221 lines
4.8 KiB
Go
221 lines
4.8 KiB
Go
|
// Copyright 2014 Hajime Hoshi
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
package ebiten
|
||
|
|
||
|
import (
|
||
|
"fmt"
|
||
|
"math"
|
||
|
)
|
||
|
|
||
|
// GeoMDim is a dimension of a GeoM.
|
||
|
const GeoMDim = 3
|
||
|
|
||
|
// A GeoM represents a matrix to transform geometry when rendering an image.
|
||
|
//
|
||
|
// The initial value is identity.
|
||
|
type GeoM struct {
|
||
|
a_1 float64 // The actual 'a' value minus 1
|
||
|
b float64
|
||
|
c float64
|
||
|
d_1 float64 // The actual 'd' value minus 1
|
||
|
tx float64
|
||
|
ty float64
|
||
|
}
|
||
|
|
||
|
// String returns a string representation of GeoM.
|
||
|
func (g *GeoM) String() string {
|
||
|
return fmt.Sprintf("[[%f, %f, %f], [%f, %f, %f]]", g.a_1+1, g.b, g.tx, g.c, g.d_1+1, g.ty)
|
||
|
}
|
||
|
|
||
|
// Reset resets the GeoM as identity.
|
||
|
func (g *GeoM) Reset() {
|
||
|
g.a_1 = 0
|
||
|
g.b = 0
|
||
|
g.c = 0
|
||
|
g.d_1 = 0
|
||
|
g.tx = 0
|
||
|
g.ty = 0
|
||
|
}
|
||
|
|
||
|
// Apply pre-multiplies a vector (x, y, 1) by the matrix.
|
||
|
// In other words, Apply calculates GeoM * (x, y, 1)^T.
|
||
|
// The return value is x and y values of the result vector.
|
||
|
func (g *GeoM) Apply(x, y float64) (float64, float64) {
|
||
|
return (g.a_1+1)*x + g.b*y + g.tx, g.c*x + (g.d_1+1)*y + g.ty
|
||
|
}
|
||
|
|
||
|
func (g *GeoM) elements32() (a, b, c, d, tx, ty float32) {
|
||
|
return float32(g.a_1) + 1, float32(g.b), float32(g.c), float32(g.d_1) + 1, float32(g.tx), float32(g.ty)
|
||
|
}
|
||
|
|
||
|
// Element returns a value of a matrix at (i, j).
|
||
|
func (g *GeoM) Element(i, j int) float64 {
|
||
|
switch {
|
||
|
case i == 0 && j == 0:
|
||
|
return g.a_1 + 1
|
||
|
case i == 0 && j == 1:
|
||
|
return g.b
|
||
|
case i == 0 && j == 2:
|
||
|
return g.tx
|
||
|
case i == 1 && j == 0:
|
||
|
return g.c
|
||
|
case i == 1 && j == 1:
|
||
|
return g.d_1 + 1
|
||
|
case i == 1 && j == 2:
|
||
|
return g.ty
|
||
|
default:
|
||
|
panic("ebiten: i or j is out of index")
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Concat multiplies a geometry matrix with the other geometry matrix.
|
||
|
// This is same as muptiplying the matrix other and the matrix g in this order.
|
||
|
func (g *GeoM) Concat(other GeoM) {
|
||
|
a := (other.a_1+1)*(g.a_1+1) + other.b*g.c
|
||
|
b := (other.a_1+1)*g.b + other.b*(g.d_1+1)
|
||
|
tx := (other.a_1+1)*g.tx + other.b*g.ty + other.tx
|
||
|
c := other.c*(g.a_1+1) + (other.d_1+1)*g.c
|
||
|
d := other.c*g.b + (other.d_1+1)*(g.d_1+1)
|
||
|
ty := other.c*g.tx + (other.d_1+1)*g.ty + other.ty
|
||
|
|
||
|
g.a_1 = a - 1
|
||
|
g.b = b
|
||
|
g.c = c
|
||
|
g.d_1 = d - 1
|
||
|
g.tx = tx
|
||
|
g.ty = ty
|
||
|
}
|
||
|
|
||
|
// Scale scales the matrix by (x, y).
|
||
|
func (g *GeoM) Scale(x, y float64) {
|
||
|
a := (g.a_1 + 1) * x
|
||
|
b := g.b * x
|
||
|
tx := g.tx * x
|
||
|
c := g.c * y
|
||
|
d := (g.d_1 + 1) * y
|
||
|
ty := g.ty * y
|
||
|
|
||
|
g.a_1 = a - 1
|
||
|
g.b = b
|
||
|
g.c = c
|
||
|
g.d_1 = d - 1
|
||
|
g.tx = tx
|
||
|
g.ty = ty
|
||
|
}
|
||
|
|
||
|
// Translate translates the matrix by (tx, ty).
|
||
|
func (g *GeoM) Translate(tx, ty float64) {
|
||
|
g.tx += tx
|
||
|
g.ty += ty
|
||
|
}
|
||
|
|
||
|
// Rotate rotates the matrix by theta.
|
||
|
// The unit is radian.
|
||
|
func (g *GeoM) Rotate(theta float64) {
|
||
|
if theta == 0 {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
sin, cos := math.Sincos(theta)
|
||
|
|
||
|
a := cos*(g.a_1+1) - sin*g.c
|
||
|
b := cos*g.b - sin*(g.d_1+1)
|
||
|
tx := cos*g.tx - sin*g.ty
|
||
|
c := sin*(g.a_1+1) + cos*g.c
|
||
|
d := sin*g.b + cos*(g.d_1+1)
|
||
|
ty := sin*g.tx + cos*g.ty
|
||
|
|
||
|
g.a_1 = a - 1
|
||
|
g.b = b
|
||
|
g.c = c
|
||
|
g.d_1 = d - 1
|
||
|
g.tx = tx
|
||
|
g.ty = ty
|
||
|
}
|
||
|
|
||
|
// Skew skews the matrix by (skewX, skewY). The unit is radian.
|
||
|
func (g *GeoM) Skew(skewX, skewY float64) {
|
||
|
sx := math.Tan(skewX)
|
||
|
sy := math.Tan(skewY)
|
||
|
|
||
|
a := (g.a_1 + 1) + g.c*sx
|
||
|
b := g.b + (g.d_1+1)*sx
|
||
|
c := (g.a_1+1)*sy + g.c
|
||
|
d := g.b*sy + (g.d_1 + 1)
|
||
|
tx := g.tx + g.ty*sx
|
||
|
ty := g.ty + g.tx*sy
|
||
|
|
||
|
g.a_1 = a - 1
|
||
|
g.b = b
|
||
|
g.c = c
|
||
|
g.d_1 = d - 1
|
||
|
g.tx = tx
|
||
|
g.ty = ty
|
||
|
}
|
||
|
|
||
|
func (g *GeoM) det2x2() float64 {
|
||
|
return (g.a_1+1)*(g.d_1+1) - g.b*g.c
|
||
|
}
|
||
|
|
||
|
// IsInvertible returns a boolean value indicating
|
||
|
// whether the matrix g is invertible or not.
|
||
|
func (g *GeoM) IsInvertible() bool {
|
||
|
return g.det2x2() != 0
|
||
|
}
|
||
|
|
||
|
// Invert inverts the matrix.
|
||
|
// If g is not invertible, Invert panics.
|
||
|
func (g *GeoM) Invert() {
|
||
|
det := g.det2x2()
|
||
|
if det == 0 {
|
||
|
panic("ebiten: g is not invertible")
|
||
|
}
|
||
|
|
||
|
a := (g.d_1 + 1) / det
|
||
|
b := -g.b / det
|
||
|
c := -g.c / det
|
||
|
d := (g.a_1 + 1) / det
|
||
|
tx := (-(g.d_1+1)*g.tx + g.b*g.ty) / det
|
||
|
ty := (g.c*g.tx + -(g.a_1+1)*g.ty) / det
|
||
|
|
||
|
g.a_1 = a - 1
|
||
|
g.b = b
|
||
|
g.c = c
|
||
|
g.d_1 = d - 1
|
||
|
g.tx = tx
|
||
|
g.ty = ty
|
||
|
}
|
||
|
|
||
|
// SetElement sets an element at (i, j).
|
||
|
func (g *GeoM) SetElement(i, j int, element float64) {
|
||
|
e := element
|
||
|
switch {
|
||
|
case i == 0 && j == 0:
|
||
|
g.a_1 = e - 1
|
||
|
case i == 0 && j == 1:
|
||
|
g.b = e
|
||
|
case i == 0 && j == 2:
|
||
|
g.tx = e
|
||
|
case i == 1 && j == 0:
|
||
|
g.c = e
|
||
|
case i == 1 && j == 1:
|
||
|
g.d_1 = e - 1
|
||
|
case i == 1 && j == 2:
|
||
|
g.ty = e
|
||
|
default:
|
||
|
panic("ebiten: i or j is out of index")
|
||
|
}
|
||
|
}
|