wm/vend/xgb/examples/shapes/main.go

307 lines
10 KiB
Go
Raw Normal View History

2023-06-11 14:21:08 +00:00
// The shapes example shows how to draw basic shapes into a window.
// It can be considered the Go equivalent of
// https://x.org/releases/X11R7.5/doc/libxcb/tutorial/#drawingprim
// Four points, a single polyline, two line segments,
// two rectangles and two arcs are drawn.
// In addition to this, we will also write some text
// and fill a rectangle.
package main
import (
"fmt"
"unicode/utf16"
"github.com/jezek/xgb"
"github.com/jezek/xgb/xproto"
)
func main() {
X, err := xgb.NewConn()
if err != nil {
fmt.Println("error connecting to X:", err)
return
}
defer X.Close()
setup := xproto.Setup(X)
screen := setup.DefaultScreen(X)
wid, err := xproto.NewWindowId(X)
if err != nil {
fmt.Println("error creating window id:", err)
return
}
draw := xproto.Drawable(wid) // for now, we simply draw into the window
// Create the window
xproto.CreateWindow(X, screen.RootDepth, wid, screen.Root,
0, 0, 180, 200, 8, // X, Y, width, height, *border width*
xproto.WindowClassInputOutput, screen.RootVisual,
xproto.CwBackPixel|xproto.CwEventMask,
[]uint32{screen.WhitePixel, xproto.EventMaskStructureNotify | xproto.EventMaskExposure})
// Map the window on the screen
xproto.MapWindow(X, wid)
// Up to here everything is the same as in the `create-window` example.
// We opened a connection, created and mapped the window.
// But this time we'll be drawing some basic shapes.
// Note how this time the border width is set to 8 instead of 0.
//
// First of all we need to create a context to draw with.
// The graphics context combines all properties (e.g. color, line width, font, fill style, ...)
// that should be used to draw something. All available properties
//
// These properties can be set by or'ing their keys (xproto.Gc*)
// and adding the value to the end of the values array.
// The order in which the values have to be given corresponds to the order that they defined
// mentioned in `xproto`.
//
// Here we create a new graphics context
// which only has the foreground (color) value set to black:
foreground, err := xproto.NewGcontextId(X)
if err != nil {
fmt.Println("error creating foreground context:", err)
return
}
mask := uint32(xproto.GcForeground)
values := []uint32{screen.BlackPixel}
xproto.CreateGC(X, foreground, draw, mask, values)
// It is possible to set the foreground value to something different.
// In production, this should use xorg color maps instead for compatibility
// but for demonstration setting the color directly also works.
// For more information on color maps, see the xcb documentation:
// https://x.org/releases/X11R7.5/doc/libxcb/tutorial/#usecolor
red, err := xproto.NewGcontextId(X)
if err != nil {
fmt.Println("error creating red context:", err)
return
}
mask = uint32(xproto.GcForeground)
values = []uint32{0xff0000}
xproto.CreateGC(X, red, draw, mask, values)
// We'll create another graphics context that draws thick lines:
thick, err := xproto.NewGcontextId(X)
if err != nil {
fmt.Println("error creating thick context:", err)
return
}
mask = uint32(xproto.GcLineWidth)
values = []uint32{10}
xproto.CreateGC(X, thick, draw, mask, values)
// It is even possible to set multiple properties at once.
// Only remember to put the values in the same order as they're
// defined in `xproto`:
// Foreground is defined first, so we also set it's value first.
// LineWidth comes second.
blue, err := xproto.NewGcontextId(X)
if err != nil {
fmt.Println("error creating blue context:", err)
return
}
mask = uint32(xproto.GcForeground | xproto.GcLineWidth)
values = []uint32{0x0000ff, 4}
xproto.CreateGC(X, blue, draw, mask, values)
// Properties of an already created gc can also be changed
// if the original values aren't needed anymore.
// In this case, we will change the line width
// and cap (line corner) style of our foreground context,
// to smooth out the polyline:
mask = uint32(xproto.GcLineWidth | xproto.GcCapStyle)
values = []uint32{3, xproto.CapStyleRound}
xproto.ChangeGC(X, foreground, mask, values)
// Writing text needs a bit more setup -- we first have
// to open the required font.
font, err := xproto.NewFontId(X)
if err != nil {
fmt.Println("error creating font id:", err)
return
}
// The font identifier that has to be passed to X for opening the font
// sets all font properties:
// publisher-family-weight-slant-width-adstyl-pxlsz-ptSz-resx-resy-spc-avgWidth-registry-encoding
// For all available fonts, install and run xfontsel.
//
// To load any available font, set all fields to an asterisk.
// To specify a font, set one or multiple fields.
// This can also be seen in xfontsel -- initially every field is set to *,
// however, the more fields are set, the fewer fonts match.
//
// Using a specific font (e.g. Gnu Unifont) can be as easy as
// "-gnu-unifont-*-*-*-*-16-*-*-*-*-*-*-*"
//
// To load any font that is encoded for usage
// with Unicode characters, one would use
// fontname := "-*-*-*-*-*-*-14-*-*-*-*-*-iso10646-1"
//
// For now, we'll simply stick with the fixed font which is available
// to every X session:
fontname := "-*-fixed-*-*-*-*-14-*-*-*-*-*-*-*"
err = xproto.OpenFontChecked(X, font, uint16(len(fontname)), fontname).Check()
if err != nil {
fmt.Println("failed opening the font:", err)
return
}
// And create a context from it. We simply pass the font's ID to the GcFont property.
textCtx, err := xproto.NewGcontextId(X)
if err != nil {
fmt.Println("error creating text context:", err)
return
}
mask = uint32(xproto.GcForeground | xproto.GcBackground | xproto.GcFont)
values = []uint32{screen.BlackPixel, screen.WhitePixel, uint32(font)}
xproto.CreateGC(X, textCtx, draw, mask, values)
text := convertStringToChar2b("Hellö World!") // Unicode capable!
// Close the font handle:
xproto.CloseFont(X, font)
// After all, writing text is way more comfortable using Xft - it supports TrueType,
// and overall better configuration.
points := []xproto.Point{
{X: 10, Y: 10},
{X: 20, Y: 10},
{X: 30, Y: 10},
{X: 40, Y: 10},
}
// A polyline is essentially a line with multiple points.
// The first point is placed absolutely inside the window,
// while every other point is placed relative to the one before it.
polyline := []xproto.Point{
{X: 50, Y: 10},
{X: 5, Y: 20}, // move 5 to the right, 20 down
{X: 25, Y: -20}, // move 25 to the right, 20 up - notice how this point is level again with the first point
{X: 10, Y: 10}, // move 10 to the right, 10 down
}
segments := []xproto.Segment{
{X1: 100, Y1: 10, X2: 140, Y2: 30},
{X1: 110, Y1: 25, X2: 130, Y2: 60},
{X1: 0, Y1: 160, X2: 90, Y2: 100},
}
// Rectangles have a start coordinate (upper left) and width and height.
rectangles := []xproto.Rectangle{
{X: 10, Y: 50, Width: 40, Height: 20},
{X: 80, Y: 50, Width: 10, Height: 40},
}
// This rectangle we will use to demonstrate filling a shape.
rectangles2 := []xproto.Rectangle{
{X: 150, Y: 50, Width: 20, Height: 60},
}
// Arcs are defined by a top left position (notice where the third line goes to)
// their width and height, a starting and end angle.
// Angles are defined in units of 1/64 of a single degree,
// so we have to multiply the degrees by 64 (or left shift them by 6).
arcs := []xproto.Arc{
{X: 10, Y: 100, Width: 60, Height: 40, Angle1: 0 << 6, Angle2: 90 << 6},
{X: 90, Y: 100, Width: 55, Height: 40, Angle1: 20 << 6, Angle2: 270 << 6},
}
for {
evt, err := X.WaitForEvent()
if err != nil {
fmt.Println("error reading event:", err)
return
} else if evt == nil {
return
}
switch evt.(type) {
case xproto.ExposeEvent:
// Draw the four points we specified earlier.
// Notice how we use the `foreground` context to draw them in black.
// Also notice how even though we changed the line width to 3,
// these still only appear as a single pixel.
// To draw points that are bigger than a single pixel,
// one has to either fill rectangles, circles or polygons.
xproto.PolyPoint(X, xproto.CoordModeOrigin, draw, foreground, points)
// Draw the polyline. This time we specified `xproto.CoordModePrevious`,
// which means that every point is placed relatively to the previous.
// If we were to use `xproto.CoordModeOrigin` instead,
// we could specify each point absolutely on the screen.
// It is also possible to use `xproto.CoordModePrevious` for drawing *points*
// which means that each point would be specified relative to the previous one,
// just as we did with the polyline.
xproto.PolyLine(X, xproto.CoordModePrevious, draw, foreground, polyline)
// Draw two lines in red.
xproto.PolySegment(X, draw, red, segments)
// Draw two thick rectangles.
// The line width only specifies the width of the outline.
// Notice how the second rectangle gets completely filled
// due to the line width.
xproto.PolyRectangle(X, draw, thick, rectangles)
// Draw the circular arcs in blue.
xproto.PolyArc(X, draw, blue, arcs)
// There's also a fill variant for all drawing commands:
xproto.PolyFillRectangle(X, draw, red, rectangles2)
// Draw the text. Xorg currently knows two ways of specifying text:
// a) the (extended) ASCII encoding using ImageText8(..., []byte)
// b) UTF16 encoding using ImageText16(..., []Char2b) -- Char2b is
// a structure consisting of two bytes.
// At the bottom of this example, there are two utility functions that help
// convert a go string into an array of Char2b's.
xproto.ImageText16(X, byte(len(text)), draw, textCtx, 10, 160, text)
case xproto.DestroyNotifyEvent:
return
}
}
}
// Char2b is defined as
// Byte1 byte
// Byte2 byte
// and is used as a utf16 character.
// This function takes a string and converts each rune into a char2b.
func convertStringToChar2b(s string) []xproto.Char2b {
var chars []xproto.Char2b
var p []uint16
for _, r := range []rune(s) {
p = utf16.Encode([]rune{r})
if len(p) == 1 {
chars = append(chars, convertUint16ToChar2b(p[0]))
} else {
// If the utf16 representation is larger than 2 bytes
// we can not use it and insert a blank instead:
chars = append(chars, xproto.Char2b{Byte1: 0, Byte2: 32})
}
}
return chars
}
// convertUint16ToChar2b converts a uint16 (which is basically two bytes)
// into a Char2b by using the higher 8 bits of u as Byte1
// and the lower 8 bits of u as Byte2.
func convertUint16ToChar2b(u uint16) xproto.Char2b {
return xproto.Char2b{
Byte1: byte((u & 0xff00) >> 8),
Byte2: byte((u & 0x00ff)),
}
}