEYfkPfrVXsB3AvzuvNV
SBR/fbFZfKgUov4ZmmarkiioOWXBlCyF9R4xTzLUSYzk7VE103kKp/cyLt3U
JDHKs62bffsxzCY3bQjZRmJXiPzuB+FFsLjsiN8+M/r1wvLj37l5UKRW0Lnb
nES33XHuEXp5sC9rwnjnXhIlaprcHO7kwq2YEKa2FYk5TtnO111zgLRPrlhz
kMSQoNrnjE1ZUPm1U5l0JFHAcChejbgHR/TWxhOHSYxvW6CaIZoJeUqPjyw5
QqLkH8FdF3kyQGO6RnzWCRIdfhosMlNIgxYPSZ+/J0nsvPhDUEw3Ffw77NpH
TpP45pPspSVOKVBezX3U7UNiBGUtPvAkCZy2qEi3+5G4Qlx+5OiPRBAs9L7Q
eo7E0LBgVXuzW7Azgd+qJohEdsDJp6vt42FQZGf5+2AStQoE1GonbsCVwKuK
b0NJXOyoezYq8TrUOxOzSyNIHAkrsXi+IBbs1TXu3LlCovIfnTQnj2g43Fc9
0hRL4lWRixty9aLgWLKNtvgNEiukRW6ssIqEswKBP3xukpjA4D1Puy0EP12k
lJdIYru897ff5qEQ6X7brzOZxD+Oa/2qQ4MhoeGtpMltEp8bZ3V8WxcIqRf3
O4dkkGjZwv1cnOkPmVv6ip5kkvjt+6HHA2rnIG/Ej28wi0Qrm7aMe8W+UHxX
dI/sAxKT4qqeusl7w3OrlDTLXBKDA839qspOQ4XYhqHofBKnHctG7UNOQu0Z
86jJRySq3pRuvO/lAc1rulqUS0iU+XDQKP7uMfj1w2uN4xMSf35p73IcPgK9
Vxf4JJSSKCZy1I6sdYYhvVuVn56TGD5BvskZcYSJKcVlfK/o/iT+tKgbH4TZ
eS8cNcpIVLxednSyzR4EDpk+dH9DYsuyRHPle7Yguryd985bEnXyVqUwDa1g
yfuTpk3vSNyyqEkqJ3kvrArgTxF7T6IF+iSe27UH2Bvj+nU+knh6h2TRoj2m
sKZbHnw+k1i6693KP3eNYcOtpxdza0hc48AsC7pkCBomO5s6aklsUDrmaLh7
O2yd92P1igYSb7qdi224pg36JR5ndjWS2MiVaeAx3gK73HgrgptJrHf/dvZV
uwZYELEST1pJrPZ64PKzTxVsa2UPDvwgcXnp4pAFt9eD44XifPYvEh+IcPNP
jyuCG8dgtmUHiUJ/dyamvpSDk4NNxtG/6fZuhj5TCpUB39tuieXdJI7/y2q+
pcCAoH083L+9dH6mVWoUk8sgXPiyhjJFx1tM9/A1g4Vw+SUz/NAAPR9Hs7vz
WEIQd7KwIX6IxDGB6AaptLmQvFqX/DRC4qfl7JetF6Y5GS31J+eNkeiuCltO
BI5yci47l22eIFG3z3DJmkMU55HO5EL3SRINOrRNvHa3c0onLtrf/kciWVUn
dE+6iVOWLZXbyCOHDnt83I24nzhV9rnTonPkcONEWIrNRBmnRmKrkc5cOZxn
+uJh6eNiTmNlTYI3nxx2aLeKvorI4rT5HerJEZDDkKi6ez0FNznd68bUO+bL
oQ1v3QOP+AjOQEdYqKSwHI6qVoblzz/DGYuTrDMWlcOuFYLv6z0OcKaN7rOC
xeUwdvZgyrNvepx5c+D440VyeHSvQ7ROpzxH6NHHl/0SNIcpCEuencdZ5GIv
xl5G9+fJ+6Hbq05TUmrYZr+kHO7KSTAN5b2uSXw5nx21Ug6lS793JGxU11wd
smSqTEoOc1b7TwS4hGoob75r8FdaDqXOpy2f+b+b/wFTEBZi
"]]},
Annotation[#, "Charting`Private`Tag#1"]& ]}, {}},
AspectRatio->0.15915494309189535`,
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{{{1,
FormBox["1", TraditionalForm]}}, {{1,
FormBox["1", TraditionalForm]}}}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->{{9.203125, 9.}, {14.34375, 0.5}},
ImageSize->Full,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->
NCache[{{0, 4 Pi}, {0., 1.}}, {{0, 12.566370614359172`}, {0., 1.}}],
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}], {1572.1875, -314.475},
ImageScaled[{0.5, 0.5}], {585, 105},
BaseStyle->{Graphics3DBoxOptions -> {SphericalRegion -> False}}]}, {}},
ImageSize->Full,
PlotRangePadding->{6, 5}]], "Output",
CellLabel->
"Out[128]= ",ExpressionUUID->"c398e6fe-4fb5-4218-b542-492832d7ca8d"]
}, Open ]]
},
CloudRenderingMethod->"InteractiveBoxes",
FrontEndVersion->"13.3 for Linux x86 (64-bit) (July 24, 2023)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"51738fe7-6d28-4a58-96f3-24a444051adb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 6243, 186, 70, "Input",ExpressionUUID->"a68001d4-5f1e-4b83-8af8-5ffeaf0911a7"],
Cell[6804, 208, 6833, 182, 70, "Input",ExpressionUUID->"1cb68996-1682-47b9-a616-08af5811bee5"],
Cell[CellGroupData[{
Cell[13662, 394, 2993, 70, 70, "Input",ExpressionUUID->"a8c1fd5e-14b8-4edc-b2f7-b94c06f766bc"],
Cell[16658, 466, 104420, 1763, 70, "Output",ExpressionUUID->"c398e6fe-4fb5-4218-b542-492832d7ca8d"]
}, Open ]]
}
]
*)
(* End of internal cache information *)